1//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a coalescing interval map for small objects.
11//
12// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13// same value are represented in a compressed form.
14//
15// Iterators provide ordered access to the compressed intervals rather than the
16// individual keys, and insert and erase operations use key intervals as well.
17//
18// Like SmallVector, IntervalMap will store the first N intervals in the map
19// object itself without any allocations. When space is exhausted it switches to
20// a B+-tree representation with very small overhead for small key and value
21// objects.
22//
23// A Traits class specifies how keys are compared. It also allows IntervalMap to
24// work with both closed and half-open intervals.
25//
26// Keys and values are not stored next to each other in a std::pair, so we don't
27// provide such a value_type. Dereferencing iterators only returns the mapped
28// value. The interval bounds are accessible through the start() and stop()
29// iterator methods.
30//
31// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32// is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41//   typedef KeyT key_type;
42//   typedef ValT mapped_type;
43//   typedef RecyclingAllocator<...> Allocator;
44//   class iterator;
45//   class const_iterator;
46//
47//   explicit IntervalMap(Allocator&);
48//   ~IntervalMap():
49//
50//   bool empty() const;
51//   KeyT start() const;
52//   KeyT stop() const;
53//   ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55//   const_iterator begin() const;
56//   const_iterator end() const;
57//   iterator begin();
58//   iterator end();
59//   const_iterator find(KeyT x) const;
60//   iterator find(KeyT x);
61//
62//   void insert(KeyT a, KeyT b, ValT y);
63//   void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator :
68//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
69// public:
70//   bool operator==(const const_iterator &) const;
71//   bool operator!=(const const_iterator &) const;
72//   bool valid() const;
73//
74//   const KeyT &start() const;
75//   const KeyT &stop() const;
76//   const ValT &value() const;
77//   const ValT &operator*() const;
78//   const ValT *operator->() const;
79//
80//   const_iterator &operator++();
81//   const_iterator &operator++(int);
82//   const_iterator &operator--();
83//   const_iterator &operator--(int);
84//   void goToBegin();
85//   void goToEnd();
86//   void find(KeyT x);
87//   void advanceTo(KeyT x);
88// };
89//
90// template <typename KeyT, typename ValT, unsigned N, typename Traits>
91// class IntervalMap::iterator : public const_iterator {
92// public:
93//   void insert(KeyT a, KeyT b, Value y);
94//   void erase();
95// };
96//
97//===----------------------------------------------------------------------===//
98
99#ifndef LLVM_ADT_INTERVALMAP_H
100#define LLVM_ADT_INTERVALMAP_H
101
102#include "llvm/ADT/PointerIntPair.h"
103#include "llvm/ADT/SmallVector.h"
104#include "llvm/Support/AlignOf.h"
105#include "llvm/Support/Allocator.h"
106#include "llvm/Support/RecyclingAllocator.h"
107#include <iterator>
108
109namespace llvm {
110
111
112//===----------------------------------------------------------------------===//
113//---                              Key traits                              ---//
114//===----------------------------------------------------------------------===//
115//
116// The IntervalMap works with closed or half-open intervals.
117// Adjacent intervals that map to the same value are coalesced.
118//
119// The IntervalMapInfo traits class is used to determine if a key is contained
120// in an interval, and if two intervals are adjacent so they can be coalesced.
121// The provided implementation works for closed integer intervals, other keys
122// probably need a specialized version.
123//
124// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
125//
126// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
127// allowed. This is so that stopLess(a, b) can be used to determine if two
128// intervals overlap.
129//
130//===----------------------------------------------------------------------===//
131
132template <typename T>
133struct IntervalMapInfo {
134
135  /// startLess - Return true if x is not in [a;b].
136  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
137  static inline bool startLess(const T &x, const T &a) {
138    return x < a;
139  }
140
141  /// stopLess - Return true if x is not in [a;b].
142  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
143  static inline bool stopLess(const T &b, const T &x) {
144    return b < x;
145  }
146
147  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
148  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
149  static inline bool adjacent(const T &a, const T &b) {
150    return a+1 == b;
151  }
152
153};
154
155template <typename T>
156struct IntervalMapHalfOpenInfo {
157
158  /// startLess - Return true if x is not in [a;b).
159  static inline bool startLess(const T &x, const T &a) {
160    return x < a;
161  }
162
163  /// stopLess - Return true if x is not in [a;b).
164  static inline bool stopLess(const T &b, const T &x) {
165    return b <= x;
166  }
167
168  /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
169  static inline bool adjacent(const T &a, const T &b) {
170    return a == b;
171  }
172
173};
174
175/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
176/// It should be considered private to the implementation.
177namespace IntervalMapImpl {
178
179// Forward declarations.
180template <typename, typename, unsigned, typename> class LeafNode;
181template <typename, typename, unsigned, typename> class BranchNode;
182
183typedef std::pair<unsigned,unsigned> IdxPair;
184
185
186//===----------------------------------------------------------------------===//
187//---                    IntervalMapImpl::NodeBase                         ---//
188//===----------------------------------------------------------------------===//
189//
190// Both leaf and branch nodes store vectors of pairs.
191// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
192//
193// Keys and values are stored in separate arrays to avoid padding caused by
194// different object alignments. This also helps improve locality of reference
195// when searching the keys.
196//
197// The nodes don't know how many elements they contain - that information is
198// stored elsewhere. Omitting the size field prevents padding and allows a node
199// to fill the allocated cache lines completely.
200//
201// These are typical key and value sizes, the node branching factor (N), and
202// wasted space when nodes are sized to fit in three cache lines (192 bytes):
203//
204//   T1  T2   N Waste  Used by
205//    4   4  24   0    Branch<4> (32-bit pointers)
206//    8   4  16   0    Leaf<4,4>, Branch<4>
207//    8   8  12   0    Leaf<4,8>, Branch<8>
208//   16   4   9  12    Leaf<8,4>
209//   16   8   8   0    Leaf<8,8>
210//
211//===----------------------------------------------------------------------===//
212
213template <typename T1, typename T2, unsigned N>
214class NodeBase {
215public:
216  enum { Capacity = N };
217
218  T1 first[N];
219  T2 second[N];
220
221  /// copy - Copy elements from another node.
222  /// @param Other Node elements are copied from.
223  /// @param i     Beginning of the source range in other.
224  /// @param j     Beginning of the destination range in this.
225  /// @param Count Number of elements to copy.
226  template <unsigned M>
227  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
228            unsigned j, unsigned Count) {
229    assert(i + Count <= M && "Invalid source range");
230    assert(j + Count <= N && "Invalid dest range");
231    for (unsigned e = i + Count; i != e; ++i, ++j) {
232      first[j]  = Other.first[i];
233      second[j] = Other.second[i];
234    }
235  }
236
237  /// moveLeft - Move elements to the left.
238  /// @param i     Beginning of the source range.
239  /// @param j     Beginning of the destination range.
240  /// @param Count Number of elements to copy.
241  void moveLeft(unsigned i, unsigned j, unsigned Count) {
242    assert(j <= i && "Use moveRight shift elements right");
243    copy(*this, i, j, Count);
244  }
245
246  /// moveRight - Move elements to the right.
247  /// @param i     Beginning of the source range.
248  /// @param j     Beginning of the destination range.
249  /// @param Count Number of elements to copy.
250  void moveRight(unsigned i, unsigned j, unsigned Count) {
251    assert(i <= j && "Use moveLeft shift elements left");
252    assert(j + Count <= N && "Invalid range");
253    while (Count--) {
254      first[j + Count]  = first[i + Count];
255      second[j + Count] = second[i + Count];
256    }
257  }
258
259  /// erase - Erase elements [i;j).
260  /// @param i    Beginning of the range to erase.
261  /// @param j    End of the range. (Exclusive).
262  /// @param Size Number of elements in node.
263  void erase(unsigned i, unsigned j, unsigned Size) {
264    moveLeft(j, i, Size - j);
265  }
266
267  /// erase - Erase element at i.
268  /// @param i    Index of element to erase.
269  /// @param Size Number of elements in node.
270  void erase(unsigned i, unsigned Size) {
271    erase(i, i+1, Size);
272  }
273
274  /// shift - Shift elements [i;size) 1 position to the right.
275  /// @param i    Beginning of the range to move.
