1// Copyright (C) 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5*
6*   Copyright (C) 1999-2015, International Business Machines
7*   Corporation and others.  All Rights Reserved.
8*
9*******************************************************************************
10*   file name:  collationweights.cpp
11*   encoding:   US-ASCII
12*   tab size:   8 (not used)
13*   indentation:4
14*
15*   created on: 2001mar08 as ucol_wgt.cpp
16*   created by: Markus W. Scherer
17*
18*   This file contains code for allocating n collation element weights
19*   between two exclusive limits.
20*   It is used only internally by the collation tailoring builder.
21*/
22
23#include "unicode/utypes.h"
24
25#if !UCONFIG_NO_COLLATION
26
27#include "cmemory.h"
28#include "collation.h"
29#include "collationweights.h"
30#include "uarrsort.h"
31#include "uassert.h"
32
33#ifdef UCOL_DEBUG
34#   include <stdio.h>
35#endif
36
37U_NAMESPACE_BEGIN
38
39/* collation element weight allocation -------------------------------------- */
40
41/* helper functions for CE weights */
42
43static inline uint32_t
44getWeightTrail(uint32_t weight, int32_t length) {
45    return (uint32_t)(weight>>(8*(4-length)))&0xff;
46}
47
48static inline uint32_t
49setWeightTrail(uint32_t weight, int32_t length, uint32_t trail) {
50    length=8*(4-length);
51    return (uint32_t)((weight&(0xffffff00<<length))|(trail<<length));
52}
53
54static inline uint32_t
55getWeightByte(uint32_t weight, int32_t idx) {
56    return getWeightTrail(weight, idx); /* same calculation */
57}
58
59static inline uint32_t
60setWeightByte(uint32_t weight, int32_t idx, uint32_t byte) {
61    uint32_t mask; /* 0xffffffff except a 00 "hole" for the index-th byte */
62
63    idx*=8;
64    if(idx<32) {
65        mask=((uint32_t)0xffffffff)>>idx;
66    } else {
67        // Do not use uint32_t>>32 because on some platforms that does not shift at all
68        // while we need it to become 0.
69        // PowerPC: 0xffffffff>>32 = 0           (wanted)
70        // x86:     0xffffffff>>32 = 0xffffffff  (not wanted)
71        //
72        // ANSI C99 6.5.7 Bitwise shift operators:
73        // "If the value of the right operand is negative
74        // or is greater than or equal to the width of the promoted left operand,
75        // the behavior is undefined."
76        mask=0;
77    }
78    idx=32-idx;
79    mask|=0xffffff00<<idx;
80    return (uint32_t)((weight&mask)|(byte<<idx));
81}
82
83static inline uint32_t
84truncateWeight(uint32_t weight, int32_t length) {
85    return (uint32_t)(weight&(0xffffffff<<(8*(4-length))));
86}
87
88static inline uint32_t
89incWeightTrail(uint32_t weight, int32_t length) {
90    return (uint32_t)(weight+(1UL<<(8*(4-length))));
91}
92
93static inline uint32_t
94decWeightTrail(uint32_t weight, int32_t length) {
95    return (uint32_t)(weight-(1UL<<(8*(4-length))));
96}
97
98CollationWeights::CollationWeights()
99        : middleLength(0), rangeIndex(0), rangeCount(0) {
100    for(int32_t i = 0; i < 5; ++i) {
101        minBytes[i] = maxBytes[i] = 0;
102    }
103}
104
105void
106CollationWeights::initForPrimary(UBool compressible) {
107    middleLength=1;
108    minBytes[1] = Collation::MERGE_SEPARATOR_BYTE + 1;
109    maxBytes[1] = Collation::TRAIL_WEIGHT_BYTE;
110    if(compressible) {
111        minBytes[2] = Collation::PRIMARY_COMPRESSION_LOW_BYTE + 1;
112        maxBytes[2] = Collation::PRIMARY_COMPRESSION_HIGH_BYTE - 1;
113    } else {
114        minBytes[2] = 2;
115        maxBytes[2] = 0xff;
116    }
117    minBytes[3] = 2;
118    maxBytes[3] = 0xff;
119    minBytes[4] = 2;
120    maxBytes[4] = 0xff;
121}
122
123void
124CollationWeights::initForSecondary() {
125    // We use only the lower 16 bits for secondary weights.
