1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22
23#ifdef HAVE_CONFIG_H
24#include "config.h"
25#endif
26
27#ifdef WIN32
28#include <pcap-stdinc.h>
29#else /* WIN32 */
30#if HAVE_INTTYPES_H
31#include <inttypes.h>
32#elif HAVE_STDINT_H
33#include <stdint.h>
34#endif
35#ifdef HAVE_SYS_BITYPES_H
36#include <sys/bitypes.h>
37#endif
38#include <sys/types.h>
39#include <sys/socket.h>
40#endif /* WIN32 */
41
42/*
43 * XXX - why was this included even on UNIX?
44 */
45#ifdef __MINGW32__
46#include "ip6_misc.h"
47#endif
48
49#ifndef WIN32
50
51#ifdef __NetBSD__
52#include <sys/param.h>
53#endif
54
55#include <netinet/in.h>
56#include <arpa/inet.h>
57
58#endif /* WIN32 */
59
60#include <stdlib.h>
61#include <string.h>
62#include <memory.h>
63#include <setjmp.h>
64#include <stdarg.h>
65
66#ifdef MSDOS
67#include "pcap-dos.h"
68#endif
69
70#include "pcap-int.h"
71
72#include "ethertype.h"
73#include "nlpid.h"
74#include "llc.h"
75#include "gencode.h"
76#include "ieee80211.h"
77#include "atmuni31.h"
78#include "sunatmpos.h"
79#include "ppp.h"
80#include "pcap/sll.h"
81#include "pcap/ipnet.h"
82#include "arcnet.h"
83#if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
84#include <linux/types.h>
85#include <linux/if_packet.h>
86#include <linux/filter.h>
87#endif
88#ifdef HAVE_NET_PFVAR_H
89#include <sys/socket.h>
90#include <net/if.h>
91#include <net/pfvar.h>
92#include <net/if_pflog.h>
93#endif
94#ifndef offsetof
95#define offsetof(s, e) ((size_t)&((s *)0)->e)
96#endif
97#ifdef INET6
98#ifndef WIN32
99#include <netdb.h>	/* for "struct addrinfo" */
100#endif /* WIN32 */
101#endif /*INET6*/
102#include <pcap/namedb.h>
103
104#define ETHERMTU	1500
105
106#ifndef ETHERTYPE_TEB
107#define ETHERTYPE_TEB 0x6558
108#endif
109
110#ifndef IPPROTO_HOPOPTS
111#define IPPROTO_HOPOPTS 0
112#endif
113#ifndef IPPROTO_ROUTING
114#define IPPROTO_ROUTING 43
115#endif
116#ifndef IPPROTO_FRAGMENT
117#define IPPROTO_FRAGMENT 44
118#endif
119#ifndef IPPROTO_DSTOPTS
120#define IPPROTO_DSTOPTS 60
121#endif
122#ifndef IPPROTO_SCTP
123#define IPPROTO_SCTP 132
124#endif
125
126#define GENEVE_PORT 6081
127
128#ifdef HAVE_OS_PROTO_H
129#include "os-proto.h"
130#endif
131
132#define JMP(c) ((c)|BPF_JMP|BPF_K)
133
134/* Locals */
135static jmp_buf top_ctx;
136static pcap_t *bpf_pcap;
137
138/* Hack for handling VLAN and MPLS stacks. */
139#ifdef WIN32
140static u_int	label_stack_depth = (u_int)-1, vlan_stack_depth = (u_int)-1;
141#else
142static u_int	label_stack_depth = -1U, vlan_stack_depth = -1U;
143#endif
144
145/* XXX */
146static int	pcap_fddipad;
147
148/* VARARGS */
149void
150bpf_error(const char *fmt, ...)
151{
152	va_list ap;
153
154	va_start(ap, fmt);
155	if (bpf_pcap != NULL)
156		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
157		    fmt, ap);
158	va_end(ap);
159	longjmp(top_ctx, 1);
160	/* NOTREACHED */
161}
162
163static void init_linktype(pcap_t *);
164
165static void init_regs(void);
166static int alloc_reg(void);
167static void free_reg(int);
168
169static struct block *root;
170
171/*
172 * Absolute offsets, which are offsets from the beginning of the raw
173 * packet data, are, in the general case, the sum of a variable value
174 * and a constant value; the variable value may be absent, in which
175 * case the offset is only the constant value, and the constant value
176 * may be zero, in which case the offset is only the variable value.
177 *
178 * bpf_abs_offset is a structure containing all that information:
179 *
180 *   is_variable is 1 if there's a variable part.
181 *
182 *   constant_part is the constant part of the value, possibly zero;
183 *
184 *   if is_variable is 1, reg is the register number for a register
185 *   containing the variable value if the register has been assigned,
186 *   and -1 otherwise.
187 */
188typedef struct {
189	int	is_variable;
190	u_int	constant_part;
191	int	reg;
192} bpf_abs_offset;
193
194/*
195 * Value passed to gen_load_a() to indicate what the offset argument
196 * is relative to the beginning of.
197 */
198enum e_offrel {
199	OR_PACKET,		/* full packet data */
200	OR_LINKHDR,		/* link-layer header */
201	OR_PREVLINKHDR,		/* previous link-layer header */
202	OR_LLC,			/* 802.2 LLC header */
203	OR_PREVMPLSHDR,		/* previous MPLS header */
204	OR_LINKTYPE,		/* link-layer type */
205	OR_LINKPL,		/* link-layer payload */
206	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
207	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
208	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
209};
210
211#ifdef INET6
212/*
213 * As errors are handled by a longjmp, anything allocated must be freed
214 * in the longjmp handler, so it must be reachable from that handler.
215 * One thing that's allocated is the result of pcap_nametoaddrinfo();
216 * it must be freed with freeaddrinfo().  This variable points to any
217 * addrinfo structure that would need to be freed.
218 */
219static struct addrinfo *ai;
220#endif
221
222/*
223 * We divy out chunks of memory rather than call malloc each time so
224 * we don't have to worry about leaking memory.  It's probably
225 * not a big deal if all this memory was wasted but if this ever
226 * goes into a library that would probably not be a good idea.
227 *
228 * XXX - this *is* in a library....
229 */
230#define NCHUNKS 16
231#define CHUNK0SIZE 1024
232struct chunk {
233	u_int n_left;
234	void *m;
235};
236
237static struct chunk chunks[NCHUNKS];
238static int cur_chunk;
239
240static void *newchunk(u_int);
241static void freechunks(void);
242static inline struct block *new_block(int);
243static inline struct slist *new_stmt(int);
244static struct block *gen_retblk(int);
245static inline void syntax(void);
246
247static void backpatch(struct block *, struct block *);
248static void merge(struct block *, struct block *);
249static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
250static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
251static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
252static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
253static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
254static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
255    bpf_u_int32);
256static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
257static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
258    bpf_u_int32, bpf_u_int32, int, bpf_int32);
259static struct slist *gen_load_absoffsetrel(bpf_abs_offset *, u_int, u_int);
260static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
261static struct slist *gen_loadx_iphdrlen(void);
262static struct block *gen_uncond(int);
263static inline struct block *gen_true(void);
264static inline struct block *gen_false(void);
265static struct block *gen_ether_linktype(int);
266static struct block *gen_ipnet_linktype(int);
267static struct block *gen_linux_sll_linktype(int);
268static struct slist *gen_load_prism_llprefixlen(void);
269static struct slist *gen_load_avs_llprefixlen(void);
270static struct slist *gen_load_radiotap_llprefixlen(void);
271static struct slist *gen_load_ppi_llprefixlen(void);
272static void insert_compute_vloffsets(struct block *);
273static struct slist *gen_abs_offset_varpart(bpf_abs_offset *);
274static int ethertype_to_ppptype(int);
275static struct block *gen_linktype(int);
276static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
277static struct block *gen_llc_linktype(int);
278static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
279#ifdef INET6
280static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
281#endif
282static struct block *gen_ahostop(const u_char *, int);
283static struct block *gen_ehostop(const u_char *, int);
284static struct block *gen_fhostop(const u_char *, int);
285static struct block *gen_thostop(const u_char *, int);
286static struct block *gen_wlanhostop(const u_char *, int);
287static struct block *gen_ipfchostop(const u_char *, int);
288static struct block *gen_dnhostop(bpf_u_int32, int);
289static struct block *gen_mpls_linktype(int);
290static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
291#ifdef INET6
292static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
293#endif
294#ifndef INET6
295static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
296#endif
297static struct block *gen_ipfrag(void);
298static struct block *gen_portatom(int, bpf_int32);
299static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
300static struct block *gen_portatom6(int, bpf_int32);
301static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
302struct block *gen_portop(int, int, int);
303static struct block *gen_port(int, int, int);
304struct block *gen_portrangeop(int, int, int, int);
305static struct block *gen_portrange(int, int, int, int);
306struct block *gen_portop6(int, int, int);
307static struct block *gen_port6(int, int, int);
308struct block *gen_portrangeop6(int, int, int, int);
309static struct block *gen_portrange6(int, int, int, int);
310static int lookup_proto(const char *, int);
311static struct block *gen_protochain(int, int, int);
312static struct block *gen_proto(int, int, int);
313static struct slist *xfer_to_x(struct arth *);
314static struct slist *xfer_to_a(struct arth *);
315static struct block *gen_mac_multicast(int);
316static struct block *gen_len(int, int);
317static struct block *gen_check_802_11_data_frame(void);
318static struct block *gen_geneve_ll_check(void);
319
320static struct block *gen_ppi_dlt_check(void);
321static struct block *gen_msg_abbrev(int type);
322
323static void *
324newchunk(n)
325	u_int n;
326{
327	struct chunk *cp;
328	int k;
329	size_t size;
330
331#ifndef __NetBSD__
332	/* XXX Round up to nearest long. */
333	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
334#else
335	/* XXX Round up to structure boundary. */
336	n = ALIGN(n);
337#endif
338
339	cp = &chunks[cur_chunk];
340	if (n > cp->n_left) {
341		++cp, k = ++cur_chunk;
342		if (k >= NCHUNKS)
343			bpf_error("out of memory");
344		size = CHUNK0SIZE << k;
345		cp->m = (void *)malloc(size);
346		if (cp->m == NULL)
347			bpf_error("out of memory");
348		memset((char *)cp->m, 0, size);
349		cp->n_left = size;
350		if (n > size)
351			bpf_error("out of memory");
352	}
353	cp->n_left -= n;
354	return (void *)((char *)cp->m + cp->n_left);
355}
356
357static void
358freechunks()
359{
360	int i;
361
362	cur_chunk = 0;
363	for (i = 0; i < NCHUNKS; ++i)
364		if (chunks[i].m != NULL) {
365			free(chunks[i].m);
366			chunks[i].m = NULL;
367		}
368}
369
370/*
371 * A strdup whose allocations are freed after code generation is over.
372 */
373char *
374sdup(s)
375	register const char *s;
376{
377	int n = strlen(s) + 1;
378	char *cp = newchunk(n);
379
380	strlcpy(cp, s, n);
381	return (cp);
382}
383
384static inline struct block *
385new_block(code)
386	int code;
387{
388	struct block *p;
389
390	p = (struct block *)newchunk(sizeof(*p));
391	p->s.code = code;
392	p->head = p;
393
394	return p;
395}
396
397static inline struct slist *
398new_stmt(code)
399	int code;
400{
401	struct slist *p;
402
403	p = (struct slist *)newchunk(sizeof(*p));
404	p->s.code = code;
405
406	return p;
407}
408
409static struct block *
410gen_retblk(v)
411	int v;
412{
413	struct block *b = new_block(BPF_RET|BPF_K);
414
415	b->s.k = v;
416	return b;
417}
418
419static inline void
420syntax()
421{
422	bpf_error("syntax error in filter expression");
423}
424
425static bpf_u_int32 netmask;
426static int snaplen;
427int no_optimize;
428
429int
430pcap_compile(pcap_t *p, struct bpf_program *program,
431	     const char *buf, int optimize, bpf_u_int32 mask)
432{
433	extern int n_errors;
434	const char * volatile xbuf = buf;
435	u_int len;
436	int  rc;
437
438	/*
439	 * XXX - single-thread this code path with pthread calls on
440	 * UN*X, if the platform supports pthreads?  If that requires
441	 * a separate -lpthread, we might not want to do that.
442	 */
443#ifdef WIN32
444	extern int wsockinit (void);
445	static int done = 0;
446
447	if (!done)
448		wsockinit();
449	done = 1;
450	EnterCriticalSection(&g_PcapCompileCriticalSection);
451#endif
452
453	/*
454	 * If this pcap_t hasn't been activated, it doesn't have a
455	 * link-layer type, so we can't use it.
456	 */
457	if (!p->activated) {
458		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
459		    "not-yet-activated pcap_t passed to pcap_compile");
460		rc = -1;
461		goto quit;
462	}
463	no_optimize = 0;
464	n_errors = 0;
465	root = NULL;
466	bpf_pcap = p;
467	init_regs();
468
469	if (setjmp(top_ctx)) {
470#ifdef INET6
471		if (ai != NULL) {
472			freeaddrinfo(ai);
473			ai = NULL;
474		}
475#endif
476		lex_cleanup();
477		freechunks();
478		rc = -1;
479		goto quit;
480	}
481
482	netmask = mask;
483
484	snaplen = pcap_snapshot(p);
485	if (snaplen == 0) {
486		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
487			 "snaplen of 0 rejects all packets");
488		rc = -1;
489		goto quit;
490	}
491
492	lex_init(xbuf ? xbuf : "");
493	init_linktype(p);
494	(void)pcap_parse();
495
496	if (n_errors)
497		syntax();
498
499	if (root == NULL)
500		root = gen_retblk(snaplen);
501
502	if (optimize && !no_optimize) {
503		bpf_optimize(&root);
504		if (root == NULL ||
505		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
506			bpf_error("expression rejects all packets");
507	}
508	program->bf_insns = icode_to_fcode(root, &len);
509	program->bf_len = len;
510
511	lex_cleanup();
512	freechunks();
513
514	rc = 0;  /* We're all okay */
515
516quit:
517
518#ifdef WIN32
519	LeaveCriticalSection(&g_PcapCompileCriticalSection);
520#endif
521
522	return (rc);
523}
524
525/*
526 * entry point for using the compiler with no pcap open
527 * pass in all the stuff that is needed explicitly instead.
528 */
529int
530pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
531		    struct bpf_program *program,
532	     const char *buf, int optimize, bpf_u_int32 mask)
533{
534	pcap_t *p;
535	int ret;
536
537	p = pcap_open_dead(linktype_arg, snaplen_arg);
538	if (p == NULL)
539		return (-1);
540	ret = pcap_compile(p, program, buf, optimize, mask);
541	pcap_close(p);
542	return (ret);
543}
544
545/*
546 * Clean up a "struct bpf_program" by freeing all the memory allocated
547 * in it.
548 */
549void
550pcap_freecode(struct bpf_program *program)
551{
552	program->bf_len = 0;
553	if (program->bf_insns != NULL) {
554		free((char *)program->bf_insns);
555		program->bf_insns = NULL;
556	}
557}
558
559/*
560 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
561 * which of the jt and jf fields has been resolved and which is a pointer
562 * back to another unresolved block (or nil).  At least one of the fields
563 * in each block is already resolved.
564 */
565static void
566backpatch(list, target)
567	struct block *list, *target;
568{
569	struct block *next;
570
571	while (list) {
572		if (!list->sense) {
573			next = JT(list);
574			JT(list) = target;
575		} else {
576			next = JF(list);
577			JF(list) = target;
578		}
579		list = next;
580	}
581}
582
583/*
584 * Merge the lists in b0 and b1, using the 'sense' field to indicate
585 * which of jt and jf is the link.
586 */
587static void
588merge(b0, b1)
589	struct block *b0, *b1;
590{
591	register struct block **p = &b0;
592
593	/* Find end of list. */
594	while (*p)
595		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
596
597	/* Concatenate the lists. */
598	*p = b1;
599}
600
601void
602finish_parse(p)
603	struct block *p;
604{
605	struct block *ppi_dlt_check;
606
607	/*
608	 * Insert before the statements of the first (root) block any
609	 * statements needed to load the lengths of any variable-length
610	 * headers into registers.
611	 *
612	 * XXX - a fancier strategy would be to insert those before the
613	 * statements of all blocks that use those lengths and that
614	 * have no predecessors that use them, so that we only compute
615	 * the lengths if we need them.  There might be even better
616	 * approaches than that.
617	 *
618	 * However, those strategies would be more complicated, and
619	 * as we don't generate code to compute a length if the
620	 * program has no tests that use the length, and as most
621	 * tests will probably use those lengths, we would just
622	 * postpone computing the lengths so that it's not done
623	 * for tests that fail early, and it's not clear that's
624	 * worth the effort.
625	 */
626	insert_compute_vloffsets(p->head);
627
628	/*
629	 * For DLT_PPI captures, generate a check of the per-packet
630	 * DLT value to make sure it's DLT_IEEE802_11.
631	 */
632	ppi_dlt_check = gen_ppi_dlt_check();
633	if (ppi_dlt_check != NULL)
634		gen_and(ppi_dlt_check, p);
635
636	backpatch(p, gen_retblk(snaplen));
637	p->sense = !p->sense;
638	backpatch(p, gen_retblk(0));
639	root = p->head;
640}
641
642void
643gen_and(b0, b1)
644	struct block *b0, *b1;
645{
646	backpatch(b0, b1->head);
647	b0->sense = !b0->sense;
648	b1->sense = !b1->sense;
649	merge(b1, b0);
650	b1->sense = !b1->sense;
651	b1->head = b0->head;
652}
653
654void
655gen_or(b0, b1)
656	struct block *b0, *b1;
657{
658	b0->sense = !b0->sense;
659	backpatch(b0, b1->head);
660	b0->sense = !b0->sense;
661	merge(b1, b0);
662	b1->head = b0->head;
663}
664
665void
666gen_not(b)
667	struct block *b;
668{
669	b->sense = !b->sense;
670}
671
672static struct block *
673gen_cmp(offrel, offset, size, v)
674	enum e_offrel offrel;
675	u_int offset, size;
676	bpf_int32 v;
677{
678	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
679}
680
681static struct block *
682gen_cmp_gt(offrel, offset, size, v)
683	enum e_offrel offrel;
684	u_int offset, size;
685	bpf_int32 v;
686{
687	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
688}
689
690static struct block *
691gen_cmp_ge(offrel, offset, size, v)
692	enum e_offrel offrel;
693	u_int offset, size;
694	bpf_int32 v;
695{
696	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
697}
698
699static struct block *
700gen_cmp_lt(offrel, offset, size, v)
701	enum e_offrel offrel;
702	u_int offset, size;
703	bpf_int32 v;
704{
705	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
706}
707
708static struct block *
709gen_cmp_le(offrel, offset, size, v)
710	enum e_offrel offrel;
711	u_int offset, size;
712	bpf_int32 v;
713{
714	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
715}
716
717static struct block *
718gen_mcmp(offrel, offset, size, v, mask)
719	enum e_offrel offrel;
720	u_int offset, size;
721	bpf_int32 v;
722	bpf_u_int32 mask;
723{
724	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
725}
726
727static struct block *
728gen_bcmp(offrel, offset, size, v)
729	enum e_offrel offrel;
730	register u_int offset, size;
731	register const u_char *v;
732{
733	register struct block *b, *tmp;
734
735	b = NULL;
736	while (size >= 4) {
737		register const u_char *p = &v[size - 4];
738		bpf_int32 w = ((bpf_int32)p[0] << 24) |
739		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
740
741		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
742		if (b != NULL)
743			gen_and(b, tmp);
744		b = tmp;
745		size -= 4;
746	}
747	while (size >= 2) {
748		register const u_char *p = &v[size - 2];
749		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
750
751		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
752		if (b != NULL)
753			gen_and(b, tmp);
754		b = tmp;
755		size -= 2;
756	}
757	if (size > 0) {
758		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
759		if (b != NULL)
760			gen_and(b, tmp);
761		b = tmp;
762	}
763	return b;
764}
765
766/*
767 * AND the field of size "size" at offset "offset" relative to the header
768 * specified by "offrel" with "mask", and compare it with the value "v"
769 * with the test specified by "jtype"; if "reverse" is true, the test
770 * should test the opposite of "jtype".
771 */
772static struct block *
773gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
774	enum e_offrel offrel;
775	bpf_int32 v;
776	bpf_u_int32 offset, size, mask, jtype;
777	int reverse;
778{
779	struct slist *s, *s2;
780	struct block *b;
781
782	s = gen_load_a(offrel, offset, size);
783
784	if (mask != 0xffffffff) {
785		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
786		s2->s.k = mask;
787		sappend(s, s2);
788	}
789
790	b = new_block(JMP(jtype));
791	b->stmts = s;
792	b->s.k = v;
793	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
794		gen_not(b);
795	return b;
796}
797
798/*
799 * Various code constructs need to know the layout of the packet.
800 * These variables give the necessary offsets from the beginning
801 * of the packet data.
802 */
803
804/*
805 * Absolute offset of the beginning of the link-layer header.
806 */
807static bpf_abs_offset off_linkhdr;
808
809/*
810 * If we're checking a link-layer header for a packet encapsulated in
811 * another protocol layer, this is the equivalent information for the
812 * previous layers' link-layer header from the beginning of the raw
813 * packet data.
814 */
815static bpf_abs_offset off_prevlinkhdr;
816
817/*
818 * This is the equivalent information for the outermost layers' link-layer
819 * header.
820 */
821static bpf_abs_offset off_outermostlinkhdr;
822
823/*
824 * "Push" the current value of the link-layer header type and link-layer
825 * header offset onto a "stack", and set a new value.  (It's not a
826 * full-blown stack; we keep only the top two items.)
827 */
828#define PUSH_LINKHDR(new_linktype, new_is_variable, new_constant_part, new_reg) \
829{ \
830	prevlinktype = new_linktype; \
831	off_prevlinkhdr = off_linkhdr; \
832	linktype = new_linktype; \
833	off_linkhdr.is_variable = new_is_variable; \
834	off_linkhdr.constant_part = new_constant_part; \
835	off_linkhdr.reg = new_reg; \
836	is_geneve = 0; \
837}
838
839/*
840 * Absolute offset of the beginning of the link-layer payload.
841 */
842static bpf_abs_offset off_linkpl;
843
844/*
845 * "off_linktype" is the offset to information in the link-layer header
846 * giving the packet type. This is an absolute offset from the beginning
847 * of the packet.
848 *
849 * For Ethernet, it's the offset of the Ethernet type field; this
850 * means that it must have a value that skips VLAN tags.
851 *
852 * For link-layer types that always use 802.2 headers, it's the
853 * offset of the LLC header; this means that it must have a value
854 * that skips VLAN tags.
855 *
856 * For PPP, it's the offset of the PPP type field.
857 *
858 * For Cisco HDLC, it's the offset of the CHDLC type field.
859 *
860 * For BSD loopback, it's the offset of the AF_ value.
861 *
862 * For Linux cooked sockets, it's the offset of the type field.
863 *
864 * off_linktype.constant_part is set to -1 for no encapsulation,
865 * in which case, IP is assumed.
866 */
867static bpf_abs_offset off_linktype;
868
869/*
870 * TRUE if the link layer includes an ATM pseudo-header.
871 */
872static int is_atm = 0;
873
874/*
875 * TRUE if "geneve" appeared in the filter; it causes us to generate
876 * code that checks for a Geneve header and assume that later filters
877 * apply to the encapsulated payload.
878 */
879static int is_geneve = 0;
880
881/*
882 * These are offsets for the ATM pseudo-header.
883 */
884static u_int off_vpi;
885static u_int off_vci;
886static u_int off_proto;
887
888/*
889 * These are offsets for the MTP2 fields.
890 */
891static u_int off_li;
892static u_int off_li_hsl;
893
894/*
895 * These are offsets for the MTP3 fields.
896 */
897static u_int off_sio;
898static u_int off_opc;
899static u_int off_dpc;
900static u_int off_sls;
901
902/*
903 * This is the offset of the first byte after the ATM pseudo_header,
904 * or -1 if there is no ATM pseudo-header.
905 */
906static u_int off_payload;
907
908/*
909 * These are offsets to the beginning of the network-layer header.
910 * They are relative to the beginning of the link-layer payload (i.e.,
911 * they don't include off_linkhdr.constant_part or off_linkpl.constant_part).
912 *
913 * If the link layer never uses 802.2 LLC:
914 *
915 *	"off_nl" and "off_nl_nosnap" are the same.
916 *
917 * If the link layer always uses 802.2 LLC:
918 *
919 *	"off_nl" is the offset if there's a SNAP header following
920 *	the 802.2 header;
921 *
922 *	"off_nl_nosnap" is the offset if there's no SNAP header.
923 *
924 * If the link layer is Ethernet:
925 *
926 *	"off_nl" is the offset if the packet is an Ethernet II packet
927 *	(we assume no 802.3+802.2+SNAP);
928 *
929 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
930 *	with an 802.2 header following it.
931 */
932static u_int off_nl;
933static u_int off_nl_nosnap;
934
935static int linktype;
936static int prevlinktype;
937static int outermostlinktype;
938
939static void
940init_linktype(p)
941	pcap_t *p;
942{
943	pcap_fddipad = p->fddipad;
944
945	/*
946	 * We start out with only one link-layer header.
947	 */
948	outermostlinktype = pcap_datalink(p);
949	off_outermostlinkhdr.constant_part = 0;
950	off_outermostlinkhdr.is_variable = 0;
951	off_outermostlinkhdr.reg = -1;
952
953	prevlinktype = outermostlinktype;
954	off_prevlinkhdr.constant_part = 0;
955	off_prevlinkhdr.is_variable = 0;
956	off_prevlinkhdr.reg = -1;
957
958	linktype = outermostlinktype;
959	off_linkhdr.constant_part = 0;
960	off_linkhdr.is_variable = 0;
961	off_linkhdr.reg = -1;
962
963	/*
964	 * XXX
965	 */
966	off_linkpl.constant_part = 0;
967	off_linkpl.is_variable = 0;
968	off_linkpl.reg = -1;
969
970	off_linktype.constant_part = 0;
971	off_linktype.is_variable = 0;
972	off_linktype.reg = -1;
973
974	/*
975	 * Assume it's not raw ATM with a pseudo-header, for now.
976	 */
977	is_atm = 0;
978	off_vpi = -1;
979	off_vci = -1;
980	off_proto = -1;
981	off_payload = -1;
982
983	/*
984	 * And not Geneve.
985	 */
986	is_geneve = 0;
987
988	/*
989	 * And assume we're not doing SS7.
990	 */
991	off_li = -1;
992	off_li_hsl = -1;
993	off_sio = -1;
994	off_opc = -1;
995	off_dpc = -1;
996	off_sls = -1;
997
998        label_stack_depth = 0;
999        vlan_stack_depth = 0;
1000
1001	switch (linktype) {
1002
1003	case DLT_ARCNET:
1004		off_linktype.constant_part = 2;
1005		off_linkpl.constant_part = 6;
1006		off_nl = 0;		/* XXX in reality, variable! */
1007		off_nl_nosnap = 0;	/* no 802.2 LLC */
1008		break;
1009
1010	case DLT_ARCNET_LINUX:
1011		off_linktype.constant_part = 4;
1012		off_linkpl.constant_part = 8;
1013		off_nl = 0;		/* XXX in reality, variable! */
1014		off_nl_nosnap = 0;	/* no 802.2 LLC */
1015		break;
1016
1017	case DLT_EN10MB:
1018		off_linktype.constant_part = 12;
1019		off_linkpl.constant_part = 14;	/* Ethernet header length */
1020		off_nl = 0;		/* Ethernet II */
1021		off_nl_nosnap = 3;	/* 802.3+802.2 */
1022		break;
1023
1024	case DLT_SLIP:
1025		/*
1026		 * SLIP doesn't have a link level type.  The 16 byte
1027		 * header is hacked into our SLIP driver.
1028		 */
1029		off_linktype.constant_part = -1;
1030		off_linkpl.constant_part = 16;
1031		off_nl = 0;
1032		off_nl_nosnap = 0;	/* no 802.2 LLC */
1033		break;
1034
1035	case DLT_SLIP_BSDOS:
1036		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1037		off_linktype.constant_part = -1;
1038		/* XXX end */
1039		off_linkpl.constant_part = 24;
1040		off_nl = 0;
1041		off_nl_nosnap = 0;	/* no 802.2 LLC */
1042		break;
1043
1044	case DLT_NULL:
1045	case DLT_LOOP:
1046		off_linktype.constant_part = 0;
1047		off_linkpl.constant_part = 4;
1048		off_nl = 0;
1049		off_nl_nosnap = 0;	/* no 802.2 LLC */
1050		break;
1051
1052	case DLT_ENC:
1053		off_linktype.constant_part = 0;
1054		off_linkpl.constant_part = 12;
1055		off_nl = 0;
1056		off_nl_nosnap = 0;	/* no 802.2 LLC */
1057		break;
1058
1059	case DLT_PPP:
1060	case DLT_PPP_PPPD:
1061	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1062	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1063		off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1064		off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1065		off_nl = 0;
1066		off_nl_nosnap = 0;	/* no 802.2 LLC */
1067		break;
1068
1069	case DLT_PPP_ETHER:
1070		/*
1071		 * This does no include the Ethernet header, and
1072		 * only covers session state.
1073		 */
1074		off_linktype.constant_part = 6;
1075		off_linkpl.constant_part = 8;
1076		off_nl = 0;
1077		off_nl_nosnap = 0;	/* no 802.2 LLC */
1078		break;
1079
1080	case DLT_PPP_BSDOS:
1081		off_linktype.constant_part = 5;
1082		off_linkpl.constant_part = 24;
1083		off_nl = 0;
1084		off_nl_nosnap = 0;	/* no 802.2 LLC */
1085		break;
1086
1087	case DLT_FDDI:
1088		/*
1089		 * FDDI doesn't really have a link-level type field.
1090		 * We set "off_linktype" to the offset of the LLC header.
1091		 *
1092		 * To check for Ethernet types, we assume that SSAP = SNAP
1093		 * is being used and pick out the encapsulated Ethernet type.
1094		 * XXX - should we generate code to check for SNAP?
1095		 */
1096		off_linktype.constant_part = 13;
1097		off_linktype.constant_part += pcap_fddipad;
1098		off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1099		off_linkpl.constant_part += pcap_fddipad;
1100		off_nl = 8;		/* 802.2+SNAP */
1101		off_nl_nosnap = 3;	/* 802.2 */
1102		break;
1103
1104	case DLT_IEEE802:
1105		/*
1106		 * Token Ring doesn't really have a link-level type field.
1107		 * We set "off_linktype" to the offset of the LLC header.
1108		 *
1109		 * To check for Ethernet types, we assume that SSAP = SNAP
1110		 * is being used and pick out the encapsulated Ethernet type.
1111		 * XXX - should we generate code to check for SNAP?
1112		 *
1113		 * XXX - the header is actually variable-length.
1114		 * Some various Linux patched versions gave 38
1115		 * as "off_linktype" and 40 as "off_nl"; however,
1116		 * if a token ring packet has *no* routing
1117		 * information, i.e. is not source-routed, the correct
1118		 * values are 20 and 22, as they are in the vanilla code.
1119		 *
1120		 * A packet is source-routed iff the uppermost bit
1121		 * of the first byte of the source address, at an
1122		 * offset of 8, has the uppermost bit set.  If the
1123		 * packet is source-routed, the total number of bytes
1124		 * of routing information is 2 plus bits 0x1F00 of
1125		 * the 16-bit value at an offset of 14 (shifted right
1126		 * 8 - figure out which byte that is).
1127		 */
1128		off_linktype.constant_part = 14;
1129		off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1130		off_nl = 8;		/* 802.2+SNAP */
1131		off_nl_nosnap = 3;	/* 802.2 */
1132		break;
1133
1134	case DLT_PRISM_HEADER:
1135	case DLT_IEEE802_11_RADIO_AVS:
1136	case DLT_IEEE802_11_RADIO:
1137		off_linkhdr.is_variable = 1;
1138		/* Fall through, 802.11 doesn't have a variable link
1139		 * prefix but is otherwise the same. */
1140
1141	case DLT_IEEE802_11:
1142		/*
1143		 * 802.11 doesn't really have a link-level type field.
1144		 * We set "off_linktype.constant_part" to the offset of
1145		 * the LLC header.
1146		 *
1147		 * To check for Ethernet types, we assume that SSAP = SNAP
1148		 * is being used and pick out the encapsulated Ethernet type.
1149		 * XXX - should we generate code to check for SNAP?
1150		 *
1151		 * We also handle variable-length radio headers here.
1152		 * The Prism header is in theory variable-length, but in
1153		 * practice it's always 144 bytes long.  However, some
1154		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1155		 * sometimes or always supply an AVS header, so we
1156		 * have to check whether the radio header is a Prism
1157		 * header or an AVS header, so, in practice, it's
1158		 * variable-length.
1159		 */
1160		off_linktype.constant_part = 24;
1161		off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1162		off_linkpl.is_variable = 1;
1163		off_nl = 8;		/* 802.2+SNAP */
1164		off_nl_nosnap = 3;	/* 802.2 */
1165		break;
1166
1167	case DLT_PPI:
1168		/*
1169		 * At the moment we treat PPI the same way that we treat
1170		 * normal Radiotap encoded packets. The difference is in
1171		 * the function that generates the code at the beginning
1172		 * to compute the header length.  Since this code generator
1173		 * of PPI supports bare 802.11 encapsulation only (i.e.
1174		 * the encapsulated DLT should be DLT_IEEE802_11) we
1175		 * generate code to check for this too.