276  /// @param Size Number of elements in node.
277  void shift(unsigned i, unsigned Size) {
278    moveRight(i, i + 1, Size - i);
279  }
280
281  /// transferToLeftSib - Transfer elements to a left sibling node.
282  /// @param Size  Number of elements in this.
283  /// @param Sib   Left sibling node.
284  /// @param SSize Number of elements in sib.
285  /// @param Count Number of elements to transfer.
286  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
287                         unsigned Count) {
288    Sib.copy(*this, 0, SSize, Count);
289    erase(0, Count, Size);
290  }
291
292  /// transferToRightSib - Transfer elements to a right sibling node.
293  /// @param Size  Number of elements in this.
294  /// @param Sib   Right sibling node.
295  /// @param SSize Number of elements in sib.
296  /// @param Count Number of elements to transfer.
297  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
298                          unsigned Count) {
299    Sib.moveRight(0, Count, SSize);
300    Sib.copy(*this, Size-Count, 0, Count);
301  }
302
303  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
304  /// elements to or from a left sibling node.
305  /// @param Size  Number of elements in this.
306  /// @param Sib   Right sibling node.
307  /// @param SSize Number of elements in sib.
308  /// @param Add   The number of elements to add to this node, possibly < 0.
309  /// @return      Number of elements added to this node, possibly negative.
310  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
311    if (Add > 0) {
312      // We want to grow, copy from sib.
313      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
314      Sib.transferToRightSib(SSize, *this, Size, Count);
315      return Count;
316    } else {
317      // We want to shrink, copy to sib.
318      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
319      transferToLeftSib(Size, Sib, SSize, Count);
320      return -Count;
321    }
322  }
323};
324
325/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
326/// @param Node  Array of pointers to sibling nodes.
327/// @param Nodes Number of nodes.
328/// @param CurSize Array of current node sizes, will be overwritten.
329/// @param NewSize Array of desired node sizes.
330template <typename NodeT>
331void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
332                        unsigned CurSize[], const unsigned NewSize[]) {
333  // Move elements right.
334  for (int n = Nodes - 1; n; --n) {
335    if (CurSize[n] == NewSize[n])
336      continue;
337    for (int m = n - 1; m != -1; --m) {
338      int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
339                                         NewSize[n] - CurSize[n]);
340      CurSize[m] -= d;
341      CurSize[n] += d;
342      // Keep going if the current node was exhausted.
343      if (CurSize[n] >= NewSize[n])
344          break;
345    }
346  }
347
348  if (Nodes == 0)
349    return;
350
351  // Move elements left.
352  for (unsigned n = 0; n != Nodes - 1; ++n) {
353    if (CurSize[n] == NewSize[n])
354      continue;
355    for (unsigned m = n + 1; m != Nodes; ++m) {
356      int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
357                                        CurSize[n] -  NewSize[n]);
358      CurSize[m] += d;
359      CurSize[n] -= d;
360      // Keep going if the current node was exhausted.
361      if (CurSize[n] >= NewSize[n])
362          break;
363    }
364  }
365
366#ifndef NDEBUG
367  for (unsigned n = 0; n != Nodes; n++)
368    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
369#endif
370}
371
372/// IntervalMapImpl::distribute - Compute a new distribution of node elements
373/// after an overflow or underflow. Reserve space for a new element at Position,
374/// and compute the node that will hold Position after redistributing node
375/// elements.
376///
377/// It is required that
378///
379///   Elements == sum(CurSize), and
380///   Elements + Grow <= Nodes * Capacity.
381///
382/// NewSize[] will be filled in such that:
383///
384///   sum(NewSize) == Elements, and
385///   NewSize[i] <= Capacity.
386///
387/// The returned index is the node where Position will go, so:
388///
389///   sum(NewSize[0..idx-1]) <= Position
390///   sum(NewSize[0..idx])   >= Position
391///
392/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
393/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
394/// before the one holding the Position'th element where there is room for an
395/// insertion.
396///
397/// @param Nodes    The number of nodes.
398/// @param Elements Total elements in all nodes.
399/// @param Capacity The capacity of each node.
400/// @param CurSize  Array[Nodes] of current node sizes, or NULL.
401/// @param NewSize  Array[Nodes] to receive the new node sizes.
402/// @param Position Insert position.
403/// @param Grow     Reserve space for a new element at Position.
404/// @return         (node, offset) for Position.
405IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
406                   const unsigned *CurSize, unsigned NewSize[],
407                   unsigned Position, bool Grow);
408
409
410//===----------------------------------------------------------------------===//
411//---                   IntervalMapImpl::NodeSizer                         ---//
412//===----------------------------------------------------------------------===//
413//
414// Compute node sizes from key and value types.
415//
416// The branching factors are chosen to make nodes fit in three cache lines.
417// This may not be possible if keys or values are very large. Such large objects
418// are handled correctly, but a std::map would probably give better performance.
419//
420//===----------------------------------------------------------------------===//
421
422enum {
423  // Cache line size. Most architectures have 32 or 64 byte cache lines.
424  // We use 64 bytes here because it provides good branching factors.
425  Log2CacheLine = 6,
426  CacheLineBytes = 1 << Log2CacheLine,
427  DesiredNodeBytes = 3 * CacheLineBytes
428};
429
430template <typename KeyT, typename ValT>
431struct NodeSizer {
432  enum {
433    // Compute the leaf node branching factor that makes a node fit in three
434    // cache lines. The branching factor must be at least 3, or some B+-tree
435    // balancing algorithms won't work.
436    // LeafSize can't be larger than CacheLineBytes. This is required by the
437    // PointerIntPair used by NodeRef.
438    DesiredLeafSize = DesiredNodeBytes /
439      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
440    MinLeafSize = 3,
441    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
442  };
443
444  typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
445
446  enum {
447    // Now that we have the leaf branching factor, compute the actual allocation
448    // unit size by rounding up to a whole number of cache lines.
449    AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
450
451    // Determine the branching factor for branch nodes.
452    BranchSize = AllocBytes /
453      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
454  };
455
456  /// Allocator - The recycling allocator used for both branch and leaf nodes.
457  /// This typedef is very likely to be identical for all IntervalMaps with
458  /// reasonably sized entries, so the same allocator can be shared among
459  /// different kinds of maps.
460  typedef RecyclingAllocator<BumpPtrAllocator, char,
461                             AllocBytes, CacheLineBytes> Allocator;
462
463};
464
465
466//===----------------------------------------------------------------------===//
467//---                     IntervalMapImpl::NodeRef                         ---//
468//===----------------------------------------------------------------------===//
469//
470// B+-tree nodes can be leaves or branches, so we need a polymorphic node
471// pointer that can point to both kinds.
472//
473// All nodes are cache line aligned and the low 6 bits of a node pointer are
474// always 0. These bits are used to store the number of elements in the
475// referenced node. Besides saving space, placing node sizes in the parents
476// allow tree balancing algorithms to run without faulting cache lines for nodes
477// that may not need to be modified.
478//
479// A NodeRef doesn't know whether it references a leaf node or a branch node.
480// It is the responsibility of the caller to use the correct types.
481//
482// Nodes are never supposed to be empty, and it is invalid to store a node size
483// of 0 in a NodeRef. The valid range of sizes is 1-64.
484//
485//===----------------------------------------------------------------------===//
486
487class NodeRef {
488  struct CacheAlignedPointerTraits {
489    static inline void *getAsVoidPointer(void *P) { return P; }
490    static inline void *getFromVoidPointer(void *P) { return P; }
491    enum { NumLowBitsAvailable = Log2CacheLine };
492  };
493  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
494
495public:
496  /// NodeRef - Create a null ref.
497  NodeRef() {}
498
499  /// operator bool - Detect a null ref.
500  explicit operator bool() const { return pip.getOpaqueValue(); }
501
502  /// NodeRef - Create a reference to the node p with n elements.
503  template <typename NodeT>
504  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
505    assert(n <= NodeT::Capacity && "Size too big for node");
506  }
507
508  /// size - Return the number of elements in the referenced node.
509  unsigned size() const { return pip.getInt() + 1; }
510
511  /// setSize - Update the node size.
512  void setSize(unsigned n) { pip.setInt(n - 1); }
513
514  /// subtree - Access the i'th subtree reference in a branch node.