126    middleLength=3;
127    minBytes[1] = 0;
128    maxBytes[1] = 0;
129    minBytes[2] = 0;
130    maxBytes[2] = 0;
131    minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1;
132    maxBytes[3] = 0xff;
133    minBytes[4] = 2;
134    maxBytes[4] = 0xff;
135}
136
137void
138CollationWeights::initForTertiary() {
139    // We use only the lower 16 bits for tertiary weights.
140    middleLength=3;
141    minBytes[1] = 0;
142    maxBytes[1] = 0;
143    minBytes[2] = 0;
144    maxBytes[2] = 0;
145    // We use only 6 bits per byte.
146    // The other bits are used for case & quaternary weights.
147    minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1;
148    maxBytes[3] = 0x3f;
149    minBytes[4] = 2;
150    maxBytes[4] = 0x3f;
151}
152
153uint32_t
154CollationWeights::incWeight(uint32_t weight, int32_t length) const {
155    for(;;) {
156        uint32_t byte=getWeightByte(weight, length);
157        if(byte<maxBytes[length]) {
158            return setWeightByte(weight, length, byte+1);
159        } else {
160            // Roll over, set this byte to the minimum and increment the previous one.
161            weight=setWeightByte(weight, length, minBytes[length]);
162            --length;
163            U_ASSERT(length > 0);
164        }
165    }
166}
167
168uint32_t
169CollationWeights::incWeightByOffset(uint32_t weight, int32_t length, int32_t offset) const {
170    for(;;) {
171        offset += getWeightByte(weight, length);
172        if((uint32_t)offset <= maxBytes[length]) {
173            return setWeightByte(weight, length, offset);
174        } else {
175            // Split the offset between this byte and the previous one.
176            offset -= minBytes[length];
177            weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length));
178            offset /= countBytes(length);
179            --length;
180            U_ASSERT(length > 0);
181        }
182    }
183}
184
185void
186CollationWeights::lengthenRange(WeightRange &range) const {
187    int32_t length=range.length+1;
188    range.start=setWeightTrail(range.start, length, minBytes[length]);
189    range.end=setWeightTrail(range.end, length, maxBytes[length]);
190    range.count*=countBytes(length);
191    range.length=length;
192}
193
194/* for uprv_sortArray: sort ranges in weight order */
195static int32_t U_CALLCONV
196compareRanges(const void * /*context*/, const void *left, const void *right) {
197    uint32_t l, r;
198
199    l=((const CollationWeights::WeightRange *)left)->start;
200    r=((const CollationWeights::WeightRange *)right)->start;
201    if(l<r) {
202        return -1;
203    } else if(l>r) {
204        return 1;
205    } else {
206        return 0;
207    }
208}
209
210UBool
211CollationWeights::getWeightRanges(uint32_t lowerLimit, uint32_t upperLimit) {
212    U_ASSERT(lowerLimit != 0);
213    U_ASSERT(upperLimit != 0);
214
215    /* get the lengths of the limits */
216    int32_t lowerLength=lengthOfWeight(lowerLimit);
217    int32_t upperLength=lengthOfWeight(upperLimit);
218
219#ifdef UCOL_DEBUG
220    printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength);
221    printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength);
222#endif
223    U_ASSERT(lowerLength>=middleLength);
224    // Permit upperLength<middleLength: The upper limit for secondaries is 0x10000.