1176		 */
1177		off_linktype.constant_part = 24;
1178		off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1179		off_linkpl.is_variable = 1;
1180		off_linkhdr.is_variable = 1;
1181		off_nl = 8;		/* 802.2+SNAP */
1182		off_nl_nosnap = 3;	/* 802.2 */
1183		break;
1184
1185	case DLT_ATM_RFC1483:
1186	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1187		/*
1188		 * assume routed, non-ISO PDUs
1189		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1190		 *
1191		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1192		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1193		 * latter would presumably be treated the way PPPoE
1194		 * should be, so you can do "pppoe and udp port 2049"
1195		 * or "pppoa and tcp port 80" and have it check for
1196		 * PPPo{A,E} and a PPP protocol of IP and....
1197		 */
1198		off_linktype.constant_part = 0;
1199		off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1200		off_nl = 8;		/* 802.2+SNAP */
1201		off_nl_nosnap = 3;	/* 802.2 */
1202		break;
1203
1204	case DLT_SUNATM:
1205		/*
1206		 * Full Frontal ATM; you get AALn PDUs with an ATM
1207		 * pseudo-header.
1208		 */
1209		is_atm = 1;
1210		off_vpi = SUNATM_VPI_POS;
1211		off_vci = SUNATM_VCI_POS;
1212		off_proto = PROTO_POS;
1213		off_payload = SUNATM_PKT_BEGIN_POS;
1214		off_linktype.constant_part = off_payload;
1215		off_linkpl.constant_part = off_payload;	/* if LLC-encapsulated */
1216		off_nl = 8;		/* 802.2+SNAP */
1217		off_nl_nosnap = 3;	/* 802.2 */
1218		break;
1219
1220	case DLT_RAW:
1221	case DLT_IPV4:
1222	case DLT_IPV6:
1223		off_linktype.constant_part = -1;
1224		off_linkpl.constant_part = 0;
1225		off_nl = 0;
1226		off_nl_nosnap = 0;	/* no 802.2 LLC */
1227		break;
1228
1229	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1230		off_linktype.constant_part = 14;
1231		off_linkpl.constant_part = 16;
1232		off_nl = 0;
1233		off_nl_nosnap = 0;	/* no 802.2 LLC */
1234		break;
1235
1236	case DLT_LTALK:
1237		/*
1238		 * LocalTalk does have a 1-byte type field in the LLAP header,
1239		 * but really it just indicates whether there is a "short" or
1240		 * "long" DDP packet following.
1241		 */
1242		off_linktype.constant_part = -1;
1243		off_linkpl.constant_part = 0;
1244		off_nl = 0;
1245		off_nl_nosnap = 0;	/* no 802.2 LLC */
1246		break;
1247
1248	case DLT_IP_OVER_FC:
1249		/*
1250		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1251		 * link-level type field.  We set "off_linktype" to the
1252		 * offset of the LLC header.
1253		 *
1254		 * To check for Ethernet types, we assume that SSAP = SNAP
1255		 * is being used and pick out the encapsulated Ethernet type.
1256		 * XXX - should we generate code to check for SNAP? RFC
1257		 * 2625 says SNAP should be used.
1258		 */
1259		off_linktype.constant_part = 16;
1260		off_linkpl.constant_part = 16;
1261		off_nl = 8;		/* 802.2+SNAP */
1262		off_nl_nosnap = 3;	/* 802.2 */
1263		break;
1264
1265	case DLT_FRELAY:
1266		/*
1267		 * XXX - we should set this to handle SNAP-encapsulated
1268		 * frames (NLPID of 0x80).
1269		 */
1270		off_linktype.constant_part = -1;
1271		off_linkpl.constant_part = 0;
1272		off_nl = 0;
1273		off_nl_nosnap = 0;	/* no 802.2 LLC */
1274		break;
1275
1276                /*
1277                 * the only BPF-interesting FRF.16 frames are non-control frames;
1278                 * Frame Relay has a variable length link-layer
1279                 * so lets start with offset 4 for now and increments later on (FIXME);
1280                 */
1281	case DLT_MFR:
1282		off_linktype.constant_part = -1;
1283		off_linkpl.constant_part = 0;
1284		off_nl = 4;
1285		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1286		break;
1287
1288	case DLT_APPLE_IP_OVER_IEEE1394:
1289		off_linktype.constant_part = 16;
1290		off_linkpl.constant_part = 18;
1291		off_nl = 0;
1292		off_nl_nosnap = 0;	/* no 802.2 LLC */
1293		break;
1294
1295	case DLT_SYMANTEC_FIREWALL:
1296		off_linktype.constant_part = 6;
1297		off_linkpl.constant_part = 44;
1298		off_nl = 0;		/* Ethernet II */
1299		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1300		break;
1301
1302#ifdef HAVE_NET_PFVAR_H
1303	case DLT_PFLOG:
1304		off_linktype.constant_part = 0;
1305		off_linkpl.constant_part = PFLOG_HDRLEN;
1306		off_nl = 0;
1307		off_nl_nosnap = 0;	/* no 802.2 LLC */
1308		break;
1309#endif
1310
1311        case DLT_JUNIPER_MFR:
1312        case DLT_JUNIPER_MLFR:
1313        case DLT_JUNIPER_MLPPP:
1314        case DLT_JUNIPER_PPP:
1315        case DLT_JUNIPER_CHDLC:
1316        case DLT_JUNIPER_FRELAY:
1317                off_linktype.constant_part = 4;
1318		off_linkpl.constant_part = 4;
1319		off_nl = 0;
1320		off_nl_nosnap = -1;	/* no 802.2 LLC */
1321                break;
1322
1323	case DLT_JUNIPER_ATM1:
1324		off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1325		off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1326		off_nl = 0;
1327		off_nl_nosnap = 10;
1328		break;
1329
1330	case DLT_JUNIPER_ATM2:
1331		off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1332		off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1333		off_nl = 0;
1334		off_nl_nosnap = 10;
1335		break;
1336
1337		/* frames captured on a Juniper PPPoE service PIC
1338		 * contain raw ethernet frames */
1339	case DLT_JUNIPER_PPPOE:
1340        case DLT_JUNIPER_ETHER:
1341        	off_linkpl.constant_part = 14;
1342		off_linktype.constant_part = 16;
1343		off_nl = 18;		/* Ethernet II */
1344		off_nl_nosnap = 21;	/* 802.3+802.2 */
1345		break;
1346
1347	case DLT_JUNIPER_PPPOE_ATM:
1348		off_linktype.constant_part = 4;
1349		off_linkpl.constant_part = 6;
1350		off_nl = 0;
1351		off_nl_nosnap = -1;	/* no 802.2 LLC */
1352		break;
1353
1354	case DLT_JUNIPER_GGSN:
1355		off_linktype.constant_part = 6;
1356		off_linkpl.constant_part = 12;
1357		off_nl = 0;
1358		off_nl_nosnap = -1;	/* no 802.2 LLC */
1359		break;
1360
1361	case DLT_JUNIPER_ES:
1362		off_linktype.constant_part = 6;
1363		off_linkpl.constant_part = -1;	/* not really a network layer but raw IP addresses */
1364		off_nl = -1;		/* not really a network layer but raw IP addresses */
1365		off_nl_nosnap = -1;	/* no 802.2 LLC */
1366		break;
1367
1368	case DLT_JUNIPER_MONITOR:
1369		off_linktype.constant_part = 12;
1370		off_linkpl.constant_part = 12;
1371		off_nl = 0;		/* raw IP/IP6 header */
1372		off_nl_nosnap = -1;	/* no 802.2 LLC */
1373		break;
1374
1375	case DLT_BACNET_MS_TP:
1376		off_linktype.constant_part = -1;
1377		off_linkpl.constant_part = -1;
1378		off_nl = -1;
1379		off_nl_nosnap = -1;
1380		break;
1381
1382	case DLT_JUNIPER_SERVICES:
1383		off_linktype.constant_part = 12;
1384		off_linkpl.constant_part = -1;	/* L3 proto location dep. on cookie type */
1385		off_nl = -1;		/* L3 proto location dep. on cookie type */
1386		off_nl_nosnap = -1;	/* no 802.2 LLC */
1387		break;
1388
1389	case DLT_JUNIPER_VP:
1390		off_linktype.constant_part = 18;
1391		off_linkpl.constant_part = -1;
1392		off_nl = -1;
1393		off_nl_nosnap = -1;
1394		break;
1395
1396	case DLT_JUNIPER_ST:
1397		off_linktype.constant_part = 18;
1398		off_linkpl.constant_part = -1;
1399		off_nl = -1;
1400		off_nl_nosnap = -1;
1401		break;
1402
1403	case DLT_JUNIPER_ISM:
1404		off_linktype.constant_part = 8;
1405		off_linkpl.constant_part = -1;
1406		off_nl = -1;
1407		off_nl_nosnap = -1;
1408		break;
1409
1410	case DLT_JUNIPER_VS:
1411	case DLT_JUNIPER_SRX_E2E:
1412	case DLT_JUNIPER_FIBRECHANNEL:
1413	case DLT_JUNIPER_ATM_CEMIC:
1414		off_linktype.constant_part = 8;
1415		off_linkpl.constant_part = -1;
1416		off_nl = -1;
1417		off_nl_nosnap = -1;
1418		break;
1419
1420	case DLT_MTP2:
1421		off_li = 2;
1422		off_li_hsl = 4;
1423		off_sio = 3;
1424		off_opc = 4;
1425		off_dpc = 4;
1426		off_sls = 7;
1427		off_linktype.constant_part = -1;
1428		off_linkpl.constant_part = -1;
1429		off_nl = -1;
1430		off_nl_nosnap = -1;
1431		break;
1432
1433	case DLT_MTP2_WITH_PHDR:
1434		off_li = 6;
1435		off_li_hsl = 8;
1436		off_sio = 7;
1437		off_opc = 8;
1438		off_dpc = 8;
1439		off_sls = 11;
1440		off_linktype.constant_part = -1;
1441		off_linkpl.constant_part = -1;
1442		off_nl = -1;
1443		off_nl_nosnap = -1;
1444		break;
1445
1446	case DLT_ERF:
1447		off_li = 22;
1448		off_li_hsl = 24;
1449		off_sio = 23;
1450		off_opc = 24;
1451		off_dpc = 24;
1452		off_sls = 27;
1453		off_linktype.constant_part = -1;
1454		off_linkpl.constant_part = -1;
1455		off_nl = -1;
1456		off_nl_nosnap = -1;
1457		break;
1458
1459	case DLT_PFSYNC:
1460		off_linktype.constant_part = -1;
1461		off_linkpl.constant_part = 4;
1462		off_nl = 0;
1463		off_nl_nosnap = 0;
1464		break;
1465
1466	case DLT_AX25_KISS:
1467		/*
1468		 * Currently, only raw "link[N:M]" filtering is supported.
1469		 */
1470		off_linktype.constant_part = -1;	/* variable, min 15, max 71 steps of 7 */
1471		off_linkpl.constant_part = -1;
1472		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1473		off_nl_nosnap = -1;	/* no 802.2 LLC */
1474		break;
1475
1476	case DLT_IPNET:
1477		off_linktype.constant_part = 1;
1478		off_linkpl.constant_part = 24;	/* ipnet header length */
1479		off_nl = 0;
1480		off_nl_nosnap = -1;
1481		break;
1482
1483	case DLT_NETANALYZER:
1484		off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1485		off_linktype.constant_part = off_linkhdr.constant_part + 12;
1486		off_linkpl.constant_part = off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1487		off_nl = 0;		/* Ethernet II */
1488		off_nl_nosnap = 3;	/* 802.3+802.2 */
1489		break;
1490
1491	case DLT_NETANALYZER_TRANSPARENT:
1492		off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1493		off_linktype.constant_part = off_linkhdr.constant_part + 12;
1494		off_linkpl.constant_part = off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1495		off_nl = 0;		/* Ethernet II */
1496		off_nl_nosnap = 3;	/* 802.3+802.2 */
1497		break;
1498
1499	default:
1500		/*
1501		 * For values in the range in which we've assigned new
1502		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1503		 */
1504		if (linktype >= DLT_MATCHING_MIN &&
1505		    linktype <= DLT_MATCHING_MAX) {
1506			off_linktype.constant_part = -1;
1507			off_linkpl.constant_part = -1;
1508			off_nl = -1;
1509			off_nl_nosnap = -1;
1510		} else {
1511			bpf_error("unknown data link type %d", linktype);
1512		}
1513		break;
1514	}
1515
1516	off_outermostlinkhdr = off_prevlinkhdr = off_linkhdr;
1517}
1518
1519/*
1520 * Load a value relative to the specified absolute offset.
1521 */
1522static struct slist *
1523gen_load_absoffsetrel(bpf_abs_offset *abs_offset, u_int offset, u_int size)
1524{
1525	struct slist *s, *s2;
1526
1527	s = gen_abs_offset_varpart(abs_offset);
1528
1529	/*
1530	 * If "s" is non-null, it has code to arrange that the X register
1531	 * contains the variable part of the absolute offset, so we
1532	 * generate a load relative to that, with an offset of
1533	 * abs_offset->constant_part + offset.
1534	 *
1535	 * Otherwise, we can do an absolute load with an offset of
1536	 * abs_offset->constant_part + offset.
1537	 */
1538	if (s != NULL) {
1539		/*
1540		 * "s" points to a list of statements that puts the
1541		 * variable part of the absolute offset into the X register.
1542		 * Do an indirect load, to use the X register as an offset.
1543		 */
1544		s2 = new_stmt(BPF_LD|BPF_IND|size);
1545		s2->s.k = abs_offset->constant_part + offset;
1546		sappend(s, s2);
1547	} else {
1548		/*
1549		 * There is no variable part of the absolute offset, so
1550		 * just do an absolute load.
1551		 */
1552		s = new_stmt(BPF_LD|BPF_ABS|size);
1553		s->s.k = abs_offset->constant_part + offset;
1554	}
1555	return s;
1556}
1557
1558/*
1559 * Load a value relative to the beginning of the specified header.
1560 */
1561static struct slist *
1562gen_load_a(offrel, offset, size)
1563	enum e_offrel offrel;
1564	u_int offset, size;
1565{
1566	struct slist *s, *s2;
1567
1568	switch (offrel) {
1569
1570	case OR_PACKET:
1571                s = new_stmt(BPF_LD|BPF_ABS|size);
1572                s->s.k = offset;
1573		break;
1574
1575	case OR_LINKHDR:
1576		s = gen_load_absoffsetrel(&off_linkhdr, offset, size);
1577		break;
1578
1579	case OR_PREVLINKHDR:
1580		s = gen_load_absoffsetrel(&off_prevlinkhdr, offset, size);
1581		break;
1582
1583	case OR_LLC:
1584		s = gen_load_absoffsetrel(&off_linkpl, offset, size);
1585		break;
1586
1587	case OR_PREVMPLSHDR:
1588		s = gen_load_absoffsetrel(&off_linkpl, off_nl - 4 + offset, size);
1589		break;
1590
1591	case OR_LINKPL:
1592		s = gen_load_absoffsetrel(&off_linkpl, off_nl + offset, size);
1593		break;
1594
1595	case OR_LINKPL_NOSNAP:
1596		s = gen_load_absoffsetrel(&off_linkpl, off_nl_nosnap + offset, size);
1597		break;
1598
1599	case OR_LINKTYPE:
1600		s = gen_load_absoffsetrel(&off_linktype, offset, size);
1601		break;
1602
1603	case OR_TRAN_IPV4:
1604		/*
1605		 * Load the X register with the length of the IPv4 header
1606		 * (plus the offset of the link-layer header, if it's
1607		 * preceded by a variable-length header such as a radio
1608		 * header), in bytes.
1609		 */
1610		s = gen_loadx_iphdrlen();
1611
1612		/*
1613		 * Load the item at {offset of the link-layer payload} +
1614		 * {offset, relative to the start of the link-layer
1615		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1616		 * {specified offset}.
1617		 *
1618		 * If the offset of the link-layer payload is variable,
1619		 * the variable part of that offset is included in the
1620		 * value in the X register, and we include the constant
1621		 * part in the offset of the load.
1622		 */
1623		s2 = new_stmt(BPF_LD|BPF_IND|size);
1624		s2->s.k = off_linkpl.constant_part + off_nl + offset;
1625		sappend(s, s2);
1626		break;
1627
1628	case OR_TRAN_IPV6:
1629		s = gen_load_absoffsetrel(&off_linkpl, off_nl + 40 + offset, size);
1630		break;
1631
1632	default:
1633		abort();
1634		return NULL;
1635	}
1636	return s;
1637}
1638
1639/*
1640 * Generate code to load into the X register the sum of the length of
1641 * the IPv4 header and the variable part of the offset of the link-layer
1642 * payload.
1643 */
1644static struct slist *
1645gen_loadx_iphdrlen()
1646{
1647	struct slist *s, *s2;
1648
1649	s = gen_abs_offset_varpart(&off_linkpl);
1650	if (s != NULL) {
1651		/*
1652		 * The offset of the link-layer payload has a variable
1653		 * part.  "s" points to a list of statements that put
1654		 * the variable part of that offset into the X register.
1655		 *
1656		 * The 4*([k]&0xf) addressing mode can't be used, as we
1657		 * don't have a constant offset, so we have to load the
1658		 * value in question into the A register and add to it
1659		 * the value from the X register.
1660		 */
1661		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1662		s2->s.k = off_linkpl.constant_part + off_nl;
1663		sappend(s, s2);
1664		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1665		s2->s.k = 0xf;
1666		sappend(s, s2);
1667		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1668		s2->s.k = 2;
1669		sappend(s, s2);
1670
1671		/*
1672		 * The A register now contains the length of the IP header.
1673		 * We need to add to it the variable part of the offset of
1674		 * the link-layer payload, which is still in the X
1675		 * register, and move the result into the X register.
1676		 */
1677		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1678		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1679	} else {
1680		/*
1681		 * The offset of the link-layer payload is a constant,
1682		 * so no code was generated to load the (non-existent)
1683		 * variable part of that offset.
1684		 *
1685		 * This means we can use the 4*([k]&0xf) addressing
1686		 * mode.  Load the length of the IPv4 header, which
1687		 * is at an offset of off_nl from the beginning of
1688		 * the link-layer payload, and thus at an offset of
1689		 * off_linkpl.constant_part + off_nl from the beginning
1690		 * of the raw packet data, using that addressing mode.
1691		 */
1692		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1693		s->s.k = off_linkpl.constant_part + off_nl;
1694	}
1695	return s;
1696}
1697
1698static struct block *
1699gen_uncond(rsense)
1700	int rsense;
1701{
1702	struct block *b;
1703	struct slist *s;
1704
1705	s = new_stmt(BPF_LD|BPF_IMM);
1706	s->s.k = !rsense;
1707	b = new_block(JMP(BPF_JEQ));
1708	b->stmts = s;
1709
1710	return b;
1711}
1712
1713static inline struct block *
1714gen_true()
1715{
1716	return gen_uncond(1);
1717}
1718
1719static inline struct block *
1720gen_false()
1721{
1722	return gen_uncond(0);
1723}
1724
1725/*
1726 * Byte-swap a 32-bit number.
1727 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1728 * big-endian platforms.)
1729 */
1730#define	SWAPLONG(y) \
1731((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1732
1733/*
1734 * Generate code to match a particular packet type.
1735 *
1736 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1737 * value, if <= ETHERMTU.  We use that to determine whether to
1738 * match the type/length field or to check the type/length field for
1739 * a value <= ETHERMTU to see whether it's a type field and then do
1740 * the appropriate test.
1741 */
1742static struct block *
1743gen_ether_linktype(proto)
1744	register int proto;
1745{
1746	struct block *b0, *b1;
1747
1748	switch (proto) {
1749
1750	case LLCSAP_ISONS:
1751	case LLCSAP_IP:
1752	case LLCSAP_NETBEUI:
1753		/*
1754		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1755		 * so we check the DSAP and SSAP.
1756		 *
1757		 * LLCSAP_IP checks for IP-over-802.2, rather
1758		 * than IP-over-Ethernet or IP-over-SNAP.
1759		 *
1760		 * XXX - should we check both the DSAP and the
1761		 * SSAP, like this, or should we check just the
1762		 * DSAP, as we do for other types <= ETHERMTU
1763		 * (i.e., other SAP values)?
1764		 */
1765		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1766		gen_not(b0);
1767		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)
1768			     ((proto << 8) | proto));
1769		gen_and(b0, b1);
1770		return b1;
1771
1772	case LLCSAP_IPX:
1773		/*
1774		 * Check for;
1775		 *
1776		 *	Ethernet_II frames, which are Ethernet
1777		 *	frames with a frame type of ETHERTYPE_IPX;
1778		 *
1779		 *	Ethernet_802.3 frames, which are 802.3
1780		 *	frames (i.e., the type/length field is
1781		 *	a length field, <= ETHERMTU, rather than
1782		 *	a type field) with the first two bytes
1783		 *	after the Ethernet/802.3 header being
1784		 *	0xFFFF;
1785		 *
1786		 *	Ethernet_802.2 frames, which are 802.3
1787		 *	frames with an 802.2 LLC header and
1788		 *	with the IPX LSAP as the DSAP in the LLC
1789		 *	header;
1790		 *
1791		 *	Ethernet_SNAP frames, which are 802.3
1792		 *	frames with an LLC header and a SNAP
1793		 *	header and with an OUI of 0x000000
1794		 *	(encapsulated Ethernet) and a protocol
1795		 *	ID of ETHERTYPE_IPX in the SNAP header.
1796		 *
1797		 * XXX - should we generate the same code both
1798		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1799		 */
1800
1801		/*
1802		 * This generates code to check both for the
1803		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1804		 */
1805		b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1806		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
1807		gen_or(b0, b1);
1808
1809		/*
1810		 * Now we add code to check for SNAP frames with
1811		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1812		 */
1813		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1814		gen_or(b0, b1);
1815
1816		/*
1817		 * Now we generate code to check for 802.3
1818		 * frames in general.
1819		 */
1820		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1821		gen_not(b0);
1822
1823		/*
1824		 * Now add the check for 802.3 frames before the
1825		 * check for Ethernet_802.2 and Ethernet_802.3,
1826		 * as those checks should only be done on 802.3
1827		 * frames, not on Ethernet frames.
1828		 */
1829		gen_and(b0, b1);
1830
1831		/*
1832		 * Now add the check for Ethernet_II frames, and
1833		 * do that before checking for the other frame
1834		 * types.
1835		 */
1836		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
1837		gen_or(b0, b1);
1838		return b1;
1839
1840	case ETHERTYPE_ATALK:
1841	case ETHERTYPE_AARP:
1842		/*
1843		 * EtherTalk (AppleTalk protocols on Ethernet link
1844		 * layer) may use 802.2 encapsulation.
1845		 */
1846
1847		/*
1848		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1849		 * we check for an Ethernet type field less than
1850		 * 1500, which means it's an 802.3 length field.
1851		 */
1852		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1853		gen_not(b0);
1854
1855		/*
1856		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1857		 * SNAP packets with an organization code of
1858		 * 0x080007 (Apple, for Appletalk) and a protocol
1859		 * type of ETHERTYPE_ATALK (Appletalk).
1860		 *
1861		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1862		 * SNAP packets with an organization code of
1863		 * 0x000000 (encapsulated Ethernet) and a protocol
1864		 * type of ETHERTYPE_AARP (Appletalk ARP).
1865		 */
1866		if (proto == ETHERTYPE_ATALK)
1867			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1868		else	/* proto == ETHERTYPE_AARP */
1869			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1870		gen_and(b0, b1);
1871
1872		/*
1873		 * Check for Ethernet encapsulation (Ethertalk
1874		 * phase 1?); we just check for the Ethernet
1875		 * protocol type.
1876		 */
1877		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
1878
1879		gen_or(b0, b1);
1880		return b1;
1881
1882	default:
1883		if (proto <= ETHERMTU) {
1884			/*
1885			 * This is an LLC SAP value, so the frames
1886			 * that match would be 802.2 frames.
1887			 * Check that the frame is an 802.2 frame
1888			 * (i.e., that the length/type field is
1889			 * a length field, <= ETHERMTU) and
1890			 * then check the DSAP.
1891			 */
1892			b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1893			gen_not(b0);
1894			b1 = gen_cmp(OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
1895			gen_and(b0, b1);
1896			return b1;
1897		} else {
1898			/*
1899			 * This is an Ethernet type, so compare
1900			 * the length/type field with it (if
1901			 * the frame is an 802.2 frame, the length
1902			 * field will be <= ETHERMTU, and, as
1903			 * "proto" is > ETHERMTU, this test
1904			 * will fail and the frame won't match,
1905			 * which is what we want).
1906			 */
1907			return gen_cmp(OR_LINKTYPE, 0, BPF_H,
1908			    (bpf_int32)proto);
1909		}
1910	}
1911}
1912
1913/*
1914 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1915 * or IPv6 then we have an error.
1916 */
1917static struct block *
1918gen_ipnet_linktype(proto)
1919	register int proto;
1920{
1921	switch (proto) {
1922
1923	case ETHERTYPE_IP:
1924		return gen_cmp(OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
1925		/* NOTREACHED */
1926
1927	case ETHERTYPE_IPV6:
1928		return gen_cmp(OR_LINKTYPE, 0, BPF_B,
1929		    (bpf_int32)IPH_AF_INET6);
1930		/* NOTREACHED */
1931
1932	default:
1933		break;
1934	}
1935
1936	return gen_false();
1937}
1938
1939/*
1940 * Generate code to match a particular packet type.
1941 *
1942 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1943 * value, if <= ETHERMTU.  We use that to determine whether to
1944 * match the type field or to check the type field for the special
1945 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1946 */
1947static struct block *
1948gen_linux_sll_linktype(proto)
1949	register int proto;
1950{
1951	struct block *b0, *b1;
1952
1953	switch (proto) {
1954
1955	case LLCSAP_ISONS:
1956	case LLCSAP_IP:
1957	case LLCSAP_NETBEUI:
1958		/*
1959		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1960		 * so we check the DSAP and SSAP.
1961		 *
1962		 * LLCSAP_IP checks for IP-over-802.2, rather
1963		 * than IP-over-Ethernet or IP-over-SNAP.
1964		 *
1965		 * XXX - should we check both the DSAP and the
1966		 * SSAP, like this, or should we check just the
1967		 * DSAP, as we do for other types <= ETHERMTU
1968		 * (i.e., other SAP values)?
1969		 */
1970		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
1971		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)
1972			     ((proto << 8) | proto));
1973		gen_and(b0, b1);
1974		return b1;
1975
1976	case LLCSAP_IPX:
1977		/*
1978		 *	Ethernet_II frames, which are Ethernet
1979		 *	frames with a frame type of ETHERTYPE_IPX;
1980		 *
1981		 *	Ethernet_802.3 frames, which have a frame
1982		 *	type of LINUX_SLL_P_802_3;
1983		 *
1984		 *	Ethernet_802.2 frames, which are 802.3
1985		 *	frames with an 802.2 LLC header (i.e, have
1986		 *	a frame type of LINUX_SLL_P_802_2) and
1987		 *	with the IPX LSAP as the DSAP in the LLC
1988		 *	header;
1989		 *
1990		 *	Ethernet_SNAP frames, which are 802.3
1991		 *	frames with an LLC header and a SNAP
1992		 *	header and with an OUI of 0x000000
1993		 *	(encapsulated Ethernet) and a protocol
1994		 *	ID of ETHERTYPE_IPX in the SNAP header.
1995		 *
1996		 * First, do the checks on LINUX_SLL_P_802_2
1997		 * frames; generate the check for either
1998		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1999		 * then put a check for LINUX_SLL_P_802_2 frames
2000		 * before it.
2001		 */
2002		b0 = gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2003		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
2004		gen_or(b0, b1);
2005		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2006		gen_and(b0, b1);
2007
2008		/*
2009		 * Now check for 802.3 frames and OR that with
2010		 * the previous test.
2011		 */
2012		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2013		gen_or(b0, b1);
2014
2015		/*
2016		 * Now add the check for Ethernet_II frames, and
2017		 * do that before checking for the other frame
2018		 * types.
2019		 */
2020		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2021		gen_or(b0, b1);
2022		return b1;
2023
2024	case ETHERTYPE_ATALK:
2025	case ETHERTYPE_AARP:
2026		/*
2027		 * EtherTalk (AppleTalk protocols on Ethernet link
2028		 * layer) may use 802.2 encapsulation.
2029		 */
2030
2031		/*
2032		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2033		 * we check for the 802.2 protocol type in the
2034		 * "Ethernet type" field.
2035		 */
2036		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2037
2038		/*
2039		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2040		 * SNAP packets with an organization code of
2041		 * 0x080007 (Apple, for Appletalk) and a protocol
2042		 * type of ETHERTYPE_ATALK (Appletalk).
2043		 *
2044		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2045		 * SNAP packets with an organization code of
2046		 * 0x000000 (encapsulated Ethernet) and a protocol
2047		 * type of ETHERTYPE_AARP (Appletalk ARP).
2048		 */
2049		if (proto == ETHERTYPE_ATALK)
2050			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2051		else	/* proto == ETHERTYPE_AARP */
2052			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2053		gen_and(b0, b1);
2054
2055		/*
2056		 * Check for Ethernet encapsulation (Ethertalk
2057		 * phase 1?); we just check for the Ethernet
2058		 * protocol type.
2059		 */
2060		b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2061
2062		gen_or(b0, b1);
2063		return b1;
2064
2065	default:
2066		if (proto <= ETHERMTU) {
2067			/*
2068			 * This is an LLC SAP value, so the frames
2069			 * that match would be 802.2 frames.
2070			 * Check for the 802.2 protocol type
2071			 * in the "Ethernet type" field, and
2072			 * then check the DSAP.
2073			 */
2074			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2075			b1 = gen_cmp(OR_LINKHDR, off_linkpl.constant_part, BPF_B,
2076			     (bpf_int32)proto);
2077			gen_and(b0, b1);
2078			return b1;
2079		} else {
2080			/*
2081			 * This is an Ethernet type, so compare
2082			 * the length/type field with it (if
2083			 * the frame is an 802.2 frame, the length
2084			 * field will be <= ETHERMTU, and, as
2085			 * "proto" is > ETHERMTU, this test
2086			 * will fail and the frame won't match,
2087			 * which is what we want).
2088			 */
2089			return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2090		}
2091	}
2092}
2093
2094static struct slist *
2095gen_load_prism_llprefixlen()
2096{
2097	struct slist *s1, *s2;
2098	struct slist *sjeq_avs_cookie;
2099	struct slist *sjcommon;
2100
2101	/*
2102	 * This code is not compatible with the optimizer, as
2103	 * we are generating jmp instructions within a normal
2104	 * slist of instructions
2105	 */
2106	no_optimize = 1;
2107
2108	/*
2109	 * Generate code to load the length of the radio header into
2110	 * the register assigned to hold that length, if one has been
2111	 * assigned.  (If one hasn't been assigned, no code we've
2112	 * generated uses that prefix, so we don't need to generate any
2113	 * code to load it.)
2114	 *
2115	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2116	 * or always use the AVS header rather than the Prism header.
2117	 * We load a 4-byte big-endian value at the beginning of the
2118	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2119	 * it's equal to 0x80211000.  If so, that indicates that it's
2120	 * an AVS header (the masked-out bits are the version number).
2121	 * Otherwise, it's a Prism header.
2122	 *
2123	 * XXX - the Prism header is also, in theory, variable-length,
2124	 * but no known software generates headers that aren't 144
2125	 * bytes long.
2126	 */
2127	if (off_linkhdr.reg != -1) {
2128		/*
2129		 * Load the cookie.
2130		 */
2131		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2132		s1->s.k = 0;
2133
2134		/*
2135		 * AND it with 0xFFFFF000.
2136		 */
2137		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2138		s2->s.k = 0xFFFFF000;
2139		sappend(s1, s2);
2140
2141		/*
2142		 * Compare with 0x80211000.
2143		 */
2144		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2145		sjeq_avs_cookie->s.k = 0x80211000;
2146		sappend(s1, sjeq_avs_cookie);
2147
2148		/*
2149		 * If it's AVS:
2150		 *
2151		 * The 4 bytes at an offset of 4 from the beginning of
2152		 * the AVS header are the length of the AVS header.
2153		 * That field is big-endian.
2154		 */
2155		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2156		s2->s.k = 4;
2157		sappend(s1, s2);
2158		sjeq_avs_cookie->s.jt = s2;
2159
2160		/*
2161		 * Now jump to the code to allocate a register
2162		 * into which to save the header length and
2163		 * store the length there.  (The "jump always"
2164		 * instruction needs to have the k field set;
2165		 * it's added to the PC, so, as we're jumping
2166		 * over a single instruction, it should be 1.)
2167		 */
2168		sjcommon = new_stmt(JMP(BPF_JA));
2169		sjcommon->s.k = 1;
2170		sappend(s1, sjcommon);
2171
2172		/*
2173		 * Now for the code that handles the Prism header.
2174		 * Just load the length of the Prism header (144)
2175		 * into the A register.  Have the test for an AVS
2176		 * header branch here if we don't have an AVS header.
2177		 */
2178		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2179		s2->s.k = 144;
2180		sappend(s1, s2);
2181		sjeq_avs_cookie->s.jf = s2;
2182
2183		/*
2184		 * Now allocate a register to hold that value and store
2185		 * it.  The code for the AVS header will jump here after
2186		 * loading the length of the AVS header.
2187		 */
2188		s2 = new_stmt(BPF_ST);
2189		s2->s.k = off_linkhdr.reg;
2190		sappend(s1, s2);
2191		sjcommon->s.jf = s2;
2192
2193		/*
2194		 * Now move it into the X register.
2195		 */
2196		s2 = new_stmt(BPF_MISC|BPF_TAX);
2197		sappend(s1, s2);
2198
2199		return (s1);
2200	} else
2201		return (NULL);
2202}
2203
2204static struct slist *
2205gen_load_avs_llprefixlen()
2206{
2207	struct slist *s1, *s2;
2208
2209	/*
2210	 * Generate code to load the length of the AVS header into
2211	 * the register assigned to hold that length, if one has been
2212	 * assigned.  (If one hasn't been assigned, no code we've
2213	 * generated uses that prefix, so we don't need to generate any
2214	 * code to load it.)
