1/*
2 * jcdctmgr.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1994-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 1999-2006, MIYASAKA Masaru.
8 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
9 * Copyright (C) 2011, 2014-2015, D. R. Commander.
10 * For conditions of distribution and use, see the accompanying README.ijg
11 * file.
12 *
13 * This file contains the forward-DCT management logic.
14 * This code selects a particular DCT implementation to be used,
15 * and it performs related housekeeping chores including coefficient
16 * quantization.
17 */
18
19#define JPEG_INTERNALS
20#include "jinclude.h"
21#include "jpeglib.h"
22#include "jdct.h"               /* Private declarations for DCT subsystem */
23#include "jsimddct.h"
24
25
26/* Private subobject for this module */
27
28typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
32                                     JDIMENSION start_col,
33                                     DCTELEM *workspace);
34typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
35                                           JDIMENSION start_col,
36                                           FAST_FLOAT *workspace);
37
38typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39                                     DCTELEM *workspace);
40typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41                                           FAST_FLOAT *divisors,
42                                           FAST_FLOAT *workspace);
43
44METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
45
46typedef struct {
47  struct jpeg_forward_dct pub;  /* public fields */
48
49  /* Pointer to the DCT routine actually in use */
50  forward_DCT_method_ptr dct;
51  convsamp_method_ptr convsamp;
52  quantize_method_ptr quantize;
53
54  /* The actual post-DCT divisors --- not identical to the quant table
55   * entries, because of scaling (especially for an unnormalized DCT).
56   * Each table is given in normal array order.
57   */
58  DCTELEM *divisors[NUM_QUANT_TBLS];
59
60  /* work area for FDCT subroutine */
61  DCTELEM *workspace;
62
63#ifdef DCT_FLOAT_SUPPORTED
64  /* Same as above for the floating-point case. */
65  float_DCT_method_ptr float_dct;
66  float_convsamp_method_ptr float_convsamp;
67  float_quantize_method_ptr float_quantize;
68  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69  FAST_FLOAT *float_workspace;
70#endif
71} my_fdct_controller;
72
73typedef my_fdct_controller *my_fdct_ptr;
74
75
76#if BITS_IN_JSAMPLE == 8
77
78/*
79 * Find the highest bit in an integer through binary search.
80 */
81
82LOCAL(int)
83flss (UINT16 val)
84{
85  int bit;
86
87  bit = 16;
88
89  if (!val)
90    return 0;
91
92  if (!(val & 0xff00)) {
93    bit -= 8;
94    val <<= 8;
95  }
96  if (!(val & 0xf000)) {
97    bit -= 4;
98    val <<= 4;
99  }
100  if (!(val & 0xc000)) {
101    bit -= 2;
102    val <<= 2;
103  }
104  if (!(val & 0x8000)) {
105    bit -= 1;
106    val <<= 1;
107  }
108
109  return bit;
110}
111
112
113/*
114 * Compute values to do a division using reciprocal.
115 *
116 * This implementation is based on an algorithm described in
117 *   "How to optimize for the Pentium family of microprocessors"
118 *   (http://www.agner.org/assem/).
119 * More information about the basic algorithm can be found in
120 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
121 *
122 * The basic idea is to replace x/d by x * d^-1. In order to store
123 * d^-1 with enough precision we shift it left a few places. It turns
124 * out that this algoright gives just enough precision, and also fits
125 * into DCTELEM:
126 *
127 *   b = (the number of significant bits in divisor) - 1
128 *   r = (word size) + b
129 *   f = 2^r / divisor
130 *
131 * f will not be an integer for most cases, so we need to compensate
132 * for the rounding error introduced:
133 *
134 *   no fractional part:
135 *
136 *       result = input >> r
137 *
138 *   fractional part of f < 0.5:
139 *
140 *       round f down to nearest integer
141 *       result = ((input + 1) * f) >> r
142 *
143 *   fractional part of f > 0.5:
144 *
145 *       round f up to nearest integer
146 *       result = (input * f) >> r
147 *
148 * This is the original algorithm that gives truncated results. But we
149 * want properly rounded results, so we replace "input" with
150 * "input + divisor/2".
151 *
152 * In order to allow SIMD implementations we also tweak the values to
153 * allow the same calculation to be made at all times:
154 *
155 *   dctbl[0] = f rounded to nearest integer
156 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157 *   dctbl[2] = 1 << ((word size) * 2 - r)
158 *   dctbl[3] = r - (word size)
159 *
160 * dctbl[2] is for stupid instruction sets where the shift operation
161 * isn't member wise (e.g. MMX).