225
226    if(lowerLimit>=upperLimit) {
227#ifdef UCOL_DEBUG
228        printf("error: no space between lower & upper limits\n");
229#endif
230        return FALSE;
231    }
232
233    /* check that neither is a prefix of the other */
234    if(lowerLength<upperLength) {
235        if(lowerLimit==truncateWeight(upperLimit, lowerLength)) {
236#ifdef UCOL_DEBUG
237            printf("error: lower limit 0x%08lx is a prefix of upper limit 0x%08lx\n", lowerLimit, upperLimit);
238#endif
239            return FALSE;
240        }
241    }
242    /* if the upper limit is a prefix of the lower limit then the earlier test lowerLimit>=upperLimit has caught it */
243
244    WeightRange lower[5], middle, upper[5]; /* [0] and [1] are not used - this simplifies indexing */
245    uprv_memset(lower, 0, sizeof(lower));
246    uprv_memset(&middle, 0, sizeof(middle));
247    uprv_memset(upper, 0, sizeof(upper));
248
249    /*
250     * With the limit lengths of 1..4, there are up to 7 ranges for allocation:
251     * range     minimum length
252     * lower[4]  4
253     * lower[3]  3
254     * lower[2]  2
255     * middle    1
256     * upper[2]  2
257     * upper[3]  3
258     * upper[4]  4
259     *
260     * We are now going to calculate up to 7 ranges.
261     * Some of them will typically overlap, so we will then have to merge and eliminate ranges.
262     */
263    uint32_t weight=lowerLimit;
264    for(int32_t length=lowerLength; length>middleLength; --length) {
265        uint32_t trail=getWeightTrail(weight, length);
266        if(trail<maxBytes[length]) {
267            lower[length].start=incWeightTrail(weight, length);
268            lower[length].end=setWeightTrail(weight, length, maxBytes[length]);
269            lower[length].length=length;
270            lower[length].count=maxBytes[length]-trail;
271        }
272        weight=truncateWeight(weight, length-1);
273    }
274    if(weight<0xff000000) {
275        middle.start=incWeightTrail(weight, middleLength);
276    } else {
277        // Prevent overflow for primary lead byte FF
278        // which would yield a middle range starting at 0.
279        middle.start=0xffffffff;  // no middle range
280    }
281
282    weight=upperLimit;
283    for(int32_t length=upperLength; length>middleLength; --length) {
284        uint32_t trail=getWeightTrail(weight, length);
285        if(trail>minBytes[length]) {
286            upper[length].start=setWeightTrail(weight, length, minBytes[length]);
287            upper[length].end=decWeightTrail(weight, length);
288            upper[length].length=length;
289            upper[length].count=trail-minBytes[length];
290        }
291        weight=truncateWeight(weight, length-1);
292    }
293    middle.end=decWeightTrail(weight, middleLength);
294
295    /* set the middle range */
296    middle.length=middleLength;
297    if(middle.end>=middle.start) {
298        middle.count=(int32_t)((middle.end-middle.start)>>(8*(4-middleLength)))+1;
299    } else {
300        /* no middle range, eliminate overlaps */
301        for(int32_t length=4; length>middleLength; --length) {
302            if(lower[length].count>0 && upper[length].count>0) {
303                // Note: The lowerEnd and upperStart weights are versions of
304                // lowerLimit and upperLimit (which are lowerLimit<upperLimit),
305                // truncated (still less-or-equal)
306                // and then with their last bytes changed to the
307                // maxByte (for lowerEnd) or minByte (for upperStart).
308                const uint32_t lowerEnd=lower[length].end;
309                const uint32_t upperStart=upper[length].start;
310                UBool merged=FALSE;
311
312                if(lowerEnd>upperStart) {
313                    // These two lower and upper ranges collide.
314                    // Since lowerLimit<upperLimit and lowerEnd and upperStart
315                    // are versions with only their last bytes modified
316                    // (and following ones removed/reset to 0),
317                    // lowerEnd>upperStart is only possible
318                    // if the leading bytes are equal
319                    // and lastByte(lowerEnd)>lastByte(upperStart).
320                    U_ASSERT(truncateWeight(lowerEnd, length-1)==
321                            truncateWeight(upperStart, length-1));
322                    // Intersect these two ranges.
323                    lower[length].end=upper[length].end;
324                    lower[length].count=
325                            (int32_t)getWeightTrail(lower[length].end, length)-
326                            (int32_t)getWeightTrail(lower[length].start, length)+1;
327                    // count might be <=0 in which case there is no room,
328                    // and the range-collecting code below will ignore this range.
329                    merged=TRUE;
330                } else if(lowerEnd==upperStart) {
331                    // Not possible, unless minByte==maxByte which is not allowed.