515  /// This depends on branch nodes storing the NodeRef array as their first
516  /// member.
517  NodeRef &subtree(unsigned i) const {
518    return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
519  }
520
521  /// get - Dereference as a NodeT reference.
522  template <typename NodeT>
523  NodeT &get() const {
524    return *reinterpret_cast<NodeT*>(pip.getPointer());
525  }
526
527  bool operator==(const NodeRef &RHS) const {
528    if (pip == RHS.pip)
529      return true;
530    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
531    return false;
532  }
533
534  bool operator!=(const NodeRef &RHS) const {
535    return !operator==(RHS);
536  }
537};
538
539//===----------------------------------------------------------------------===//
540//---                      IntervalMapImpl::LeafNode                       ---//
541//===----------------------------------------------------------------------===//
542//
543// Leaf nodes store up to N disjoint intervals with corresponding values.
544//
545// The intervals are kept sorted and fully coalesced so there are no adjacent
546// intervals mapping to the same value.
547//
548// These constraints are always satisfied:
549//
550// - Traits::stopLess(start(i), stop(i))    - Non-empty, sane intervals.
551//
552// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
553//
554// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
555//                                          - Fully coalesced.
556//
557//===----------------------------------------------------------------------===//
558
559template <typename KeyT, typename ValT, unsigned N, typename Traits>
560class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
561public:
562  const KeyT &start(unsigned i) const { return this->first[i].first; }
563  const KeyT &stop(unsigned i) const { return this->first[i].second; }
564  const ValT &value(unsigned i) const { return this->second[i]; }
565
566  KeyT &start(unsigned i) { return this->first[i].first; }
567  KeyT &stop(unsigned i) { return this->first[i].second; }
568  ValT &value(unsigned i) { return this->second[i]; }
569
570  /// findFrom - Find the first interval after i that may contain x.
571  /// @param i    Starting index for the search.
572  /// @param Size Number of elements in node.
573  /// @param x    Key to search for.
574  /// @return     First index with !stopLess(key[i].stop, x), or size.
575  ///             This is the first interval that can possibly contain x.
576  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
577    assert(i <= Size && Size <= N && "Bad indices");
578    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
579           "Index is past the needed point");
580    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
581    return i;
582  }
583
584  /// safeFind - Find an interval that is known to exist. This is the same as
585  /// findFrom except is it assumed that x is at least within range of the last
586  /// interval.
587  /// @param i Starting index for the search.
588  /// @param x Key to search for.
589  /// @return  First index with !stopLess(key[i].stop, x), never size.
590  ///          This is the first interval that can possibly contain x.
591  unsigned safeFind(unsigned i, KeyT x) const {
592    assert(i < N && "Bad index");
593    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
594           "Index is past the needed point");
595    while (Traits::stopLess(stop(i), x)) ++i;
596    assert(i < N && "Unsafe intervals");
597    return i;
598  }
599
600  /// safeLookup - Lookup mapped value for a safe key.
601  /// It is assumed that x is within range of the last entry.
602  /// @param x        Key to search for.
603  /// @param NotFound Value to return if x is not in any interval.
604  /// @return         The mapped value at x or NotFound.
605  ValT safeLookup(KeyT x, ValT NotFound) const {
606    unsigned i = safeFind(0, x);
607    return Traits::startLess(x, start(i)) ? NotFound : value(i);
608  }
609
610  unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
611};
612
613/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
614/// possible. This may cause the node to grow by 1, or it may cause the node
615/// to shrink because of coalescing.
616/// @param Pos  Starting index = insertFrom(0, size, a)
617/// @param Size Number of elements in node.
618/// @param a    Interval start.
619/// @param b    Interval stop.
620/// @param y    Value be mapped.
621/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
622template <typename KeyT, typename ValT, unsigned N, typename Traits>
623unsigned LeafNode<KeyT, ValT, N, Traits>::
624insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
625  unsigned i = Pos;
626  assert(i <= Size && Size <= N && "Invalid index");
627  assert(!Traits::stopLess(b, a) && "Invalid interval");
628
629  // Verify the findFrom invariant.
630  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
631  assert((i == Size || !Traits::stopLess(stop(i), a)));
632  assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
633
634  // Coalesce with previous interval.
635  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
636    Pos = i - 1;
637    // Also coalesce with next interval?
638    if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
639      stop(i - 1) = stop(i);
640      this->erase(i, Size);
641      return Size - 1;
642    }
643    stop(i - 1) = b;
644    return Size;
645  }
646
647  // Detect overflow.
648  if (i == N)
649    return N + 1;
650
651  // Add new interval at end.
652  if (i == Size) {
653    start(i) = a;
654    stop(i) = b;
655    value(i) = y;
656    return Size + 1;
657  }
658
659  // Try to coalesce with following interval.
660  if (value(i) == y && Traits::adjacent(b, start(i))) {
661    start(i) = a;
662    return Size;
663  }
664
665  // We must insert before i. Detect overflow.
666  if (Size == N)
667    return N + 1;
668
669  // Insert before i.
670  this->shift(i, Size);
671  start(i) = a;
672  stop(i) = b;
673  value(i) = y;
674  return Size + 1;
675}
676
677
678//===----------------------------------------------------------------------===//
679//---                   IntervalMapImpl::BranchNode                        ---//
680//===----------------------------------------------------------------------===//
681//
682// A branch node stores references to 1--N subtrees all of the same height.
683//
684// The key array in a branch node holds the rightmost stop key of each subtree.
685// It is redundant to store the last stop key since it can be found in the
686// parent node, but doing so makes tree balancing a lot simpler.
687//
688// It is unusual for a branch node to only have one subtree, but it can happen
689// in the root node if it is smaller than the normal nodes.
690//
691// When all of the leaf nodes from all the subtrees are concatenated, they must
692// satisfy the same constraints as a single leaf node. They must be sorted,
693// sane, and fully coalesced.
694//
695//===----------------------------------------------------------------------===//
696
697template <typename KeyT, typename ValT, unsigned N, typename Traits>
698class BranchNode : public NodeBase<NodeRef, KeyT, N> {
699public:
700  const KeyT &stop(unsigned i) const { return this->second[i]; }
701  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
702
703  KeyT &stop(unsigned i) { return this->second[i]; }
704  NodeRef &subtree(unsigned i) { return this->first[i]; }
705
706  /// findFrom - Find the first subtree after i that may contain x.
707  /// @param i    Starting index for the search.
708  /// @param Size Number of elements in node.
709  /// @param x    Key to search for.
710  /// @return     First index with !stopLess(key[i], x), or size.
711  ///             This is the first subtree that can possibly contain x.
712  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
713    assert(i <= Size && Size <= N && "Bad indices");
714    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
715           "Index to findFrom is past the needed point");
716    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
717    return i;
718  }
719
720  /// safeFind - Find a subtree that is known to exist. This is the same as
721  /// findFrom except is it assumed that x is in range.
722  /// @param i Starting index for the search.
723  /// @param x Key to search for.
724  /// @return  First index with !stopLess(key[i], x), never size.
725  ///          This is the first subtree that can possibly contain x.
726  unsigned safeFind(unsigned i, KeyT x) const {
727    assert(i < N && "Bad index");
728    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
729           "Index is past the needed point");
730    while (Traits::stopLess(stop(i), x)) ++i;
731    assert(i < N && "Unsafe intervals");
732    return i;
733  }
734
735  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
736  /// @param x Key to search for.
737  /// @return  Subtree containing x
738  NodeRef safeLookup(KeyT x) const {
739    return subtree(safeFind(0, x));
740  }
741
742  /// insert - Insert a new (subtree, stop) pair.
743  /// @param i    Insert position, following entries will be shifted.
744  /// @param Size Number of elements in node.
745  /// @param Node Subtree to insert.
746  /// @param Stop Last key in subtree.
747  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
748    assert(Size < N && "branch node overflow");
749    assert(i <= Size && "Bad insert position");
750    this->shift(i, Size);
751    subtree(i) = Node;
752    stop(i) = Stop;
753  }
754};
755
756//===----------------------------------------------------------------------===//
757//---                         IntervalMapImpl::Path                        ---//
758//===----------------------------------------------------------------------===//
759//
760// A Path is used by iterators to represent a position in a B+-tree, and the
761// path to get there from the root.