162 *
163 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164 * is that most SIMD implementations have a "multiply and store top
165 * half" operation.
166 *
167 * Lastly, we store each of the values in their own table instead
168 * of in a consecutive manner, yet again in order to allow SIMD
169 * routines.
170 */
171
172LOCAL(int)
173compute_reciprocal (UINT16 divisor, DCTELEM *dtbl)
174{
175  UDCTELEM2 fq, fr;
176  UDCTELEM c;
177  int b, r;
178
179  if (divisor == 1) {
180    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
181     * values will cause the C quantization algorithm to act like the
182     * identity function.  Since only the C quantization algorithm is used in
183     * these cases, the scale value is irrelevant.
184     */
185    dtbl[DCTSIZE2 * 0] = (DCTELEM) 1;                       /* reciprocal */
186    dtbl[DCTSIZE2 * 1] = (DCTELEM) 0;                       /* correction */
187    dtbl[DCTSIZE2 * 2] = (DCTELEM) 1;                       /* scale */
188    dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8);  /* shift */
189    return 0;
190  }
191
192  b = flss(divisor) - 1;
193  r  = sizeof(DCTELEM) * 8 + b;
194
195  fq = ((UDCTELEM2)1 << r) / divisor;
196  fr = ((UDCTELEM2)1 << r) % divisor;
197
198  c = divisor / 2; /* for rounding */
199
200  if (fr == 0) { /* divisor is power of two */
201    /* fq will be one bit too large to fit in DCTELEM, so adjust */
202    fq >>= 1;
203    r--;
204  } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
205    c++;
206  } else { /* fractional part is > 0.5 */
207    fq++;
208  }
209
210  dtbl[DCTSIZE2 * 0] = (DCTELEM) fq;      /* reciprocal */
211  dtbl[DCTSIZE2 * 1] = (DCTELEM) c;       /* correction + roundfactor */
212#ifdef WITH_SIMD
213  dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r));  /* scale */
214#else
215  dtbl[DCTSIZE2 * 2] = 1;
216#endif
217  dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
218
219  if(r <= 16) return 0;
220  else return 1;
221}
222
223#endif
224
225
226/*
227 * Initialize for a processing pass.
228 * Verify that all referenced Q-tables are present, and set up
229 * the divisor table for each one.
230 * In the current implementation, DCT of all components is done during
231 * the first pass, even if only some components will be output in the
232 * first scan.  Hence all components should be examined here.
233 */
234
235METHODDEF(void)
236start_pass_fdctmgr (j_compress_ptr cinfo)
237{
238  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
239  int ci, qtblno, i;
240  jpeg_component_info *compptr;
241  JQUANT_TBL *qtbl;
242  DCTELEM *dtbl;
243
244  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245       ci++, compptr++) {
246    qtblno = compptr->quant_tbl_no;
247    /* Make sure specified quantization table is present */
248    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252    /* Compute divisors for this quant table */
253    /* We may do this more than once for same table, but it's not a big deal */
254    switch (cinfo->dct_method) {
255#ifdef DCT_ISLOW_SUPPORTED
256    case JDCT_ISLOW:
257      /* For LL&M IDCT method, divisors are equal to raw quantization
258       * coefficients multiplied by 8 (to counteract scaling).
259       */
260      if (fdct->divisors[qtblno] == NULL) {
261        fdct->divisors[qtblno] = (DCTELEM *)
262          (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
263                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264      }
265      dtbl = fdct->divisors[qtblno];
266      for (i = 0; i < DCTSIZE2; i++) {
267#if BITS_IN_JSAMPLE == 8
268        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
269            fdct->quantize == jsimd_quantize)
270          fdct->quantize = quantize;
271#else
272        dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
273#endif
274      }
275      break;
276#endif
277#ifdef DCT_IFAST_SUPPORTED
278    case JDCT_IFAST:
279      {
280        /* For AA&N IDCT method, divisors are equal to quantization
281         * coefficients scaled by scalefactor[row]*scalefactor[col], where
282         *   scalefactor[0] = 1
283         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
284         * We apply a further scale factor of 8.
