1; 2; jfdctfst.asm - fast integer FDCT (64-bit SSE2) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2009, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a fast, not so accurate integer implementation of 18; the forward DCT (Discrete Cosine Transform). The following code is 19; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c 20; for more details. 21; 22; [TAB8] 23 24%include "jsimdext.inc" 25%include "jdct.inc" 26 27; -------------------------------------------------------------------------- 28 29%define CONST_BITS 8 ; 14 is also OK. 30 31%if CONST_BITS == 8 32F_0_382 equ 98 ; FIX(0.382683433) 33F_0_541 equ 139 ; FIX(0.541196100) 34F_0_707 equ 181 ; FIX(0.707106781) 35F_1_306 equ 334 ; FIX(1.306562965) 36%else 37; NASM cannot do compile-time arithmetic on floating-point constants. 38%define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) 39F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) 40F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) 41F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) 42F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) 43%endif 44 45; -------------------------------------------------------------------------- 46 SECTION SEG_CONST 47 48; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) 49; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) 50 51%define PRE_MULTIPLY_SCALE_BITS 2 52%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) 53 54 alignz 16 55 global EXTN(jconst_fdct_ifast_sse2) 56 57EXTN(jconst_fdct_ifast_sse2): 58 59PW_F0707 times 8 dw F_0_707 << CONST_SHIFT 60PW_F0382 times 8 dw F_0_382 << CONST_SHIFT 61PW_F0541 times 8 dw F_0_541 << CONST_SHIFT 62PW_F1306 times 8 dw F_1_306 << CONST_SHIFT 63 64 alignz 16 65 66; -------------------------------------------------------------------------- 67 SECTION SEG_TEXT 68 BITS 64 69; 70; Perform the forward DCT on one block of samples. 71; 72; GLOBAL(void) 73; jsimd_fdct_ifast_sse2 (DCTELEM *data) 74; 75 76; r10 = DCTELEM *data 77 78%define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] 79%define WK_NUM 2 80 81 align 16 82 global EXTN(jsimd_fdct_ifast_sse2) 83 84EXTN(jsimd_fdct_ifast_sse2): 85 push rbp 86 mov rax,rsp ; rax = original rbp 87 sub rsp, byte 4 88 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 89 mov [rsp],rax 90 mov rbp,rsp ; rbp = aligned rbp 91 lea rsp, [wk(0)] 92 collect_args 93 94 ; ---- Pass 1: process rows. 95 96 mov rdx, r10 ; (DCTELEM *) 97 98 movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)] 99 movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)] 100 movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)] 101 movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)] 102 103 ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) 104 ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) 105 106 movdqa xmm4,xmm0 ; transpose coefficients(phase 1) 107 punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) 108 punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) 109 movdqa xmm5,xmm2 ; transpose coefficients(phase 1) 110 punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) 111 punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) 112 113 movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)] 114 movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)] 115 movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)] 116 movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)] 117 118 ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) 119 ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) 120 121 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) 122 movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) 123 124 movdqa xmm2,xmm6 ; transpose coefficients(phase 1) 125 punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) 126 punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) 127 movdqa xmm5,xmm1 ; transpose coefficients(phase 1) 128 punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) 129 punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) 130 131 movdqa xmm7,xmm6 ; transpose coefficients(phase 2) 132 punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) 133 punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) 134 movdqa xmm3,xmm2 ; transpose coefficients(phase 2) 135 punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) 136 punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) 137 138 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) 139 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) 140 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) 141 movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) 142 143 movdqa xmm7,xmm0 ; transpose coefficients(phase 2) 144 punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) 145 punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) 146 movdqa xmm2,xmm4 ; transpose coefficients(phase 2) 147 punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) 148 punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) 149 150 movdqa xmm1,xmm0 ; transpose coefficients(phase 3) 151 punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 152 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 153 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) 154 punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 155 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 156 157 movdqa xmm6,xmm1 158 movdqa xmm3,xmm0 159 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 160 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 161 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 162 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 163 164 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) 165 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) 166 movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 167 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 168 169 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) 170 punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 171 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 172 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) 173 punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 174 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 175 176 movdqa xmm2,xmm1 177 movdqa xmm5,xmm7 178 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 179 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 180 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 181 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 182 183 ; -- Even part 184 185 movdqa xmm4,xmm3 186 movdqa xmm0,xmm6 187 psubw xmm3,xmm1 ; xmm3=tmp13 188 psubw xmm6,xmm7 ; xmm6=tmp12 189 paddw xmm4,xmm1 ; xmm4=tmp10 190 paddw xmm0,xmm7 ; xmm0=tmp11 191 192 paddw xmm6,xmm3 193 psllw xmm6,PRE_MULTIPLY_SCALE_BITS 194 pmulhw xmm6,[rel PW_F0707] ; xmm6=z1 195 196 movdqa xmm1,xmm4 197 movdqa xmm7,xmm3 198 psubw xmm4,xmm0 ; xmm4=data4 199 psubw xmm3,xmm6 ; xmm3=data6 200 paddw xmm1,xmm0 ; xmm1=data0 201 paddw xmm7,xmm6 ; xmm7=data2 202 203 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 