762//
763// The Path class also contains the tree navigation code that doesn't have to
764// be templatized.
765//
766//===----------------------------------------------------------------------===//
767
768class Path {
769  /// Entry - Each step in the path is a node pointer and an offset into that
770  /// node.
771  struct Entry {
772    void *node;
773    unsigned size;
774    unsigned offset;
775
776    Entry(void *Node, unsigned Size, unsigned Offset)
777      : node(Node), size(Size), offset(Offset) {}
778
779    Entry(NodeRef Node, unsigned Offset)
780      : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
781
782    NodeRef &subtree(unsigned i) const {
783      return reinterpret_cast<NodeRef*>(node)[i];
784    }
785  };
786
787  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
788  SmallVector<Entry, 4> path;
789
790public:
791  // Node accessors.
792  template <typename NodeT> NodeT &node(unsigned Level) const {
793    return *reinterpret_cast<NodeT*>(path[Level].node);
794  }
795  unsigned size(unsigned Level) const { return path[Level].size; }
796  unsigned offset(unsigned Level) const { return path[Level].offset; }
797  unsigned &offset(unsigned Level) { return path[Level].offset; }
798
799  // Leaf accessors.
800  template <typename NodeT> NodeT &leaf() const {
801    return *reinterpret_cast<NodeT*>(path.back().node);
802  }
803  unsigned leafSize() const { return path.back().size; }
804  unsigned leafOffset() const { return path.back().offset; }
805  unsigned &leafOffset() { return path.back().offset; }
806
807  /// valid - Return true if path is at a valid node, not at end().
808  bool valid() const {
809    return !path.empty() && path.front().offset < path.front().size;
810  }
811
812  /// height - Return the height of the tree corresponding to this path.
813  /// This matches map->height in a full path.
814  unsigned height() const { return path.size() - 1; }
815
816  /// subtree - Get the subtree referenced from Level. When the path is
817  /// consistent, node(Level + 1) == subtree(Level).
818  /// @param Level 0..height-1. The leaves have no subtrees.
819  NodeRef &subtree(unsigned Level) const {
820    return path[Level].subtree(path[Level].offset);
821  }
822
823  /// reset - Reset cached information about node(Level) from subtree(Level -1).
824  /// @param Level 1..height. THe node to update after parent node changed.
825  void reset(unsigned Level) {
826    path[Level] = Entry(subtree(Level - 1), offset(Level));
827  }
828
829  /// push - Add entry to path.
830  /// @param Node Node to add, should be subtree(path.size()-1).
831  /// @param Offset Offset into Node.
832  void push(NodeRef Node, unsigned Offset) {
833    path.push_back(Entry(Node, Offset));
834  }
835
836  /// pop - Remove the last path entry.
837  void pop() {
838    path.pop_back();
839  }
840
841  /// setSize - Set the size of a node both in the path and in the tree.
842  /// @param Level 0..height. Note that setting the root size won't change
843  ///              map->rootSize.
844  /// @param Size New node size.
845  void setSize(unsigned Level, unsigned Size) {
846    path[Level].size = Size;
847    if (Level)
848      subtree(Level - 1).setSize(Size);
849  }
850
851  /// setRoot - Clear the path and set a new root node.
852  /// @param Node New root node.
853  /// @param Size New root size.
854  /// @param Offset Offset into root node.
855  void setRoot(void *Node, unsigned Size, unsigned Offset) {
856    path.clear();
857    path.push_back(Entry(Node, Size, Offset));
858  }
859
860  /// replaceRoot - Replace the current root node with two new entries after the
861  /// tree height has increased.
862  /// @param Root The new root node.
863  /// @param Size Number of entries in the new root.
864  /// @param Offsets Offsets into the root and first branch nodes.
865  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
866
867  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
868  /// @param Level Get the sibling to node(Level).
869  /// @return Left sibling, or NodeRef().
870  NodeRef getLeftSibling(unsigned Level) const;
871
872  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
873  /// unaltered.
874  /// @param Level Move node(Level).
875  void moveLeft(unsigned Level);
876
877  /// fillLeft - Grow path to Height by taking leftmost branches.
878  /// @param Height The target height.
879  void fillLeft(unsigned Height) {
880    while (height() < Height)
881      push(subtree(height()), 0);
882  }
883
884  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
885  /// @param Level Get the sinbling to node(Level).
886  /// @return Left sibling, or NodeRef().
887  NodeRef getRightSibling(unsigned Level) const;
888
889  /// moveRight - Move path to the left sibling at Level. Leave nodes below
890  /// Level unaltered.
891  /// @param Level Move node(Level).
892  void moveRight(unsigned Level);
893
894  /// atBegin - Return true if path is at begin().
895  bool atBegin() const {
896    for (unsigned i = 0, e = path.size(); i != e; ++i)
897      if (path[i].offset != 0)
898        return false;
899    return true;
900  }
901
902  /// atLastEntry - Return true if the path is at the last entry of the node at
903  /// Level.
904  /// @param Level Node to examine.
905  bool atLastEntry(unsigned Level) const {
906    return path[Level].offset == path[Level].size - 1;
907  }
908
909  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
910  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
911  /// ensures that node(Level) is real by moving back to the last node at Level,
912  /// and setting offset(Level) to size(Level) if required.
913  /// @param Level The level where an insertion is about to take place.
914  void legalizeForInsert(unsigned Level) {
915    if (valid())
916      return;
917    moveLeft(Level);
918    ++path[Level].offset;
919  }
920};
921
922} // namespace IntervalMapImpl
923
924
925//===----------------------------------------------------------------------===//
926//---                          IntervalMap                                ----//
927//===----------------------------------------------------------------------===//
928
929template <typename KeyT, typename ValT,
930          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
931          typename Traits = IntervalMapInfo<KeyT> >
932class IntervalMap {
933  typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
934  typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
935  typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
936    Branch;
937  typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
938  typedef IntervalMapImpl::IdxPair IdxPair;
939
940  // The RootLeaf capacity is given as a template parameter. We must compute the
941  // corresponding RootBranch capacity.
942  enum {
943    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
944      (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
945    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
946  };
947
948  typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
949    RootBranch;
950
951  // When branched, we store a global start key as well as the branch node.
952  struct RootBranchData {
953    KeyT start;
954    RootBranch node;
955  };
956
957public:
958  typedef typename Sizer::Allocator Allocator;
959  typedef KeyT KeyType;
960  typedef ValT ValueType;
961  typedef Traits KeyTraits;
962
963private:
964  // The root data is either a RootLeaf or a RootBranchData instance.
965  AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
966
967  // Tree height.
968  // 0: Leaves in root.
969  // 1: Root points to leaf.
970  // 2: root->branch->leaf ...
971  unsigned height;
972
973  // Number of entries in the root node.
974  unsigned rootSize;
975
976  // Allocator used for creating external nodes.
977  Allocator &allocator;
978
979  /// dataAs - Represent data as a node type without breaking aliasing rules.
980  template <typename T>
981  T &dataAs() const {
982    union {
983      const char *d;
984      T *t;
985    } u;
986    u.d = data.buffer;
987    return *u.t;
988  }
989
990  const RootLeaf &rootLeaf() const {
991    assert(!branched() && "Cannot acces leaf data in branched root");
992    return dataAs<RootLeaf>();
993  }
994  RootLeaf &rootLeaf() {
995    assert(!branched() && "Cannot acces leaf data in branched root");
996    return dataAs<RootLeaf>();
997  }
998  RootBranchData &rootBranchData() const {
999    assert(branched() && "Cannot access branch data in non-branched root");
1000    return dataAs<RootBranchData>();
1001  }
1002  RootBranchData &rootBranchData() {
1003    assert(branched() && "Cannot access branch data in non-branched root");
1004    return dataAs<RootBranchData>();
1005  }
1006  const RootBranch &rootBranch() const { return rootBranchData().node; }
1007  RootBranch &rootBranch()             { return rootBranchData().node; }
1008  KeyT rootBranchStart() const { return rootBranchData().start; }
1009  KeyT &rootBranchStart()      { return rootBranchData().start; }
1010
1011  template <typename NodeT> NodeT *newNode() {
1012    return new(allocator.template Allocate<NodeT>()) NodeT();
1013  }
1014
1015  template <typename NodeT> void deleteNode(NodeT *P) {
1016    P->~NodeT();
1017    allocator.Deallocate(P);
1018  }
1019
1020  IdxPair branchRoot(unsigned Position);
1021  IdxPair splitRoot(unsigned Position);
1022
1023  void switchRootToBranch() {
1024    rootLeaf().~RootLeaf();
1025    height = 1;
1026    new (&rootBranchData()) RootBranchData();
1027  }
1028
1029  void switchRootToLeaf() {
1030    rootBranchData().~RootBranchData();
1031    height = 0;
1032    new(&rootLeaf()) RootLeaf();
1033  }
1034
1035  bool branched() const { return height > 0; }
1036
1037  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1038  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1039                  unsigned Level));
1040  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1041
1042public:
1043  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1044    assert((uintptr_t(data.buffer) & (alignOf<RootLeaf>() - 1)) == 0 &&
1045           "Insufficient alignment");
1046    new(&rootLeaf()) RootLeaf();
1047  }
1048
1049  ~IntervalMap() {
1050    clear();
1051    rootLeaf().~RootLeaf();
1052  }
1053
1054  /// empty -  Return true when no intervals are mapped.