285         */
286#define CONST_BITS 14
287        static const INT16 aanscales[DCTSIZE2] = {
288          /* precomputed values scaled up by 14 bits */
289          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
290          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
291          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
292          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
293          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
295           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
296           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
297        };
298        SHIFT_TEMPS
299
300        if (fdct->divisors[qtblno] == NULL) {
301          fdct->divisors[qtblno] = (DCTELEM *)
302            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
303                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
304        }
305        dtbl = fdct->divisors[qtblno];
306        for (i = 0; i < DCTSIZE2; i++) {
307#if BITS_IN_JSAMPLE == 8
308          if (!compute_reciprocal(
309                DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
310                                      (JLONG) aanscales[i]),
311                        CONST_BITS-3), &dtbl[i]) &&
312              fdct->quantize == jsimd_quantize)
313            fdct->quantize = quantize;
314#else
315           dtbl[i] = (DCTELEM)
316             DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
317                                   (JLONG) aanscales[i]),
318                     CONST_BITS-3);
319#endif
320        }
321      }
322      break;
323#endif
324#ifdef DCT_FLOAT_SUPPORTED
325    case JDCT_FLOAT:
326      {
327        /* For float AA&N IDCT method, divisors are equal to quantization
328         * coefficients scaled by scalefactor[row]*scalefactor[col], where
329         *   scalefactor[0] = 1
330         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
331         * We apply a further scale factor of 8.
332         * What's actually stored is 1/divisor so that the inner loop can
333         * use a multiplication rather than a division.
334         */
335        FAST_FLOAT *fdtbl;
336        int row, col;
337        static const double aanscalefactor[DCTSIZE] = {
338          1.0, 1.387039845, 1.306562965, 1.175875602,
339          1.0, 0.785694958, 0.541196100, 0.275899379
340        };
341
342        if (fdct->float_divisors[qtblno] == NULL) {
343          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
344            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
345                                        DCTSIZE2 * sizeof(FAST_FLOAT));
346        }
347        fdtbl = fdct->float_divisors[qtblno];
348        i = 0;
349        for (row = 0; row < DCTSIZE; row++) {
350          for (col = 0; col < DCTSIZE; col++) {
351            fdtbl[i] = (FAST_FLOAT)
352              (1.0 / (((double) qtbl->quantval[i] *
353                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
354            i++;
355          }
356        }
357      }
358      break;
359#endif
360    default:
361      ERREXIT(cinfo, JERR_NOT_COMPILED);
362      break;
363    }
364  }
365}
366
367
368/*
369 * Load data into workspace, applying unsigned->signed conversion.
370 */
371
372METHODDEF(void)
373convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
374{
375  register DCTELEM *workspaceptr;
376  register JSAMPROW elemptr;
377  register int elemr;
378
379  workspaceptr = workspace;
380  for (elemr = 0; elemr < DCTSIZE; elemr++) {
381    elemptr = sample_data[elemr] + start_col;
382
383#if DCTSIZE == 8                /* unroll the inner loop */
384    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
385    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
386    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
387    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
388    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
389    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
390    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
391    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
392#else
393    {
394      register int elemc;
395      for (elemc = DCTSIZE; elemc > 0; elemc--)
396        *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
397    }
398#endif
399  }
400}
401
402
403/*
404 * Quantize/descale the coefficients, and store into coef_blocks[].
405 */
406
407METHODDEF(void)
408quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
409{
410  int i;
411  DCTELEM temp;
412  JCOEFPTR output_ptr = coef_block;
413
414#if BITS_IN_JSAMPLE == 8
415
416  UDCTELEM recip, corr;
417  int shift;
418  UDCTELEM2 product;
419
420  for (i = 0; i < DCTSIZE2; i++) {
421    temp = workspace[i];
422    recip = divisors[i + DCTSIZE2 * 0];
423    corr =  divisors[i + DCTSIZE2 * 1];
424    shift = divisors[i + DCTSIZE2 * 3];
425
426    if (temp < 0) {
427      temp = -temp;
428      product = (UDCTELEM2)(temp + corr) * recip;
429      product >>= shift + sizeof(DCTELEM)*8;
430      temp = (DCTELEM)product;
431      temp = -temp;
432    } else {
433      product = (UDCTELEM2)(temp + corr) * recip;
434      product >>= shift + sizeof(DCTELEM)*8;
435      temp = (DCTELEM)product;
436    }
437    output_ptr[i] = (JCOEF) temp;
438  }
439
440#else
441
442  register DCTELEM qval;
443
444  for (i = 0; i < DCTSIZE2; i++) {
445    qval = divisors[i];
446    temp = workspace[i];
447    /* Divide the coefficient value by qval, ensuring proper rounding.