204 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 205 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 206 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 207 208 ; -- Odd part 209 210 paddw xmm2,xmm5 ; xmm2=tmp10 211 paddw xmm5,xmm0 ; xmm5=tmp11 212 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7 213 214 psllw xmm2,PRE_MULTIPLY_SCALE_BITS 215 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 216 217 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 218 pmulhw xmm5,[rel PW_F0707] ; xmm5=z3 219 220 movdqa xmm4,xmm2 ; xmm4=tmp10 221 psubw xmm2,xmm0 222 pmulhw xmm2,[rel PW_F0382] ; xmm2=z5 223 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) 224 pmulhw xmm0,[rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) 225 paddw xmm4,xmm2 ; xmm4=z2 226 paddw xmm0,xmm2 ; xmm0=z4 227 228 movdqa xmm3,xmm6 229 psubw xmm6,xmm5 ; xmm6=z13 230 paddw xmm3,xmm5 ; xmm3=z11 231 232 movdqa xmm2,xmm6 233 movdqa xmm5,xmm3 234 psubw xmm6,xmm4 ; xmm6=data3 235 psubw xmm3,xmm0 ; xmm3=data7 236 paddw xmm2,xmm4 ; xmm2=data5 237 paddw xmm5,xmm0 ; xmm5=data1 238 239 ; ---- Pass 2: process columns. 240 241 ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) 242 ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) 243 244 movdqa xmm4,xmm1 ; transpose coefficients(phase 1) 245 punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31) 246 punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71) 247 movdqa xmm0,xmm7 ; transpose coefficients(phase 1) 248 punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33) 249 punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73) 250 251 movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 252 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 253 254 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) 255 ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) 256 257 movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) 258 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) 259 260 movdqa xmm7,xmm5 ; transpose coefficients(phase 1) 261 punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35) 262 punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75) 263 movdqa xmm0,xmm6 ; transpose coefficients(phase 1) 264 punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37) 265 punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77) 266 267 movdqa xmm2,xmm5 ; transpose coefficients(phase 2) 268 punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17) 269 punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37) 270 movdqa xmm3,xmm7 ; transpose coefficients(phase 2) 271 punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57) 272 punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77) 273 274 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) 275 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) 276 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) 277 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) 278 279 movdqa xmm2,xmm1 ; transpose coefficients(phase 2) 280 punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13) 281 punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33) 282 movdqa xmm7,xmm4 ; transpose coefficients(phase 2) 283 punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53) 284 punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73) 285 286 movdqa xmm6,xmm1 ; transpose coefficients(phase 3) 287 punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 288 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 289 movdqa xmm0,xmm7 ; transpose coefficients(phase 3) 290 punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 291 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 292 293 movdqa xmm5,xmm6 294 movdqa xmm3,xmm1 295 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6 296 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7 297 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1 298 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0 299 300 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) 301 movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) 302 movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 303 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 304 305 movdqa xmm6,xmm2 ; transpose coefficients(phase 3) 306 punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 307 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 308 movdqa xmm1,xmm4 ; transpose coefficients(phase 3) 309 punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 310 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 311 312 movdqa xmm7,xmm6 313 movdqa xmm0,xmm2 314 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3 315 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2 316 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4 317 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5 318 319 ; -- Even part 320 321 movdqa xmm4,xmm3 322 movdqa xmm1,xmm5 323 psubw xmm3,xmm6 ; xmm3=tmp13 324 psubw xmm5,xmm2 ; xmm5=tmp12 325 paddw xmm4,xmm6 ; xmm4=tmp10 326 paddw xmm1,xmm2 ; xmm1=tmp11 327 328 paddw xmm5,xmm3 329 psllw xmm5,PRE_MULTIPLY_SCALE_BITS 330 pmulhw xmm5,[rel PW_F0707] ; xmm5=z1 331 332 movdqa xmm6,xmm4 333 movdqa xmm2,xmm3 334 psubw xmm4,xmm1 ; xmm4=data4 335 psubw xmm3,xmm5 ; xmm3=data6 336 paddw xmm6,xmm1 ; xmm6=data0 337 paddw xmm2,xmm5 ; xmm2=data2 338 339 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4 340 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3 341 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6 342 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2 343 344 ; -- Odd part 345 346 movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 347 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 348 349 paddw xmm7,xmm0 ; xmm7=tmp10 350 paddw xmm0,xmm1 ; xmm0=tmp11 351 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7 352 353 psllw xmm7,PRE_MULTIPLY_SCALE_BITS 354 psllw xmm1,PRE_MULTIPLY_SCALE_BITS 355 356 psllw xmm0,PRE_MULTIPLY_SCALE_BITS 357 pmulhw xmm0,[rel PW_F0707] ; xmm0=z3 358 359 movdqa xmm4,xmm7 ; xmm4=tmp10 360 psubw xmm7,xmm1 361 pmulhw xmm7,[rel PW_F0382] ; xmm7=z5 362 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) 363 pmulhw xmm1,[rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) 364 paddw xmm4,xmm7 ; xmm4=z2 365 paddw xmm1,xmm7 ; xmm1=z4 366 367 movdqa xmm3,xmm5 368 psubw xmm5,xmm0 ; xmm5=z13 369 paddw xmm3,xmm0 ; xmm3=z11 370 371 movdqa xmm6,xmm5 372 movdqa xmm2,xmm3 373 psubw xmm5,xmm4 ; xmm5=data3 374 psubw xmm3,xmm1 ; xmm3=data7 375 paddw xmm6,xmm4 ; xmm6=data5 376 paddw xmm2,xmm1 ; xmm2=data1 377 378 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5 379 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3 380 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6 381 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2 382 383 uncollect_args 384 mov rsp,rbp ; rsp <- aligned rbp 385 pop rsp ; rsp <- original rbp 386 pop rbp 387 ret 388 389; For some reason, the OS X linker does not honor the request to align the 390; segment unless we do this. 391 align 16 392