2215	 */
2216	if (off_linkhdr.reg != -1) {
2217		/*
2218		 * The 4 bytes at an offset of 4 from the beginning of
2219		 * the AVS header are the length of the AVS header.
2220		 * That field is big-endian.
2221		 */
2222		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2223		s1->s.k = 4;
2224
2225		/*
2226		 * Now allocate a register to hold that value and store
2227		 * it.
2228		 */
2229		s2 = new_stmt(BPF_ST);
2230		s2->s.k = off_linkhdr.reg;
2231		sappend(s1, s2);
2232
2233		/*
2234		 * Now move it into the X register.
2235		 */
2236		s2 = new_stmt(BPF_MISC|BPF_TAX);
2237		sappend(s1, s2);
2238
2239		return (s1);
2240	} else
2241		return (NULL);
2242}
2243
2244static struct slist *
2245gen_load_radiotap_llprefixlen()
2246{
2247	struct slist *s1, *s2;
2248
2249	/*
2250	 * Generate code to load the length of the radiotap header into
2251	 * the register assigned to hold that length, if one has been
2252	 * assigned.  (If one hasn't been assigned, no code we've
2253	 * generated uses that prefix, so we don't need to generate any
2254	 * code to load it.)
2255	 */
2256	if (off_linkhdr.reg != -1) {
2257		/*
2258		 * The 2 bytes at offsets of 2 and 3 from the beginning
2259		 * of the radiotap header are the length of the radiotap
2260		 * header; unfortunately, it's little-endian, so we have
2261		 * to load it a byte at a time and construct the value.
2262		 */
2263
2264		/*
2265		 * Load the high-order byte, at an offset of 3, shift it
2266		 * left a byte, and put the result in the X register.
2267		 */
2268		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2269		s1->s.k = 3;
2270		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2271		sappend(s1, s2);
2272		s2->s.k = 8;
2273		s2 = new_stmt(BPF_MISC|BPF_TAX);
2274		sappend(s1, s2);
2275
2276		/*
2277		 * Load the next byte, at an offset of 2, and OR the
2278		 * value from the X register into it.
2279		 */
2280		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2281		sappend(s1, s2);
2282		s2->s.k = 2;
2283		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2284		sappend(s1, s2);
2285
2286		/*
2287		 * Now allocate a register to hold that value and store
2288		 * it.
2289		 */
2290		s2 = new_stmt(BPF_ST);
2291		s2->s.k = off_linkhdr.reg;
2292		sappend(s1, s2);
2293
2294		/*
2295		 * Now move it into the X register.
2296		 */
2297		s2 = new_stmt(BPF_MISC|BPF_TAX);
2298		sappend(s1, s2);
2299
2300		return (s1);
2301	} else
2302		return (NULL);
2303}
2304
2305/*
2306 * At the moment we treat PPI as normal Radiotap encoded
2307 * packets. The difference is in the function that generates
2308 * the code at the beginning to compute the header length.
2309 * Since this code generator of PPI supports bare 802.11
2310 * encapsulation only (i.e. the encapsulated DLT should be
2311 * DLT_IEEE802_11) we generate code to check for this too;
2312 * that's done in finish_parse().
2313 */
2314static struct slist *
2315gen_load_ppi_llprefixlen()
2316{
2317	struct slist *s1, *s2;
2318
2319	/*
2320	 * Generate code to load the length of the radiotap header
2321	 * into the register assigned to hold that length, if one has
2322	 * been assigned.
2323	 */
2324	if (off_linkhdr.reg != -1) {
2325		/*
2326		 * The 2 bytes at offsets of 2 and 3 from the beginning
2327		 * of the radiotap header are the length of the radiotap
2328		 * header; unfortunately, it's little-endian, so we have
2329		 * to load it a byte at a time and construct the value.
2330		 */
2331
2332		/*
2333		 * Load the high-order byte, at an offset of 3, shift it
2334		 * left a byte, and put the result in the X register.
2335		 */
2336		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2337		s1->s.k = 3;
2338		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2339		sappend(s1, s2);
2340		s2->s.k = 8;
2341		s2 = new_stmt(BPF_MISC|BPF_TAX);
2342		sappend(s1, s2);
2343
2344		/*
2345		 * Load the next byte, at an offset of 2, and OR the
2346		 * value from the X register into it.
2347		 */
2348		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2349		sappend(s1, s2);
2350		s2->s.k = 2;
2351		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2352		sappend(s1, s2);
2353
2354		/*
2355		 * Now allocate a register to hold that value and store
2356		 * it.
2357		 */
2358		s2 = new_stmt(BPF_ST);
2359		s2->s.k = off_linkhdr.reg;
2360		sappend(s1, s2);
2361
2362		/*
2363		 * Now move it into the X register.
2364		 */
2365		s2 = new_stmt(BPF_MISC|BPF_TAX);
2366		sappend(s1, s2);
2367
2368		return (s1);
2369	} else
2370		return (NULL);
2371}
2372
2373/*
2374 * Load a value relative to the beginning of the link-layer header after the 802.11
2375 * header, i.e. LLC_SNAP.
2376 * The link-layer header doesn't necessarily begin at the beginning
2377 * of the packet data; there might be a variable-length prefix containing
2378 * radio information.
2379 */
2380static struct slist *
2381gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2382{
2383	struct slist *s2;
2384	struct slist *sjset_data_frame_1;
2385	struct slist *sjset_data_frame_2;
2386	struct slist *sjset_qos;
2387	struct slist *sjset_radiotap_flags;
2388	struct slist *sjset_radiotap_tsft;
2389	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2390	struct slist *s_roundup;
2391
2392	if (off_linkpl.reg == -1) {
2393		/*
2394		 * No register has been assigned to the offset of
2395		 * the link-layer payload, which means nobody needs
2396		 * it; don't bother computing it - just return
2397		 * what we already have.
2398		 */
2399		return (s);
2400	}
2401
2402	/*
2403	 * This code is not compatible with the optimizer, as
2404	 * we are generating jmp instructions within a normal
2405	 * slist of instructions
2406	 */
2407	no_optimize = 1;
2408
2409	/*
2410	 * If "s" is non-null, it has code to arrange that the X register
2411	 * contains the length of the prefix preceding the link-layer
2412	 * header.
2413	 *
2414	 * Otherwise, the length of the prefix preceding the link-layer
2415	 * header is "off_outermostlinkhdr.constant_part".
2416	 */
2417	if (s == NULL) {
2418		/*
2419		 * There is no variable-length header preceding the
2420		 * link-layer header.
2421		 *
2422		 * Load the length of the fixed-length prefix preceding
2423		 * the link-layer header (if any) into the X register,
2424		 * and store it in the off_linkpl.reg register.
2425		 * That length is off_outermostlinkhdr.constant_part.
2426		 */
2427		s = new_stmt(BPF_LDX|BPF_IMM);
2428		s->s.k = off_outermostlinkhdr.constant_part;
2429	}
2430
2431	/*
2432	 * The X register contains the offset of the beginning of the
2433	 * link-layer header; add 24, which is the minimum length
2434	 * of the MAC header for a data frame, to that, and store it
2435	 * in off_linkpl.reg, and then load the Frame Control field,
2436	 * which is at the offset in the X register, with an indexed load.
2437	 */
2438	s2 = new_stmt(BPF_MISC|BPF_TXA);
2439	sappend(s, s2);
2440	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2441	s2->s.k = 24;
2442	sappend(s, s2);
2443	s2 = new_stmt(BPF_ST);
2444	s2->s.k = off_linkpl.reg;
2445	sappend(s, s2);
2446
2447	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2448	s2->s.k = 0;
2449	sappend(s, s2);
2450
2451	/*
2452	 * Check the Frame Control field to see if this is a data frame;
2453	 * a data frame has the 0x08 bit (b3) in that field set and the
2454	 * 0x04 bit (b2) clear.
2455	 */
2456	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2457	sjset_data_frame_1->s.k = 0x08;
2458	sappend(s, sjset_data_frame_1);
2459
2460	/*
2461	 * If b3 is set, test b2, otherwise go to the first statement of
2462	 * the rest of the program.
2463	 */
2464	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2465	sjset_data_frame_2->s.k = 0x04;
2466	sappend(s, sjset_data_frame_2);
2467	sjset_data_frame_1->s.jf = snext;
2468
2469	/*
2470	 * If b2 is not set, this is a data frame; test the QoS bit.
2471	 * Otherwise, go to the first statement of the rest of the
2472	 * program.
2473	 */
2474	sjset_data_frame_2->s.jt = snext;
2475	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2476	sjset_qos->s.k = 0x80;	/* QoS bit */
2477	sappend(s, sjset_qos);
2478
2479	/*
2480	 * If it's set, add 2 to off_linkpl.reg, to skip the QoS
2481	 * field.
2482	 * Otherwise, go to the first statement of the rest of the
2483	 * program.
2484	 */
2485	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2486	s2->s.k = off_linkpl.reg;
2487	sappend(s, s2);
2488	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2489	s2->s.k = 2;
2490	sappend(s, s2);
2491	s2 = new_stmt(BPF_ST);
2492	s2->s.k = off_linkpl.reg;
2493	sappend(s, s2);
2494
2495	/*
2496	 * If we have a radiotap header, look at it to see whether
2497	 * there's Atheros padding between the MAC-layer header
2498	 * and the payload.
2499	 *
2500	 * Note: all of the fields in the radiotap header are
2501	 * little-endian, so we byte-swap all of the values
2502	 * we test against, as they will be loaded as big-endian
2503	 * values.
2504	 */
2505	if (linktype == DLT_IEEE802_11_RADIO) {
2506		/*
2507		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2508		 * in the presence flag?
2509		 */
2510		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2511		s2->s.k = 4;
2512		sappend(s, s2);
2513
2514		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2515		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2516		sappend(s, sjset_radiotap_flags);
2517
2518		/*
2519		 * If not, skip all of this.
2520		 */
2521		sjset_radiotap_flags->s.jf = snext;
2522
2523		/*
2524		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2525		 */
2526		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2527		    new_stmt(JMP(BPF_JSET));
2528		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2529		sappend(s, sjset_radiotap_tsft);
2530
2531		/*
2532		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2533		 * at an offset of 16 from the beginning of the raw packet
2534		 * data (8 bytes for the radiotap header and 8 bytes for
2535		 * the TSFT field).
2536		 *
2537		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2538		 * is set.
2539		 */
2540		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2541		s2->s.k = 16;
2542		sappend(s, s2);
2543
2544		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2545		sjset_tsft_datapad->s.k = 0x20;
2546		sappend(s, sjset_tsft_datapad);
2547
2548		/*
2549		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2550		 * at an offset of 8 from the beginning of the raw packet
2551		 * data (8 bytes for the radiotap header).
2552		 *
2553		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2554		 * is set.
2555		 */
2556		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2557		s2->s.k = 8;
2558		sappend(s, s2);
2559
2560		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2561		sjset_notsft_datapad->s.k = 0x20;
2562		sappend(s, sjset_notsft_datapad);
2563
2564		/*
2565		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2566		 * set, round the length of the 802.11 header to
2567		 * a multiple of 4.  Do that by adding 3 and then
2568		 * dividing by and multiplying by 4, which we do by
2569		 * ANDing with ~3.
2570		 */
2571		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2572		s_roundup->s.k = off_linkpl.reg;
2573		sappend(s, s_roundup);
2574		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2575		s2->s.k = 3;
2576		sappend(s, s2);
2577		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2578		s2->s.k = ~3;
2579		sappend(s, s2);
2580		s2 = new_stmt(BPF_ST);
2581		s2->s.k = off_linkpl.reg;
2582		sappend(s, s2);
2583
2584		sjset_tsft_datapad->s.jt = s_roundup;
2585		sjset_tsft_datapad->s.jf = snext;
2586		sjset_notsft_datapad->s.jt = s_roundup;
2587		sjset_notsft_datapad->s.jf = snext;
2588	} else
2589		sjset_qos->s.jf = snext;
2590
2591	return s;
2592}
2593
2594static void
2595insert_compute_vloffsets(b)
2596	struct block *b;
2597{
2598	struct slist *s;
2599
2600	/* There is an implicit dependency between the link
2601	 * payload and link header since the payload computation
2602	 * includes the variable part of the header. Therefore,
2603	 * if nobody else has allocated a register for the link
2604	 * header and we need it, do it now. */
2605	if (off_linkpl.reg != -1 && off_linkhdr.is_variable &&
2606	    off_linkhdr.reg == -1)
2607		off_linkhdr.reg = alloc_reg();
2608
2609	/*
2610	 * For link-layer types that have a variable-length header
2611	 * preceding the link-layer header, generate code to load
2612	 * the offset of the link-layer header into the register
2613	 * assigned to that offset, if any.
2614	 *
2615	 * XXX - this, and the next switch statement, won't handle
2616	 * encapsulation of 802.11 or 802.11+radio information in
2617	 * some other protocol stack.  That's significantly more
2618	 * complicated.
2619	 */
2620	switch (outermostlinktype) {
2621
2622	case DLT_PRISM_HEADER:
2623		s = gen_load_prism_llprefixlen();
2624		break;
2625
2626	case DLT_IEEE802_11_RADIO_AVS:
2627		s = gen_load_avs_llprefixlen();
2628		break;
2629
2630	case DLT_IEEE802_11_RADIO:
2631		s = gen_load_radiotap_llprefixlen();
2632		break;
2633
2634	case DLT_PPI:
2635		s = gen_load_ppi_llprefixlen();
2636		break;
2637
2638	default:
2639		s = NULL;
2640		break;
2641	}
2642
2643	/*
2644	 * For link-layer types that have a variable-length link-layer
2645	 * header, generate code to load the offset of the link-layer
2646	 * payload into the register assigned to that offset, if any.
2647	 */
2648	switch (outermostlinktype) {
2649
2650	case DLT_IEEE802_11:
2651	case DLT_PRISM_HEADER:
2652	case DLT_IEEE802_11_RADIO_AVS:
2653	case DLT_IEEE802_11_RADIO:
2654	case DLT_PPI:
2655		s = gen_load_802_11_header_len(s, b->stmts);
2656		break;
2657	}
2658
2659	/*
2660	 * If we have any offset-loading code, append all the
2661	 * existing statements in the block to those statements,
2662	 * and make the resulting list the list of statements
2663	 * for the block.
2664	 */
2665	if (s != NULL) {
2666		sappend(s, b->stmts);
2667		b->stmts = s;
2668	}
2669}
2670
2671static struct block *
2672gen_ppi_dlt_check(void)
2673{
2674	struct slist *s_load_dlt;
2675	struct block *b;
2676
2677	if (linktype == DLT_PPI)
2678	{
2679		/* Create the statements that check for the DLT
2680		 */
2681		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2682		s_load_dlt->s.k = 4;
2683
2684		b = new_block(JMP(BPF_JEQ));
2685
2686		b->stmts = s_load_dlt;
2687		b->s.k = SWAPLONG(DLT_IEEE802_11);
2688	}
2689	else
2690	{
2691		b = NULL;
2692	}
2693
2694	return b;
2695}
2696
2697/*
2698 * Take an absolute offset, and:
2699 *
2700 *    if it has no variable part, return NULL;
2701 *
2702 *    if it has a variable part, generate code to load the register
2703 *    containing that variable part into the X register, returning
2704 *    a pointer to that code - if no register for that offset has
2705 *    been allocated, allocate it first.
2706 *
2707 * (The code to set that register will be generated later, but will
2708 * be placed earlier in the code sequence.)
2709 */
2710static struct slist *
2711gen_abs_offset_varpart(bpf_abs_offset *off)
2712{
2713	struct slist *s;
2714
2715	if (off->is_variable) {
2716		if (off->reg == -1) {
2717			/*
2718			 * We haven't yet assigned a register for the
2719			 * variable part of the offset of the link-layer
2720			 * header; allocate one.
2721			 */
2722			off->reg = alloc_reg();
2723		}
2724
2725		/*
2726		 * Load the register containing the variable part of the
2727		 * offset of the link-layer header into the X register.
2728		 */
2729		s = new_stmt(BPF_LDX|BPF_MEM);
2730		s->s.k = off->reg;
2731		return s;
2732	} else {
2733		/*
2734		 * That offset isn't variable, there's no variable part,
2735		 * so we don't need to generate any code.
2736		 */
2737		return NULL;
2738	}
2739}
2740
2741/*
2742 * Map an Ethernet type to the equivalent PPP type.
2743 */
2744static int
2745ethertype_to_ppptype(proto)
2746	int proto;
2747{
2748	switch (proto) {
2749
2750	case ETHERTYPE_IP:
2751		proto = PPP_IP;
2752		break;
2753
2754	case ETHERTYPE_IPV6:
2755		proto = PPP_IPV6;
2756		break;
2757
2758	case ETHERTYPE_DN:
2759		proto = PPP_DECNET;
2760		break;
2761
2762	case ETHERTYPE_ATALK:
2763		proto = PPP_APPLE;
2764		break;
2765
2766	case ETHERTYPE_NS:
2767		proto = PPP_NS;
2768		break;
2769
2770	case LLCSAP_ISONS:
2771		proto = PPP_OSI;
2772		break;
2773
2774	case LLCSAP_8021D:
2775		/*
2776		 * I'm assuming the "Bridging PDU"s that go
2777		 * over PPP are Spanning Tree Protocol
2778		 * Bridging PDUs.
2779		 */
2780		proto = PPP_BRPDU;
2781		break;
2782
2783	case LLCSAP_IPX:
2784		proto = PPP_IPX;
2785		break;
2786	}
2787	return (proto);
2788}
2789
2790/*
2791 * Generate any tests that, for encapsulation of a link-layer packet
2792 * inside another protocol stack, need to be done to check for those
2793 * link-layer packets (and that haven't already been done by a check
2794 * for that encapsulation).
2795 */
2796static struct block *
2797gen_prevlinkhdr_check(void)
2798{
2799	struct block *b0;
2800
2801	if (is_geneve)
2802		return gen_geneve_ll_check();
2803
2804	switch (prevlinktype) {
2805
2806	case DLT_SUNATM:
2807		/*
2808		 * This is LANE-encapsulated Ethernet; check that the LANE
2809		 * packet doesn't begin with an LE Control marker, i.e.
2810		 * that it's data, not a control message.
2811		 *
2812		 * (We've already generated a test for LANE.)
2813		 */
2814		b0 = gen_cmp(OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
2815		gen_not(b0);
2816		return b0;
2817
2818	default:
2819		/*
2820		 * No such tests are necessary.
2821		 */
2822		return NULL;
2823	}
2824	/*NOTREACHED*/
2825}
2826
2827/*
2828 * Generate code to match a particular packet type by matching the
2829 * link-layer type field or fields in the 802.2 LLC header.
2830 *
2831 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2832 * value, if <= ETHERMTU.
2833 */
2834static struct block *
2835gen_linktype(proto)
2836	register int proto;
2837{
2838	struct block *b0, *b1, *b2;
2839	const char *description;
2840
2841	/* are we checking MPLS-encapsulated packets? */
2842	if (label_stack_depth > 0) {
2843		switch (proto) {
2844		case ETHERTYPE_IP:
2845		case PPP_IP:
2846			/* FIXME add other L3 proto IDs */
2847			return gen_mpls_linktype(Q_IP);
2848
2849		case ETHERTYPE_IPV6:
2850		case PPP_IPV6:
2851			/* FIXME add other L3 proto IDs */
2852			return gen_mpls_linktype(Q_IPV6);
2853
2854		default:
2855			bpf_error("unsupported protocol over mpls");
2856			/* NOTREACHED */
2857		}
2858	}
2859
2860	switch (linktype) {
2861
2862	case DLT_EN10MB:
2863	case DLT_NETANALYZER:
2864	case DLT_NETANALYZER_TRANSPARENT:
2865		/* Geneve has an EtherType regardless of whether there is an
2866		 * L2 header. */
2867		if (!is_geneve)
2868			b0 = gen_prevlinkhdr_check();
2869		else
2870			b0 = NULL;
2871
2872		b1 = gen_ether_linktype(proto);
2873		if (b0 != NULL)
2874			gen_and(b0, b1);
2875		return b1;
2876		/*NOTREACHED*/
2877		break;
2878
2879	case DLT_C_HDLC:
2880		switch (proto) {
2881
2882		case LLCSAP_ISONS:
2883			proto = (proto << 8 | LLCSAP_ISONS);
2884			/* fall through */
2885
2886		default:
2887			return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2888			/*NOTREACHED*/
2889			break;
2890		}
2891		break;
2892
2893	case DLT_IEEE802_11:
2894	case DLT_PRISM_HEADER:
2895	case DLT_IEEE802_11_RADIO_AVS:
2896	case DLT_IEEE802_11_RADIO:
2897	case DLT_PPI:
2898		/*
2899		 * Check that we have a data frame.
2900		 */
2901		b0 = gen_check_802_11_data_frame();
2902
2903		/*
2904		 * Now check for the specified link-layer type.
2905		 */
2906		b1 = gen_llc_linktype(proto);
2907		gen_and(b0, b1);
2908		return b1;
2909		/*NOTREACHED*/
2910		break;
2911
2912	case DLT_FDDI:
2913		/*
2914		 * XXX - check for LLC frames.
2915		 */
2916		return gen_llc_linktype(proto);
2917		/*NOTREACHED*/
2918		break;
2919
2920	case DLT_IEEE802:
2921		/*
2922		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2923		 */
2924		return gen_llc_linktype(proto);
2925		/*NOTREACHED*/
2926		break;
2927
2928	case DLT_ATM_RFC1483:
2929	case DLT_ATM_CLIP:
2930	case DLT_IP_OVER_FC:
2931		return gen_llc_linktype(proto);
2932		/*NOTREACHED*/
2933		break;
2934
2935	case DLT_SUNATM:
2936		/*
2937		 * Check for an LLC-encapsulated version of this protocol;
2938		 * if we were checking for LANE, linktype would no longer
2939		 * be DLT_SUNATM.
2940		 *
2941		 * Check for LLC encapsulation and then check the protocol.
2942		 */
2943		b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
2944		b1 = gen_llc_linktype(proto);
2945		gen_and(b0, b1);
2946		return b1;
2947		/*NOTREACHED*/
2948		break;
2949
2950	case DLT_LINUX_SLL:
2951		return gen_linux_sll_linktype(proto);
2952		/*NOTREACHED*/
2953		break;
2954
2955	case DLT_SLIP:
2956	case DLT_SLIP_BSDOS:
2957	case DLT_RAW:
2958		/*
2959		 * These types don't provide any type field; packets
2960		 * are always IPv4 or IPv6.
2961		 *
2962		 * XXX - for IPv4, check for a version number of 4, and,
2963		 * for IPv6, check for a version number of 6?
2964		 */
2965		switch (proto) {
2966
2967		case ETHERTYPE_IP:
2968			/* Check for a version number of 4. */
2969			return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
2970
2971		case ETHERTYPE_IPV6:
2972			/* Check for a version number of 6. */
2973			return gen_mcmp(OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
2974
2975		default:
2976			return gen_false();		/* always false */
2977		}
2978		/*NOTREACHED*/
2979		break;
2980
2981	case DLT_IPV4:
2982		/*
2983		 * Raw IPv4, so no type field.
2984		 */
2985		if (proto == ETHERTYPE_IP)
2986			return gen_true();		/* always true */
2987
2988		/* Checking for something other than IPv4; always false */
2989		return gen_false();
2990		/*NOTREACHED*/
2991		break;
2992
2993	case DLT_IPV6:
2994		/*
2995		 * Raw IPv6, so no type field.
2996		 */
2997		if (proto == ETHERTYPE_IPV6)
2998			return gen_true();		/* always true */
2999
3000		/* Checking for something other than IPv6; always false */
3001		return gen_false();
3002		/*NOTREACHED*/
3003		break;
3004
3005	case DLT_PPP:
3006	case DLT_PPP_PPPD:
3007	case DLT_PPP_SERIAL:
3008	case DLT_PPP_ETHER:
3009		/*
3010		 * We use Ethernet protocol types inside libpcap;
3011		 * map them to the corresponding PPP protocol types.
3012		 */
3013		proto = ethertype_to_ppptype(proto);
3014		return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3015		/*NOTREACHED*/
3016		break;
3017
3018	case DLT_PPP_BSDOS:
3019		/*
3020		 * We use Ethernet protocol types inside libpcap;
3021		 * map them to the corresponding PPP protocol types.
3022		 */
3023		switch (proto) {
3024
3025		case ETHERTYPE_IP:
3026			/*
3027			 * Also check for Van Jacobson-compressed IP.
3028			 * XXX - do this for other forms of PPP?
3029			 */
3030			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_IP);
3031			b1 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3032			gen_or(b0, b1);
3033			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3034			gen_or(b1, b0);
3035			return b0;
3036
3037		default:
3038			proto = ethertype_to_ppptype(proto);
3039			return gen_cmp(OR_LINKTYPE, 0, BPF_H,
3040				(bpf_int32)proto);
3041		}
3042		/*NOTREACHED*/
3043		break;
3044
3045	case DLT_NULL:
3046	case DLT_LOOP:
3047	case DLT_ENC:
3048		/*
3049		 * For DLT_NULL, the link-layer header is a 32-bit
3050		 * word containing an AF_ value in *host* byte order,
3051		 * and for DLT_ENC, the link-layer header begins
3052		 * with a 32-bit work containing an AF_ value in
3053		 * host byte order.
3054		 *
3055		 * In addition, if we're reading a saved capture file,
3056		 * the host byte order in the capture may not be the
3057		 * same as the host byte order on this machine.
3058		 *
3059		 * For DLT_LOOP, the link-layer header is a 32-bit
3060		 * word containing an AF_ value in *network* byte order.
3061		 *
3062		 * XXX - AF_ values may, unfortunately, be platform-
3063		 * dependent; for example, FreeBSD's AF_INET6 is 24
3064		 * whilst NetBSD's and OpenBSD's is 26.
3065		 *
3066		 * This means that, when reading a capture file, just
3067		 * checking for our AF_INET6 value won't work if the
3068		 * capture file came from another OS.
3069		 */
3070		switch (proto) {
3071
3072		case ETHERTYPE_IP:
3073			proto = AF_INET;
3074			break;
3075
3076#ifdef INET6
3077		case ETHERTYPE_IPV6:
3078			proto = AF_INET6;
3079			break;
3080#endif
3081
3082		default:
3083			/*
3084			 * Not a type on which we support filtering.
3085			 * XXX - support those that have AF_ values
3086			 * #defined on this platform, at least?
3087			 */
3088			return gen_false();
3089		}
3090
3091		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3092			/*
3093			 * The AF_ value is in host byte order, but
3094			 * the BPF interpreter will convert it to
3095			 * network byte order.
3096			 *
3097			 * If this is a save file, and it's from a
3098			 * machine with the opposite byte order to
3099			 * ours, we byte-swap the AF_ value.
3100			 *
3101			 * Then we run it through "htonl()", and
3102			 * generate code to compare against the result.
3103			 */
3104			if (bpf_pcap->rfile != NULL && bpf_pcap->swapped)
3105				proto = SWAPLONG(proto);
3106			proto = htonl(proto);
3107		}
3108		return (gen_cmp(OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
3109
3110#ifdef HAVE_NET_PFVAR_H
3111	case DLT_PFLOG:
3112		/*
3113		 * af field is host byte order in contrast to the rest of
3114		 * the packet.
3115		 */
3116		if (proto == ETHERTYPE_IP)
3117			return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af),
3118			    BPF_B, (bpf_int32)AF_INET));
3119		else if (proto == ETHERTYPE_IPV6)
3120			return (gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, af),
3121			    BPF_B, (bpf_int32)AF_INET6));
3122		else
3123			return gen_false();
3124		/*NOTREACHED*/
3125		break;
3126#endif /* HAVE_NET_PFVAR_H */
3127
3128	case DLT_ARCNET:
3129	case DLT_ARCNET_LINUX:
3130		/*
3131		 * XXX should we check for first fragment if the protocol
3132		 * uses PHDS?
3133		 */
3134		switch (proto) {
3135
3136		default:
3137			return gen_false();
3138
3139		case ETHERTYPE_IPV6:
3140			return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
3141				(bpf_int32)ARCTYPE_INET6));
3142
3143		case ETHERTYPE_IP:
3144			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3145				     (bpf_int32)ARCTYPE_IP);
3146			b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3147				     (bpf_int32)ARCTYPE_IP_OLD);
3148			gen_or(b0, b1);
3149			return (b1);
3150
3151		case ETHERTYPE_ARP:
3152			b0 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3153				     (bpf_int32)ARCTYPE_ARP);
3154			b1 = gen_cmp(OR_LINKTYPE, 0, BPF_B,
3155				     (bpf_int32)ARCTYPE_ARP_OLD);
3156			gen_or(b0, b1);
3157			return (b1);
3158
3159		case ETHERTYPE_REVARP:
3160			return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
3161					(bpf_int32)ARCTYPE_REVARP));
3162
3163		case ETHERTYPE_ATALK:
3164			return (gen_cmp(OR_LINKTYPE, 0, BPF_B,
3165					(bpf_int32)ARCTYPE_ATALK));
3166		}
3167		/*NOTREACHED*/
3168		break;
3169
3170	case DLT_LTALK:
3171		switch (proto) {
3172		case ETHERTYPE_ATALK:
3173			return gen_true();
3174		default:
3175			return gen_false();
3176		}
3177		/*NOTREACHED*/
3178		break;
3179
3180	case DLT_FRELAY:
3181		/*
3182		 * XXX - assumes a 2-byte Frame Relay header with
3183		 * DLCI and flags.  What if the address is longer?
3184		 */
3185		switch (proto) {
3186
3187		case ETHERTYPE_IP:
3188			/*
3189			 * Check for the special NLPID for IP.
3190			 */
3191			return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3192
3193		case ETHERTYPE_IPV6:
3194			/*
3195			 * Check for the special NLPID for IPv6.
3196			 */
3197			return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3198
3199		case LLCSAP_ISONS:
3200			/*
3201			 * Check for several OSI protocols.
3202			 *
3203			 * Frame Relay packets typically have an OSI
3204			 * NLPID at the beginning; we check for each
3205			 * of them.
3206			 *
3207			 * What we check for is the NLPID and a frame
3208			 * control field of UI, i.e. 0x03 followed
3209			 * by the NLPID.
3210			 */
3211			b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3212			b1 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3213			b2 = gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3214			gen_or(b1, b2);
3215			gen_or(b0, b2);
3216			return b2;
3217
3218		default:
3219			return gen_false();
3220		}
3221		/*NOTREACHED*/
3222		break;
3223
3224	case DLT_MFR:
3225		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3226
3227        case DLT_JUNIPER_MFR:
3228        case DLT_JUNIPER_MLFR:
3229        case DLT_JUNIPER_MLPPP:
3230	case DLT_JUNIPER_ATM1:
3231	case DLT_JUNIPER_ATM2:
3232	case DLT_JUNIPER_PPPOE:
3233	case DLT_JUNIPER_PPPOE_ATM:
3234        case DLT_JUNIPER_GGSN:
3235        case DLT_JUNIPER_ES:
3236        case DLT_JUNIPER_MONITOR:
3237        case DLT_JUNIPER_SERVICES:
3238        case DLT_JUNIPER_ETHER:
3239        case DLT_JUNIPER_PPP:
3240        case DLT_JUNIPER_FRELAY:
3241        case DLT_JUNIPER_CHDLC:
3242        case DLT_JUNIPER_VP:
3243        case DLT_JUNIPER_ST:
3244        case DLT_JUNIPER_ISM:
3245        case DLT_JUNIPER_VS:
3246        case DLT_JUNIPER_SRX_E2E:
3247        case DLT_JUNIPER_FIBRECHANNEL:
3248	case DLT_JUNIPER_ATM_CEMIC:
3249
3250		/* just lets verify the magic number for now -
3251		 * on ATM we may have up to 6 different encapsulations on the wire
3252		 * and need a lot of heuristics to figure out that the payload
3253		 * might be;
3254		 *
3255		 * FIXME encapsulation specific BPF_ filters
3256		 */
3257		return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3258
3259	case DLT_BACNET_MS_TP:
3260		return gen_mcmp(OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3261
3262	case DLT_IPNET:
3263		return gen_ipnet_linktype(proto);
3264
3265	case DLT_LINUX_IRDA:
3266		bpf_error("IrDA link-layer type filtering not implemented");
3267
3268	case DLT_DOCSIS:
3269		bpf_error("DOCSIS link-layer type filtering not implemented");
3270
3271	case DLT_MTP2:
3272	case DLT_MTP2_WITH_PHDR:
3273		bpf_error("MTP2 link-layer type filtering not implemented");
3274
3275	case DLT_ERF:
3276		bpf_error("ERF link-layer type filtering not implemented");
3277
3278	case DLT_PFSYNC:
3279		bpf_error("PFSYNC link-layer type filtering not implemented");
3280
3281	case DLT_LINUX_LAPD:
3282		bpf_error("LAPD link-layer type filtering not implemented");
3283
3284	case DLT_USB:
3285	case DLT_USB_LINUX:
3286	case DLT_USB_LINUX_MMAPPED:
3287		bpf_error("USB link-layer type filtering not implemented");
3288
3289	case DLT_BLUETOOTH_HCI_H4:
3290	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3291		bpf_error("Bluetooth link-layer type filtering not implemented");
3292
3293	case DLT_CAN20B:
3294	case DLT_CAN_SOCKETCAN:
3295		bpf_error("CAN link-layer type filtering not implemented");
3296
3297	case DLT_IEEE802_15_4:
3298	case DLT_IEEE802_15_4_LINUX:
3299	case DLT_IEEE802_15_4_NONASK_PHY:
3300	case DLT_IEEE802_15_4_NOFCS:
3301		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3302
3303	case DLT_IEEE802_16_MAC_CPS_RADIO:
3304		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3305
3306	case DLT_SITA:
3307		bpf_error("SITA link-layer type filtering not implemented");
3308
3309	case DLT_RAIF1:
3310		bpf_error("RAIF1 link-layer type filtering not implemented");
3311
3312	case DLT_IPMB:
3313		bpf_error("IPMB link-layer type filtering not implemented");
3314
3315	case DLT_AX25_KISS:
3316		bpf_error("AX.25 link-layer type filtering not implemented");
3317
3318	case DLT_NFLOG:
3319		/* Using the fixed-size NFLOG header it is possible to tell only
3320		 * the address family of the packet, other meaningful data is
3321		 * either missing or behind TLVs.