1055  bool empty() const {
1056    return rootSize == 0;
1057  }
1058
1059  /// start - Return the smallest mapped key in a non-empty map.
1060  KeyT start() const {
1061    assert(!empty() && "Empty IntervalMap has no start");
1062    return !branched() ? rootLeaf().start(0) : rootBranchStart();
1063  }
1064
1065  /// stop - Return the largest mapped key in a non-empty map.
1066  KeyT stop() const {
1067    assert(!empty() && "Empty IntervalMap has no stop");
1068    return !branched() ? rootLeaf().stop(rootSize - 1) :
1069                         rootBranch().stop(rootSize - 1);
1070  }
1071
1072  /// lookup - Return the mapped value at x or NotFound.
1073  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1074    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1075      return NotFound;
1076    return branched() ? treeSafeLookup(x, NotFound) :
1077                        rootLeaf().safeLookup(x, NotFound);
1078  }
1079
1080  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1081  /// It is assumed that no key in the interval is mapped to another value, but
1082  /// overlapping intervals already mapped to y will be coalesced.
1083  void insert(KeyT a, KeyT b, ValT y) {
1084    if (branched() || rootSize == RootLeaf::Capacity)
1085      return find(a).insert(a, b, y);
1086
1087    // Easy insert into root leaf.
1088    unsigned p = rootLeaf().findFrom(0, rootSize, a);
1089    rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1090  }
1091
1092  /// clear - Remove all entries.
1093  void clear();
1094
1095  class const_iterator;
1096  class iterator;
1097  friend class const_iterator;
1098  friend class iterator;
1099
1100  const_iterator begin() const {
1101    const_iterator I(*this);
1102    I.goToBegin();
1103    return I;
1104  }
1105
1106  iterator begin() {
1107    iterator I(*this);
1108    I.goToBegin();
1109    return I;
1110  }
1111
1112  const_iterator end() const {
1113    const_iterator I(*this);
1114    I.goToEnd();
1115    return I;
1116  }
1117
1118  iterator end() {
1119    iterator I(*this);
1120    I.goToEnd();
1121    return I;
1122  }
1123
1124  /// find - Return an iterator pointing to the first interval ending at or
1125  /// after x, or end().
1126  const_iterator find(KeyT x) const {
1127    const_iterator I(*this);
1128    I.find(x);
1129    return I;
1130  }
1131
1132  iterator find(KeyT x) {
1133    iterator I(*this);
1134    I.find(x);
1135    return I;
1136  }
1137};
1138
1139/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1140/// branched root.
1141template <typename KeyT, typename ValT, unsigned N, typename Traits>
1142ValT IntervalMap<KeyT, ValT, N, Traits>::
1143treeSafeLookup(KeyT x, ValT NotFound) const {
1144  assert(branched() && "treeLookup assumes a branched root");
1145
1146  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1147  for (unsigned h = height-1; h; --h)
1148    NR = NR.get<Branch>().safeLookup(x);
1149  return NR.get<Leaf>().safeLookup(x, NotFound);
1150}
1151
1152
1153// branchRoot - Switch from a leaf root to a branched root.
1154// Return the new (root offset, node offset) corresponding to Position.
1155template <typename KeyT, typename ValT, unsigned N, typename Traits>
1156IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1157branchRoot(unsigned Position) {
1158  using namespace IntervalMapImpl;
1159  // How many external leaf nodes to hold RootLeaf+1?
1160  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1161
1162  // Compute element distribution among new nodes.
1163  unsigned size[Nodes];
1164  IdxPair NewOffset(0, Position);
1165
1166  // Is is very common for the root node to be smaller than external nodes.
1167  if (Nodes == 1)
1168    size[0] = rootSize;
1169  else
1170    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, size,
1171                           Position, true);
1172
1173  // Allocate new nodes.
1174  unsigned pos = 0;
1175  NodeRef node[Nodes];
1176  for (unsigned n = 0; n != Nodes; ++n) {
1177    Leaf *L = newNode<Leaf>();
1178    L->copy(rootLeaf(), pos, 0, size[n]);
1179    node[n] = NodeRef(L, size[n]);
1180    pos += size[n];
1181  }
1182
1183  // Destroy the old leaf node, construct branch node instead.
1184  switchRootToBranch();
1185  for (unsigned n = 0; n != Nodes; ++n) {
1186    rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1187    rootBranch().subtree(n) = node[n];
1188  }
1189  rootBranchStart() = node[0].template get<Leaf>().start(0);
1190  rootSize = Nodes;
1191  return NewOffset;
1192}
1193
1194// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1195// Return the new (root offset, node offset) corresponding to Position.
1196template <typename KeyT, typename ValT, unsigned N, typename Traits>
1197IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1198splitRoot(unsigned Position) {
1199  using namespace IntervalMapImpl;
1200  // How many external leaf nodes to hold RootBranch+1?
1201  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1202
1203  // Compute element distribution among new nodes.
1204  unsigned Size[Nodes];
1205  IdxPair NewOffset(0, Position);
1206
1207  // Is is very common for the root node to be smaller than external nodes.
1208  if (Nodes == 1)
1209    Size[0] = rootSize;
1210  else
1211    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  nullptr, Size,
1212                           Position, true);
1213
1214  // Allocate new nodes.
1215  unsigned Pos = 0;
1216  NodeRef Node[Nodes];
1217  for (unsigned n = 0; n != Nodes; ++n) {
1218    Branch *B = newNode<Branch>();
1219    B->copy(rootBranch(), Pos, 0, Size[n]);
1220    Node[n] = NodeRef(B, Size[n]);
1221    Pos += Size[n];
1222  }
1223
1224  for (unsigned n = 0; n != Nodes; ++n) {
1225    rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1226    rootBranch().subtree(n) = Node[n];
1227  }
1228  rootSize = Nodes;
1229  ++height;
1230  return NewOffset;
1231}
1232
1233/// visitNodes - Visit each external node.
1234template <typename KeyT, typename ValT, unsigned N, typename Traits>
1235void IntervalMap<KeyT, ValT, N, Traits>::
1236visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1237  if (!branched())
1238    return;
1239  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1240
1241  // Collect level 0 nodes from the root.
1242  for (unsigned i = 0; i != rootSize; ++i)
1243    Refs.push_back(rootBranch().subtree(i));
1244
1245  // Visit all branch nodes.
1246  for (unsigned h = height - 1; h; --h) {
1247    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1248      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1249        NextRefs.push_back(Refs[i].subtree(j));
1250      (this->*f)(Refs[i], h);
1251    }
1252    Refs.clear();
1253    Refs.swap(NextRefs);
1254  }
1255
1256  // Visit all leaf nodes.