448     * Since C does not specify the direction of rounding for negative
449     * quotients, we have to force the dividend positive for portability.
450     *
451     * In most files, at least half of the output values will be zero
452     * (at default quantization settings, more like three-quarters...)
453     * so we should ensure that this case is fast.  On many machines,
454     * a comparison is enough cheaper than a divide to make a special test
455     * a win.  Since both inputs will be nonnegative, we need only test
456     * for a < b to discover whether a/b is 0.
457     * If your machine's division is fast enough, define FAST_DIVIDE.
458     */
459#ifdef FAST_DIVIDE
460#define DIVIDE_BY(a,b)  a /= b
461#else
462#define DIVIDE_BY(a,b)  if (a >= b) a /= b; else a = 0
463#endif
464    if (temp < 0) {
465      temp = -temp;
466      temp += qval>>1;  /* for rounding */
467      DIVIDE_BY(temp, qval);
468      temp = -temp;
469    } else {
470      temp += qval>>1;  /* for rounding */
471      DIVIDE_BY(temp, qval);
472    }
473    output_ptr[i] = (JCOEF) temp;
474  }
475
476#endif
477
478}
479
480
481/*
482 * Perform forward DCT on one or more blocks of a component.
483 *
484 * The input samples are taken from the sample_data[] array starting at
485 * position start_row/start_col, and moving to the right for any additional
486 * blocks. The quantized coefficients are returned in coef_blocks[].
487 */
488
489METHODDEF(void)
490forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr,
491             JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
492             JDIMENSION start_row, JDIMENSION start_col,
493             JDIMENSION num_blocks)
494/* This version is used for integer DCT implementations. */
495{
496  /* This routine is heavily used, so it's worth coding it tightly. */
497  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
498  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
499  DCTELEM *workspace;
500  JDIMENSION bi;
501
502  /* Make sure the compiler doesn't look up these every pass */
503  forward_DCT_method_ptr do_dct = fdct->dct;
504  convsamp_method_ptr do_convsamp = fdct->convsamp;
505  quantize_method_ptr do_quantize = fdct->quantize;
506  workspace = fdct->workspace;
507
508  sample_data += start_row;     /* fold in the vertical offset once */
509
510  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
511    /* Load data into workspace, applying unsigned->signed conversion */
512    (*do_convsamp) (sample_data, start_col, workspace);
513
514    /* Perform the DCT */
515    (*do_dct) (workspace);
516
517    /* Quantize/descale the coefficients, and store into coef_blocks[] */
518    (*do_quantize) (coef_blocks[bi], divisors, workspace);
519  }
520}
521
522
523#ifdef DCT_FLOAT_SUPPORTED
524
525
526METHODDEF(void)
527convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace)
528{
529  register FAST_FLOAT *workspaceptr;
530  register JSAMPROW elemptr;
531  register int elemr;
532
533  workspaceptr = workspace;
534  for (elemr = 0; elemr < DCTSIZE; elemr++) {
535    elemptr = sample_data[elemr] + start_col;
536#if DCTSIZE == 8                /* unroll the inner loop */
537    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
538    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
539    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
540    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
541    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
542    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
543    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
544    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
545#else
546    {
547      register int elemc;
548      for (elemc = DCTSIZE; elemc > 0; elemc--)
549        *workspaceptr++ = (FAST_FLOAT)
550                          (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
551    }
552#endif
553  }
554}
555
556
557METHODDEF(void)
558quantize_float (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace)
559{
560  register FAST_FLOAT temp;
561  register int i;
562  register JCOEFPTR output_ptr = coef_block;
563
564  for (i = 0; i < DCTSIZE2; i++) {
565    /* Apply the quantization and scaling factor */
566    temp = workspace[i] * divisors[i];
567
568    /* Round to nearest integer.
569     * Since C does not specify the direction of rounding for negative
570     * quotients, we have to force the dividend positive for portability.
571     * The maximum coefficient size is +-16K (for 12-bit data), so this
572     * code should work for either 16-bit or 32-bit ints.