3322		 */
3323		bpf_error("NFLOG link-layer type filtering not implemented");
3324
3325	default:
3326		/*
3327		 * Does this link-layer header type have a field
3328		 * indicating the type of the next protocol?  If
3329		 * so, off_linktype.constant_part will be the offset of that
3330		 * field in the packet; if not, it will be -1.
3331		 */
3332		if (off_linktype.constant_part != (u_int)-1) {
3333			/*
3334			 * Yes; assume it's an Ethernet type.  (If
3335			 * it's not, it needs to be handled specially
3336			 * above.)
3337			 */
3338			return gen_cmp(OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3339		} else {
3340			/*
3341			 * No; report an error.
3342			 */
3343			description = pcap_datalink_val_to_description(linktype);
3344			if (description != NULL) {
3345				bpf_error("%s link-layer type filtering not implemented",
3346				    description);
3347			} else {
3348				bpf_error("DLT %u link-layer type filtering not implemented",
3349				    linktype);
3350			}
3351		}
3352		break;
3353	}
3354}
3355
3356/*
3357 * Check for an LLC SNAP packet with a given organization code and
3358 * protocol type; we check the entire contents of the 802.2 LLC and
3359 * snap headers, checking for DSAP and SSAP of SNAP and a control
3360 * field of 0x03 in the LLC header, and for the specified organization
3361 * code and protocol type in the SNAP header.
3362 */
3363static struct block *
3364gen_snap(orgcode, ptype)
3365	bpf_u_int32 orgcode;
3366	bpf_u_int32 ptype;
3367{
3368	u_char snapblock[8];
3369
3370	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3371	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3372	snapblock[2] = 0x03;		/* control = UI */
3373	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3374	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3375	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3376	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3377	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3378	return gen_bcmp(OR_LLC, 0, 8, snapblock);
3379}
3380
3381/*
3382 * Generate code to match frames with an LLC header.
3383 */
3384struct block *
3385gen_llc(void)
3386{
3387	struct block *b0, *b1;
3388
3389	switch (linktype) {
3390
3391	case DLT_EN10MB:
3392		/*
3393		 * We check for an Ethernet type field less than
3394		 * 1500, which means it's an 802.3 length field.
3395		 */
3396		b0 = gen_cmp_gt(OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3397		gen_not(b0);
3398
3399		/*
3400		 * Now check for the purported DSAP and SSAP not being
3401		 * 0xFF, to rule out NetWare-over-802.3.
3402		 */
3403		b1 = gen_cmp(OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3404		gen_not(b1);
3405		gen_and(b0, b1);
3406		return b1;
3407
3408	case DLT_SUNATM:
3409		/*
3410		 * We check for LLC traffic.
3411		 */
3412		b0 = gen_atmtype_abbrev(A_LLC);
3413		return b0;
3414
3415	case DLT_IEEE802:	/* Token Ring */
3416		/*
3417		 * XXX - check for LLC frames.
3418		 */
3419		return gen_true();
3420
3421	case DLT_FDDI:
3422		/*
3423		 * XXX - check for LLC frames.
3424		 */
3425		return gen_true();
3426
3427	case DLT_ATM_RFC1483:
3428		/*
3429		 * For LLC encapsulation, these are defined to have an
3430		 * 802.2 LLC header.
3431		 *
3432		 * For VC encapsulation, they don't, but there's no
3433		 * way to check for that; the protocol used on the VC
3434		 * is negotiated out of band.
3435		 */
3436		return gen_true();
3437
3438	case DLT_IEEE802_11:
3439	case DLT_PRISM_HEADER:
3440	case DLT_IEEE802_11_RADIO:
3441	case DLT_IEEE802_11_RADIO_AVS:
3442	case DLT_PPI:
3443		/*
3444		 * Check that we have a data frame.
3445		 */
3446		b0 = gen_check_802_11_data_frame();
3447		return b0;
3448
3449	default:
3450		bpf_error("'llc' not supported for linktype %d", linktype);
3451		/* NOTREACHED */
3452	}
3453}
3454
3455struct block *
3456gen_llc_i(void)
3457{
3458	struct block *b0, *b1;
3459	struct slist *s;
3460
3461	/*
3462	 * Check whether this is an LLC frame.
3463	 */
3464	b0 = gen_llc();
3465
3466	/*
3467	 * Load the control byte and test the low-order bit; it must
3468	 * be clear for I frames.
3469	 */
3470	s = gen_load_a(OR_LLC, 2, BPF_B);
3471	b1 = new_block(JMP(BPF_JSET));
3472	b1->s.k = 0x01;
3473	b1->stmts = s;
3474	gen_not(b1);
3475	gen_and(b0, b1);
3476	return b1;
3477}
3478
3479struct block *
3480gen_llc_s(void)
3481{
3482	struct block *b0, *b1;
3483
3484	/*
3485	 * Check whether this is an LLC frame.
3486	 */
3487	b0 = gen_llc();
3488
3489	/*
3490	 * Now compare the low-order 2 bit of the control byte against
3491	 * the appropriate value for S frames.
3492	 */
3493	b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3494	gen_and(b0, b1);
3495	return b1;
3496}
3497
3498struct block *
3499gen_llc_u(void)
3500{
3501	struct block *b0, *b1;
3502
3503	/*
3504	 * Check whether this is an LLC frame.
3505	 */
3506	b0 = gen_llc();
3507
3508	/*
3509	 * Now compare the low-order 2 bit of the control byte against
3510	 * the appropriate value for U frames.
3511	 */
3512	b1 = gen_mcmp(OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3513	gen_and(b0, b1);
3514	return b1;
3515}
3516
3517struct block *
3518gen_llc_s_subtype(bpf_u_int32 subtype)
3519{
3520	struct block *b0, *b1;
3521
3522	/*
3523	 * Check whether this is an LLC frame.
3524	 */
3525	b0 = gen_llc();
3526
3527	/*
3528	 * Now check for an S frame with the appropriate type.
3529	 */
3530	b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3531	gen_and(b0, b1);
3532	return b1;
3533}
3534
3535struct block *
3536gen_llc_u_subtype(bpf_u_int32 subtype)
3537{
3538	struct block *b0, *b1;
3539
3540	/*
3541	 * Check whether this is an LLC frame.
3542	 */
3543	b0 = gen_llc();
3544
3545	/*
3546	 * Now check for a U frame with the appropriate type.
3547	 */
3548	b1 = gen_mcmp(OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3549	gen_and(b0, b1);
3550	return b1;
3551}
3552
3553/*
3554 * Generate code to match a particular packet type, for link-layer types
3555 * using 802.2 LLC headers.
3556 *
3557 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3558 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3559 *
3560 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3561 * value, if <= ETHERMTU.  We use that to determine whether to
3562 * match the DSAP or both DSAP and LSAP or to check the OUI and
3563 * protocol ID in a SNAP header.
3564 */
3565static struct block *
3566gen_llc_linktype(proto)
3567	int proto;
3568{
3569	/*
3570	 * XXX - handle token-ring variable-length header.
3571	 */
3572	switch (proto) {
3573
3574	case LLCSAP_IP:
3575	case LLCSAP_ISONS:
3576	case LLCSAP_NETBEUI:
3577		/*
3578		 * XXX - should we check both the DSAP and the
3579		 * SSAP, like this, or should we check just the
3580		 * DSAP, as we do for other SAP values?
3581		 */
3582		return gen_cmp(OR_LLC, 0, BPF_H, (bpf_u_int32)
3583			     ((proto << 8) | proto));
3584
3585	case LLCSAP_IPX:
3586		/*
3587		 * XXX - are there ever SNAP frames for IPX on
3588		 * non-Ethernet 802.x networks?
3589		 */
3590		return gen_cmp(OR_LLC, 0, BPF_B,
3591		    (bpf_int32)LLCSAP_IPX);
3592
3593	case ETHERTYPE_ATALK:
3594		/*
3595		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3596		 * SNAP packets with an organization code of
3597		 * 0x080007 (Apple, for Appletalk) and a protocol
3598		 * type of ETHERTYPE_ATALK (Appletalk).
3599		 *
3600		 * XXX - check for an organization code of
3601		 * encapsulated Ethernet as well?
3602		 */
3603		return gen_snap(0x080007, ETHERTYPE_ATALK);
3604
3605	default:
3606		/*
3607		 * XXX - we don't have to check for IPX 802.3
3608		 * here, but should we check for the IPX Ethertype?
3609		 */
3610		if (proto <= ETHERMTU) {
3611			/*
3612			 * This is an LLC SAP value, so check
3613			 * the DSAP.
3614			 */
3615			return gen_cmp(OR_LLC, 0, BPF_B, (bpf_int32)proto);
3616		} else {
3617			/*
3618			 * This is an Ethernet type; we assume that it's
3619			 * unlikely that it'll appear in the right place
3620			 * at random, and therefore check only the
3621			 * location that would hold the Ethernet type
3622			 * in a SNAP frame with an organization code of
3623			 * 0x000000 (encapsulated Ethernet).
3624			 *
3625			 * XXX - if we were to check for the SNAP DSAP and
3626			 * LSAP, as per XXX, and were also to check for an
3627			 * organization code of 0x000000 (encapsulated
3628			 * Ethernet), we'd do
3629			 *
3630			 *	return gen_snap(0x000000, proto);
3631			 *
3632			 * here; for now, we don't, as per the above.
3633			 * I don't know whether it's worth the extra CPU
3634			 * time to do the right check or not.
3635			 */
3636			return gen_cmp(OR_LLC, 6, BPF_H, (bpf_int32)proto);
3637		}
3638	}
3639}
3640
3641static struct block *
3642gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3643	bpf_u_int32 addr;
3644	bpf_u_int32 mask;
3645	int dir, proto;
3646	u_int src_off, dst_off;
3647{
3648	struct block *b0, *b1;
3649	u_int offset;
3650
3651	switch (dir) {
3652
3653	case Q_SRC:
3654		offset = src_off;
3655		break;
3656
3657	case Q_DST:
3658		offset = dst_off;
3659		break;
3660
3661	case Q_AND:
3662		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3663		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3664		gen_and(b0, b1);
3665		return b1;
3666
3667	case Q_OR:
3668	case Q_DEFAULT:
3669		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3670		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3671		gen_or(b0, b1);
3672		return b1;
3673
3674	default:
3675		abort();
3676	}
3677	b0 = gen_linktype(proto);
3678	b1 = gen_mcmp(OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
3679	gen_and(b0, b1);
3680	return b1;
3681}
3682
3683#ifdef INET6
3684static struct block *
3685gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3686	struct in6_addr *addr;
3687	struct in6_addr *mask;
3688	int dir, proto;
3689	u_int src_off, dst_off;
3690{
3691	struct block *b0, *b1;
3692	u_int offset;
3693	u_int32_t *a, *m;
3694
3695	switch (dir) {
3696
3697	case Q_SRC:
3698		offset = src_off;
3699		break;
3700
3701	case Q_DST:
3702		offset = dst_off;
3703		break;
3704
3705	case Q_AND:
3706		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3707		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3708		gen_and(b0, b1);
3709		return b1;
3710
3711	case Q_OR:
3712	case Q_DEFAULT:
3713		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3714		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3715		gen_or(b0, b1);
3716		return b1;
3717
3718	default:
3719		abort();
3720	}
3721	/* this order is important */
3722	a = (u_int32_t *)addr;
3723	m = (u_int32_t *)mask;
3724	b1 = gen_mcmp(OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3725	b0 = gen_mcmp(OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3726	gen_and(b0, b1);
3727	b0 = gen_mcmp(OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3728	gen_and(b0, b1);
3729	b0 = gen_mcmp(OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3730	gen_and(b0, b1);
3731	b0 = gen_linktype(proto);
3732	gen_and(b0, b1);
3733	return b1;
3734}
3735#endif
3736
3737static struct block *
3738gen_ehostop(eaddr, dir)
3739	register const u_char *eaddr;
3740	register int dir;
3741{
3742	register struct block *b0, *b1;
3743
3744	switch (dir) {
3745	case Q_SRC:
3746		return gen_bcmp(OR_LINKHDR, 6, 6, eaddr);
3747
3748	case Q_DST:
3749		return gen_bcmp(OR_LINKHDR, 0, 6, eaddr);
3750
3751	case Q_AND:
3752		b0 = gen_ehostop(eaddr, Q_SRC);
3753		b1 = gen_ehostop(eaddr, Q_DST);
3754		gen_and(b0, b1);
3755		return b1;
3756
3757	case Q_DEFAULT:
3758	case Q_OR:
3759		b0 = gen_ehostop(eaddr, Q_SRC);
3760		b1 = gen_ehostop(eaddr, Q_DST);
3761		gen_or(b0, b1);
3762		return b1;
3763
3764	case Q_ADDR1:
3765		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3766		break;
3767
3768	case Q_ADDR2:
3769		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3770		break;
3771
3772	case Q_ADDR3:
3773		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3774		break;
3775
3776	case Q_ADDR4:
3777		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3778		break;
3779
3780	case Q_RA:
3781		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3782		break;
3783
3784	case Q_TA:
3785		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3786		break;
3787	}
3788	abort();
3789	/* NOTREACHED */
3790}
3791
3792/*
3793 * Like gen_ehostop, but for DLT_FDDI
3794 */
3795static struct block *
3796gen_fhostop(eaddr, dir)
3797	register const u_char *eaddr;
3798	register int dir;
3799{
3800	struct block *b0, *b1;
3801
3802	switch (dir) {
3803	case Q_SRC:
3804		return gen_bcmp(OR_LINKHDR, 6 + 1 + pcap_fddipad, 6, eaddr);
3805
3806	case Q_DST:
3807		return gen_bcmp(OR_LINKHDR, 0 + 1 + pcap_fddipad, 6, eaddr);
3808
3809	case Q_AND:
3810		b0 = gen_fhostop(eaddr, Q_SRC);
3811		b1 = gen_fhostop(eaddr, Q_DST);
3812		gen_and(b0, b1);
3813		return b1;
3814
3815	case Q_DEFAULT:
3816	case Q_OR:
3817		b0 = gen_fhostop(eaddr, Q_SRC);
3818		b1 = gen_fhostop(eaddr, Q_DST);
3819		gen_or(b0, b1);
3820		return b1;
3821
3822	case Q_ADDR1:
3823		bpf_error("'addr1' is only supported on 802.11");
3824		break;
3825
3826	case Q_ADDR2:
3827		bpf_error("'addr2' is only supported on 802.11");
3828		break;
3829
3830	case Q_ADDR3:
3831		bpf_error("'addr3' is only supported on 802.11");
3832		break;
3833
3834	case Q_ADDR4:
3835		bpf_error("'addr4' is only supported on 802.11");
3836		break;
3837
3838	case Q_RA:
3839		bpf_error("'ra' is only supported on 802.11");
3840		break;
3841
3842	case Q_TA:
3843		bpf_error("'ta' is only supported on 802.11");
3844		break;
3845	}
3846	abort();
3847	/* NOTREACHED */
3848}
3849
3850/*
3851 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3852 */
3853static struct block *
3854gen_thostop(eaddr, dir)
3855	register const u_char *eaddr;
3856	register int dir;
3857{
3858	register struct block *b0, *b1;
3859
3860	switch (dir) {
3861	case Q_SRC:
3862		return gen_bcmp(OR_LINKHDR, 8, 6, eaddr);
3863
3864	case Q_DST:
3865		return gen_bcmp(OR_LINKHDR, 2, 6, eaddr);
3866
3867	case Q_AND:
3868		b0 = gen_thostop(eaddr, Q_SRC);
3869		b1 = gen_thostop(eaddr, Q_DST);
3870		gen_and(b0, b1);
3871		return b1;
3872
3873	case Q_DEFAULT:
3874	case Q_OR:
3875		b0 = gen_thostop(eaddr, Q_SRC);
3876		b1 = gen_thostop(eaddr, Q_DST);
3877		gen_or(b0, b1);
3878		return b1;
3879
3880	case Q_ADDR1:
3881		bpf_error("'addr1' is only supported on 802.11");
3882		break;
3883
3884	case Q_ADDR2:
3885		bpf_error("'addr2' is only supported on 802.11");
3886		break;
3887
3888	case Q_ADDR3:
3889		bpf_error("'addr3' is only supported on 802.11");
3890		break;
3891
3892	case Q_ADDR4:
3893		bpf_error("'addr4' is only supported on 802.11");
3894		break;
3895
3896	case Q_RA:
3897		bpf_error("'ra' is only supported on 802.11");
3898		break;
3899
3900	case Q_TA:
3901		bpf_error("'ta' is only supported on 802.11");
3902		break;
3903	}
3904	abort();
3905	/* NOTREACHED */
3906}
3907
3908/*
3909 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3910 * various 802.11 + radio headers.
3911 */
3912static struct block *
3913gen_wlanhostop(eaddr, dir)
3914	register const u_char *eaddr;
3915	register int dir;
3916{
3917	register struct block *b0, *b1, *b2;
3918	register struct slist *s;
3919
3920#ifdef ENABLE_WLAN_FILTERING_PATCH
3921	/*
3922	 * TODO GV 20070613
3923	 * We need to disable the optimizer because the optimizer is buggy
3924	 * and wipes out some LD instructions generated by the below
3925	 * code to validate the Frame Control bits
3926	 */
3927	no_optimize = 1;
3928#endif /* ENABLE_WLAN_FILTERING_PATCH */
3929
3930	switch (dir) {
3931	case Q_SRC:
3932		/*
3933		 * Oh, yuk.
3934		 *
3935		 *	For control frames, there is no SA.
3936		 *
3937		 *	For management frames, SA is at an
3938		 *	offset of 10 from the beginning of
3939		 *	the packet.
3940		 *
3941		 *	For data frames, SA is at an offset
3942		 *	of 10 from the beginning of the packet
3943		 *	if From DS is clear, at an offset of
3944		 *	16 from the beginning of the packet
3945		 *	if From DS is set and To DS is clear,
3946		 *	and an offset of 24 from the beginning
3947		 *	of the packet if From DS is set and To DS
3948		 *	is set.
3949		 */
3950
3951		/*
3952		 * Generate the tests to be done for data frames
3953		 * with From DS set.
3954		 *
3955		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3956		 */
3957		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
3958		b1 = new_block(JMP(BPF_JSET));
3959		b1->s.k = 0x01;	/* To DS */
3960		b1->stmts = s;
3961
3962		/*
3963		 * If To DS is set, the SA is at 24.
3964		 */
3965		b0 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr);
3966		gen_and(b1, b0);
3967
3968		/*
3969		 * Now, check for To DS not set, i.e. check
3970		 * "!(link[1] & 0x01)".
3971		 */
3972		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
3973		b2 = new_block(JMP(BPF_JSET));
3974		b2->s.k = 0x01;	/* To DS */
3975		b2->stmts = s;
3976		gen_not(b2);
3977
3978		/*
3979		 * If To DS is not set, the SA is at 16.
3980		 */
3981		b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
3982		gen_and(b2, b1);
3983
3984		/*
3985		 * Now OR together the last two checks.  That gives
3986		 * the complete set of checks for data frames with
3987		 * From DS set.
3988		 */
3989		gen_or(b1, b0);
3990
3991		/*
3992		 * Now check for From DS being set, and AND that with
3993		 * the ORed-together checks.
3994		 */
3995		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
3996		b1 = new_block(JMP(BPF_JSET));
3997		b1->s.k = 0x02;	/* From DS */
3998		b1->stmts = s;
3999		gen_and(b1, b0);
4000
4001		/*
4002		 * Now check for data frames with From DS not set.
4003		 */
4004		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
4005		b2 = new_block(JMP(BPF_JSET));
4006		b2->s.k = 0x02;	/* From DS */
4007		b2->stmts = s;
4008		gen_not(b2);
4009
4010		/*
4011		 * If From DS isn't set, the SA is at 10.
4012		 */
4013		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4014		gen_and(b2, b1);
4015
4016		/*
4017		 * Now OR together the checks for data frames with
4018		 * From DS not set and for data frames with From DS
4019		 * set; that gives the checks done for data frames.
4020		 */
4021		gen_or(b1, b0);
4022
4023		/*
4024		 * Now check for a data frame.
4025		 * I.e, check "link[0] & 0x08".
4026		 */
4027		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4028		b1 = new_block(JMP(BPF_JSET));
4029		b1->s.k = 0x08;
4030		b1->stmts = s;
4031
4032		/*
4033		 * AND that with the checks done for data frames.
4034		 */
4035		gen_and(b1, b0);
4036
4037		/*
4038		 * If the high-order bit of the type value is 0, this
4039		 * is a management frame.
4040		 * I.e, check "!(link[0] & 0x08)".
4041		 */
4042		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4043		b2 = new_block(JMP(BPF_JSET));
4044		b2->s.k = 0x08;
4045		b2->stmts = s;
4046		gen_not(b2);
4047
4048		/*
4049		 * For management frames, the SA is at 10.
4050		 */
4051		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4052		gen_and(b2, b1);
4053
4054		/*
4055		 * OR that with the checks done for data frames.
4056		 * That gives the checks done for management and
4057		 * data frames.
4058		 */
4059		gen_or(b1, b0);
4060
4061		/*
4062		 * If the low-order bit of the type value is 1,
4063		 * this is either a control frame or a frame
4064		 * with a reserved type, and thus not a
4065		 * frame with an SA.
4066		 *
4067		 * I.e., check "!(link[0] & 0x04)".
4068		 */
4069		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4070		b1 = new_block(JMP(BPF_JSET));
4071		b1->s.k = 0x04;
4072		b1->stmts = s;
4073		gen_not(b1);
4074
4075		/*
4076		 * AND that with the checks for data and management
4077		 * frames.
4078		 */
4079		gen_and(b1, b0);
4080		return b0;
4081
4082	case Q_DST:
4083		/*
4084		 * Oh, yuk.
4085		 *
4086		 *	For control frames, there is no DA.
4087		 *
4088		 *	For management frames, DA is at an
4089		 *	offset of 4 from the beginning of
4090		 *	the packet.
4091		 *
4092		 *	For data frames, DA is at an offset
4093		 *	of 4 from the beginning of the packet
4094		 *	if To DS is clear and at an offset of
4095		 *	16 from the beginning of the packet
4096		 *	if To DS is set.
4097		 */
4098
4099		/*
4100		 * Generate the tests to be done for data frames.
4101		 *
4102		 * First, check for To DS set, i.e. "link[1] & 0x01".
4103		 */
4104		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
4105		b1 = new_block(JMP(BPF_JSET));
4106		b1->s.k = 0x01;	/* To DS */
4107		b1->stmts = s;
4108
4109		/*
4110		 * If To DS is set, the DA is at 16.
4111		 */
4112		b0 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
4113		gen_and(b1, b0);
4114
4115		/*
4116		 * Now, check for To DS not set, i.e. check
4117		 * "!(link[1] & 0x01)".
4118		 */
4119		s = gen_load_a(OR_LINKHDR, 1, BPF_B);
4120		b2 = new_block(JMP(BPF_JSET));
4121		b2->s.k = 0x01;	/* To DS */
4122		b2->stmts = s;
4123		gen_not(b2);
4124
4125		/*
4126		 * If To DS is not set, the DA is at 4.
4127		 */
4128		b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
4129		gen_and(b2, b1);
4130
4131		/*
4132		 * Now OR together the last two checks.  That gives
4133		 * the complete set of checks for data frames.
4134		 */
4135		gen_or(b1, b0);
4136
4137		/*
4138		 * Now check for a data frame.
4139		 * I.e, check "link[0] & 0x08".
4140		 */
4141		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4142		b1 = new_block(JMP(BPF_JSET));
4143		b1->s.k = 0x08;
4144		b1->stmts = s;
4145
4146		/*
4147		 * AND that with the checks done for data frames.
4148		 */
4149		gen_and(b1, b0);
4150
4151		/*
4152		 * If the high-order bit of the type value is 0, this
4153		 * is a management frame.
4154		 * I.e, check "!(link[0] & 0x08)".
4155		 */
4156		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4157		b2 = new_block(JMP(BPF_JSET));
4158		b2->s.k = 0x08;
4159		b2->stmts = s;
4160		gen_not(b2);
4161
4162		/*
4163		 * For management frames, the DA is at 4.
4164		 */
4165		b1 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
4166		gen_and(b2, b1);
4167
4168		/*
4169		 * OR that with the checks done for data frames.
4170		 * That gives the checks done for management and
4171		 * data frames.
4172		 */
4173		gen_or(b1, b0);
4174
4175		/*
4176		 * If the low-order bit of the type value is 1,
4177		 * this is either a control frame or a frame
4178		 * with a reserved type, and thus not a
4179		 * frame with an SA.
4180		 *
4181		 * I.e., check "!(link[0] & 0x04)".
4182		 */
4183		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4184		b1 = new_block(JMP(BPF_JSET));
4185		b1->s.k = 0x04;
4186		b1->stmts = s;
4187		gen_not(b1);
4188
4189		/*
4190		 * AND that with the checks for data and management
4191		 * frames.
4192		 */
4193		gen_and(b1, b0);
4194		return b0;
4195
4196	case Q_RA:
4197		/*
4198		 * Not present in management frames; addr1 in other
4199		 * frames.
4200		 */
4201
4202		/*
4203		 * If the high-order bit of the type value is 0, this
4204		 * is a management frame.
4205		 * I.e, check "(link[0] & 0x08)".
4206		 */
4207		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4208		b1 = new_block(JMP(BPF_JSET));
4209		b1->s.k = 0x08;
4210		b1->stmts = s;
4211
4212		/*
4213		 * Check addr1.
4214		 */
4215		b0 = gen_bcmp(OR_LINKHDR, 4, 6, eaddr);
4216
4217		/*
4218		 * AND that with the check of addr1.
4219		 */
4220		gen_and(b1, b0);
4221		return (b0);
4222
4223	case Q_TA:
4224		/*
4225		 * Not present in management frames; addr2, if present,
4226		 * in other frames.
4227		 */
4228
4229		/*
4230		 * Not present in CTS or ACK control frames.
4231		 */
4232		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4233			IEEE80211_FC0_TYPE_MASK);
4234		gen_not(b0);
4235		b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4236			IEEE80211_FC0_SUBTYPE_MASK);
4237		gen_not(b1);
4238		b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4239			IEEE80211_FC0_SUBTYPE_MASK);
4240		gen_not(b2);
4241		gen_and(b1, b2);
4242		gen_or(b0, b2);
4243
4244		/*
4245		 * If the high-order bit of the type value is 0, this
4246		 * is a management frame.
4247		 * I.e, check "(link[0] & 0x08)".
4248		 */
4249		s = gen_load_a(OR_LINKHDR, 0, BPF_B);
4250		b1 = new_block(JMP(BPF_JSET));
4251		b1->s.k = 0x08;
4252		b1->stmts = s;
4253
4254		/*
4255		 * AND that with the check for frames other than
4256		 * CTS and ACK frames.
4257		 */
4258		gen_and(b1, b2);
4259
4260		/*
4261		 * Check addr2.
4262		 */
4263		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4264		gen_and(b2, b1);
4265		return b1;
4266
4267	/*
4268	 * XXX - add BSSID keyword?
4269	 */
4270	case Q_ADDR1:
4271		return (gen_bcmp(OR_LINKHDR, 4, 6, eaddr));
4272
4273	case Q_ADDR2:
4274		/*
4275		 * Not present in CTS or ACK control frames.
4276		 */
4277		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4278			IEEE80211_FC0_TYPE_MASK);
4279		gen_not(b0);
4280		b1 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4281			IEEE80211_FC0_SUBTYPE_MASK);
4282		gen_not(b1);
4283		b2 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4284			IEEE80211_FC0_SUBTYPE_MASK);
4285		gen_not(b2);
4286		gen_and(b1, b2);
4287		gen_or(b0, b2);
4288		b1 = gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4289		gen_and(b2, b1);
4290		return b1;
4291
4292	case Q_ADDR3:
4293		/*
4294		 * Not present in control frames.
4295		 */
4296		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4297			IEEE80211_FC0_TYPE_MASK);
4298		gen_not(b0);
4299		b1 = gen_bcmp(OR_LINKHDR, 16, 6, eaddr);
4300		gen_and(b0, b1);
4301		return b1;
4302
4303	case Q_ADDR4:
4304		/*
4305		 * Present only if the direction mask has both "From DS"
4306		 * and "To DS" set.  Neither control frames nor management
4307		 * frames should have both of those set, so we don't
4308		 * check the frame type.
4309		 */
4310		b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B,
4311			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4312		b1 = gen_bcmp(OR_LINKHDR, 24, 6, eaddr);
4313		gen_and(b0, b1);
4314		return b1;
4315
4316	case Q_AND:
4317		b0 = gen_wlanhostop(eaddr, Q_SRC);
4318		b1 = gen_wlanhostop(eaddr, Q_DST);
4319		gen_and(b0, b1);
4320		return b1;
4321
4322	case Q_DEFAULT:
4323	case Q_OR:
4324		b0 = gen_wlanhostop(eaddr, Q_SRC);
4325		b1 = gen_wlanhostop(eaddr, Q_DST);
4326		gen_or(b0, b1);
4327		return b1;
4328	}
4329	abort();
4330	/* NOTREACHED */
4331}
4332
4333/*
4334 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4335 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4336 * as the RFC states.)
4337 */
4338static struct block *
4339gen_ipfchostop(eaddr, dir)
4340	register const u_char *eaddr;
4341	register int dir;
4342{
4343	register struct block *b0, *b1;
4344
4345	switch (dir) {
4346	case Q_SRC:
4347		return gen_bcmp(OR_LINKHDR, 10, 6, eaddr);
4348
4349	case Q_DST:
4350		return gen_bcmp(OR_LINKHDR, 2, 6, eaddr);
4351
4352	case Q_AND:
4353		b0 = gen_ipfchostop(eaddr, Q_SRC);
4354		b1 = gen_ipfchostop(eaddr, Q_DST);
4355		gen_and(b0, b1);
4356		return b1;
4357
4358	case Q_DEFAULT:
4359	case Q_OR:
4360		b0 = gen_ipfchostop(eaddr, Q_SRC);
4361		b1 = gen_ipfchostop(eaddr, Q_DST);
4362		gen_or(b0, b1);
4363		return b1;
4364
4365	case Q_ADDR1:
4366		bpf_error("'addr1' is only supported on 802.11");
4367		break;
4368
4369	case Q_ADDR2:
4370		bpf_error("'addr2' is only supported on 802.11");
4371		break;
4372
4373	case Q_ADDR3:
4374		bpf_error("'addr3' is only supported on 802.11");
4375		break;
4376
4377	case Q_ADDR4:
4378		bpf_error("'addr4' is only supported on 802.11");
4379		break;
4380
4381	case Q_RA:
4382		bpf_error("'ra' is only supported on 802.11");
4383		break;
4384
4385	case Q_TA:
4386		bpf_error("'ta' is only supported on 802.11");
4387		break;
4388	}
4389	abort();
4390	/* NOTREACHED */
4391}
4392
4393/*
4394 * This is quite tricky because there may be pad bytes in front of the
4395 * DECNET header, and then there are two possible data packet formats that
4396 * carry both src and dst addresses, plus 5 packet types in a format that
4397 * carries only the src node, plus 2 types that use a different format and
4398 * also carry just the src node.
4399 *
4400 * Yuck.
4401 *
4402 * Instead of doing those all right, we just look for data packets with
4403 * 0 or 1 bytes of padding.  If you want to look at other packets, that
4404 * will require a lot more hacking.
4405 *
4406 * To add support for filtering on DECNET "areas" (network numbers)
4407 * one would want to add a "mask" argument to this routine.  That would
4408 * make the filter even more inefficient, although one could be clever
4409 * and not generate masking instructions if the mask is 0xFFFF.
4410 */
4411static struct block *
4412gen_dnhostop(addr, dir)
4413	bpf_u_int32 addr;
4414	int dir;
4415{
4416	struct block *b0, *b1, *b2, *tmp;
4417	u_int offset_lh;	/* offset if long header is received */
4418	u_int offset_sh;	/* offset if short header is received */
4419
4420	switch (dir) {
4421
4422	case Q_DST:
4423		offset_sh = 1;	/* follows flags */
4424		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4425		break;
4426
4427	case Q_SRC:
4428		offset_sh = 3;	/* follows flags, dstnode */
4429		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4430		break;
4431
4432	case Q_AND:
4433		/* Inefficient because we do our Calvinball dance twice */
4434		b0 = gen_dnhostop(addr, Q_SRC);
4435		b1 = gen_dnhostop(addr, Q_DST);
4436		gen_and(b0, b1);
4437		return b1;
4438
4439	case Q_OR:
4440	case Q_DEFAULT:
4441		/* Inefficient because we do our Calvinball dance twice */
4442		b0 = gen_dnhostop(addr, Q_SRC);
4443		b1 = gen_dnhostop(addr, Q_DST);
4444		gen_or(b0, b1);
4445		return b1;
4446
4447	case Q_ISO:
4448		bpf_error("ISO host filtering not implemented");
4449
4450	default:
4451		abort();
4452	}
4453	b0 = gen_linktype(ETHERTYPE_DN);
4454	/* Check for pad = 1, long header case */
4455	tmp = gen_mcmp(OR_LINKPL, 2, BPF_H,
4456	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4457	b1 = gen_cmp(OR_LINKPL, 2 + 1 + offset_lh,
4458	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4459	gen_and(tmp, b1);
4460	/* Check for pad = 0, long header case */
4461	tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4462	b2 = gen_cmp(OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4463	gen_and(tmp, b2);
4464	gen_or(b2, b1);
4465	/* Check for pad = 1, short header case */
4466	tmp = gen_mcmp(OR_LINKPL, 2, BPF_H,
4467	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4468	b2 = gen_cmp(OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4469	gen_and(tmp, b2);
4470	gen_or(b2, b1);
4471	/* Check for pad = 0, short header case */
4472	tmp = gen_mcmp(OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4473	b2 = gen_cmp(OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4474	gen_and(tmp, b2);
4475	gen_or(b2, b1);
4476
4477	/* Combine with test for linktype */
4478	gen_and(b0, b1);
4479	return b1;
4480}
4481
4482/*
4483 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4484 * test the bottom-of-stack bit, and then check the version number
4485 * field in the IP header.