1257  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1258    (this->*f)(Refs[i], 0);
1259}
1260
1261template <typename KeyT, typename ValT, unsigned N, typename Traits>
1262void IntervalMap<KeyT, ValT, N, Traits>::
1263deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1264  if (Level)
1265    deleteNode(&Node.get<Branch>());
1266  else
1267    deleteNode(&Node.get<Leaf>());
1268}
1269
1270template <typename KeyT, typename ValT, unsigned N, typename Traits>
1271void IntervalMap<KeyT, ValT, N, Traits>::
1272clear() {
1273  if (branched()) {
1274    visitNodes(&IntervalMap::deleteNode);
1275    switchRootToLeaf();
1276  }
1277  rootSize = 0;
1278}
1279
1280//===----------------------------------------------------------------------===//
1281//---                   IntervalMap::const_iterator                       ----//
1282//===----------------------------------------------------------------------===//
1283
1284template <typename KeyT, typename ValT, unsigned N, typename Traits>
1285class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1286  public std::iterator<std::bidirectional_iterator_tag, ValT> {
1287protected:
1288  friend class IntervalMap;
1289
1290  // The map referred to.
1291  IntervalMap *map;
1292
1293  // We store a full path from the root to the current position.
1294  // The path may be partially filled, but never between iterator calls.
1295  IntervalMapImpl::Path path;
1296
1297  explicit const_iterator(const IntervalMap &map) :
1298    map(const_cast<IntervalMap*>(&map)) {}
1299
1300  bool branched() const {
1301    assert(map && "Invalid iterator");
1302    return map->branched();
1303  }
1304
1305  void setRoot(unsigned Offset) {
1306    if (branched())
1307      path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1308    else
1309      path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1310  }
1311
1312  void pathFillFind(KeyT x);
1313  void treeFind(KeyT x);
1314  void treeAdvanceTo(KeyT x);
1315
1316  /// unsafeStart - Writable access to start() for iterator.
1317  KeyT &unsafeStart() const {
1318    assert(valid() && "Cannot access invalid iterator");
1319    return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1320                        path.leaf<RootLeaf>().start(path.leafOffset());
1321  }
1322
1323  /// unsafeStop - Writable access to stop() for iterator.
1324  KeyT &unsafeStop() const {
1325    assert(valid() && "Cannot access invalid iterator");
1326    return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1327                        path.leaf<RootLeaf>().stop(path.leafOffset());
1328  }
1329
1330  /// unsafeValue - Writable access to value() for iterator.
1331  ValT &unsafeValue() const {
1332    assert(valid() && "Cannot access invalid iterator");
1333    return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1334                        path.leaf<RootLeaf>().value(path.leafOffset());
1335  }
1336
1337public:
1338  /// const_iterator - Create an iterator that isn't pointing anywhere.
1339  const_iterator() : map(nullptr) {}
1340
1341  /// setMap - Change the map iterated over. This call must be followed by a
1342  /// call to goToBegin(), goToEnd(), or find()
1343  void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1344
1345  /// valid - Return true if the current position is valid, false for end().
1346  bool valid() const { return path.valid(); }
1347
1348  /// atBegin - Return true if the current position is the first map entry.
1349  bool atBegin() const { return path.atBegin(); }
1350
1351  /// start - Return the beginning of the current interval.
1352  const KeyT &start() const { return unsafeStart(); }
1353
1354  /// stop - Return the end of the current interval.
1355  const KeyT &stop() const { return unsafeStop(); }
1356
1357  /// value - Return the mapped value at the current interval.
1358  const ValT &value() const { return unsafeValue(); }
1359
1360  const ValT &operator*() const { return value(); }
1361
1362  bool operator==(const const_iterator &RHS) const {
1363    assert(map == RHS.map && "Cannot compare iterators from different maps");
1364    if (!valid())
1365      return !RHS.valid();
1366    if (path.leafOffset() != RHS.path.leafOffset())
1367      return false;
1368    return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1369  }
1370
1371  bool operator!=(const const_iterator &RHS) const {
1372    return !operator==(RHS);
1373  }
1374
1375  /// goToBegin - Move to the first interval in map.
1376  void goToBegin() {
1377    setRoot(0);
1378    if (branched())
1379      path.fillLeft(map->height);
1380  }
1381
1382  /// goToEnd - Move beyond the last interval in map.
1383  void goToEnd() {
1384    setRoot(map->rootSize);
1385  }
1386
1387  /// preincrement - move to the next interval.
1388  const_iterator &operator++() {
1389    assert(valid() && "Cannot increment end()");
1390    if (++path.leafOffset() == path.leafSize() && branched())
1391      path.moveRight(map->height);
1392    return *this;
1393  }
1394
1395  /// postincrement - Dont do that!
1396  const_iterator operator++(int) {
1397    const_iterator tmp = *this;
1398    operator++();
1399    return tmp;
1400  }
1401
1402  /// predecrement - move to the previous interval.
1403  const_iterator &operator--() {
1404    if (path.leafOffset() && (valid() || !branched()))
1405      --path.leafOffset();
1406    else
1407      path.moveLeft(map->height);
1408    return *this;
1409  }
1410
1411  /// postdecrement - Dont do that!
1412  const_iterator operator--(int) {
1413    const_iterator tmp = *this;
1414    operator--();
1415    return tmp;
1416  }
1417
1418  /// find - Move to the first interval with stop >= x, or end().
1419  /// This is a full search from the root, the current position is ignored.
1420  void find(KeyT x) {
1421    if (branched())
1422      treeFind(x);
1423    else
1424      setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1425  }
1426
1427  /// advanceTo - Move to the first interval with stop >= x, or end().
1428  /// The search is started from the current position, and no earlier positions
1429  /// can be found. This is much faster than find() for small moves.
1430  void advanceTo(KeyT x) {
1431    if (!valid())
1432      return;
1433    if (branched())
1434      treeAdvanceTo(x);
1435    else
1436      path.leafOffset() =
1437        map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1438  }
1439
1440};
1441
1442/// pathFillFind - Complete path by searching for x.
1443/// @param x Key to search for.
1444template <typename KeyT, typename ValT, unsigned N, typename Traits>
1445void IntervalMap<KeyT, ValT, N, Traits>::
1446const_iterator::pathFillFind(KeyT x) {
1447  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1448  for (unsigned i = map->height - path.height() - 1; i; --i) {
1449    unsigned p = NR.get<Branch>().safeFind(0, x);
1450    path.push(NR, p);
1451    NR = NR.subtree(p);
1452  }
1453  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1454}
1455
1456/// treeFind - Find in a branched tree.
1457/// @param x Key to search for.
1458template <typename KeyT, typename ValT, unsigned N, typename Traits>
1459void IntervalMap<KeyT, ValT, N, Traits>::
1460const_iterator::treeFind(KeyT x) {
1461  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1462  if (valid())
1463    pathFillFind(x);
1464}
1465
1466/// treeAdvanceTo - Find position after the current one.
1467/// @param x Key to search for.
1468template <typename KeyT, typename ValT, unsigned N, typename Traits>
1469void IntervalMap<KeyT, ValT, N, Traits>::
1470const_iterator::treeAdvanceTo(KeyT x) {
1471  // Can we stay on the same leaf node?
1472  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1473    path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1474    return;
1475  }
1476
1477  // Drop the current leaf.
1478  path.pop();
1479
1480  // Search towards the root for a usable subtree.
1481  if (path.height()) {
1482    for (unsigned l = path.height() - 1; l; --l) {
1483      if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1484        // The branch node at l+1 is usable
1485        path.offset(l + 1) =
1486          path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1487        return pathFillFind(x);
1488      }
1489      path.pop();
1490    }
1491    // Is the level-1 Branch usable?
1492    if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1493      path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1494      return pathFillFind(x);
1495    }
1496  }
1497
1498  // We reached the root.
1499  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1500  if (valid())
1501    pathFillFind(x);
1502}
1503
1504//===----------------------------------------------------------------------===//
1505//---                       IntervalMap::iterator                         ----//
1506//===----------------------------------------------------------------------===//
1507
1508template <typename KeyT, typename ValT, unsigned N, typename Traits>
1509class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1510  friend class IntervalMap;
1511  typedef IntervalMapImpl::IdxPair IdxPair;
1512
1513  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1514
1515  void setNodeStop(unsigned Level, KeyT Stop);
1516  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1517  template <typename NodeT> bool overflow(unsigned Level);
1518  void treeInsert(KeyT a, KeyT b, ValT y);
1519  void eraseNode(unsigned Level);
1520  void treeErase(bool UpdateRoot = true);
1521  bool canCoalesceLeft(KeyT Start, ValT x);
1522  bool canCoalesceRight(KeyT Stop, ValT x);
1523
1524public:
1525  /// iterator - Create null iterator.