332                    U_ASSERT(minBytes[length]<maxBytes[length]);
333                } else /* lowerEnd<upperStart */ {
334                    if(incWeight(lowerEnd, length)==upperStart) {
335                        // Merge adjacent ranges.
336                        lower[length].end=upper[length].end;
337                        lower[length].count+=upper[length].count;  // might be >countBytes
338                        merged=TRUE;
339                    }
340                }
341                if(merged) {
342                    // Remove all shorter ranges.
343                    // There was no room available for them between the ranges we just merged.
344                    upper[length].count=0;
345                    while(--length>middleLength) {
346                        lower[length].count=upper[length].count=0;
347                    }
348                    break;
349                }
350            }
351        }
352    }
353
354#ifdef UCOL_DEBUG
355    /* print ranges */
356    for(int32_t length=4; length>=2; --length) {
357        if(lower[length].count>0) {
358            printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count);
359        }
360    }
361    if(middle.count>0) {
362        printf("middle   .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count);
363    }
364    for(int32_t length=2; length<=4; ++length) {
365        if(upper[length].count>0) {
366            printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count);
367        }
368    }
369#endif
370
371    /* copy the ranges, shortest first, into the result array */
372    rangeCount=0;
373    if(middle.count>0) {
374        uprv_memcpy(ranges, &middle, sizeof(WeightRange));
375        rangeCount=1;
376    }
377    for(int32_t length=middleLength+1; length<=4; ++length) {
378        /* copy upper first so that later the middle range is more likely the first one to use */
379        if(upper[length].count>0) {
380            uprv_memcpy(ranges+rangeCount, upper+length, sizeof(WeightRange));
381            ++rangeCount;
382        }
383        if(lower[length].count>0) {
384            uprv_memcpy(ranges+rangeCount, lower+length, sizeof(WeightRange));
385            ++rangeCount;
386        }
387    }
388    return rangeCount>0;
389}
390
391UBool
392CollationWeights::allocWeightsInShortRanges(int32_t n, int32_t minLength) {
393    // See if the first few minLength and minLength+1 ranges have enough weights.
394    for(int32_t i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) {
395        if(n <= ranges[i].count) {
396            // Use the first few minLength and minLength+1 ranges.
397            if(ranges[i].length > minLength) {
398                // Reduce the number of weights from the last minLength+1 range
399                // which might sort before some minLength ranges,
400                // so that we use all weights in the minLength ranges.
401                ranges[i].count = n;
402            }
403            rangeCount = i + 1;
404#ifdef UCOL_DEBUG
405            printf("take first %ld ranges\n", rangeCount);
406#endif
407
408            if(rangeCount>1) {
409                /* sort the ranges by weight values */
410                UErrorCode errorCode=U_ZERO_ERROR;
411                uprv_sortArray(ranges, rangeCount, sizeof(WeightRange),
412                               compareRanges, NULL, FALSE, &errorCode);
413                /* ignore error code: we know that the internal sort function will not fail here */
414            }
415            return TRUE;
416        }
417        n -= ranges[i].count;  // still >0
418    }
419    return FALSE;
420}
421
422UBool
423CollationWeights::allocWeightsInMinLengthRanges(int32_t n, int32_t minLength) {
424    // See if the minLength ranges have enough weights
425    // when we split one and lengthen the following ones.
426    int32_t count = 0;
427    int32_t minLengthRangeCount;
428    for(minLengthRangeCount = 0;
429            minLengthRangeCount < rangeCount &&
430                ranges[minLengthRangeCount].length == minLength;
431            ++minLengthRangeCount) {
432        count += ranges[minLengthRangeCount].count;
433    }
434
435    int32_t nextCountBytes = countBytes(minLength + 1);
436    if(n > count * nextCountBytes) { return FALSE; }
437
438    // Use the minLength ranges. Merge them, and then split again as necessary.
439    uint32_t start = ranges[0].start;
440    uint32_t end = ranges[0].end;
441    for(int32_t i = 1; i < minLengthRangeCount; ++i) {
442        if(ranges[i].start < start) { start = ranges[i].start; }
443        if(ranges[i].end > end) { end = ranges[i].end; }
444    }
445
446    // Calculate how to split the range between minLength (count1) and minLength+1 (count2).