4486 */
4487static struct block *
4488gen_mpls_linktype(proto)
4489	int proto;
4490{
4491	struct block *b0, *b1;
4492
4493        switch (proto) {
4494
4495        case Q_IP:
4496                /* match the bottom-of-stack bit */
4497                b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4498                /* match the IPv4 version number */
4499                b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4500                gen_and(b0, b1);
4501                return b1;
4502
4503       case Q_IPV6:
4504                /* match the bottom-of-stack bit */
4505                b0 = gen_mcmp(OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4506                /* match the IPv4 version number */
4507                b1 = gen_mcmp(OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4508                gen_and(b0, b1);
4509                return b1;
4510
4511       default:
4512                abort();
4513        }
4514}
4515
4516static struct block *
4517gen_host(addr, mask, proto, dir, type)
4518	bpf_u_int32 addr;
4519	bpf_u_int32 mask;
4520	int proto;
4521	int dir;
4522	int type;
4523{
4524	struct block *b0, *b1;
4525	const char *typestr;
4526
4527	if (type == Q_NET)
4528		typestr = "net";
4529	else
4530		typestr = "host";
4531
4532	switch (proto) {
4533
4534	case Q_DEFAULT:
4535		b0 = gen_host(addr, mask, Q_IP, dir, type);
4536		/*
4537		 * Only check for non-IPv4 addresses if we're not
4538		 * checking MPLS-encapsulated packets.
4539		 */
4540		if (label_stack_depth == 0) {
4541			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4542			gen_or(b0, b1);
4543			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4544			gen_or(b1, b0);
4545		}
4546		return b0;
4547
4548	case Q_IP:
4549		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4550
4551	case Q_RARP:
4552		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4553
4554	case Q_ARP:
4555		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4556
4557	case Q_TCP:
4558		bpf_error("'tcp' modifier applied to %s", typestr);
4559
4560	case Q_SCTP:
4561		bpf_error("'sctp' modifier applied to %s", typestr);
4562
4563	case Q_UDP:
4564		bpf_error("'udp' modifier applied to %s", typestr);
4565
4566	case Q_ICMP:
4567		bpf_error("'icmp' modifier applied to %s", typestr);
4568
4569	case Q_IGMP:
4570		bpf_error("'igmp' modifier applied to %s", typestr);
4571
4572	case Q_IGRP:
4573		bpf_error("'igrp' modifier applied to %s", typestr);
4574
4575	case Q_PIM:
4576		bpf_error("'pim' modifier applied to %s", typestr);
4577
4578	case Q_VRRP:
4579		bpf_error("'vrrp' modifier applied to %s", typestr);
4580
4581	case Q_CARP:
4582		bpf_error("'carp' modifier applied to %s", typestr);
4583
4584	case Q_ATALK:
4585		bpf_error("ATALK host filtering not implemented");
4586
4587	case Q_AARP:
4588		bpf_error("AARP host filtering not implemented");
4589
4590	case Q_DECNET:
4591		return gen_dnhostop(addr, dir);
4592
4593	case Q_SCA:
4594		bpf_error("SCA host filtering not implemented");
4595
4596	case Q_LAT:
4597		bpf_error("LAT host filtering not implemented");
4598
4599	case Q_MOPDL:
4600		bpf_error("MOPDL host filtering not implemented");
4601
4602	case Q_MOPRC:
4603		bpf_error("MOPRC host filtering not implemented");
4604
4605	case Q_IPV6:
4606		bpf_error("'ip6' modifier applied to ip host");
4607
4608	case Q_ICMPV6:
4609		bpf_error("'icmp6' modifier applied to %s", typestr);
4610
4611	case Q_AH:
4612		bpf_error("'ah' modifier applied to %s", typestr);
4613
4614	case Q_ESP:
4615		bpf_error("'esp' modifier applied to %s", typestr);
4616
4617	case Q_ISO:
4618		bpf_error("ISO host filtering not implemented");
4619
4620	case Q_ESIS:
4621		bpf_error("'esis' modifier applied to %s", typestr);
4622
4623	case Q_ISIS:
4624		bpf_error("'isis' modifier applied to %s", typestr);
4625
4626	case Q_CLNP:
4627		bpf_error("'clnp' modifier applied to %s", typestr);
4628
4629	case Q_STP:
4630		bpf_error("'stp' modifier applied to %s", typestr);
4631
4632	case Q_IPX:
4633		bpf_error("IPX host filtering not implemented");
4634
4635	case Q_NETBEUI:
4636		bpf_error("'netbeui' modifier applied to %s", typestr);
4637
4638	case Q_RADIO:
4639		bpf_error("'radio' modifier applied to %s", typestr);
4640
4641	default:
4642		abort();
4643	}
4644	/* NOTREACHED */
4645}
4646
4647#ifdef INET6
4648static struct block *
4649gen_host6(addr, mask, proto, dir, type)
4650	struct in6_addr *addr;
4651	struct in6_addr *mask;
4652	int proto;
4653	int dir;
4654	int type;
4655{
4656	const char *typestr;
4657
4658	if (type == Q_NET)
4659		typestr = "net";
4660	else
4661		typestr = "host";
4662
4663	switch (proto) {
4664
4665	case Q_DEFAULT:
4666		return gen_host6(addr, mask, Q_IPV6, dir, type);
4667
4668	case Q_LINK:
4669		bpf_error("link-layer modifier applied to ip6 %s", typestr);
4670
4671	case Q_IP:
4672		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4673
4674	case Q_RARP:
4675		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4676
4677	case Q_ARP:
4678		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4679
4680	case Q_SCTP:
4681		bpf_error("'sctp' modifier applied to %s", typestr);
4682
4683	case Q_TCP:
4684		bpf_error("'tcp' modifier applied to %s", typestr);
4685
4686	case Q_UDP:
4687		bpf_error("'udp' modifier applied to %s", typestr);
4688
4689	case Q_ICMP:
4690		bpf_error("'icmp' modifier applied to %s", typestr);
4691
4692	case Q_IGMP:
4693		bpf_error("'igmp' modifier applied to %s", typestr);
4694
4695	case Q_IGRP:
4696		bpf_error("'igrp' modifier applied to %s", typestr);
4697
4698	case Q_PIM:
4699		bpf_error("'pim' modifier applied to %s", typestr);
4700
4701	case Q_VRRP:
4702		bpf_error("'vrrp' modifier applied to %s", typestr);
4703
4704	case Q_CARP:
4705		bpf_error("'carp' modifier applied to %s", typestr);
4706
4707	case Q_ATALK:
4708		bpf_error("ATALK host filtering not implemented");
4709
4710	case Q_AARP:
4711		bpf_error("AARP host filtering not implemented");
4712
4713	case Q_DECNET:
4714		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4715
4716	case Q_SCA:
4717		bpf_error("SCA host filtering not implemented");
4718
4719	case Q_LAT:
4720		bpf_error("LAT host filtering not implemented");
4721
4722	case Q_MOPDL:
4723		bpf_error("MOPDL host filtering not implemented");
4724
4725	case Q_MOPRC:
4726		bpf_error("MOPRC host filtering not implemented");
4727
4728	case Q_IPV6:
4729		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4730
4731	case Q_ICMPV6:
4732		bpf_error("'icmp6' modifier applied to %s", typestr);
4733
4734	case Q_AH:
4735		bpf_error("'ah' modifier applied to %s", typestr);
4736
4737	case Q_ESP:
4738		bpf_error("'esp' modifier applied to %s", typestr);
4739
4740	case Q_ISO:
4741		bpf_error("ISO host filtering not implemented");
4742
4743	case Q_ESIS:
4744		bpf_error("'esis' modifier applied to %s", typestr);
4745
4746	case Q_ISIS:
4747		bpf_error("'isis' modifier applied to %s", typestr);
4748
4749	case Q_CLNP:
4750		bpf_error("'clnp' modifier applied to %s", typestr);
4751
4752	case Q_STP:
4753		bpf_error("'stp' modifier applied to %s", typestr);
4754
4755	case Q_IPX:
4756		bpf_error("IPX host filtering not implemented");
4757
4758	case Q_NETBEUI:
4759		bpf_error("'netbeui' modifier applied to %s", typestr);
4760
4761	case Q_RADIO:
4762		bpf_error("'radio' modifier applied to %s", typestr);
4763
4764	default:
4765		abort();
4766	}
4767	/* NOTREACHED */
4768}
4769#endif
4770
4771#ifndef INET6
4772static struct block *
4773gen_gateway(eaddr, alist, proto, dir)
4774	const u_char *eaddr;
4775	bpf_u_int32 **alist;
4776	int proto;
4777	int dir;
4778{
4779	struct block *b0, *b1, *tmp;
4780
4781	if (dir != 0)
4782		bpf_error("direction applied to 'gateway'");
4783
4784	switch (proto) {
4785	case Q_DEFAULT:
4786	case Q_IP:
4787	case Q_ARP:
4788	case Q_RARP:
4789		switch (linktype) {
4790		case DLT_EN10MB:
4791		case DLT_NETANALYZER:
4792		case DLT_NETANALYZER_TRANSPARENT:
4793			b1 = gen_prevlinkhdr_check();
4794			b0 = gen_ehostop(eaddr, Q_OR);
4795			if (b1 != NULL)
4796				gen_and(b1, b0);
4797			break;
4798		case DLT_FDDI:
4799			b0 = gen_fhostop(eaddr, Q_OR);
4800			break;
4801		case DLT_IEEE802:
4802			b0 = gen_thostop(eaddr, Q_OR);
4803			break;
4804		case DLT_IEEE802_11:
4805		case DLT_PRISM_HEADER:
4806		case DLT_IEEE802_11_RADIO_AVS:
4807		case DLT_IEEE802_11_RADIO:
4808		case DLT_PPI:
4809			b0 = gen_wlanhostop(eaddr, Q_OR);
4810			break;
4811		case DLT_SUNATM:
4812			/*
4813			 * This is LLC-multiplexed traffic; if it were
4814			 * LANE, linktype would have been set to
4815			 * DLT_EN10MB.
4816			 */
4817			bpf_error(
4818			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4819			break;
4820		case DLT_IP_OVER_FC:
4821			b0 = gen_ipfchostop(eaddr, Q_OR);
4822			break;
4823		default:
4824			bpf_error(
4825			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4826		}
4827		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4828		while (*alist) {
4829			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4830			    Q_HOST);
4831			gen_or(b1, tmp);
4832			b1 = tmp;
4833		}
4834		gen_not(b1);
4835		gen_and(b0, b1);
4836		return b1;
4837	}
4838	bpf_error("illegal modifier of 'gateway'");
4839	/* NOTREACHED */
4840}
4841#endif
4842
4843struct block *
4844gen_proto_abbrev(proto)
4845	int proto;
4846{
4847	struct block *b0;
4848	struct block *b1;
4849
4850	switch (proto) {
4851
4852	case Q_SCTP:
4853		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4854		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4855		gen_or(b0, b1);
4856		break;
4857
4858	case Q_TCP:
4859		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4860		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4861		gen_or(b0, b1);
4862		break;
4863
4864	case Q_UDP:
4865		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4866		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4867		gen_or(b0, b1);
4868		break;
4869
4870	case Q_ICMP:
4871		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4872		break;
4873
4874#ifndef	IPPROTO_IGMP
4875#define	IPPROTO_IGMP	2
4876#endif
4877
4878	case Q_IGMP:
4879		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4880		break;
4881
4882#ifndef	IPPROTO_IGRP
4883#define	IPPROTO_IGRP	9
4884#endif
4885	case Q_IGRP:
4886		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4887		break;
4888
4889#ifndef IPPROTO_PIM
4890#define IPPROTO_PIM	103
4891#endif
4892
4893	case Q_PIM:
4894		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4895		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4896		gen_or(b0, b1);
4897		break;
4898
4899#ifndef IPPROTO_VRRP
4900#define IPPROTO_VRRP	112
4901#endif
4902
4903	case Q_VRRP:
4904		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4905		break;
4906
4907#ifndef IPPROTO_CARP
4908#define IPPROTO_CARP	112
4909#endif
4910
4911	case Q_CARP:
4912		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4913		break;
4914
4915	case Q_IP:
4916		b1 =  gen_linktype(ETHERTYPE_IP);
4917		break;
4918
4919	case Q_ARP:
4920		b1 =  gen_linktype(ETHERTYPE_ARP);
4921		break;
4922
4923	case Q_RARP:
4924		b1 =  gen_linktype(ETHERTYPE_REVARP);
4925		break;
4926
4927	case Q_LINK:
4928		bpf_error("link layer applied in wrong context");
4929
4930	case Q_ATALK:
4931		b1 =  gen_linktype(ETHERTYPE_ATALK);
4932		break;
4933
4934	case Q_AARP:
4935		b1 =  gen_linktype(ETHERTYPE_AARP);
4936		break;
4937
4938	case Q_DECNET:
4939		b1 =  gen_linktype(ETHERTYPE_DN);
4940		break;
4941
4942	case Q_SCA:
4943		b1 =  gen_linktype(ETHERTYPE_SCA);
4944		break;
4945
4946	case Q_LAT:
4947		b1 =  gen_linktype(ETHERTYPE_LAT);
4948		break;
4949
4950	case Q_MOPDL:
4951		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4952		break;
4953
4954	case Q_MOPRC:
4955		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4956		break;
4957
4958	case Q_IPV6:
4959		b1 = gen_linktype(ETHERTYPE_IPV6);
4960		break;
4961
4962#ifndef IPPROTO_ICMPV6
4963#define IPPROTO_ICMPV6	58
4964#endif
4965	case Q_ICMPV6:
4966		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4967		break;
4968
4969#ifndef IPPROTO_AH
4970#define IPPROTO_AH	51
4971#endif
4972	case Q_AH:
4973		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4974		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4975		gen_or(b0, b1);
4976		break;
4977
4978#ifndef IPPROTO_ESP
4979#define IPPROTO_ESP	50
4980#endif
4981	case Q_ESP:
4982		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4983		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4984		gen_or(b0, b1);
4985		break;
4986
4987	case Q_ISO:
4988		b1 = gen_linktype(LLCSAP_ISONS);
4989		break;
4990
4991	case Q_ESIS:
4992		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4993		break;
4994
4995	case Q_ISIS:
4996		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4997		break;
4998
4999	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5000		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5001		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5002		gen_or(b0, b1);
5003		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5004		gen_or(b0, b1);
5005		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5006		gen_or(b0, b1);
5007		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5008		gen_or(b0, b1);
5009		break;
5010
5011	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5012		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5013		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5014		gen_or(b0, b1);
5015		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5016		gen_or(b0, b1);
5017		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5018		gen_or(b0, b1);
5019		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5020		gen_or(b0, b1);
5021		break;
5022
5023	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5024		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5025		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5026		gen_or(b0, b1);
5027		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5028		gen_or(b0, b1);
5029		break;
5030
5031	case Q_ISIS_LSP:
5032		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5033		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5034		gen_or(b0, b1);
5035		break;
5036
5037	case Q_ISIS_SNP:
5038		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5039		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5040		gen_or(b0, b1);
5041		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5042		gen_or(b0, b1);
5043		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5044		gen_or(b0, b1);
5045		break;
5046
5047	case Q_ISIS_CSNP:
5048		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5049		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5050		gen_or(b0, b1);
5051		break;
5052
5053	case Q_ISIS_PSNP:
5054		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5055		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5056		gen_or(b0, b1);
5057		break;
5058
5059	case Q_CLNP:
5060		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5061		break;
5062
5063	case Q_STP:
5064		b1 = gen_linktype(LLCSAP_8021D);
5065		break;
5066
5067	case Q_IPX:
5068		b1 = gen_linktype(LLCSAP_IPX);
5069		break;
5070
5071	case Q_NETBEUI:
5072		b1 = gen_linktype(LLCSAP_NETBEUI);
5073		break;
5074
5075	case Q_RADIO:
5076		bpf_error("'radio' is not a valid protocol type");
5077
5078	default:
5079		abort();
5080	}
5081	return b1;
5082}
5083
5084static struct block *
5085gen_ipfrag()
5086{
5087	struct slist *s;
5088	struct block *b;
5089
5090	/* not IPv4 frag other than the first frag */
5091	s = gen_load_a(OR_LINKPL, 6, BPF_H);
5092	b = new_block(JMP(BPF_JSET));
5093	b->s.k = 0x1fff;
5094	b->stmts = s;
5095	gen_not(b);
5096
5097	return b;
5098}
5099
5100/*
5101 * Generate a comparison to a port value in the transport-layer header
5102 * at the specified offset from the beginning of that header.
5103 *
5104 * XXX - this handles a variable-length prefix preceding the link-layer
5105 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5106 * variable-length link-layer headers (such as Token Ring or 802.11
5107 * headers).
5108 */
5109static struct block *
5110gen_portatom(off, v)
5111	int off;
5112	bpf_int32 v;
5113{
5114	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5115}
5116
5117static struct block *
5118gen_portatom6(off, v)
5119	int off;
5120	bpf_int32 v;
5121{
5122	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5123}
5124
5125struct block *
5126gen_portop(port, proto, dir)
5127	int port, proto, dir;
5128{
5129	struct block *b0, *b1, *tmp;
5130
5131	/* ip proto 'proto' and not a fragment other than the first fragment */
5132	tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5133	b0 = gen_ipfrag();
5134	gen_and(tmp, b0);
5135
5136	switch (dir) {
5137	case Q_SRC:
5138		b1 = gen_portatom(0, (bpf_int32)port);
5139		break;
5140
5141	case Q_DST:
5142		b1 = gen_portatom(2, (bpf_int32)port);
5143		break;
5144
5145	case Q_OR:
5146	case Q_DEFAULT:
5147		tmp = gen_portatom(0, (bpf_int32)port);
5148		b1 = gen_portatom(2, (bpf_int32)port);
5149		gen_or(tmp, b1);
5150		break;
5151
5152	case Q_AND:
5153		tmp = gen_portatom(0, (bpf_int32)port);
5154		b1 = gen_portatom(2, (bpf_int32)port);
5155		gen_and(tmp, b1);
5156		break;
5157
5158	default:
5159		abort();
5160	}
5161	gen_and(b0, b1);
5162
5163	return b1;
5164}
5165
5166static struct block *
5167gen_port(port, ip_proto, dir)
5168	int port;
5169	int ip_proto;
5170	int dir;
5171{
5172	struct block *b0, *b1, *tmp;
5173
5174	/*
5175	 * ether proto ip
5176	 *
5177	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5178	 * not LLC encapsulation with LLCSAP_IP.
5179	 *
5180	 * For IEEE 802 networks - which includes 802.5 token ring
5181	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5182	 * says that SNAP encapsulation is used, not LLC encapsulation
5183	 * with LLCSAP_IP.
5184	 *
5185	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5186	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5187	 * encapsulation with LLCSAP_IP.
5188	 *
5189	 * So we always check for ETHERTYPE_IP.
5190	 */
5191	b0 =  gen_linktype(ETHERTYPE_IP);
5192
5193	switch (ip_proto) {
5194	case IPPROTO_UDP:
5195	case IPPROTO_TCP:
5196	case IPPROTO_SCTP:
5197		b1 = gen_portop(port, ip_proto, dir);
5198		break;
5199
5200	case PROTO_UNDEF:
5201		tmp = gen_portop(port, IPPROTO_TCP, dir);
5202		b1 = gen_portop(port, IPPROTO_UDP, dir);
5203		gen_or(tmp, b1);
5204		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5205		gen_or(tmp, b1);
5206		break;
5207
5208	default:
5209		abort();
5210	}
5211	gen_and(b0, b1);
5212	return b1;
5213}
5214
5215struct block *
5216gen_portop6(port, proto, dir)
5217	int port, proto, dir;
5218{
5219	struct block *b0, *b1, *tmp;
5220
5221	/* ip6 proto 'proto' */
5222	/* XXX - catch the first fragment of a fragmented packet? */
5223	b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5224
5225	switch (dir) {
5226	case Q_SRC:
5227		b1 = gen_portatom6(0, (bpf_int32)port);
5228		break;
5229
5230	case Q_DST:
5231		b1 = gen_portatom6(2, (bpf_int32)port);
5232		break;
5233
5234	case Q_OR:
5235	case Q_DEFAULT:
5236		tmp = gen_portatom6(0, (bpf_int32)port);
5237		b1 = gen_portatom6(2, (bpf_int32)port);
5238		gen_or(tmp, b1);
5239		break;
5240
5241	case Q_AND:
5242		tmp = gen_portatom6(0, (bpf_int32)port);
5243		b1 = gen_portatom6(2, (bpf_int32)port);
5244		gen_and(tmp, b1);
5245		break;
5246
5247	default:
5248		abort();
5249	}
5250	gen_and(b0, b1);
5251
5252	return b1;
5253}
5254
5255static struct block *
5256gen_port6(port, ip_proto, dir)
5257	int port;
5258	int ip_proto;
5259	int dir;
5260{
5261	struct block *b0, *b1, *tmp;
5262
5263	/* link proto ip6 */
5264	b0 =  gen_linktype(ETHERTYPE_IPV6);
5265
5266	switch (ip_proto) {
5267	case IPPROTO_UDP:
5268	case IPPROTO_TCP:
5269	case IPPROTO_SCTP:
5270		b1 = gen_portop6(port, ip_proto, dir);
5271		break;
5272
5273	case PROTO_UNDEF:
5274		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5275		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5276		gen_or(tmp, b1);
5277		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5278		gen_or(tmp, b1);
5279		break;
5280
5281	default:
5282		abort();
5283	}
5284	gen_and(b0, b1);
5285	return b1;
5286}
5287
5288/* gen_portrange code */
5289static struct block *
5290gen_portrangeatom(off, v1, v2)
5291	int off;
5292	bpf_int32 v1, v2;
5293{
5294	struct block *b1, *b2;
5295
5296	if (v1 > v2) {
5297		/*
5298		 * Reverse the order of the ports, so v1 is the lower one.
5299		 */
5300		bpf_int32 vtemp;
5301
5302		vtemp = v1;
5303		v1 = v2;
5304		v2 = vtemp;
5305	}
5306
5307	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5308	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5309
5310	gen_and(b1, b2);
5311
5312	return b2;
5313}
5314
5315struct block *
5316gen_portrangeop(port1, port2, proto, dir)
5317	int port1, port2;
5318	int proto;
5319	int dir;
5320{
5321	struct block *b0, *b1, *tmp;
5322
5323	/* ip proto 'proto' and not a fragment other than the first fragment */
5324	tmp = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5325	b0 = gen_ipfrag();
5326	gen_and(tmp, b0);
5327
5328	switch (dir) {
5329	case Q_SRC:
5330		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5331		break;
5332
5333	case Q_DST:
5334		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5335		break;
5336
5337	case Q_OR:
5338	case Q_DEFAULT:
5339		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5340		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5341		gen_or(tmp, b1);
5342		break;
5343
5344	case Q_AND:
5345		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5346		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5347		gen_and(tmp, b1);
5348		break;
5349
5350	default:
5351		abort();
5352	}
5353	gen_and(b0, b1);
5354
5355	return b1;
5356}
5357
5358static struct block *
5359gen_portrange(port1, port2, ip_proto, dir)
5360	int port1, port2;
5361	int ip_proto;
5362	int dir;
5363{
5364	struct block *b0, *b1, *tmp;
5365
5366	/* link proto ip */
5367	b0 =  gen_linktype(ETHERTYPE_IP);
5368
5369	switch (ip_proto) {
5370	case IPPROTO_UDP:
5371	case IPPROTO_TCP:
5372	case IPPROTO_SCTP:
5373		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5374		break;
5375
5376	case PROTO_UNDEF:
5377		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5378		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5379		gen_or(tmp, b1);
5380		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5381		gen_or(tmp, b1);
5382		break;
5383
5384	default:
5385		abort();
5386	}
5387	gen_and(b0, b1);
5388	return b1;
5389}
5390
5391static struct block *
5392gen_portrangeatom6(off, v1, v2)
5393	int off;
5394	bpf_int32 v1, v2;
5395{
5396	struct block *b1, *b2;
5397
5398	if (v1 > v2) {
5399		/*
5400		 * Reverse the order of the ports, so v1 is the lower one.
5401		 */
5402		bpf_int32 vtemp;
5403
5404		vtemp = v1;
5405		v1 = v2;
5406		v2 = vtemp;
5407	}
5408
5409	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5410	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5411
5412	gen_and(b1, b2);
5413
5414	return b2;
5415}
5416
5417struct block *
5418gen_portrangeop6(port1, port2, proto, dir)
5419	int port1, port2;
5420	int proto;
5421	int dir;
5422{
5423	struct block *b0, *b1, *tmp;
5424
5425	/* ip6 proto 'proto' */
5426	/* XXX - catch the first fragment of a fragmented packet? */
5427	b0 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5428
5429	switch (dir) {
5430	case Q_SRC:
5431		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5432		break;
5433
5434	case Q_DST:
5435		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5436		break;
5437
5438	case Q_OR:
5439	case Q_DEFAULT:
5440		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5441		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5442		gen_or(tmp, b1);
5443		break;
5444
5445	case Q_AND:
5446		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5447		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5448		gen_and(tmp, b1);
5449		break;
5450
5451	default:
5452		abort();
5453	}
5454	gen_and(b0, b1);
5455
5456	return b1;
5457}
5458
5459static struct block *
5460gen_portrange6(port1, port2, ip_proto, dir)
5461	int port1, port2;
5462	int ip_proto;
5463	int dir;
5464{
5465	struct block *b0, *b1, *tmp;
5466
5467	/* link proto ip6 */
5468	b0 =  gen_linktype(ETHERTYPE_IPV6);
5469
5470	switch (ip_proto) {
5471	case IPPROTO_UDP:
5472	case IPPROTO_TCP:
5473	case IPPROTO_SCTP:
5474		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5475		break;
5476
5477	case PROTO_UNDEF:
5478		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5479		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5480		gen_or(tmp, b1);
5481		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5482		gen_or(tmp, b1);
5483		break;
5484
5485	default:
5486		abort();
5487	}
5488	gen_and(b0, b1);
5489	return b1;
5490}
5491
5492static int
5493lookup_proto(name, proto)
5494	register const char *name;
5495	register int proto;
5496{
5497	register int v;
5498
5499	switch (proto) {
5500
5501	case Q_DEFAULT:
5502	case Q_IP:
5503	case Q_IPV6:
5504		v = pcap_nametoproto(name);
5505		if (v == PROTO_UNDEF)
5506			bpf_error("unknown ip proto '%s'", name);
5507		break;
5508
5509	case Q_LINK:
5510		/* XXX should look up h/w protocol type based on linktype */
5511		v = pcap_nametoeproto(name);
5512		if (v == PROTO_UNDEF) {
5513			v = pcap_nametollc(name);
5514			if (v == PROTO_UNDEF)
5515				bpf_error("unknown ether proto '%s'", name);
5516		}
5517		break;
5518
5519	case Q_ISO:
5520		if (strcmp(name, "esis") == 0)
5521			v = ISO9542_ESIS;
5522		else if (strcmp(name, "isis") == 0)
5523			v = ISO10589_ISIS;
5524		else if (strcmp(name, "clnp") == 0)
5525			v = ISO8473_CLNP;
5526		else
5527			bpf_error("unknown osi proto '%s'", name);
5528		break;
5529
5530	default:
5531		v = PROTO_UNDEF;
5532		break;
5533	}
5534	return v;
5535}
5536
5537#if 0
5538struct stmt *
5539gen_joinsp(s, n)
5540	struct stmt **s;
5541	int n;
5542{
5543	return NULL;
5544}
5545#endif
5546
5547static struct block *
5548gen_protochain(v, proto, dir)
5549	int v;
5550	int proto;
5551	int dir;
5552{
5553#ifdef NO_PROTOCHAIN
5554	return gen_proto(v, proto, dir);
5555#else
5556	struct block *b0, *b;
5557	struct slist *s[100];
5558	int fix2, fix3, fix4, fix5;
5559	int ahcheck, again, end;
5560	int i, max;
5561	int reg2 = alloc_reg();
5562
5563	memset(s, 0, sizeof(s));
5564	fix2 = fix3 = fix4 = fix5 = 0;
5565
5566	switch (proto) {
5567	case Q_IP:
5568	case Q_IPV6:
5569		break;
5570	case Q_DEFAULT:
5571		b0 = gen_protochain(v, Q_IP, dir);
5572		b = gen_protochain(v, Q_IPV6, dir);
5573		gen_or(b0, b);
5574		return b;
5575	default:
5576		bpf_error("bad protocol applied for 'protochain'");
5577		/*NOTREACHED*/
5578	}
5579
5580	/*
5581	 * We don't handle variable-length prefixes before the link-layer
5582	 * header, or variable-length link-layer headers, here yet.
5583	 * We might want to add BPF instructions to do the protochain
5584	 * work, to simplify that and, on platforms that have a BPF
5585	 * interpreter with the new instructions, let the filtering
5586	 * be done in the kernel.  (We already require a modified BPF
5587	 * engine to do the protochain stuff, to support backward
5588	 * branches, and backward branch support is unlikely to appear
5589	 * in kernel BPF engines.)
5590	 */
5591	if (off_linkpl.is_variable)
5592		bpf_error("'protochain' not supported with variable length headers");
5593
5594	no_optimize = 1; /*this code is not compatible with optimzer yet */
5595
5596	/*
5597	 * s[0] is a dummy entry to protect other BPF insn from damage
5598	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5599	 * hard to find interdependency made by jump table fixup.