1526  iterator() {}
1527
1528  /// setStart - Move the start of the current interval.
1529  /// This may cause coalescing with the previous interval.
1530  /// @param a New start key, must not overlap the previous interval.
1531  void setStart(KeyT a);
1532
1533  /// setStop - Move the end of the current interval.
1534  /// This may cause coalescing with the following interval.
1535  /// @param b New stop key, must not overlap the following interval.
1536  void setStop(KeyT b);
1537
1538  /// setValue - Change the mapped value of the current interval.
1539  /// This may cause coalescing with the previous and following intervals.
1540  /// @param x New value.
1541  void setValue(ValT x);
1542
1543  /// setStartUnchecked - Move the start of the current interval without
1544  /// checking for coalescing or overlaps.
1545  /// This should only be used when it is known that coalescing is not required.
1546  /// @param a New start key.
1547  void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1548
1549  /// setStopUnchecked - Move the end of the current interval without checking
1550  /// for coalescing or overlaps.
1551  /// This should only be used when it is known that coalescing is not required.
1552  /// @param b New stop key.
1553  void setStopUnchecked(KeyT b) {
1554    this->unsafeStop() = b;
1555    // Update keys in branch nodes as well.
1556    if (this->path.atLastEntry(this->path.height()))
1557      setNodeStop(this->path.height(), b);
1558  }
1559
1560  /// setValueUnchecked - Change the mapped value of the current interval
1561  /// without checking for coalescing.
1562  /// @param x New value.
1563  void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1564
1565  /// insert - Insert mapping [a;b] -> y before the current position.
1566  void insert(KeyT a, KeyT b, ValT y);
1567
1568  /// erase - Erase the current interval.
1569  void erase();
1570
1571  iterator &operator++() {
1572    const_iterator::operator++();
1573    return *this;
1574  }
1575
1576  iterator operator++(int) {
1577    iterator tmp = *this;
1578    operator++();
1579    return tmp;
1580  }
1581
1582  iterator &operator--() {
1583    const_iterator::operator--();
1584    return *this;
1585  }
1586
1587  iterator operator--(int) {
1588    iterator tmp = *this;
1589    operator--();
1590    return tmp;
1591  }
1592
1593};
1594
1595/// canCoalesceLeft - Can the current interval coalesce to the left after
1596/// changing start or value?
1597/// @param Start New start of current interval.
1598/// @param Value New value for current interval.
1599/// @return True when updating the current interval would enable coalescing.
1600template <typename KeyT, typename ValT, unsigned N, typename Traits>
1601bool IntervalMap<KeyT, ValT, N, Traits>::
1602iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1603  using namespace IntervalMapImpl;
1604  Path &P = this->path;
1605  if (!this->branched()) {
1606    unsigned i = P.leafOffset();
1607    RootLeaf &Node = P.leaf<RootLeaf>();
1608    return i && Node.value(i-1) == Value &&
1609                Traits::adjacent(Node.stop(i-1), Start);
1610  }
1611  // Branched.
1612  if (unsigned i = P.leafOffset()) {
1613    Leaf &Node = P.leaf<Leaf>();
1614    return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1615  } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1616    unsigned i = NR.size() - 1;
1617    Leaf &Node = NR.get<Leaf>();
1618    return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1619  }
1620  return false;
1621}
1622
1623/// canCoalesceRight - Can the current interval coalesce to the right after
1624/// changing stop or value?
1625/// @param Stop New stop of current interval.
1626/// @param Value New value for current interval.
1627/// @return True when updating the current interval would enable coalescing.
1628template <typename KeyT, typename ValT, unsigned N, typename Traits>
1629bool IntervalMap<KeyT, ValT, N, Traits>::
1630iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1631  using namespace IntervalMapImpl;
1632  Path &P = this->path;
1633  unsigned i = P.leafOffset() + 1;
1634  if (!this->branched()) {
1635    if (i >= P.leafSize())
1636      return false;
1637    RootLeaf &Node = P.leaf<RootLeaf>();
1638    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1639  }
1640  // Branched.
1641  if (i < P.leafSize()) {
1642    Leaf &Node = P.leaf<Leaf>();
1643    return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1644  } else if (NodeRef NR = P.getRightSibling(P.height())) {
1645    Leaf &Node = NR.get<Leaf>();
1646    return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1647  }
1648  return false;
1649}
1650
1651/// setNodeStop - Update the stop key of the current node at level and above.
1652template <typename KeyT, typename ValT, unsigned N, typename Traits>
1653void IntervalMap<KeyT, ValT, N, Traits>::
1654iterator::setNodeStop(unsigned Level, KeyT Stop) {
1655  // There are no references to the root node, so nothing to update.
1656  if (!Level)
1657    return;
1658  IntervalMapImpl::Path &P = this->path;
1659  // Update nodes pointing to the current node.
1660  while (--Level) {
1661    P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1662    if (!P.atLastEntry(Level))
1663      return;
1664  }
1665  // Update root separately since it has a different layout.
1666  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1667}
1668
1669template <typename KeyT, typename ValT, unsigned N, typename Traits>
1670void IntervalMap<KeyT, ValT, N, Traits>::
1671iterator::setStart(KeyT a) {
1672  assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1673  KeyT &CurStart = this->unsafeStart();
1674  if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1675    CurStart = a;
1676    return;
1677  }
1678  // Coalesce with the interval to the left.
1679  --*this;
1680  a = this->start();
1681  erase();
1682  setStartUnchecked(a);
1683}
1684
1685template <typename KeyT, typename ValT, unsigned N, typename Traits>
1686void IntervalMap<KeyT, ValT, N, Traits>::
1687iterator::setStop(KeyT b) {
1688  assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1689  if (Traits::startLess(b, this->stop()) ||
1690      !canCoalesceRight(b, this->value())) {
1691    setStopUnchecked(b);
1692    return;
1693  }
1694  // Coalesce with interval to the right.
1695  KeyT a = this->start();
1696  erase();
1697  setStartUnchecked(a);
1698}
1699
1700template <typename KeyT, typename ValT, unsigned N, typename Traits>
1701void IntervalMap<KeyT, ValT, N, Traits>::
1702iterator::setValue(ValT x) {
1703  setValueUnchecked(x);
1704  if (canCoalesceRight(this->stop(), x)) {
1705    KeyT a = this->start();
1706    erase();
1707    setStartUnchecked(a);
1708  }
1709  if (canCoalesceLeft(this->start(), x)) {
1710    --*this;
1711    KeyT a = this->start();
1712    erase();
1713    setStartUnchecked(a);
1714  }
1715}
1716
1717/// insertNode - insert a node before the current path at level.
1718/// Leave the current path pointing at the new node.
1719/// @param Level path index of the node to be inserted.
1720/// @param Node The node to be inserted.
1721/// @param Stop The last index in the new node.
1722/// @return True if the tree height was increased.
1723template <typename KeyT, typename ValT, unsigned N, typename Traits>
1724bool IntervalMap<KeyT, ValT, N, Traits>::
1725iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1726  assert(Level && "Cannot insert next to the root");
1727  bool SplitRoot = false;
1728  IntervalMap &IM = *this->map;
1729  IntervalMapImpl::Path &P = this->path;
1730
1731  if (Level == 1) {
1732    // Insert into the root branch node.
1733    if (IM.rootSize < RootBranch::Capacity) {
1734      IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1735      P.setSize(0, ++IM.rootSize);
1736      P.reset(Level);
1737      return SplitRoot;
1738    }
1739
1740    // We need to split the root while keeping our position.
1741    SplitRoot = true;
1742    IdxPair Offset = IM.splitRoot(P.offset(0));
1743    P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1744
1745    // Fall through to insert at the new higher level.
1746    ++Level;
1747  }
1748
1749  // When inserting before end(), make sure we have a valid path.
1750  P.legalizeForInsert(--Level);
1751
1752  // Insert into the branch node at Level-1.
1753  if (P.size(Level) == Branch::Capacity) {
1754    // Branch node is full, handle handle the overflow.