447    // Goal:
448    //   count1 + count2 * nextCountBytes = n
449    //   count1 + count2 = count
450    // These turn into
451    //   (count - count2) + count2 * nextCountBytes = n
452    // and then into the following count1 & count2 computations.
453    int32_t count2 = (n - count) / (nextCountBytes - 1);  // number of weights to be lengthened
454    int32_t count1 = count - count2;  // number of minLength weights
455    if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) {
456        // round up
457        ++count2;
458        --count1;
459        U_ASSERT((count1 + count2 * nextCountBytes) >= n);
460    }
461
462    ranges[0].start = start;
463
464    if(count1 == 0) {
465        // Make one long range.
466        ranges[0].end = end;
467        ranges[0].count = count;
468        lengthenRange(ranges[0]);
469        rangeCount = 1;
470    } else {
471        // Split the range, lengthen the second part.
472#ifdef UCOL_DEBUG
473        printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n",
474               splitRange, rangeCount, count1, count2);
475#endif
476
477        // Next start = start + count1. First end = 1 before that.
478        ranges[0].end = incWeightByOffset(start, minLength, count1 - 1);
479        ranges[0].count = count1;
480
481        ranges[1].start = incWeight(ranges[0].end, minLength);
482        ranges[1].end = end;
483        ranges[1].length = minLength;  // +1 when lengthened
484        ranges[1].count = count2;  // *countBytes when lengthened
485        lengthenRange(ranges[1]);
486        rangeCount = 2;
487    }
488    return TRUE;
489}
490
491/*
492 * call getWeightRanges and then determine heuristically
493 * which ranges to use for a given number of weights between (excluding)
494 * two limits
495 */
496UBool
497CollationWeights::allocWeights(uint32_t lowerLimit, uint32_t upperLimit, int32_t n) {
498#ifdef UCOL_DEBUG
499    puts("");
500#endif
501
502    if(!getWeightRanges(lowerLimit, upperLimit)) {
503#ifdef UCOL_DEBUG
504        printf("error: unable to get Weight ranges\n");
505#endif
506        return FALSE;
507    }
508
509    /* try until we find suitably large ranges */
510    for(;;) {
511        /* get the smallest number of bytes in a range */
512        int32_t minLength=ranges[0].length;
513
514        if(allocWeightsInShortRanges(n, minLength)) { break; }
515
516        if(minLength == 4) {
517#ifdef UCOL_DEBUG
518            printf("error: the maximum number of %ld weights is insufficient for n=%ld\n",
519                   minLengthCount, n);
520#endif
521            return FALSE;
522        }
523
524        if(allocWeightsInMinLengthRanges(n, minLength)) { break; }
525
526        /* no good match, lengthen all minLength ranges and iterate */
527#ifdef UCOL_DEBUG
528        printf("lengthen the short ranges from %ld bytes to %ld and iterate\n", minLength, minLength+1);
529#endif
530        for(int32_t i=0; ranges[i].length==minLength; ++i) {
531            lengthenRange(ranges[i]);
532        }
533    }
534
535#ifdef UCOL_DEBUG
536    puts("final ranges:");
537    for(int32_t i=0; i<rangeCount; ++i) {
538        printf("ranges[%ld] .start=0x%08lx .end=0x%08lx .length=%ld .count=%ld\n",
539               i, ranges[i].start, ranges[i].end, ranges[i].length, ranges[i].count);
540    }
541#endif
542
543    rangeIndex = 0;
544    return TRUE;
545}
546
547uint32_t
548CollationWeights::nextWeight() {
549    if(rangeIndex >= rangeCount) {
550        return 0xffffffff;
551    } else {
552        /* get the next weight */
553        WeightRange &range = ranges[rangeIndex];
554        uint32_t weight = range.start;
555        if(--range.count == 0) {
556            /* this range is finished */
557            ++rangeIndex;
558        } else {
559            /* increment the weight for the next value */
560            range.start = incWeight(weight, range.length);
561            U_ASSERT(range.start <= range.end);
562        }
563
564        return weight;
565    }
566}
567
568U_NAMESPACE_END
569
570#endif /* #if !UCONFIG_NO_COLLATION */
571