5600	 */
5601	i = 0;
5602	s[i] = new_stmt(0);	/*dummy*/
5603	i++;
5604
5605	switch (proto) {
5606	case Q_IP:
5607		b0 = gen_linktype(ETHERTYPE_IP);
5608
5609		/* A = ip->ip_p */
5610		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5611		s[i]->s.k = off_linkpl.constant_part + off_nl + 9;
5612		i++;
5613		/* X = ip->ip_hl << 2 */
5614		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5615		s[i]->s.k = off_linkpl.constant_part + off_nl;
5616		i++;
5617		break;
5618
5619	case Q_IPV6:
5620		b0 = gen_linktype(ETHERTYPE_IPV6);
5621
5622		/* A = ip6->ip_nxt */
5623		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5624		s[i]->s.k = off_linkpl.constant_part + off_nl + 6;
5625		i++;
5626		/* X = sizeof(struct ip6_hdr) */
5627		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5628		s[i]->s.k = 40;
5629		i++;
5630		break;
5631
5632	default:
5633		bpf_error("unsupported proto to gen_protochain");
5634		/*NOTREACHED*/
5635	}
5636
5637	/* again: if (A == v) goto end; else fall through; */
5638	again = i;
5639	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5640	s[i]->s.k = v;
5641	s[i]->s.jt = NULL;		/*later*/
5642	s[i]->s.jf = NULL;		/*update in next stmt*/
5643	fix5 = i;
5644	i++;
5645
5646#ifndef IPPROTO_NONE
5647#define IPPROTO_NONE	59
5648#endif
5649	/* if (A == IPPROTO_NONE) goto end */
5650	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5651	s[i]->s.jt = NULL;	/*later*/
5652	s[i]->s.jf = NULL;	/*update in next stmt*/
5653	s[i]->s.k = IPPROTO_NONE;
5654	s[fix5]->s.jf = s[i];
5655	fix2 = i;
5656	i++;
5657
5658	if (proto == Q_IPV6) {
5659		int v6start, v6end, v6advance, j;
5660
5661		v6start = i;
5662		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5663		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5664		s[i]->s.jt = NULL;	/*later*/
5665		s[i]->s.jf = NULL;	/*update in next stmt*/
5666		s[i]->s.k = IPPROTO_HOPOPTS;
5667		s[fix2]->s.jf = s[i];
5668		i++;
5669		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5670		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5671		s[i]->s.jt = NULL;	/*later*/
5672		s[i]->s.jf = NULL;	/*update in next stmt*/
5673		s[i]->s.k = IPPROTO_DSTOPTS;
5674		i++;
5675		/* if (A == IPPROTO_ROUTING) goto v6advance */
5676		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5677		s[i]->s.jt = NULL;	/*later*/
5678		s[i]->s.jf = NULL;	/*update in next stmt*/
5679		s[i]->s.k = IPPROTO_ROUTING;
5680		i++;
5681		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5682		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5683		s[i]->s.jt = NULL;	/*later*/
5684		s[i]->s.jf = NULL;	/*later*/
5685		s[i]->s.k = IPPROTO_FRAGMENT;
5686		fix3 = i;
5687		v6end = i;
5688		i++;
5689
5690		/* v6advance: */
5691		v6advance = i;
5692
5693		/*
5694		 * in short,
5695		 * A = P[X + packet head];
5696		 * X = X + (P[X + packet head + 1] + 1) * 8;
5697		 */
5698		/* A = P[X + packet head] */
5699		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5700		s[i]->s.k = off_linkpl.constant_part + off_nl;
5701		i++;
5702		/* MEM[reg2] = A */
5703		s[i] = new_stmt(BPF_ST);
5704		s[i]->s.k = reg2;
5705		i++;
5706		/* A = P[X + packet head + 1]; */
5707		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5708		s[i]->s.k = off_linkpl.constant_part + off_nl + 1;
5709		i++;
5710		/* A += 1 */
5711		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5712		s[i]->s.k = 1;
5713		i++;
5714		/* A *= 8 */
5715		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5716		s[i]->s.k = 8;
5717		i++;
5718		/* A += X */
5719		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5720		s[i]->s.k = 0;
5721		i++;
5722		/* X = A; */
5723		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5724		i++;
5725		/* A = MEM[reg2] */
5726		s[i] = new_stmt(BPF_LD|BPF_MEM);
5727		s[i]->s.k = reg2;
5728		i++;
5729
5730		/* goto again; (must use BPF_JA for backward jump) */
5731		s[i] = new_stmt(BPF_JMP|BPF_JA);
5732		s[i]->s.k = again - i - 1;
5733		s[i - 1]->s.jf = s[i];
5734		i++;
5735
5736		/* fixup */
5737		for (j = v6start; j <= v6end; j++)
5738			s[j]->s.jt = s[v6advance];
5739	} else {
5740		/* nop */
5741		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5742		s[i]->s.k = 0;
5743		s[fix2]->s.jf = s[i];
5744		i++;
5745	}
5746
5747	/* ahcheck: */
5748	ahcheck = i;
5749	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5750	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5751	s[i]->s.jt = NULL;	/*later*/
5752	s[i]->s.jf = NULL;	/*later*/
5753	s[i]->s.k = IPPROTO_AH;
5754	if (fix3)
5755		s[fix3]->s.jf = s[ahcheck];
5756	fix4 = i;
5757	i++;
5758
5759	/*
5760	 * in short,
5761	 * A = P[X];
5762	 * X = X + (P[X + 1] + 2) * 4;
5763	 */
5764	/* A = X */
5765	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5766	i++;
5767	/* A = P[X + packet head]; */
5768	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5769	s[i]->s.k = off_linkpl.constant_part + off_nl;
5770	i++;
5771	/* MEM[reg2] = A */
5772	s[i] = new_stmt(BPF_ST);
5773	s[i]->s.k = reg2;
5774	i++;
5775	/* A = X */
5776	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5777	i++;
5778	/* A += 1 */
5779	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5780	s[i]->s.k = 1;
5781	i++;
5782	/* X = A */
5783	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5784	i++;
5785	/* A = P[X + packet head] */
5786	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5787	s[i]->s.k = off_linkpl.constant_part + off_nl;
5788	i++;
5789	/* A += 2 */
5790	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5791	s[i]->s.k = 2;
5792	i++;
5793	/* A *= 4 */
5794	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5795	s[i]->s.k = 4;
5796	i++;
5797	/* X = A; */
5798	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5799	i++;
5800	/* A = MEM[reg2] */
5801	s[i] = new_stmt(BPF_LD|BPF_MEM);
5802	s[i]->s.k = reg2;
5803	i++;
5804
5805	/* goto again; (must use BPF_JA for backward jump) */
5806	s[i] = new_stmt(BPF_JMP|BPF_JA);
5807	s[i]->s.k = again - i - 1;
5808	i++;
5809
5810	/* end: nop */
5811	end = i;
5812	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5813	s[i]->s.k = 0;
5814	s[fix2]->s.jt = s[end];
5815	s[fix4]->s.jf = s[end];
5816	s[fix5]->s.jt = s[end];
5817	i++;
5818
5819	/*
5820	 * make slist chain
5821	 */
5822	max = i;
5823	for (i = 0; i < max - 1; i++)
5824		s[i]->next = s[i + 1];
5825	s[max - 1]->next = NULL;
5826
5827	/*
5828	 * emit final check
5829	 */
5830	b = new_block(JMP(BPF_JEQ));
5831	b->stmts = s[1];	/*remember, s[0] is dummy*/
5832	b->s.k = v;
5833
5834	free_reg(reg2);
5835
5836	gen_and(b0, b);
5837	return b;
5838#endif
5839}
5840
5841static struct block *
5842gen_check_802_11_data_frame()
5843{
5844	struct slist *s;
5845	struct block *b0, *b1;
5846
5847	/*
5848	 * A data frame has the 0x08 bit (b3) in the frame control field set
5849	 * and the 0x04 bit (b2) clear.
5850	 */
5851	s = gen_load_a(OR_LINKHDR, 0, BPF_B);
5852	b0 = new_block(JMP(BPF_JSET));
5853	b0->s.k = 0x08;
5854	b0->stmts = s;
5855
5856	s = gen_load_a(OR_LINKHDR, 0, BPF_B);
5857	b1 = new_block(JMP(BPF_JSET));
5858	b1->s.k = 0x04;
5859	b1->stmts = s;
5860	gen_not(b1);
5861
5862	gen_and(b1, b0);
5863
5864	return b0;
5865}
5866
5867/*
5868 * Generate code that checks whether the packet is a packet for protocol
5869 * <proto> and whether the type field in that protocol's header has
5870 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5871 * IP packet and checks the protocol number in the IP header against <v>.
5872 *
5873 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5874 * against Q_IP and Q_IPV6.
5875 */
5876static struct block *
5877gen_proto(v, proto, dir)
5878	int v;
5879	int proto;
5880	int dir;
5881{
5882	struct block *b0, *b1;
5883#ifndef CHASE_CHAIN
5884	struct block *b2;
5885#endif
5886
5887	if (dir != Q_DEFAULT)
5888		bpf_error("direction applied to 'proto'");
5889
5890	switch (proto) {
5891	case Q_DEFAULT:
5892		b0 = gen_proto(v, Q_IP, dir);
5893		b1 = gen_proto(v, Q_IPV6, dir);
5894		gen_or(b0, b1);
5895		return b1;
5896
5897	case Q_IP:
5898		/*
5899		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5900		 * not LLC encapsulation with LLCSAP_IP.
5901		 *
5902		 * For IEEE 802 networks - which includes 802.5 token ring
5903		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5904		 * says that SNAP encapsulation is used, not LLC encapsulation
5905		 * with LLCSAP_IP.
5906		 *
5907		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5908		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5909		 * encapsulation with LLCSAP_IP.
5910		 *
5911		 * So we always check for ETHERTYPE_IP.
5912		 */
5913		b0 = gen_linktype(ETHERTYPE_IP);
5914#ifndef CHASE_CHAIN
5915		b1 = gen_cmp(OR_LINKPL, 9, BPF_B, (bpf_int32)v);
5916#else
5917		b1 = gen_protochain(v, Q_IP);
5918#endif
5919		gen_and(b0, b1);
5920		return b1;
5921
5922	case Q_ISO:
5923		switch (linktype) {
5924
5925		case DLT_FRELAY:
5926			/*
5927			 * Frame Relay packets typically have an OSI
5928			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5929			 * generates code to check for all the OSI
5930			 * NLPIDs, so calling it and then adding a check
5931			 * for the particular NLPID for which we're
5932			 * looking is bogus, as we can just check for
5933			 * the NLPID.
5934			 *
5935			 * What we check for is the NLPID and a frame
5936			 * control field value of UI, i.e. 0x03 followed
5937			 * by the NLPID.
5938			 *
5939			 * XXX - assumes a 2-byte Frame Relay header with
5940			 * DLCI and flags.  What if the address is longer?
5941			 *
5942			 * XXX - what about SNAP-encapsulated frames?
5943			 */
5944			return gen_cmp(OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
5945			/*NOTREACHED*/
5946			break;
5947
5948		case DLT_C_HDLC:
5949			/*
5950			 * Cisco uses an Ethertype lookalike - for OSI,
5951			 * it's 0xfefe.
5952			 */
5953			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5954			/* OSI in C-HDLC is stuffed with a fudge byte */
5955			b1 = gen_cmp(OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
5956			gen_and(b0, b1);
5957			return b1;
5958
5959		default:
5960			b0 = gen_linktype(LLCSAP_ISONS);
5961			b1 = gen_cmp(OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
5962			gen_and(b0, b1);
5963			return b1;
5964		}
5965
5966	case Q_ISIS:
5967		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5968		/*
5969		 * 4 is the offset of the PDU type relative to the IS-IS
5970		 * header.
5971		 */
5972		b1 = gen_cmp(OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
5973		gen_and(b0, b1);
5974		return b1;
5975
5976	case Q_ARP:
5977		bpf_error("arp does not encapsulate another protocol");
5978		/* NOTREACHED */
5979
5980	case Q_RARP:
5981		bpf_error("rarp does not encapsulate another protocol");
5982		/* NOTREACHED */
5983
5984	case Q_ATALK:
5985		bpf_error("atalk encapsulation is not specifiable");
5986		/* NOTREACHED */
5987
5988	case Q_DECNET:
5989		bpf_error("decnet encapsulation is not specifiable");
5990		/* NOTREACHED */
5991
5992	case Q_SCA:
5993		bpf_error("sca does not encapsulate another protocol");
5994		/* NOTREACHED */
5995
5996	case Q_LAT:
5997		bpf_error("lat does not encapsulate another protocol");
5998		/* NOTREACHED */
5999
6000	case Q_MOPRC:
6001		bpf_error("moprc does not encapsulate another protocol");
6002		/* NOTREACHED */
6003
6004	case Q_MOPDL:
6005		bpf_error("mopdl does not encapsulate another protocol");
6006		/* NOTREACHED */
6007
6008	case Q_LINK:
6009		return gen_linktype(v);
6010
6011	case Q_UDP:
6012		bpf_error("'udp proto' is bogus");
6013		/* NOTREACHED */
6014
6015	case Q_TCP:
6016		bpf_error("'tcp proto' is bogus");
6017		/* NOTREACHED */
6018
6019	case Q_SCTP:
6020		bpf_error("'sctp proto' is bogus");
6021		/* NOTREACHED */
6022
6023	case Q_ICMP:
6024		bpf_error("'icmp proto' is bogus");
6025		/* NOTREACHED */
6026
6027	case Q_IGMP:
6028		bpf_error("'igmp proto' is bogus");
6029		/* NOTREACHED */
6030
6031	case Q_IGRP:
6032		bpf_error("'igrp proto' is bogus");
6033		/* NOTREACHED */
6034
6035	case Q_PIM:
6036		bpf_error("'pim proto' is bogus");
6037		/* NOTREACHED */
6038
6039	case Q_VRRP:
6040		bpf_error("'vrrp proto' is bogus");
6041		/* NOTREACHED */
6042
6043	case Q_CARP:
6044		bpf_error("'carp proto' is bogus");
6045		/* NOTREACHED */
6046
6047	case Q_IPV6:
6048		b0 = gen_linktype(ETHERTYPE_IPV6);
6049#ifndef CHASE_CHAIN
6050		/*
6051		 * Also check for a fragment header before the final
6052		 * header.
6053		 */
6054		b2 = gen_cmp(OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6055		b1 = gen_cmp(OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6056		gen_and(b2, b1);
6057		b2 = gen_cmp(OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6058		gen_or(b2, b1);
6059#else
6060		b1 = gen_protochain(v, Q_IPV6);
6061#endif
6062		gen_and(b0, b1);
6063		return b1;
6064
6065	case Q_ICMPV6:
6066		bpf_error("'icmp6 proto' is bogus");
6067
6068	case Q_AH:
6069		bpf_error("'ah proto' is bogus");
6070
6071	case Q_ESP:
6072		bpf_error("'ah proto' is bogus");
6073
6074	case Q_STP:
6075		bpf_error("'stp proto' is bogus");
6076
6077	case Q_IPX:
6078		bpf_error("'ipx proto' is bogus");
6079
6080	case Q_NETBEUI:
6081		bpf_error("'netbeui proto' is bogus");
6082
6083	case Q_RADIO:
6084		bpf_error("'radio proto' is bogus");
6085
6086	default:
6087		abort();
6088		/* NOTREACHED */
6089	}
6090	/* NOTREACHED */
6091}
6092
6093struct block *
6094gen_scode(name, q)
6095	register const char *name;
6096	struct qual q;
6097{
6098	int proto = q.proto;
6099	int dir = q.dir;
6100	int tproto;
6101	u_char *eaddr;
6102	bpf_u_int32 mask, addr;
6103#ifndef INET6
6104	bpf_u_int32 **alist;
6105#else
6106	int tproto6;
6107	struct sockaddr_in *sin4;
6108	struct sockaddr_in6 *sin6;
6109	struct addrinfo *res, *res0;
6110	struct in6_addr mask128;
6111#endif /*INET6*/
6112	struct block *b, *tmp;
6113	int port, real_proto;
6114	int port1, port2;
6115
6116	switch (q.addr) {
6117
6118	case Q_NET:
6119		addr = pcap_nametonetaddr(name);
6120		if (addr == 0)
6121			bpf_error("unknown network '%s'", name);
6122		/* Left justify network addr and calculate its network mask */
6123		mask = 0xffffffff;
6124		while (addr && (addr & 0xff000000) == 0) {
6125			addr <<= 8;
6126			mask <<= 8;
6127		}
6128		return gen_host(addr, mask, proto, dir, q.addr);
6129
6130	case Q_DEFAULT:
6131	case Q_HOST:
6132		if (proto == Q_LINK) {
6133			switch (linktype) {
6134
6135			case DLT_EN10MB:
6136			case DLT_NETANALYZER:
6137			case DLT_NETANALYZER_TRANSPARENT:
6138				eaddr = pcap_ether_hostton(name);
6139				if (eaddr == NULL)
6140					bpf_error(
6141					    "unknown ether host '%s'", name);
6142				tmp = gen_prevlinkhdr_check();
6143				b = gen_ehostop(eaddr, dir);
6144				if (tmp != NULL)
6145					gen_and(tmp, b);
6146				free(eaddr);
6147				return b;
6148
6149			case DLT_FDDI:
6150				eaddr = pcap_ether_hostton(name);
6151				if (eaddr == NULL)
6152					bpf_error(
6153					    "unknown FDDI host '%s'", name);
6154				b = gen_fhostop(eaddr, dir);
6155				free(eaddr);
6156				return b;
6157
6158			case DLT_IEEE802:
6159				eaddr = pcap_ether_hostton(name);
6160				if (eaddr == NULL)
6161					bpf_error(
6162					    "unknown token ring host '%s'", name);
6163				b = gen_thostop(eaddr, dir);
6164				free(eaddr);
6165				return b;
6166
6167			case DLT_IEEE802_11:
6168			case DLT_PRISM_HEADER:
6169			case DLT_IEEE802_11_RADIO_AVS:
6170			case DLT_IEEE802_11_RADIO:
6171			case DLT_PPI:
6172				eaddr = pcap_ether_hostton(name);
6173				if (eaddr == NULL)
6174					bpf_error(
6175					    "unknown 802.11 host '%s'", name);
6176				b = gen_wlanhostop(eaddr, dir);
6177				free(eaddr);
6178				return b;
6179
6180			case DLT_IP_OVER_FC:
6181				eaddr = pcap_ether_hostton(name);
6182				if (eaddr == NULL)
6183					bpf_error(
6184					    "unknown Fibre Channel host '%s'", name);
6185				b = gen_ipfchostop(eaddr, dir);
6186				free(eaddr);
6187				return b;
6188			}
6189
6190			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6191		} else if (proto == Q_DECNET) {
6192			unsigned short dn_addr = __pcap_nametodnaddr(name);
6193			/*
6194			 * I don't think DECNET hosts can be multihomed, so
6195			 * there is no need to build up a list of addresses
6196			 */
6197			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6198		} else {
6199#ifndef INET6
6200			alist = pcap_nametoaddr(name);
6201			if (alist == NULL || *alist == NULL)
6202				bpf_error("unknown host '%s'", name);
6203			tproto = proto;
6204			if (off_linktype.constant_part == (u_int)-1 &&
6205			    tproto == Q_DEFAULT)
6206				tproto = Q_IP;
6207			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6208			while (*alist) {
6209				tmp = gen_host(**alist++, 0xffffffff,
6210					       tproto, dir, q.addr);
6211				gen_or(b, tmp);
6212				b = tmp;
6213			}
6214			return b;
6215#else
6216			memset(&mask128, 0xff, sizeof(mask128));
6217			res0 = res = pcap_nametoaddrinfo(name);
6218			if (res == NULL)
6219				bpf_error("unknown host '%s'", name);
6220			ai = res;
6221			b = tmp = NULL;
6222			tproto = tproto6 = proto;
6223			if (off_linktype.constant_part == -1 &&
6224			    tproto == Q_DEFAULT) {
6225				tproto = Q_IP;
6226				tproto6 = Q_IPV6;
6227			}
6228			for (res = res0; res; res = res->ai_next) {
6229				switch (res->ai_family) {
6230				case AF_INET:
6231					if (tproto == Q_IPV6)
6232						continue;
6233
6234					sin4 = (struct sockaddr_in *)
6235						res->ai_addr;
6236					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6237						0xffffffff, tproto, dir, q.addr);
6238					break;
6239				case AF_INET6:
6240					if (tproto6 == Q_IP)
6241						continue;
6242
6243					sin6 = (struct sockaddr_in6 *)
6244						res->ai_addr;
6245					tmp = gen_host6(&sin6->sin6_addr,
6246						&mask128, tproto6, dir, q.addr);
6247					break;
6248				default:
6249					continue;
6250				}
6251				if (b)
6252					gen_or(b, tmp);
6253				b = tmp;
6254			}
6255			ai = NULL;
6256			freeaddrinfo(res0);
6257			if (b == NULL) {
6258				bpf_error("unknown host '%s'%s", name,
6259				    (proto == Q_DEFAULT)
6260					? ""
6261					: " for specified address family");
6262			}
6263			return b;
6264#endif /*INET6*/
6265		}
6266
6267	case Q_PORT:
6268		if (proto != Q_DEFAULT &&
6269		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6270			bpf_error("illegal qualifier of 'port'");
6271		if (pcap_nametoport(name, &port, &real_proto) == 0)
6272			bpf_error("unknown port '%s'", name);
6273		if (proto == Q_UDP) {
6274			if (real_proto == IPPROTO_TCP)
6275				bpf_error("port '%s' is tcp", name);
6276			else if (real_proto == IPPROTO_SCTP)
6277				bpf_error("port '%s' is sctp", name);
6278			else
6279				/* override PROTO_UNDEF */
6280				real_proto = IPPROTO_UDP;
6281		}
6282		if (proto == Q_TCP) {
6283			if (real_proto == IPPROTO_UDP)
6284				bpf_error("port '%s' is udp", name);
6285
6286			else if (real_proto == IPPROTO_SCTP)
6287				bpf_error("port '%s' is sctp", name);
6288			else
6289				/* override PROTO_UNDEF */
6290				real_proto = IPPROTO_TCP;
6291		}
6292		if (proto == Q_SCTP) {
6293			if (real_proto == IPPROTO_UDP)
6294				bpf_error("port '%s' is udp", name);
6295
6296			else if (real_proto == IPPROTO_TCP)
6297				bpf_error("port '%s' is tcp", name);
6298			else
6299				/* override PROTO_UNDEF */
6300				real_proto = IPPROTO_SCTP;
6301		}
6302		if (port < 0)
6303			bpf_error("illegal port number %d < 0", port);
6304		if (port > 65535)
6305			bpf_error("illegal port number %d > 65535", port);
6306		b = gen_port(port, real_proto, dir);
6307		gen_or(gen_port6(port, real_proto, dir), b);
6308		return b;
6309
6310	case Q_PORTRANGE:
6311		if (proto != Q_DEFAULT &&
6312		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6313			bpf_error("illegal qualifier of 'portrange'");
6314		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6315			bpf_error("unknown port in range '%s'", name);
6316		if (proto == Q_UDP) {
6317			if (real_proto == IPPROTO_TCP)
6318				bpf_error("port in range '%s' is tcp", name);
6319			else if (real_proto == IPPROTO_SCTP)
6320				bpf_error("port in range '%s' is sctp", name);
6321			else
6322				/* override PROTO_UNDEF */
6323				real_proto = IPPROTO_UDP;
6324		}
6325		if (proto == Q_TCP) {
6326			if (real_proto == IPPROTO_UDP)
6327				bpf_error("port in range '%s' is udp", name);
6328			else if (real_proto == IPPROTO_SCTP)
6329				bpf_error("port in range '%s' is sctp", name);
6330			else
6331				/* override PROTO_UNDEF */
6332				real_proto = IPPROTO_TCP;
6333		}
6334		if (proto == Q_SCTP) {
6335			if (real_proto == IPPROTO_UDP)
6336				bpf_error("port in range '%s' is udp", name);
6337			else if (real_proto == IPPROTO_TCP)
6338				bpf_error("port in range '%s' is tcp", name);
6339			else
6340				/* override PROTO_UNDEF */
6341				real_proto = IPPROTO_SCTP;
6342		}
6343		if (port1 < 0)
6344			bpf_error("illegal port number %d < 0", port1);
6345		if (port1 > 65535)
6346			bpf_error("illegal port number %d > 65535", port1);
6347		if (port2 < 0)
6348			bpf_error("illegal port number %d < 0", port2);
6349		if (port2 > 65535)
6350			bpf_error("illegal port number %d > 65535", port2);
6351
6352		b = gen_portrange(port1, port2, real_proto, dir);
6353		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6354		return b;
6355
6356	case Q_GATEWAY:
6357#ifndef INET6
6358		eaddr = pcap_ether_hostton(name);
6359		if (eaddr == NULL)
6360			bpf_error("unknown ether host: %s", name);
6361
6362		alist = pcap_nametoaddr(name);
6363		if (alist == NULL || *alist == NULL)
6364			bpf_error("unknown host '%s'", name);
6365		b = gen_gateway(eaddr, alist, proto, dir);
6366		free(eaddr);
6367		return b;
6368#else
6369		bpf_error("'gateway' not supported in this configuration");
6370#endif /*INET6*/
6371
6372	case Q_PROTO:
6373		real_proto = lookup_proto(name, proto);
6374		if (real_proto >= 0)
6375			return gen_proto(real_proto, proto, dir);
6376		else
6377			bpf_error("unknown protocol: %s", name);
6378
6379	case Q_PROTOCHAIN:
6380		real_proto = lookup_proto(name, proto);
6381		if (real_proto >= 0)
6382			return gen_protochain(real_proto, proto, dir);
6383		else
6384			bpf_error("unknown protocol: %s", name);
6385
6386	case Q_UNDEF:
6387		syntax();
6388		/* NOTREACHED */
6389	}
6390	abort();
6391	/* NOTREACHED */
6392}
6393
6394struct block *
6395gen_mcode(s1, s2, masklen, q)
6396	register const char *s1, *s2;
6397	register unsigned int masklen;
6398	struct qual q;
6399{
6400	register int nlen, mlen;
6401	bpf_u_int32 n, m;
6402
6403	nlen = __pcap_atoin(s1, &n);
6404	/* Promote short ipaddr */
6405	n <<= 32 - nlen;
6406
6407	if (s2 != NULL) {
6408		mlen = __pcap_atoin(s2, &m);
6409		/* Promote short ipaddr */
6410		m <<= 32 - mlen;
6411		if ((n & ~m) != 0)
6412			bpf_error("non-network bits set in \"%s mask %s\"",
6413			    s1, s2);
6414	} else {
6415		/* Convert mask len to mask */
6416		if (masklen > 32)
6417			bpf_error("mask length must be <= 32");
6418		if (masklen == 0) {
6419			/*
6420			 * X << 32 is not guaranteed by C to be 0; it's
6421			 * undefined.
6422			 */
6423			m = 0;
6424		} else
6425			m = 0xffffffff << (32 - masklen);
6426		if ((n & ~m) != 0)
6427			bpf_error("non-network bits set in \"%s/%d\"",
6428			    s1, masklen);
6429	}
6430
6431	switch (q.addr) {
6432
6433	case Q_NET:
6434		return gen_host(n, m, q.proto, q.dir, q.addr);
6435
6436	default:
6437		bpf_error("Mask syntax for networks only");
6438		/* NOTREACHED */
6439	}
6440	/* NOTREACHED */
6441	return NULL;
6442}
6443
6444struct block *
6445gen_ncode(s, v, q)
6446	register const char *s;
6447	bpf_u_int32 v;
6448	struct qual q;
6449{
6450	bpf_u_int32 mask;
6451	int proto = q.proto;
6452	int dir = q.dir;
6453	register int vlen;
6454
6455	if (s == NULL)
6456		vlen = 32;
6457	else if (q.proto == Q_DECNET)
6458		vlen = __pcap_atodn(s, &v);
6459	else
6460		vlen = __pcap_atoin(s, &v);
6461
6462	switch (q.addr) {
6463
6464	case Q_DEFAULT:
6465	case Q_HOST:
6466	case Q_NET:
6467		if (proto == Q_DECNET)
6468			return gen_host(v, 0, proto, dir, q.addr);
6469		else if (proto == Q_LINK) {
6470			bpf_error("illegal link layer address");
6471		} else {
6472			mask = 0xffffffff;
6473			if (s == NULL && q.addr == Q_NET) {
6474				/* Promote short net number */
6475				while (v && (v & 0xff000000) == 0) {
6476					v <<= 8;
6477					mask <<= 8;
6478				}
6479			} else {
6480				/* Promote short ipaddr */
6481				v <<= 32 - vlen;
6482				mask <<= 32 - vlen;
6483			}
6484			return gen_host(v, mask, proto, dir, q.addr);
6485		}
6486
6487	case Q_PORT:
6488		if (proto == Q_UDP)
6489			proto = IPPROTO_UDP;
6490		else if (proto == Q_TCP)
6491			proto = IPPROTO_TCP;
6492		else if (proto == Q_SCTP)
6493			proto = IPPROTO_SCTP;
6494		else if (proto == Q_DEFAULT)
6495			proto = PROTO_UNDEF;
6496		else
6497			bpf_error("illegal qualifier of 'port'");
6498
6499		if (v > 65535)
6500			bpf_error("illegal port number %u > 65535", v);
6501
6502	    {
6503		struct block *b;
6504		b = gen_port((int)v, proto, dir);
6505		gen_or(gen_port6((int)v, proto, dir), b);
6506		return b;
6507	    }
6508
6509	case Q_PORTRANGE:
6510		if (proto == Q_UDP)
6511			proto = IPPROTO_UDP;
6512		else if (proto == Q_TCP)
6513			proto = IPPROTO_TCP;
6514		else if (proto == Q_SCTP)
6515			proto = IPPROTO_SCTP;
6516		else if (proto == Q_DEFAULT)
6517			proto = PROTO_UNDEF;
6518		else
6519			bpf_error("illegal qualifier of 'portrange'");
6520
6521		if (v > 65535)
6522			bpf_error("illegal port number %u > 65535", v);
6523
6524	    {
6525		struct block *b;
6526		b = gen_portrange((int)v, (int)v, proto, dir);
6527		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6528		return b;
6529	    }
6530
6531	case Q_GATEWAY:
6532		bpf_error("'gateway' requires a name");
6533		/* NOTREACHED */
6534
6535	case Q_PROTO:
6536		return gen_proto((int)v, proto, dir);
6537
6538	case Q_PROTOCHAIN:
6539		return gen_protochain((int)v, proto, dir);
6540
6541	case Q_UNDEF:
6542		syntax();
6543		/* NOTREACHED */
6544
6545	default:
6546		abort();
6547		/* NOTREACHED */
6548	}
6549	/* NOTREACHED */
6550}
6551
6552#ifdef INET6
6553struct block *
6554gen_mcode6(s1, s2, masklen, q)
6555	register const char *s1, *s2;
6556	register unsigned int masklen;
6557	struct qual q;
6558{
6559	struct addrinfo *res;
6560	struct in6_addr *addr;
6561	struct in6_addr mask;
6562	struct block *b;
6563	u_int32_t *a, *m;
6564
6565	if (s2)
6566		bpf_error("no mask %s supported", s2);
6567
6568	res = pcap_nametoaddrinfo(s1);
6569	if (!res)
6570		bpf_error("invalid ip6 address %s", s1);
6571	ai = res;
6572	if (res->ai_next)
6573		bpf_error("%s resolved to multiple address", s1);
6574	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6575
6576	if (sizeof(mask) * 8 < masklen)
6577		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6578	memset(&mask, 0, sizeof(mask));
6579	memset(&mask, 0xff, masklen / 8);
6580	if (masklen % 8) {
6581		mask.s6_addr[masklen / 8] =
6582			(0xff << (8 - masklen % 8)) & 0xff;
6583	}
6584
6585	a = (u_int32_t *)addr;
6586	m = (u_int32_t *)&mask;
6587	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6588	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6589		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6590	}
6591
6592	switch (q.addr) {
6593
6594	case Q_DEFAULT:
6595	case Q_HOST:
6596		if (masklen != 128)
6597			bpf_error("Mask syntax for networks only");
6598		/* FALLTHROUGH */
6599
6600	case Q_NET:
6601		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6602		ai = NULL;
6603		freeaddrinfo(res);
6604		return b;
6605
6606	default:
6607		bpf_error("invalid qualifier against IPv6 address");
6608		/* NOTREACHED */
6609	}
6610	return NULL;
6611}
6612#endif /*INET6*/
6613
6614struct block *
6615gen_ecode(eaddr, q)
6616	register const u_char *eaddr;
6617	struct qual q;
6618{
6619	struct block *b, *tmp;
6620
6621	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6622		switch (linktype) {
6623		case DLT_EN10MB:
6624		case DLT_NETANALYZER:
6625		case DLT_NETANALYZER_TRANSPARENT:
6626			tmp = gen_prevlinkhdr_check();
6627			b = gen_ehostop(eaddr, (int)q.dir);
6628			if (tmp != NULL)
6629				gen_and(tmp, b);
6630			return b;
6631		case DLT_FDDI:
6632			return gen_fhostop(eaddr, (int)q.dir);
6633		case DLT_IEEE802:
6634			return gen_thostop(eaddr, (int)q.dir);
6635		case DLT_IEEE802_11:
6636		case DLT_PRISM_HEADER:
6637		case DLT_IEEE802_11_RADIO_AVS:
6638		case DLT_IEEE802_11_RADIO:
6639		case DLT_PPI:
6640			return gen_wlanhostop(eaddr, (int)q.dir);
6641		case DLT_IP_OVER_FC:
6642			return gen_ipfchostop(eaddr, (int)q.dir);
6643		default:
6644			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6645			break;
6646		}
6647	}
6648	bpf_error("ethernet address used in non-ether expression");
6649	/* NOTREACHED */
6650	return NULL;
6651}
6652
6653void
6654sappend(s0, s1)
6655	struct slist *s0, *s1;
6656{
6657	/*
6658	 * This is definitely not the best way to do this, but the
6659	 * lists will rarely get long.
6660	 */
6661	while (s0->next)
6662		s0 = s0->next;
6663	s0->next = s1;
6664}
6665
6666static struct slist *
6667xfer_to_x(a)
6668	struct arth *a;
6669{
6670	struct slist *s;
6671
6672	s = new_stmt(BPF_LDX|BPF_MEM);
6673	s->s.k = a->regno;
6674	return s;
6675}
6676
6677static struct slist *
6678xfer_to_a(a)
6679	struct arth *a;
6680{
6681	struct slist *s;
6682
6683	s = new_stmt(BPF_LD|BPF_MEM);
6684	s->s.k = a->regno;
6685	return s;
6686}
6687
6688/*
6689 * Modify "index" to use the value stored into its register as an
6690 * offset relative to the beginning of the header for the protocol
6691 * "proto", and allocate a register and put an item "size" bytes long
6692 * (1, 2, or 4) at that offset into that register, making it the register
6693 * for "index".
6694 */
6695struct arth *
6696gen_load(proto, inst, size)
6697	int proto;
6698	struct arth *inst;
6699	int size;
6700{
6701	struct slist *s, *tmp;
6702	struct block *b;
6703	int regno = alloc_reg();
6704
6705	free_reg(inst->regno);
6706	switch (size) {
6707
6708	default:
6709		bpf_error("data size must be 1, 2, or 4");
6710
6711	case 1:
6712		size = BPF_B;
6713		break;
6714
6715	case 2:
6716		size = BPF_H;
6717		break;
6718
6719	case 4:
6720		size = BPF_W;
6721		break;
6722	}
6723	switch (proto) {
6724	default:
6725		bpf_error("unsupported index operation");
6726
6727	case Q_RADIO:
6728		/*
6729		 * The offset is relative to the beginning of the packet
6730		 * data, if we have a radio header.  (If we don't, this
6731		 * is an error.)
6732		 */
6733		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6734		    linktype != DLT_IEEE802_11_RADIO &&
6735		    linktype != DLT_PRISM_HEADER)
6736			bpf_error("radio information not present in capture");
6737
6738		/*
6739		 * Load into the X register the offset computed into the
6740		 * register specified by "index".
6741		 */
6742		s = xfer_to_x(inst);
6743
6744		/*
6745		 * Load the item at that offset.
6746		 */
6747		tmp = new_stmt(BPF_LD|BPF_IND|size);
6748		sappend(s, tmp);
6749		sappend(inst->s, s);
6750		break;
6751
6752	case Q_LINK:
6753		/*
6754		 * The offset is relative to the beginning of
6755		 * the link-layer header.
6756		 *
6757		 * XXX - what about ATM LANE?  Should the index be
6758		 * relative to the beginning of the AAL5 frame, so
6759		 * that 0 refers to the beginning of the LE Control
6760		 * field, or relative to the beginning of the LAN
6761		 * frame, so that 0 refers, for Ethernet LANE, to
6762		 * the beginning of the destination address?