573     */
574    output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
575  }
576}
577
578
579METHODDEF(void)
580forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr,
581                   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
582                   JDIMENSION start_row, JDIMENSION start_col,
583                   JDIMENSION num_blocks)
584/* This version is used for floating-point DCT implementations. */
585{
586  /* This routine is heavily used, so it's worth coding it tightly. */
587  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
588  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
589  FAST_FLOAT *workspace;
590  JDIMENSION bi;
591
592
593  /* Make sure the compiler doesn't look up these every pass */
594  float_DCT_method_ptr do_dct = fdct->float_dct;
595  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
596  float_quantize_method_ptr do_quantize = fdct->float_quantize;
597  workspace = fdct->float_workspace;
598
599  sample_data += start_row;     /* fold in the vertical offset once */
600
601  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
602    /* Load data into workspace, applying unsigned->signed conversion */
603    (*do_convsamp) (sample_data, start_col, workspace);
604
605    /* Perform the DCT */
606    (*do_dct) (workspace);
607
608    /* Quantize/descale the coefficients, and store into coef_blocks[] */
609    (*do_quantize) (coef_blocks[bi], divisors, workspace);
610  }
611}
612
613#endif /* DCT_FLOAT_SUPPORTED */
614
615
616/*
617 * Initialize FDCT manager.
618 */
619
620GLOBAL(void)
621jinit_forward_dct (j_compress_ptr cinfo)
622{
623  my_fdct_ptr fdct;
624  int i;
625
626  fdct = (my_fdct_ptr)
627    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
628                                sizeof(my_fdct_controller));
629  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
630  fdct->pub.start_pass = start_pass_fdctmgr;
631
632  /* First determine the DCT... */
633  switch (cinfo->dct_method) {
634#ifdef DCT_ISLOW_SUPPORTED
635  case JDCT_ISLOW:
636    fdct->pub.forward_DCT = forward_DCT;
637    if (jsimd_can_fdct_islow())
638      fdct->dct = jsimd_fdct_islow;
639    else
640      fdct->dct = jpeg_fdct_islow;
641    break;
642#endif
643#ifdef DCT_IFAST_SUPPORTED
644  case JDCT_IFAST:
645    fdct->pub.forward_DCT = forward_DCT;
646    if (jsimd_can_fdct_ifast())
647      fdct->dct = jsimd_fdct_ifast;
648    else
649      fdct->dct = jpeg_fdct_ifast;
650    break;
651#endif
652#ifdef DCT_FLOAT_SUPPORTED
653  case JDCT_FLOAT:
654    fdct->pub.forward_DCT = forward_DCT_float;
655    if (jsimd_can_fdct_float())
656      fdct->float_dct = jsimd_fdct_float;
657    else
658      fdct->float_dct = jpeg_fdct_float;
659    break;
660#endif
661  default:
662    ERREXIT(cinfo, JERR_NOT_COMPILED);
663    break;
664  }
665
666  /* ...then the supporting stages. */
667  switch (cinfo->dct_method) {
668#ifdef DCT_ISLOW_SUPPORTED
669  case JDCT_ISLOW:
670#endif
671#ifdef DCT_IFAST_SUPPORTED
672  case JDCT_IFAST:
673#endif
674#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
675    if (jsimd_can_convsamp())
676      fdct->convsamp = jsimd_convsamp;
677    else
678      fdct->convsamp = convsamp;
679    if (jsimd_can_quantize())
680      fdct->quantize = jsimd_quantize;
681    else
682      fdct->quantize = quantize;
683    break;
684#endif
685#ifdef DCT_FLOAT_SUPPORTED
686  case JDCT_FLOAT:
687    if (jsimd_can_convsamp_float())
688      fdct->float_convsamp = jsimd_convsamp_float;
689    else
690      fdct->float_convsamp = convsamp_float;
691    if (jsimd_can_quantize_float())
692      fdct->float_quantize = jsimd_quantize_float;
693    else
694      fdct->float_quantize = quantize_float;
695    break;
696#endif
697  default:
698    ERREXIT(cinfo, JERR_NOT_COMPILED);
699    break;
700  }
701
702  /* Allocate workspace memory */
703#ifdef DCT_FLOAT_SUPPORTED
704  if (cinfo->dct_method == JDCT_FLOAT)
705    fdct->float_workspace = (FAST_FLOAT *)
706      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
707                                  sizeof(FAST_FLOAT) * DCTSIZE2);
708  else
709#endif
710    fdct->workspace = (DCTELEM *)
711      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
712                                  sizeof(DCTELEM) * DCTSIZE2);
713
714  /* Mark divisor tables unallocated */
715  for (i = 0; i < NUM_QUANT_TBLS; i++) {
716    fdct->divisors[i] = NULL;
717#ifdef DCT_FLOAT_SUPPORTED
718    fdct->float_divisors[i] = NULL;
719#endif
720  }
721}
722