6763		 */
6764		s = gen_abs_offset_varpart(&off_linkhdr);
6765
6766		/*
6767		 * If "s" is non-null, it has code to arrange that the
6768		 * X register contains the length of the prefix preceding
6769		 * the link-layer header.  Add to it the offset computed
6770		 * into the register specified by "index", and move that
6771		 * into the X register.  Otherwise, just load into the X
6772		 * register the offset computed into the register specified
6773		 * by "index".
6774		 */
6775		if (s != NULL) {
6776			sappend(s, xfer_to_a(inst));
6777			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6778			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6779		} else
6780			s = xfer_to_x(inst);
6781
6782		/*
6783		 * Load the item at the sum of the offset we've put in the
6784		 * X register and the offset of the start of the link
6785		 * layer header (which is 0 if the radio header is
6786		 * variable-length; that header length is what we put
6787		 * into the X register and then added to the index).
6788		 */
6789		tmp = new_stmt(BPF_LD|BPF_IND|size);
6790		tmp->s.k = off_linkhdr.constant_part;
6791		sappend(s, tmp);
6792		sappend(inst->s, s);
6793		break;
6794
6795	case Q_IP:
6796	case Q_ARP:
6797	case Q_RARP:
6798	case Q_ATALK:
6799	case Q_DECNET:
6800	case Q_SCA:
6801	case Q_LAT:
6802	case Q_MOPRC:
6803	case Q_MOPDL:
6804	case Q_IPV6:
6805		/*
6806		 * The offset is relative to the beginning of
6807		 * the network-layer header.
6808		 * XXX - are there any cases where we want
6809		 * off_nl_nosnap?
6810		 */
6811		s = gen_abs_offset_varpart(&off_linkpl);
6812
6813		/*
6814		 * If "s" is non-null, it has code to arrange that the
6815		 * X register contains the variable part of the offset
6816		 * of the link-layer payload.  Add to it the offset
6817		 * computed into the register specified by "index",
6818		 * and move that into the X register.  Otherwise, just
6819		 * load into the X register the offset computed into
6820		 * the register specified by "index".
6821		 */
6822		if (s != NULL) {
6823			sappend(s, xfer_to_a(inst));
6824			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6825			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6826		} else
6827			s = xfer_to_x(inst);
6828
6829		/*
6830		 * Load the item at the sum of the offset we've put in the
6831		 * X register, the offset of the start of the network
6832		 * layer header from the beginning of the link-layer
6833		 * payload, and the constant part of the offset of the
6834		 * start of the link-layer payload.
6835		 */
6836		tmp = new_stmt(BPF_LD|BPF_IND|size);
6837		tmp->s.k = off_linkpl.constant_part + off_nl;
6838		sappend(s, tmp);
6839		sappend(inst->s, s);
6840
6841		/*
6842		 * Do the computation only if the packet contains
6843		 * the protocol in question.
6844		 */
6845		b = gen_proto_abbrev(proto);
6846		if (inst->b)
6847			gen_and(inst->b, b);
6848		inst->b = b;
6849		break;
6850
6851	case Q_SCTP:
6852	case Q_TCP:
6853	case Q_UDP:
6854	case Q_ICMP:
6855	case Q_IGMP:
6856	case Q_IGRP:
6857	case Q_PIM:
6858	case Q_VRRP:
6859	case Q_CARP:
6860		/*
6861		 * The offset is relative to the beginning of
6862		 * the transport-layer header.
6863		 *
6864		 * Load the X register with the length of the IPv4 header
6865		 * (plus the offset of the link-layer header, if it's
6866		 * a variable-length header), in bytes.
6867		 *
6868		 * XXX - are there any cases where we want
6869		 * off_nl_nosnap?
6870		 * XXX - we should, if we're built with
6871		 * IPv6 support, generate code to load either
6872		 * IPv4, IPv6, or both, as appropriate.
6873		 */
6874		s = gen_loadx_iphdrlen();
6875
6876		/*
6877		 * The X register now contains the sum of the variable
6878		 * part of the offset of the link-layer payload and the
6879		 * length of the network-layer header.
6880		 *
6881		 * Load into the A register the offset relative to
6882		 * the beginning of the transport layer header,
6883		 * add the X register to that, move that to the
6884		 * X register, and load with an offset from the
6885		 * X register equal to the sum of the constant part of
6886		 * the offset of the link-layer payload and the offset,
6887		 * relative to the beginning of the link-layer payload,
6888		 * of the network-layer header.
6889		 */
6890		sappend(s, xfer_to_a(inst));
6891		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6892		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6893		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6894		tmp->s.k = off_linkpl.constant_part + off_nl;
6895		sappend(inst->s, s);
6896
6897		/*
6898		 * Do the computation only if the packet contains
6899		 * the protocol in question - which is true only
6900		 * if this is an IP datagram and is the first or
6901		 * only fragment of that datagram.
6902		 */
6903		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6904		if (inst->b)
6905			gen_and(inst->b, b);
6906		gen_and(gen_proto_abbrev(Q_IP), b);
6907		inst->b = b;
6908		break;
6909	case Q_ICMPV6:
6910		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6911		/*NOTREACHED*/
6912	}
6913	inst->regno = regno;
6914	s = new_stmt(BPF_ST);
6915	s->s.k = regno;
6916	sappend(inst->s, s);
6917
6918	return inst;
6919}
6920
6921struct block *
6922gen_relation(code, a0, a1, reversed)
6923	int code;
6924	struct arth *a0, *a1;
6925	int reversed;
6926{
6927	struct slist *s0, *s1, *s2;
6928	struct block *b, *tmp;
6929
6930	s0 = xfer_to_x(a1);
6931	s1 = xfer_to_a(a0);
6932	if (code == BPF_JEQ) {
6933		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6934		b = new_block(JMP(code));
6935		sappend(s1, s2);
6936	}
6937	else
6938		b = new_block(BPF_JMP|code|BPF_X);
6939	if (reversed)
6940		gen_not(b);
6941
6942	sappend(s0, s1);
6943	sappend(a1->s, s0);
6944	sappend(a0->s, a1->s);
6945
6946	b->stmts = a0->s;
6947
6948	free_reg(a0->regno);
6949	free_reg(a1->regno);
6950
6951	/* 'and' together protocol checks */
6952	if (a0->b) {
6953		if (a1->b) {
6954			gen_and(a0->b, tmp = a1->b);
6955		}
6956		else
6957			tmp = a0->b;
6958	} else
6959		tmp = a1->b;
6960
6961	if (tmp)
6962		gen_and(tmp, b);
6963
6964	return b;
6965}
6966
6967struct arth *
6968gen_loadlen()
6969{
6970	int regno = alloc_reg();
6971	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6972	struct slist *s;
6973
6974	s = new_stmt(BPF_LD|BPF_LEN);
6975	s->next = new_stmt(BPF_ST);
6976	s->next->s.k = regno;
6977	a->s = s;
6978	a->regno = regno;
6979
6980	return a;
6981}
6982
6983struct arth *
6984gen_loadi(val)
6985	int val;
6986{
6987	struct arth *a;
6988	struct slist *s;
6989	int reg;
6990
6991	a = (struct arth *)newchunk(sizeof(*a));
6992
6993	reg = alloc_reg();
6994
6995	s = new_stmt(BPF_LD|BPF_IMM);
6996	s->s.k = val;
6997	s->next = new_stmt(BPF_ST);
6998	s->next->s.k = reg;
6999	a->s = s;
7000	a->regno = reg;
7001
7002	return a;
7003}
7004
7005struct arth *
7006gen_neg(a)
7007	struct arth *a;
7008{
7009	struct slist *s;
7010
7011	s = xfer_to_a(a);
7012	sappend(a->s, s);
7013	s = new_stmt(BPF_ALU|BPF_NEG);
7014	s->s.k = 0;
7015	sappend(a->s, s);
7016	s = new_stmt(BPF_ST);
7017	s->s.k = a->regno;
7018	sappend(a->s, s);
7019
7020	return a;
7021}
7022
7023struct arth *
7024gen_arth(code, a0, a1)
7025	int code;
7026	struct arth *a0, *a1;
7027{
7028	struct slist *s0, *s1, *s2;
7029
7030	s0 = xfer_to_x(a1);
7031	s1 = xfer_to_a(a0);
7032	s2 = new_stmt(BPF_ALU|BPF_X|code);
7033
7034	sappend(s1, s2);
7035	sappend(s0, s1);
7036	sappend(a1->s, s0);
7037	sappend(a0->s, a1->s);
7038
7039	free_reg(a0->regno);
7040	free_reg(a1->regno);
7041
7042	s0 = new_stmt(BPF_ST);
7043	a0->regno = s0->s.k = alloc_reg();
7044	sappend(a0->s, s0);
7045
7046	return a0;
7047}
7048
7049/*
7050 * Here we handle simple allocation of the scratch registers.
7051 * If too many registers are alloc'd, the allocator punts.
7052 */
7053static int regused[BPF_MEMWORDS];
7054static int curreg;
7055
7056/*
7057 * Initialize the table of used registers and the current register.
7058 */
7059static void
7060init_regs()
7061{
7062	curreg = 0;
7063	memset(regused, 0, sizeof regused);
7064}
7065
7066/*
7067 * Return the next free register.
7068 */
7069static int
7070alloc_reg()
7071{
7072	int n = BPF_MEMWORDS;
7073
7074	while (--n >= 0) {
7075		if (regused[curreg])
7076			curreg = (curreg + 1) % BPF_MEMWORDS;
7077		else {
7078			regused[curreg] = 1;
7079			return curreg;
7080		}
7081	}
7082	bpf_error("too many registers needed to evaluate expression");
7083	/* NOTREACHED */
7084	return 0;
7085}
7086
7087/*
7088 * Return a register to the table so it can
7089 * be used later.
7090 */
7091static void
7092free_reg(n)
7093	int n;
7094{
7095	regused[n] = 0;
7096}
7097
7098static struct block *
7099gen_len(jmp, n)
7100	int jmp, n;
7101{
7102	struct slist *s;
7103	struct block *b;
7104
7105	s = new_stmt(BPF_LD|BPF_LEN);
7106	b = new_block(JMP(jmp));
7107	b->stmts = s;
7108	b->s.k = n;
7109
7110	return b;
7111}
7112
7113struct block *
7114gen_greater(n)
7115	int n;
7116{
7117	return gen_len(BPF_JGE, n);
7118}
7119
7120/*
7121 * Actually, this is less than or equal.
7122 */
7123struct block *
7124gen_less(n)
7125	int n;
7126{
7127	struct block *b;
7128
7129	b = gen_len(BPF_JGT, n);
7130	gen_not(b);
7131
7132	return b;
7133}
7134
7135/*
7136 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7137 * the beginning of the link-layer header.
7138 * XXX - that means you can't test values in the radiotap header, but
7139 * as that header is difficult if not impossible to parse generally
7140 * without a loop, that might not be a severe problem.  A new keyword
7141 * "radio" could be added for that, although what you'd really want
7142 * would be a way of testing particular radio header values, which
7143 * would generate code appropriate to the radio header in question.
7144 */
7145struct block *
7146gen_byteop(op, idx, val)
7147	int op, idx, val;
7148{
7149	struct block *b;
7150	struct slist *s;
7151
7152	switch (op) {
7153	default:
7154		abort();
7155
7156	case '=':
7157		return gen_cmp(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7158
7159	case '<':
7160		b = gen_cmp_lt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7161		return b;
7162
7163	case '>':
7164		b = gen_cmp_gt(OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7165		return b;
7166
7167	case '|':
7168		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7169		break;
7170
7171	case '&':
7172		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7173		break;
7174	}
7175	s->s.k = val;
7176	b = new_block(JMP(BPF_JEQ));
7177	b->stmts = s;
7178	gen_not(b);
7179
7180	return b;
7181}
7182
7183static u_char abroadcast[] = { 0x0 };
7184
7185struct block *
7186gen_broadcast(proto)
7187	int proto;
7188{
7189	bpf_u_int32 hostmask;
7190	struct block *b0, *b1, *b2;
7191	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7192
7193	switch (proto) {
7194
7195	case Q_DEFAULT:
7196	case Q_LINK:
7197		switch (linktype) {
7198		case DLT_ARCNET:
7199		case DLT_ARCNET_LINUX:
7200			return gen_ahostop(abroadcast, Q_DST);
7201		case DLT_EN10MB:
7202		case DLT_NETANALYZER:
7203		case DLT_NETANALYZER_TRANSPARENT:
7204			b1 = gen_prevlinkhdr_check();
7205			b0 = gen_ehostop(ebroadcast, Q_DST);
7206			if (b1 != NULL)
7207				gen_and(b1, b0);
7208			return b0;
7209		case DLT_FDDI:
7210			return gen_fhostop(ebroadcast, Q_DST);
7211		case DLT_IEEE802:
7212			return gen_thostop(ebroadcast, Q_DST);
7213		case DLT_IEEE802_11:
7214		case DLT_PRISM_HEADER:
7215		case DLT_IEEE802_11_RADIO_AVS:
7216		case DLT_IEEE802_11_RADIO:
7217		case DLT_PPI:
7218			return gen_wlanhostop(ebroadcast, Q_DST);
7219		case DLT_IP_OVER_FC:
7220			return gen_ipfchostop(ebroadcast, Q_DST);
7221		default:
7222			bpf_error("not a broadcast link");
7223		}
7224		break;
7225
7226	case Q_IP:
7227		/*
7228		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7229		 * as an indication that we don't know the netmask, and fail
7230		 * in that case.
7231		 */
7232		if (netmask == PCAP_NETMASK_UNKNOWN)
7233			bpf_error("netmask not known, so 'ip broadcast' not supported");
7234		b0 = gen_linktype(ETHERTYPE_IP);
7235		hostmask = ~netmask;
7236		b1 = gen_mcmp(OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7237		b2 = gen_mcmp(OR_LINKPL, 16, BPF_W,
7238			      (bpf_int32)(~0 & hostmask), hostmask);
7239		gen_or(b1, b2);
7240		gen_and(b0, b2);
7241		return b2;
7242	}
7243	bpf_error("only link-layer/IP broadcast filters supported");
7244	/* NOTREACHED */
7245	return NULL;
7246}
7247
7248/*
7249 * Generate code to test the low-order bit of a MAC address (that's
7250 * the bottom bit of the *first* byte).
7251 */
7252static struct block *
7253gen_mac_multicast(offset)
7254	int offset;
7255{
7256	register struct block *b0;
7257	register struct slist *s;
7258
7259	/* link[offset] & 1 != 0 */
7260	s = gen_load_a(OR_LINKHDR, offset, BPF_B);
7261	b0 = new_block(JMP(BPF_JSET));
7262	b0->s.k = 1;
7263	b0->stmts = s;
7264	return b0;
7265}
7266
7267struct block *
7268gen_multicast(proto)
7269	int proto;
7270{
7271	register struct block *b0, *b1, *b2;
7272	register struct slist *s;
7273
7274	switch (proto) {
7275
7276	case Q_DEFAULT:
7277	case Q_LINK:
7278		switch (linktype) {
7279		case DLT_ARCNET:
7280		case DLT_ARCNET_LINUX:
7281			/* all ARCnet multicasts use the same address */
7282			return gen_ahostop(abroadcast, Q_DST);
7283		case DLT_EN10MB:
7284		case DLT_NETANALYZER:
7285		case DLT_NETANALYZER_TRANSPARENT:
7286			b1 = gen_prevlinkhdr_check();
7287			/* ether[0] & 1 != 0 */
7288			b0 = gen_mac_multicast(0);
7289			if (b1 != NULL)
7290				gen_and(b1, b0);
7291			return b0;
7292		case DLT_FDDI:
7293			/*
7294			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7295			 *
7296			 * XXX - was that referring to bit-order issues?
7297			 */
7298			/* fddi[1] & 1 != 0 */
7299			return gen_mac_multicast(1);
7300		case DLT_IEEE802:
7301			/* tr[2] & 1 != 0 */
7302			return gen_mac_multicast(2);
7303		case DLT_IEEE802_11:
7304		case DLT_PRISM_HEADER:
7305		case DLT_IEEE802_11_RADIO_AVS:
7306		case DLT_IEEE802_11_RADIO:
7307		case DLT_PPI:
7308			/*
7309			 * Oh, yuk.
7310			 *
7311			 *	For control frames, there is no DA.
7312			 *
7313			 *	For management frames, DA is at an
7314			 *	offset of 4 from the beginning of
7315			 *	the packet.
7316			 *
7317			 *	For data frames, DA is at an offset
7318			 *	of 4 from the beginning of the packet
7319			 *	if To DS is clear and at an offset of
7320			 *	16 from the beginning of the packet
7321			 *	if To DS is set.
7322			 */
7323
7324			/*
7325			 * Generate the tests to be done for data frames.
7326			 *
7327			 * First, check for To DS set, i.e. "link[1] & 0x01".
7328			 */
7329			s = gen_load_a(OR_LINKHDR, 1, BPF_B);
7330			b1 = new_block(JMP(BPF_JSET));
7331			b1->s.k = 0x01;	/* To DS */
7332			b1->stmts = s;
7333
7334			/*
7335			 * If To DS is set, the DA is at 16.
7336			 */
7337			b0 = gen_mac_multicast(16);
7338			gen_and(b1, b0);
7339
7340			/*
7341			 * Now, check for To DS not set, i.e. check
7342			 * "!(link[1] & 0x01)".
7343			 */
7344			s = gen_load_a(OR_LINKHDR, 1, BPF_B);
7345			b2 = new_block(JMP(BPF_JSET));
7346			b2->s.k = 0x01;	/* To DS */
7347			b2->stmts = s;
7348			gen_not(b2);
7349
7350			/*
7351			 * If To DS is not set, the DA is at 4.
7352			 */
7353			b1 = gen_mac_multicast(4);
7354			gen_and(b2, b1);
7355
7356			/*
7357			 * Now OR together the last two checks.  That gives
7358			 * the complete set of checks for data frames.
7359			 */
7360			gen_or(b1, b0);
7361
7362			/*
7363			 * Now check for a data frame.
7364			 * I.e, check "link[0] & 0x08".
7365			 */
7366			s = gen_load_a(OR_LINKHDR, 0, BPF_B);
7367			b1 = new_block(JMP(BPF_JSET));
7368			b1->s.k = 0x08;
7369			b1->stmts = s;
7370
7371			/*
7372			 * AND that with the checks done for data frames.
7373			 */
7374			gen_and(b1, b0);
7375
7376			/*
7377			 * If the high-order bit of the type value is 0, this
7378			 * is a management frame.
7379			 * I.e, check "!(link[0] & 0x08)".
7380			 */
7381			s = gen_load_a(OR_LINKHDR, 0, BPF_B);
7382			b2 = new_block(JMP(BPF_JSET));
7383			b2->s.k = 0x08;
7384			b2->stmts = s;
7385			gen_not(b2);
7386
7387			/*
7388			 * For management frames, the DA is at 4.
7389			 */
7390			b1 = gen_mac_multicast(4);
7391			gen_and(b2, b1);
7392
7393			/*
7394			 * OR that with the checks done for data frames.
7395			 * That gives the checks done for management and
7396			 * data frames.
7397			 */
7398			gen_or(b1, b0);
7399
7400			/*
7401			 * If the low-order bit of the type value is 1,
7402			 * this is either a control frame or a frame
7403			 * with a reserved type, and thus not a
7404			 * frame with an SA.
7405			 *
7406			 * I.e., check "!(link[0] & 0x04)".
7407			 */
7408			s = gen_load_a(OR_LINKHDR, 0, BPF_B);
7409			b1 = new_block(JMP(BPF_JSET));
7410			b1->s.k = 0x04;
7411			b1->stmts = s;
7412			gen_not(b1);
7413
7414			/*
7415			 * AND that with the checks for data and management
7416			 * frames.
7417			 */
7418			gen_and(b1, b0);
7419			return b0;
7420		case DLT_IP_OVER_FC:
7421			b0 = gen_mac_multicast(2);
7422			return b0;
7423		default:
7424			break;
7425		}
7426		/* Link not known to support multicasts */
7427		break;
7428
7429	case Q_IP:
7430		b0 = gen_linktype(ETHERTYPE_IP);
7431		b1 = gen_cmp_ge(OR_LINKPL, 16, BPF_B, (bpf_int32)224);
7432		gen_and(b0, b1);
7433		return b1;
7434
7435	case Q_IPV6:
7436		b0 = gen_linktype(ETHERTYPE_IPV6);
7437		b1 = gen_cmp(OR_LINKPL, 24, BPF_B, (bpf_int32)255);
7438		gen_and(b0, b1);
7439		return b1;
7440	}
7441	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7442	/* NOTREACHED */
7443	return NULL;
7444}
7445
7446/*
7447 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7448 * Outbound traffic is sent by this machine, while inbound traffic is
7449 * sent by a remote machine (and may include packets destined for a
7450 * unicast or multicast link-layer address we are not subscribing to).
7451 * These are the same definitions implemented by pcap_setdirection().
7452 * Capturing only unicast traffic destined for this host is probably
7453 * better accomplished using a higher-layer filter.
7454 */
7455struct block *
7456gen_inbound(dir)
7457	int dir;
7458{
7459	register struct block *b0;
7460
7461	/*
7462	 * Only some data link types support inbound/outbound qualifiers.
7463	 */
7464	switch (linktype) {
7465	case DLT_SLIP:
7466		b0 = gen_relation(BPF_JEQ,
7467			  gen_load(Q_LINK, gen_loadi(0), 1),
7468			  gen_loadi(0),
7469			  dir);
7470		break;
7471
7472	case DLT_IPNET:
7473		if (dir) {
7474			/* match outgoing packets */
7475			b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
7476		} else {
7477			/* match incoming packets */
7478			b0 = gen_cmp(OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
7479		}
7480		break;
7481
7482	case DLT_LINUX_SLL:
7483		/* match outgoing packets */
7484		b0 = gen_cmp(OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
7485		if (!dir) {
7486			/* to filter on inbound traffic, invert the match */
7487			gen_not(b0);
7488		}
7489		break;
7490
7491#ifdef HAVE_NET_PFVAR_H
7492	case DLT_PFLOG:
7493		b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
7494		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7495		break;
7496#endif
7497
7498	case DLT_PPP_PPPD:
7499		if (dir) {
7500			/* match outgoing packets */
7501			b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
7502		} else {
7503			/* match incoming packets */
7504			b0 = gen_cmp(OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
7505		}
7506		break;
7507
7508        case DLT_JUNIPER_MFR:
7509        case DLT_JUNIPER_MLFR:
7510        case DLT_JUNIPER_MLPPP:
7511	case DLT_JUNIPER_ATM1:
7512	case DLT_JUNIPER_ATM2:
7513	case DLT_JUNIPER_PPPOE:
7514	case DLT_JUNIPER_PPPOE_ATM:
7515        case DLT_JUNIPER_GGSN:
7516        case DLT_JUNIPER_ES:
7517        case DLT_JUNIPER_MONITOR:
7518        case DLT_JUNIPER_SERVICES:
7519        case DLT_JUNIPER_ETHER:
7520        case DLT_JUNIPER_PPP:
7521        case DLT_JUNIPER_FRELAY:
7522        case DLT_JUNIPER_CHDLC:
7523        case DLT_JUNIPER_VP:
7524        case DLT_JUNIPER_ST:
7525        case DLT_JUNIPER_ISM:
7526        case DLT_JUNIPER_VS:
7527        case DLT_JUNIPER_SRX_E2E:
7528        case DLT_JUNIPER_FIBRECHANNEL:
7529	case DLT_JUNIPER_ATM_CEMIC:
7530
7531		/* juniper flags (including direction) are stored
7532		 * the byte after the 3-byte magic number */
7533		if (dir) {
7534			/* match outgoing packets */
7535			b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 0, 0x01);
7536		} else {
7537			/* match incoming packets */
7538			b0 = gen_mcmp(OR_LINKHDR, 3, BPF_B, 1, 0x01);
7539		}
7540		break;
7541
7542	default:
7543		/*
7544		 * If we have packet meta-data indicating a direction,
7545		 * check it, otherwise give up as this link-layer type
7546		 * has nothing in the packet data.
7547		 */
7548#if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7549		/*
7550		 * This is Linux with PF_PACKET support.
7551		 * If this is a *live* capture, we can look at
7552		 * special meta-data in the filter expression;
7553		 * if it's a savefile, we can't.
7554		 */
7555		if (bpf_pcap->rfile != NULL) {
7556			/* We have a FILE *, so this is a savefile */
7557			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7558			    linktype);
7559			b0 = NULL;
7560			/* NOTREACHED */
7561		}
7562		/* match outgoing packets */
7563		b0 = gen_cmp(OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7564		             PACKET_OUTGOING);
7565		if (!dir) {
7566			/* to filter on inbound traffic, invert the match */
7567			gen_not(b0);
7568		}
7569#else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7570		bpf_error("inbound/outbound not supported on linktype %d",
7571		    linktype);
7572		b0 = NULL;
7573		/* NOTREACHED */
7574#endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7575	}
7576	return (b0);
7577}
7578
7579#ifdef HAVE_NET_PFVAR_H
7580/* PF firewall log matched interface */
7581struct block *
7582gen_pf_ifname(const char *ifname)
7583{
7584	struct block *b0;
7585	u_int len, off;
7586
7587	if (linktype != DLT_PFLOG) {
7588		bpf_error("ifname supported only on PF linktype");
7589		/* NOTREACHED */
7590	}
7591	len = sizeof(((struct pfloghdr *)0)->ifname);
7592	off = offsetof(struct pfloghdr, ifname);
7593	if (strlen(ifname) >= len) {
7594		bpf_error("ifname interface names can only be %d characters",
7595		    len-1);
7596		/* NOTREACHED */
7597	}
7598	b0 = gen_bcmp(OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
7599	return (b0);
7600}
7601
7602/* PF firewall log ruleset name */
7603struct block *
7604gen_pf_ruleset(char *ruleset)
7605{
7606	struct block *b0;
7607
7608	if (linktype != DLT_PFLOG) {
7609		bpf_error("ruleset supported only on PF linktype");
7610		/* NOTREACHED */
7611	}
7612
7613	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7614		bpf_error("ruleset names can only be %ld characters",
7615		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7616		/* NOTREACHED */
7617	}
7618
7619	b0 = gen_bcmp(OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
7620	    strlen(ruleset), (const u_char *)ruleset);
7621	return (b0);
7622}
7623
7624/* PF firewall log rule number */
7625struct block *
7626gen_pf_rnr(int rnr)
7627{
7628	struct block *b0;
7629
7630	if (linktype != DLT_PFLOG) {
7631		bpf_error("rnr supported only on PF linktype");
7632		/* NOTREACHED */
7633	}
7634
7635	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
7636		 (bpf_int32)rnr);
7637	return (b0);
7638}
7639
7640/* PF firewall log sub-rule number */
7641struct block *
7642gen_pf_srnr(int srnr)
7643{
7644	struct block *b0;
7645
7646	if (linktype != DLT_PFLOG) {
7647		bpf_error("srnr supported only on PF linktype");
7648		/* NOTREACHED */
7649	}
7650
7651	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
7652	    (bpf_int32)srnr);
7653	return (b0);
7654}
7655
7656/* PF firewall log reason code */
7657struct block *
7658gen_pf_reason(int reason)
7659{
7660	struct block *b0;
7661
7662	if (linktype != DLT_PFLOG) {
7663		bpf_error("reason supported only on PF linktype");
7664		/* NOTREACHED */
7665	}
7666
7667	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
7668	    (bpf_int32)reason);
7669	return (b0);
7670}
7671
7672/* PF firewall log action */
7673struct block *
7674gen_pf_action(int action)
7675{
7676	struct block *b0;
7677
7678	if (linktype != DLT_PFLOG) {
7679		bpf_error("action supported only on PF linktype");
7680		/* NOTREACHED */
7681	}
7682
7683	b0 = gen_cmp(OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
7684	    (bpf_int32)action);
7685	return (b0);
7686}
7687#else /* !HAVE_NET_PFVAR_H */
7688struct block *
7689gen_pf_ifname(const char *ifname)
7690{
7691	bpf_error("libpcap was compiled without pf support");
7692	/* NOTREACHED */
7693	return (NULL);
7694}
7695
7696struct block *
7697gen_pf_ruleset(char *ruleset)
7698{
7699	bpf_error("libpcap was compiled on a machine without pf support");
7700	/* NOTREACHED */
7701	return (NULL);
7702}
7703
7704struct block *
7705gen_pf_rnr(int rnr)
7706{
7707	bpf_error("libpcap was compiled on a machine without pf support");
7708	/* NOTREACHED */
7709	return (NULL);
7710}
7711
7712struct block *
7713gen_pf_srnr(int srnr)
7714{
7715	bpf_error("libpcap was compiled on a machine without pf support");
7716	/* NOTREACHED */
7717	return (NULL);
7718}
7719
7720struct block *
7721gen_pf_reason(int reason)
7722{
7723	bpf_error("libpcap was compiled on a machine without pf support");
7724	/* NOTREACHED */
7725	return (NULL);
7726}
7727
7728struct block *
7729gen_pf_action(int action)
7730{
7731	bpf_error("libpcap was compiled on a machine without pf support");
7732	/* NOTREACHED */
7733	return (NULL);
7734}
7735#endif /* HAVE_NET_PFVAR_H */
7736
7737/* IEEE 802.11 wireless header */
7738struct block *
7739gen_p80211_type(int type, int mask)
7740{
7741	struct block *b0;
7742
7743	switch (linktype) {
7744
7745	case DLT_IEEE802_11:
7746	case DLT_PRISM_HEADER:
7747	case DLT_IEEE802_11_RADIO_AVS:
7748	case DLT_IEEE802_11_RADIO:
7749		b0 = gen_mcmp(OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
7750		    (bpf_int32)mask);
7751		break;
7752
7753	default:
7754		bpf_error("802.11 link-layer types supported only on 802.11");
7755		/* NOTREACHED */
7756	}
7757
7758	return (b0);
7759}
7760
7761struct block *
7762gen_p80211_fcdir(int fcdir)
7763{
7764	struct block *b0;
7765
7766	switch (linktype) {
7767
7768	case DLT_IEEE802_11:
7769	case DLT_PRISM_HEADER:
7770	case DLT_IEEE802_11_RADIO_AVS:
7771	case DLT_IEEE802_11_RADIO:
7772		break;
7773
7774	default:
7775		bpf_error("frame direction supported only with 802.11 headers");
7776		/* NOTREACHED */
7777	}
7778
7779	b0 = gen_mcmp(OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
7780		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7781
7782	return (b0);
7783}
7784
7785struct block *
7786gen_acode(eaddr, q)
7787	register const u_char *eaddr;
7788	struct qual q;
7789{
7790	switch (linktype) {
7791
7792	case DLT_ARCNET:
7793	case DLT_ARCNET_LINUX:
7794		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7795		    q.proto == Q_LINK)
7796			return (gen_ahostop(eaddr, (int)q.dir));
7797		else {
7798			bpf_error("ARCnet address used in non-arc expression");
7799			/* NOTREACHED */
7800		}
7801		break;
7802
7803	default:
7804		bpf_error("aid supported only on ARCnet");
7805		/* NOTREACHED */
7806	}
7807	bpf_error("ARCnet address used in non-arc expression");
7808	/* NOTREACHED */
7809	return NULL;
7810}
7811
7812static struct block *
7813gen_ahostop(eaddr, dir)
7814	register const u_char *eaddr;
7815	register int dir;
7816{
7817	register struct block *b0, *b1;
7818
7819	switch (dir) {
7820	/* src comes first, different from Ethernet */
7821	case Q_SRC:
7822		return gen_bcmp(OR_LINKHDR, 0, 1, eaddr);
7823
7824	case Q_DST:
7825		return gen_bcmp(OR_LINKHDR, 1, 1, eaddr);
7826
7827	case Q_AND:
7828		b0 = gen_ahostop(eaddr, Q_SRC);
7829		b1 = gen_ahostop(eaddr, Q_DST);
7830		gen_and(b0, b1);
7831		return b1;
7832
7833	case Q_DEFAULT:
7834	case Q_OR:
7835		b0 = gen_ahostop(eaddr, Q_SRC);
7836		b1 = gen_ahostop(eaddr, Q_DST);
7837		gen_or(b0, b1);
7838		return b1;
7839
7840	case Q_ADDR1:
7841		bpf_error("'addr1' is only supported on 802.11");
7842		break;
7843
7844	case Q_ADDR2:
7845		bpf_error("'addr2' is only supported on 802.11");
7846		break;
7847
7848	case Q_ADDR3:
7849		bpf_error("'addr3' is only supported on 802.11");
7850		break;
7851
7852	case Q_ADDR4:
7853		bpf_error("'addr4' is only supported on 802.11");
7854		break;
7855
7856	case Q_RA:
7857		bpf_error("'ra' is only supported on 802.11");
7858		break;
7859
7860	case Q_TA:
7861		bpf_error("'ta' is only supported on 802.11");
7862		break;
7863	}
7864	abort();
7865	/* NOTREACHED */
7866}
7867
7868#if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7869static struct block *
7870gen_vlan_bpf_extensions(int vlan_num)
7871{
7872        struct block *b0, *b1;
7873        struct slist *s;
7874
7875        /* generate new filter code based on extracting packet
7876         * metadata */
7877        s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
7878        s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
7879
7880        b0 = new_block(JMP(BPF_JEQ));
7881        b0->stmts = s;
7882        b0->s.k = 1;
7883
7884        if (vlan_num >= 0) {
7885                s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
7886                s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
7887
7888                b1 = new_block(JMP(BPF_JEQ));
7889                b1->stmts = s;
7890                b1->s.k = (bpf_int32) vlan_num;
7891
7892                gen_and(b0,b1);
7893                b0 = b1;
7894        }
7895
7896        return b0;
7897}
7898#endif
7899
7900static struct block *
7901gen_vlan_no_bpf_extensions(int vlan_num)
7902{
7903        struct block *b0, *b1;
7904
7905        /* check for VLAN, including QinQ */
7906        b0 = gen_linktype(ETHERTYPE_8021Q);
7907        b1 = gen_linktype(ETHERTYPE_8021QINQ);
7908        gen_or(b0,b1);
7909        b0 = b1;
7910
7911        /* If a specific VLAN is requested, check VLAN id */
7912        if (vlan_num >= 0) {
7913                b1 = gen_mcmp(OR_LINKPL, 0, BPF_H,
7914                              (bpf_int32)vlan_num, 0x0fff);
7915                gen_and(b0, b1);
7916                b0 = b1;
7917        }
7918
7919	/*
7920	 * The payload follows the full header, including the
7921	 * VLAN tags, so skip past this VLAN tag.
7922	 */
7923        off_linkpl.constant_part += 4;
7924
7925	/*
7926	 * The link-layer type information follows the VLAN tags, so
7927	 * skip past this VLAN tag.
7928	 */
7929        off_linktype.constant_part += 4;
7930
7931        return b0;
7932}
7933
7934/*
7935 * support IEEE 802.1Q VLAN trunk over ethernet
7936 */
7937struct block *
7938gen_vlan(vlan_num)
7939	int vlan_num;
7940{
7941	struct	block	*b0;
7942
7943	/* can't check for VLAN-encapsulated packets inside MPLS */
7944	if (label_stack_depth > 0)
7945		bpf_error("no VLAN match after MPLS");
7946
7947	/*
7948	 * Check for a VLAN packet, and then change the offsets to point
7949	 * to the type and data fields within the VLAN packet.  Just
7950	 * increment the offsets, so that we can support a hierarchy, e.g.
7951	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7952	 * VLAN 100.
7953	 *
7954	 * XXX - this is a bit of a kludge.  If we were to split the
7955	 * compiler into a parser that parses an expression and
7956	 * generates an expression tree, and a code generator that
7957	 * takes an expression tree (which could come from our
7958	 * parser or from some other parser) and generates BPF code,
7959	 * we could perhaps make the offsets parameters of routines
7960	 * and, in the handler for an "AND" node, pass to subnodes
7961	 * other than the VLAN node the adjusted offsets.
7962	 *
7963	 * This would mean that "vlan" would, instead of changing the
7964	 * behavior of *all* tests after it, change only the behavior
7965	 * of tests ANDed with it.  That would change the documented
7966	 * semantics of "vlan", which might break some expressions.
7967	 * However, it would mean that "(vlan and ip) or ip" would check
7968	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7969	 * checking only for VLAN-encapsulated IP, so that could still
7970	 * be considered worth doing; it wouldn't break expressions
7971	 * that are of the form "vlan and ..." or "vlan N and ...",
7972	 * which I suspect are the most common expressions involving
7973	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7974	 * would really want, now, as all the "or ..." tests would
7975	 * be done assuming a VLAN, even though the "or" could be viewed
7976	 * as meaning "or, if this isn't a VLAN packet...".
7977	 */
7978	switch (linktype) {
7979
7980	case DLT_EN10MB:
7981	case DLT_NETANALYZER:
7982	case DLT_NETANALYZER_TRANSPARENT:
7983#if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7984		/* Verify that this is the outer part of the packet and
7985		 * not encapsulated somehow. */
7986		if (vlan_stack_depth == 0 && !off_linkhdr.is_variable &&
7987		    off_linkhdr.constant_part ==
7988		    off_outermostlinkhdr.constant_part) {
7989			/*
7990			 * Do we need special VLAN handling?
7991			 */
7992			if (bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
7993				b0 = gen_vlan_bpf_extensions(vlan_num);
7994			else
7995				b0 = gen_vlan_no_bpf_extensions(vlan_num);
7996		} else
7997#endif
7998			b0 = gen_vlan_no_bpf_extensions(vlan_num);
7999                break;
8000
8001	case DLT_IEEE802_11:
8002	case DLT_PRISM_HEADER:
8003	case DLT_IEEE802_11_RADIO_AVS:
8004	case DLT_IEEE802_11_RADIO:
8005		b0 = gen_vlan_no_bpf_extensions(vlan_num);
8006		break;
8007
8008	default:
8009		bpf_error("no VLAN support for data link type %d",
8010		      linktype);
8011		/*NOTREACHED*/
8012	}
8013
8014        vlan_stack_depth++;
8015
8016	return (b0);
8017}
8018
8019/*
8020 * support for MPLS
8021 */
8022struct block *
8023gen_mpls(label_num)
8024	int label_num;
8025{
8026	struct	block	*b0, *b1;
8027
8028        if (label_stack_depth > 0) {
8029            /* just match the bottom-of-stack bit clear */
8030            b0 = gen_mcmp(OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8031        } else {
8032            /*
8033             * We're not in an MPLS stack yet, so check the link-layer
8034             * type against MPLS.
8035             */
8036            switch (linktype) {
8037
8038            case DLT_C_HDLC: /* fall through */
8039            case DLT_EN10MB:
8040            case DLT_NETANALYZER:
8041            case DLT_NETANALYZER_TRANSPARENT:
8042                    b0 = gen_linktype(ETHERTYPE_MPLS);
8043                    break;
8044
8045            case DLT_PPP:
8046                    b0 = gen_linktype(PPP_MPLS_UCAST);
8047                    break;
8048
8049                    /* FIXME add other DLT_s ...
8050                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
8051                     * leave it for now */
8052
8053            default:
8054                    bpf_error("no MPLS support for data link type %d",
8055                          linktype);
8056                    b0 = NULL;
8057                    /*NOTREACHED*/
8058                    break;
8059            }
8060        }
8061
8062	/* If a specific MPLS label is requested, check it */
8063	if (label_num >= 0) {
8064		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8065		b1 = gen_mcmp(OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
8066		    0xfffff000); /* only compare the first 20 bits */
8067		gen_and(b0, b1);
8068		b0 = b1;
8069	}
8070
8071        /*
8072         * Change the offsets to point to the type and data fields within
8073         * the MPLS packet.  Just increment the offsets, so that we
8074         * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8075         * capture packets with an outer label of 100000 and an inner
8076         * label of 1024.
8077         *
8078         * Increment the MPLS stack depth as well; this indicates that
8079         * we're checking MPLS-encapsulated headers, to make sure higher
8080         * level code generators don't try to match against IP-related
8081         * protocols such as Q_ARP, Q_RARP etc.
8082         *
8083         * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8084         */
8085        off_nl_nosnap += 4;
8086        off_nl += 4;
8087        label_stack_depth++;
8088	return (b0);
8089}
8090
8091/*
8092 * Support PPPOE discovery and session.
8093 */
8094struct block *
8095gen_pppoed()
8096{
8097	/* check for PPPoE discovery */
8098	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8099}
8100
8101struct block *
8102gen_pppoes(sess_num)
8103	int sess_num;
8104{
8105	struct block *b0, *b1;
8106
8107	/*
8108	 * Test against the PPPoE session link-layer type.
8109	 */
8110	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8111
8112	/* If a specific session is requested, check PPPoE session id */
8113	if (sess_num >= 0) {
8114		b1 = gen_mcmp(OR_LINKPL, 0, BPF_W,
8115		    (bpf_int32)sess_num, 0x0000ffff);
8116		gen_and(b0, b1);
8117		b0 = b1;
8118	}
8119
8120	/*
8121	 * Change the offsets to point to the type and data fields within
8122	 * the PPP packet, and note that this is PPPoE rather than
8123	 * raw PPP.
8124	 *
8125	 * XXX - this is a bit of a kludge.  If we were to split the
8126	 * compiler into a parser that parses an expression and
8127	 * generates an expression tree, and a code generator that
8128	 * takes an expression tree (which could come from our
8129	 * parser or from some other parser) and generates BPF code,
8130	 * we could perhaps make the offsets parameters of routines
8131	 * and, in the handler for an "AND" node, pass to subnodes
8132	 * other than the PPPoE node the adjusted offsets.
8133	 *
8134	 * This would mean that "pppoes" would, instead of changing the
8135	 * behavior of *all* tests after it, change only the behavior
8136	 * of tests ANDed with it.  That would change the documented
8137	 * semantics of "pppoes", which might break some expressions.
8138	 * However, it would mean that "(pppoes and ip) or ip" would check
8139	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8140	 * checking only for VLAN-encapsulated IP, so that could still
8141	 * be considered worth doing; it wouldn't break expressions
8142	 * that are of the form "pppoes and ..." which I suspect are the
8143	 * most common expressions involving "pppoes".  "pppoes or ..."
8144	 * doesn't necessarily do what the user would really want, now,
8145	 * as all the "or ..." tests would be done assuming PPPoE, even
8146	 * though the "or" could be viewed as meaning "or, if this isn't
8147	 * a PPPoE packet...".
8148	 *
8149	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8150	 * PPPoE header, followed by a PPP packet.
8151	 *
8152	 * There is no HDLC encapsulation for the PPP packet (it's
8153	 * encapsulated in PPPoES instead), so the link-layer type
8154	 * starts at the first byte of the PPP packet.  For PPPoE,
8155	 * that offset is relative to the beginning of the total
8156	 * link-layer payload, including any 802.2 LLC header, so
8157	 * it's 6 bytes past off_nl.
8158	 */
8159	PUSH_LINKHDR(DLT_PPP, off_linkpl.is_variable,
8160	    off_linkpl.constant_part + off_nl + 6, /* 6 bytes past the PPPoE header */
8161	    off_linkpl.reg);
8162
8163	off_linktype = off_linkhdr;
8164	off_linkpl.constant_part = off_linkhdr.constant_part + 2;
8165
8166	off_nl = 0;
8167	off_nl_nosnap = 0;	/* no 802.2 LLC */
8168
8169	return b0;
8170}
8171
8172/* Check that this is Geneve and the VNI is correct if
8173 * specified. Parameterized to handle both IPv4 and IPv6. */
8174static struct block *
8175gen_geneve_check(struct block *(*gen_portfn)(int, int, int),
8176		 enum e_offrel offrel, int vni)
8177{
8178	struct block *b0, *b1;
8179
8180	b0 = gen_portfn(GENEVE_PORT, IPPROTO_UDP, Q_DST);
8181
8182	/* Check that we are operating on version 0. Otherwise, we
8183	 * can't decode the rest of the fields. The version is 2 bits
8184	 * in the first byte of the Geneve header. */
8185	b1 = gen_mcmp(offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
8186	gen_and(b0, b1);
8187	b0 = b1;
8188
8189	if (vni >= 0) {
8190		vni <<= 8; /* VNI is in the upper 3 bytes */
8191		b1 = gen_mcmp(offrel, 12, BPF_W, (bpf_int32)vni,
8192			      0xffffff00);
8193		gen_and(b0, b1);
8194		b0 = b1;
8195	}
8196
8197	return b0;
8198}
8199
8200/* The IPv4 and IPv6 Geneve checks need to do two things:
8201 * - Verify that this actually is Geneve with the right VNI.
8202 * - Place the IP header length (plus variable link prefix if
8203 *   needed) into register A to be used later to compute
8204 *   the inner packet offsets. */
8205static struct block *
8206gen_geneve4(int vni)
8207{
8208	struct block *b0, *b1;
8209	struct slist *s, *s1;
8210
8211	b0 = gen_geneve_check(gen_port, OR_TRAN_IPV4, vni);
8212
8213	/* Load the IP header length into A. */
8214	s = gen_loadx_iphdrlen();
8215
8216	s1 = new_stmt(BPF_MISC|BPF_TXA);
8217	sappend(s, s1);
8218
8219	/* Forcibly append these statements to the true condition
8220	 * of the protocol check by creating a new block that is
8221	 * always true and ANDing them. */
8222	b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
8223	b1->stmts = s;
8224	b1->s.k = 0;
8225
8226	gen_and(b0, b1);
8227
8228	return b1;
8229}
8230
8231static struct block *
8232gen_geneve6(int vni)
8233{
8234	struct block *b0, *b1;
8235	struct slist *s, *s1;
8236
8237	b0 = gen_geneve_check(gen_port6, OR_TRAN_IPV6, vni);
8238
8239	/* Load the IP header length. We need to account for a
8240	 * variable length link prefix if there is one. */
8241	s = gen_abs_offset_varpart(&off_linkpl);
8242	if (s) {
8243		s1 = new_stmt(BPF_LD|BPF_IMM);
8244		s1->s.k = 40;
8245		sappend(s, s1);
8246
8247		s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
8248		s1->s.k = 0;
8249		sappend(s, s1);
8250	} else {
8251		s = new_stmt(BPF_LD|BPF_IMM);
8252		s->s.k = 40;;
8253	}
8254
8255	/* Forcibly append these statements to the true condition
8256	 * of the protocol check by creating a new block that is
8257	 * always true and ANDing them. */
8258	s1 = new_stmt(BPF_MISC|BPF_TAX);
8259	sappend(s, s1);
8260
8261	b1 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
8262	b1->stmts = s;
8263	b1->s.k = 0;
8264
8265	gen_and(b0, b1);
8266
8267	return b1;
8268}
8269
8270/* We need to store three values based on the Geneve header::
8271 * - The offset of the linktype.
8272 * - The offset of the end of the Geneve header.
8273 * - The offset of the end of the encapsulated MAC header. */
8274static struct slist *
8275gen_geneve_offsets(void)
8276{
8277	struct slist *s, *s1, *s_proto;
8278
8279	/* First we need to calculate the offset of the Geneve header
8280	 * itself. This is composed of the IP header previously calculated
8281	 * (include any variable link prefix) and stored in A plus the
8282	 * fixed sized headers (fixed link prefix, MAC length, and UDP
8283	 * header). */
8284	s = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8285	s->s.k = off_linkpl.constant_part + off_nl + 8;
8286
8287	/* Stash this in X since we'll need it later. */
8288	s1 = new_stmt(BPF_MISC|BPF_TAX);
8289	sappend(s, s1);
8290
8291	/* The EtherType in Geneve is 2 bytes in. Calculate this and
8292	 * store it. */
8293	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8294	s1->s.k = 2;
8295	sappend(s, s1);
8296
8297	off_linktype.reg = alloc_reg();
8298	off_linktype.is_variable = 1;
8299	off_linktype.constant_part = 0;
8300
8301	s1 = new_stmt(BPF_ST);
8302	s1->s.k = off_linktype.reg;
8303	sappend(s, s1);
8304
8305	/* Load the Geneve option length and mask and shift to get the
8306	 * number of bytes. It is stored in the first byte of the Geneve
8307	 * header. */
8308	s1 = new_stmt(BPF_LD|BPF_IND|BPF_B);
8309	s1->s.k = 0;
8310	sappend(s, s1);
8311
8312	s1 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
8313	s1->s.k = 0x3f;
8314	sappend(s, s1);
8315
8316	s1 = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
8317	s1->s.k = 4;
8318	sappend(s, s1);
8319
8320	/* Add in the rest of the Geneve base header. */
8321	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8322	s1->s.k = 8;
8323	sappend(s, s1);
8324
8325	/* Add the Geneve header length to its offset and store. */
8326	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
8327	s1->s.k = 0;
8328	sappend(s, s1);
8329
8330	/* Set the encapsulated type as Ethernet. Even though we may
8331	 * not actually have Ethernet inside there are two reasons this
8332	 * is useful:
8333	 * - The linktype field is always in EtherType format regardless
8334	 *   of whether it is in Geneve or an inner Ethernet frame.
8335	 * - The only link layer that we have specific support for is
8336	 *   Ethernet. We will confirm that the packet actually is
8337	 *   Ethernet at runtime before executing these checks. */
8338	PUSH_LINKHDR(DLT_EN10MB, 1, 0, alloc_reg());
8339
8340	s1 = new_stmt(BPF_ST);
8341	s1->s.k = off_linkhdr.reg;
8342	sappend(s, s1);
8343
8344	/* Calculate whether we have an Ethernet header or just raw IP/
8345	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8346	 * and linktype by 14 bytes so that the network header can be found
8347	 * seamlessly. Otherwise, keep what we've calculated already. */
8348
8349	/* We have a bare jmp so we can't use the optimizer. */
8350	no_optimize = 1;
8351
8352	/* Load the EtherType in the Geneve header, 2 bytes in. */
8353	s1 = new_stmt(BPF_LD|BPF_IND|BPF_H);
8354	s1->s.k = 2;
8355	sappend(s, s1);
8356
8357	/* Load X with the end of the Geneve header. */
8358	s1 = new_stmt(BPF_LDX|BPF_MEM);
8359	s1->s.k = off_linkhdr.reg;
8360	sappend(s, s1);
8361
8362	/* Check if the EtherType is Transparent Ethernet Bridging. At the
8363	 * end of this check, we should have the total length in X. In
8364	 * the non-Ethernet case, it's already there. */
8365	s_proto = new_stmt(JMP(BPF_JEQ));
8366	s_proto->s.k = ETHERTYPE_TEB;
8367	sappend(s, s_proto);
8368
8369	s1 = new_stmt(BPF_MISC|BPF_TXA);
8370	sappend(s, s1);
8371	s_proto->s.jt = s1;
8372
8373	/* Since this is Ethernet, use the EtherType of the payload
8374	 * directly as the linktype. Overwrite what we already have. */
8375	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8376	s1->s.k = 12;
8377	sappend(s, s1);
8378
8379	s1 = new_stmt(BPF_ST);
8380	s1->s.k = off_linktype.reg;
8381	sappend(s, s1);
8382
8383	/* Advance two bytes further to get the end of the Ethernet
8384	 * header. */
8385	s1 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
8386	s1->s.k = 2;
8387	sappend(s, s1);
8388
8389	/* Move the result to X. */
8390	s1 = new_stmt(BPF_MISC|BPF_TAX);
8391	sappend(s, s1);
8392
8393	/* Store the final result of our linkpl calculation. */
8394	off_linkpl.reg = alloc_reg();
8395	off_linkpl.is_variable = 1;
8396	off_linkpl.constant_part = 0;
8397
8398	s1 = new_stmt(BPF_STX);
8399	s1->s.k = off_linkpl.reg;
8400	sappend(s, s1);
8401	s_proto->s.jf = s1;
8402
8403	off_nl = 0;
8404
8405	return s;
8406}
8407
8408/* Check to see if this is a Geneve packet. */
8409struct block *
8410gen_geneve(int vni)
8411{
8412	struct block *b0, *b1;
8413	struct slist *s;
8414
8415	b0 = gen_geneve4(vni);
8416	b1 = gen_geneve6(vni);
8417
8418	gen_or(b0, b1);
8419	b0 = b1;
8420
8421	/* Later filters should act on the payload of the Geneve frame,
8422	 * update all of the header pointers. Attach this code so that
8423	 * it gets executed in the event that the Geneve filter matches. */
8424	s = gen_geneve_offsets();
8425
8426	b1 = gen_true();
8427	sappend(s, b1->stmts);
8428	b1->stmts = s;
8429
8430	gen_and(b0, b1);
8431
8432	is_geneve = 1;
8433
8434	return b1;
8435}
8436
8437/* Check that the encapsulated frame has a link layer header
8438 * for Ethernet filters. */
8439static struct block *
8440gen_geneve_ll_check()
8441{
8442	struct block *b0;
8443	struct slist *s, *s1;
8444
8445	/* The easiest way to see if there is a link layer present
8446	 * is to check if the link layer header and payload are not
8447	 * the same. */
8448
8449	/* Geneve always generates pure variable offsets so we can
8450	 * compare only the registers. */
8451	s = new_stmt(BPF_LD|BPF_MEM);
8452	s->s.k = off_linkhdr.reg;
8453
8454	s1 = new_stmt(BPF_LDX|BPF_MEM);
8455	s1->s.k = off_linkpl.reg;
8456	sappend(s, s1);
8457
8458	b0 = new_block(BPF_JMP|BPF_JEQ|BPF_X);
8459	b0->stmts = s;
8460	b0->s.k = 0;
8461	gen_not(b0);
8462
8463	return b0;
8464}
8465
8466struct block *
8467gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8468	int atmfield;
8469	bpf_int32 jvalue;
8470	bpf_u_int32 jtype;
8471	int reverse;
8472{
8473	struct block *b0;
8474
8475	switch (atmfield) {
8476
8477	case A_VPI:
8478		if (!is_atm)
8479			bpf_error("'vpi' supported only on raw ATM");
8480		if (off_vpi == (u_int)-1)
8481			abort();
8482		b0 = gen_ncmp(OR_LINKHDR, off_vpi, BPF_B, 0xffffffff, jtype,
8483		    reverse, jvalue);
8484		break;
8485
8486	case A_VCI:
8487		if (!is_atm)
8488			bpf_error("'vci' supported only on raw ATM");
8489		if (off_vci == (u_int)-1)
8490			abort();
8491		b0 = gen_ncmp(OR_LINKHDR, off_vci, BPF_H, 0xffffffff, jtype,
8492		    reverse, jvalue);
8493		break;
8494
8495	case A_PROTOTYPE:
8496		if (off_proto == (u_int)-1)
8497			abort();	/* XXX - this isn't on FreeBSD */
8498		b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0x0f, jtype,
8499		    reverse, jvalue);
8500		break;
8501
8502	case A_MSGTYPE:
8503		if (off_payload == (u_int)-1)
8504			abort();
8505		b0 = gen_ncmp(OR_LINKHDR, off_payload + MSG_TYPE_POS, BPF_B,
8506		    0xffffffff, jtype, reverse, jvalue);
8507		break;
8508
8509	case A_CALLREFTYPE:
8510		if (!is_atm)
8511			bpf_error("'callref' supported only on raw ATM");
8512		if (off_proto == (u_int)-1)
8513			abort();
8514		b0 = gen_ncmp(OR_LINKHDR, off_proto, BPF_B, 0xffffffff,
8515		    jtype, reverse, jvalue);
8516		break;
8517
8518	default:
8519		abort();
8520	}
8521	return b0;
8522}
8523
8524struct block *
8525gen_atmtype_abbrev(type)
8526	int type;
8527{
8528	struct block *b0, *b1;
8529
8530	switch (type) {
8531
8532	case A_METAC:
8533		/* Get all packets in Meta signalling Circuit */
8534		if (!is_atm)
8535			bpf_error("'metac' supported only on raw ATM");
8536		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8537		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8538		gen_and(b0, b1);
8539		break;
8540
8541	case A_BCC:
8542		/* Get all packets in Broadcast Circuit*/
8543		if (!is_atm)
8544			bpf_error("'bcc' supported only on raw ATM");
8545		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8546		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8547		gen_and(b0, b1);
8548		break;
8549
8550	case A_OAMF4SC:
8551		/* Get all cells in Segment OAM F4 circuit*/
8552		if (!is_atm)
8553			bpf_error("'oam4sc' supported only on raw ATM");
8554		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8555		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8556		gen_and(b0, b1);
8557		break;
8558
8559	case A_OAMF4EC:
8560		/* Get all cells in End-to-End OAM F4 Circuit*/
8561		if (!is_atm)
8562			bpf_error("'oam4ec' supported only on raw ATM");
8563		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8564		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8565		gen_and(b0, b1);
8566		break;
8567
8568	case A_SC:
8569		/*  Get all packets in connection Signalling Circuit */
8570		if (!is_atm)
8571			bpf_error("'sc' supported only on raw ATM");
8572		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8573		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8574		gen_and(b0, b1);
8575		break;
8576
8577	case A_ILMIC:
8578		/* Get all packets in ILMI Circuit */
8579		if (!is_atm)
8580			bpf_error("'ilmic' supported only on raw ATM");
8581		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8582		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8583		gen_and(b0, b1);
8584		break;
8585
8586	case A_LANE:
8587		/* Get all LANE packets */
8588		if (!is_atm)
8589			bpf_error("'lane' supported only on raw ATM");
8590		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8591
8592		/*
8593		 * Arrange that all subsequent tests assume LANE
8594		 * rather than LLC-encapsulated packets, and set
8595		 * the offsets appropriately for LANE-encapsulated
8596		 * Ethernet.
8597		 *
8598		 * We assume LANE means Ethernet, not Token Ring.
8599		 */
8600		PUSH_LINKHDR(DLT_EN10MB, 0,
8601		    off_payload + 2,	/* Ethernet header */
8602		    -1);
8603		off_linktype.constant_part = off_linkhdr.constant_part + 12;
8604		off_linkpl.constant_part = off_linkhdr.constant_part + 14;	/* Ethernet */
8605		off_nl = 0;			/* Ethernet II */
8606		off_nl_nosnap = 3;		/* 802.3+802.2 */
8607		break;
8608
8609	case A_LLC:
8610		/* Get all LLC-encapsulated packets */
8611		if (!is_atm)
8612			bpf_error("'llc' supported only on raw ATM");
8613		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8614		linktype = prevlinktype;
8615		break;
8616
8617	default:
8618		abort();
8619	}
8620	return b1;
8621}
8622
8623/*
8624 * Filtering for MTP2 messages based on li value
8625 * FISU, length is null
8626 * LSSU, length is 1 or 2
8627 * MSU, length is 3 or more
8628 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8629 */
8630struct block *
8631gen_mtp2type_abbrev(type)
8632	int type;
8633{
8634	struct block *b0, *b1;
8635
8636	switch (type) {
8637
8638	case M_FISU:
8639		if ( (linktype != DLT_MTP2) &&
8640		     (linktype != DLT_ERF) &&
8641		     (linktype != DLT_MTP2_WITH_PHDR) )
8642			bpf_error("'fisu' supported only on MTP2");
8643		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8644		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8645		break;
8646
8647	case M_LSSU:
8648		if ( (linktype != DLT_MTP2) &&
8649		     (linktype != DLT_ERF) &&
8650		     (linktype != DLT_MTP2_WITH_PHDR) )
8651			bpf_error("'lssu' supported only on MTP2");
8652		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8653		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8654		gen_and(b1, b0);
8655		break;
8656
8657	case M_MSU:
8658		if ( (linktype != DLT_MTP2) &&
8659		     (linktype != DLT_ERF) &&
8660		     (linktype != DLT_MTP2_WITH_PHDR) )
8661			bpf_error("'msu' supported only on MTP2");
8662		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8663		break;
8664
8665	case MH_FISU:
8666		if ( (linktype != DLT_MTP2) &&
8667		     (linktype != DLT_ERF) &&
8668		     (linktype != DLT_MTP2_WITH_PHDR) )
8669			bpf_error("'hfisu' supported only on MTP2_HSL");
8670		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8671		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8672		break;
8673
8674	case MH_LSSU:
8675		if ( (linktype != DLT_MTP2) &&
8676		     (linktype != DLT_ERF) &&
8677		     (linktype != DLT_MTP2_WITH_PHDR) )
8678			bpf_error("'hlssu' supported only on MTP2_HSL");
8679		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8680		b1 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8681		gen_and(b1, b0);
8682		break;
8683
8684	case MH_MSU:
8685		if ( (linktype != DLT_MTP2) &&
8686		     (linktype != DLT_ERF) &&
8687		     (linktype != DLT_MTP2_WITH_PHDR) )
8688			bpf_error("'hmsu' supported only on MTP2_HSL");
8689		b0 = gen_ncmp(OR_PACKET, off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8690		break;
8691
8692	default:
8693		abort();
8694	}
8695	return b0;
8696}
8697
8698struct block *
8699gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8700	int mtp3field;
8701	bpf_u_int32 jvalue;
8702	bpf_u_int32 jtype;
8703	int reverse;
8704{
8705	struct block *b0;
8706	bpf_u_int32 val1 , val2 , val3;
8707	u_int newoff_sio=off_sio;
8708	u_int newoff_opc=off_opc;
8709	u_int newoff_dpc=off_dpc;
8710	u_int newoff_sls=off_sls;
8711
8712	switch (mtp3field) {
8713
8714	case MH_SIO:
8715		newoff_sio += 3; /* offset for MTP2_HSL */
8716		/* FALLTHROUGH */
8717
8718	case M_SIO:
8719		if (off_sio == (u_int)-1)
8720			bpf_error("'sio' supported only on SS7");
8721		/* sio coded on 1 byte so max value 255 */
8722		if(jvalue > 255)
8723		        bpf_error("sio value %u too big; max value = 255",
8724		            jvalue);
8725		b0 = gen_ncmp(OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
8726		    (u_int)jtype, reverse, (u_int)jvalue);
8727		break;
8728
8729	case MH_OPC:
8730		newoff_opc+=3;
8731        case M_OPC:
8732	        if (off_opc == (u_int)-1)
8733			bpf_error("'opc' supported only on SS7");
8734		/* opc coded on 14 bits so max value 16383 */
8735		if (jvalue > 16383)
8736		        bpf_error("opc value %u too big; max value = 16383",
8737		            jvalue);
8738		/* the following instructions are made to convert jvalue
8739		 * to the form used to write opc in an ss7 message*/
8740		val1 = jvalue & 0x00003c00;
8741		val1 = val1 >>10;
8742		val2 = jvalue & 0x000003fc;
8743		val2 = val2 <<6;
8744		val3 = jvalue & 0x00000003;
8745		val3 = val3 <<22;
8746		jvalue = val1 + val2 + val3;
8747		b0 = gen_ncmp(OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
8748		    (u_int)jtype, reverse, (u_int)jvalue);
8749		break;
8750
8751	case MH_DPC:
8752		newoff_dpc += 3;
8753		/* FALLTHROUGH */
8754
8755	case M_DPC:
8756	        if (off_dpc == (u_int)-1)
8757			bpf_error("'dpc' supported only on SS7");
8758		/* dpc coded on 14 bits so max value 16383 */
8759		if (jvalue > 16383)
8760		        bpf_error("dpc value %u too big; max value = 16383",
8761		            jvalue);
8762		/* the following instructions are made to convert jvalue
8763		 * to the forme used to write dpc in an ss7 message*/
8764		val1 = jvalue & 0x000000ff;
8765		val1 = val1 << 24;
8766		val2 = jvalue & 0x00003f00;
8767		val2 = val2 << 8;
8768		jvalue = val1 + val2;
8769		b0 = gen_ncmp(OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
8770		    (u_int)jtype, reverse, (u_int)jvalue);
8771		break;
8772
8773	case MH_SLS:
8774	  newoff_sls+=3;
8775	case M_SLS:
8776	        if (off_sls == (u_int)-1)
8777			bpf_error("'sls' supported only on SS7");
8778		/* sls coded on 4 bits so max value 15 */
8779		if (jvalue > 15)
8780		         bpf_error("sls value %u too big; max value = 15",
8781		             jvalue);
8782		/* the following instruction is made to convert jvalue
8783		 * to the forme used to write sls in an ss7 message*/
8784		jvalue = jvalue << 4;
8785		b0 = gen_ncmp(OR_PACKET, newoff_sls, BPF_B, 0xf0,
8786		    (u_int)jtype,reverse, (u_int)jvalue);
8787		break;
8788
8789	default:
8790		abort();
8791	}
8792	return b0;
8793}
8794
8795static struct block *
8796gen_msg_abbrev(type)
8797	int type;
8798{
8799	struct block *b1;
8800
8801	/*
8802	 * Q.2931 signalling protocol messages for handling virtual circuits
8803	 * establishment and teardown
8804	 */
8805	switch (type) {
8806
8807	case A_SETUP:
8808		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8809		break;
8810
8811	case A_CALLPROCEED:
8812		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8813		break;
8814
8815	case A_CONNECT:
8816		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8817		break;
8818
8819	case A_CONNECTACK:
8820		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8821		break;
8822
8823	case A_RELEASE:
8824		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8825		break;
8826
8827	case A_RELEASE_DONE:
8828		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8829		break;
8830
8831	default:
8832		abort();
8833	}
8834	return b1;
8835}
8836
8837struct block *
8838gen_atmmulti_abbrev(type)
8839	int type;
8840{
8841	struct block *b0, *b1;
8842
8843	switch (type) {
8844
8845	case A_OAM:
8846		if (!is_atm)
8847			bpf_error("'oam' supported only on raw ATM");
8848		b1 = gen_atmmulti_abbrev(A_OAMF4);
8849		break;
8850
8851	case A_OAMF4:
8852		if (!is_atm)
8853			bpf_error("'oamf4' supported only on raw ATM");
8854		/* OAM F4 type */
8855		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8856		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8857		gen_or(b0, b1);
8858		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8859		gen_and(b0, b1);
8860		break;
8861
8862	case A_CONNECTMSG:
8863		/*
8864		 * Get Q.2931 signalling messages for switched
8865		 * virtual connection
8866		 */
8867		if (!is_atm)
8868			bpf_error("'connectmsg' supported only on raw ATM");
8869		b0 = gen_msg_abbrev(A_SETUP);
8870		b1 = gen_msg_abbrev(A_CALLPROCEED);
8871		gen_or(b0, b1);
8872		b0 = gen_msg_abbrev(A_CONNECT);
8873		gen_or(b0, b1);
8874		b0 = gen_msg_abbrev(A_CONNECTACK);
8875		gen_or(b0, b1);
8876		b0 = gen_msg_abbrev(A_RELEASE);
8877		gen_or(b0, b1);
8878		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8879		gen_or(b0, b1);
8880		b0 = gen_atmtype_abbrev(A_SC);
8881		gen_and(b0, b1);
8882		break;
8883
8884	case A_METACONNECT:
8885		if (!is_atm)
8886			bpf_error("'metaconnect' supported only on raw ATM");
8887		b0 = gen_msg_abbrev(A_SETUP);
8888		b1 = gen_msg_abbrev(A_CALLPROCEED);
8889		gen_or(b0, b1);
8890		b0 = gen_msg_abbrev(A_CONNECT);
8891		gen_or(b0, b1);
8892		b0 = gen_msg_abbrev(A_RELEASE);
8893		gen_or(b0, b1);
8894		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8895		gen_or(b0, b1);
8896		b0 = gen_atmtype_abbrev(A_METAC);
8897		gen_and(b0, b1);
8898		break;
8899
8900	default:
8901		abort();
8902	}
8903	return b1;
8904}
8905