1755    assert(!SplitRoot && "Cannot overflow after splitting the root");
1756    SplitRoot = overflow<Branch>(Level);
1757    Level += SplitRoot;
1758  }
1759  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1760  P.setSize(Level, P.size(Level) + 1);
1761  if (P.atLastEntry(Level))
1762    setNodeStop(Level, Stop);
1763  P.reset(Level + 1);
1764  return SplitRoot;
1765}
1766
1767// insert
1768template <typename KeyT, typename ValT, unsigned N, typename Traits>
1769void IntervalMap<KeyT, ValT, N, Traits>::
1770iterator::insert(KeyT a, KeyT b, ValT y) {
1771  if (this->branched())
1772    return treeInsert(a, b, y);
1773  IntervalMap &IM = *this->map;
1774  IntervalMapImpl::Path &P = this->path;
1775
1776  // Try simple root leaf insert.
1777  unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1778
1779  // Was the root node insert successful?
1780  if (Size <= RootLeaf::Capacity) {
1781    P.setSize(0, IM.rootSize = Size);
1782    return;
1783  }
1784
1785  // Root leaf node is full, we must branch.
1786  IdxPair Offset = IM.branchRoot(P.leafOffset());
1787  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1788
1789  // Now it fits in the new leaf.
1790  treeInsert(a, b, y);
1791}
1792
1793
1794template <typename KeyT, typename ValT, unsigned N, typename Traits>
1795void IntervalMap<KeyT, ValT, N, Traits>::
1796iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1797  using namespace IntervalMapImpl;
1798  Path &P = this->path;
1799
1800  if (!P.valid())
1801    P.legalizeForInsert(this->map->height);
1802
1803  // Check if this insertion will extend the node to the left.
1804  if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1805    // Node is growing to the left, will it affect a left sibling node?
1806    if (NodeRef Sib = P.getLeftSibling(P.height())) {
1807      Leaf &SibLeaf = Sib.get<Leaf>();
1808      unsigned SibOfs = Sib.size() - 1;
1809      if (SibLeaf.value(SibOfs) == y &&
1810          Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1811        // This insertion will coalesce with the last entry in SibLeaf. We can
1812        // handle it in two ways:
1813        //  1. Extend SibLeaf.stop to b and be done, or
1814        //  2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1815        // We prefer 1., but need 2 when coalescing to the right as well.
1816        Leaf &CurLeaf = P.leaf<Leaf>();
1817        P.moveLeft(P.height());
1818        if (Traits::stopLess(b, CurLeaf.start(0)) &&
1819            (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1820          // Easy, just extend SibLeaf and we're done.
1821          setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1822          return;
1823        } else {
1824          // We have both left and right coalescing. Erase the old SibLeaf entry
1825          // and continue inserting the larger interval.
1826          a = SibLeaf.start(SibOfs);
1827          treeErase(/* UpdateRoot= */false);
1828        }
1829      }
1830    } else {
1831      // No left sibling means we are at begin(). Update cached bound.
1832      this->map->rootBranchStart() = a;
1833    }
1834  }
1835
1836  // When we are inserting at the end of a leaf node, we must update stops.
1837  unsigned Size = P.leafSize();
1838  bool Grow = P.leafOffset() == Size;
1839  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1840
1841  // Leaf insertion unsuccessful? Overflow and try again.
1842  if (Size > Leaf::Capacity) {
1843    overflow<Leaf>(P.height());
1844    Grow = P.leafOffset() == P.leafSize();
1845    Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1846    assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1847  }
1848
1849  // Inserted, update offset and leaf size.
1850  P.setSize(P.height(), Size);
1851
1852  // Insert was the last node entry, update stops.
1853  if (Grow)
1854    setNodeStop(P.height(), b);
1855}
1856
1857/// erase - erase the current interval and move to the next position.
1858template <typename KeyT, typename ValT, unsigned N, typename Traits>
1859void IntervalMap<KeyT, ValT, N, Traits>::
1860iterator::erase() {
1861  IntervalMap &IM = *this->map;
1862  IntervalMapImpl::Path &P = this->path;
1863  assert(P.valid() && "Cannot erase end()");
1864  if (this->branched())
1865    return treeErase();
1866  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1867  P.setSize(0, --IM.rootSize);
1868}
1869
1870/// treeErase - erase() for a branched tree.
1871template <typename KeyT, typename ValT, unsigned N, typename Traits>
1872void IntervalMap<KeyT, ValT, N, Traits>::
1873iterator::treeErase(bool UpdateRoot) {
1874  IntervalMap &IM = *this->map;
1875  IntervalMapImpl::Path &P = this->path;
1876  Leaf &Node = P.leaf<Leaf>();
1877
1878  // Nodes are not allowed to become empty.
1879  if (P.leafSize() == 1) {
1880    IM.deleteNode(&Node);
1881    eraseNode(IM.height);
1882    // Update rootBranchStart if we erased begin().
1883    if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1884      IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1885    return;
1886  }
1887
1888  // Erase current entry.
1889  Node.erase(P.leafOffset(), P.leafSize());
1890  unsigned NewSize = P.leafSize() - 1;
1891  P.setSize(IM.height, NewSize);
1892  // When we erase the last entry, update stop and move to a legal position.
1893  if (P.leafOffset() == NewSize) {
1894    setNodeStop(IM.height, Node.stop(NewSize - 1));
1895    P.moveRight(IM.height);
1896  } else if (UpdateRoot && P.atBegin())
1897    IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1898}
1899
1900/// eraseNode - Erase the current node at Level from its parent and move path to
1901/// the first entry of the next sibling node.
1902/// The node must be deallocated by the caller.
1903/// @param Level 1..height, the root node cannot be erased.
1904template <typename KeyT, typename ValT, unsigned N, typename Traits>
1905void IntervalMap<KeyT, ValT, N, Traits>::
1906iterator::eraseNode(unsigned Level) {
1907  assert(Level && "Cannot erase root node");
1908  IntervalMap &IM = *this->map;
1909  IntervalMapImpl::Path &P = this->path;
1910
1911  if (--Level == 0) {
1912    IM.rootBranch().erase(P.offset(0), IM.rootSize);
1913    P.setSize(0, --IM.rootSize);
1914    // If this cleared the root, switch to height=0.
1915    if (IM.empty()) {
1916      IM.switchRootToLeaf();
1917      this->setRoot(0);
1918      return;
1919    }
1920  } else {
1921    // Remove node ref from branch node at Level.
1922    Branch &Parent = P.node<Branch>(Level);
1923    if (P.size(Level) == 1) {
1924      // Branch node became empty, remove it recursively.
1925      IM.deleteNode(&Parent);
1926      eraseNode(Level);
1927    } else {
1928      // Branch node won't become empty.
1929      Parent.erase(P.offset(Level), P.size(Level));
1930      unsigned NewSize = P.size(Level) - 1;
1931      P.setSize(Level, NewSize);
1932      // If we removed the last branch, update stop and move to a legal pos.
1933      if (P.offset(Level) == NewSize) {
1934        setNodeStop(Level, Parent.stop(NewSize - 1));
1935        P.moveRight(Level);
1936      }
1937    }
1938  }
1939  // Update path cache for the new right sibling position.
1940  if (P.valid()) {
1941    P.reset(Level + 1);
1942    P.offset(Level + 1) = 0;
1943  }
1944}
1945
1946/// overflow - Distribute entries of the current node evenly among
1947/// its siblings and ensure that the current node is not full.
1948/// This may require allocating a new node.
1949/// @tparam NodeT The type of node at Level (Leaf or Branch).
1950/// @param Level path index of the overflowing node.
1951/// @return True when the tree height was changed.
1952template <typename KeyT, typename ValT, unsigned N, typename Traits>
1953template <typename NodeT>
1954bool IntervalMap<KeyT, ValT, N, Traits>::
1955iterator::overflow(unsigned Level) {
1956  using namespace IntervalMapImpl;
1957  Path &P = this->path;
1958  unsigned CurSize[4];
1959  NodeT *Node[4];
1960  unsigned Nodes = 0;
1961  unsigned Elements = 0;
1962  unsigned Offset = P.offset(Level);
1963
1964  // Do we have a left sibling?
1965  NodeRef LeftSib = P.getLeftSibling(Level);
1966  if (LeftSib) {
1967    Offset += Elements = CurSize[Nodes] = LeftSib.size();
1968    Node[Nodes++] = &LeftSib.get<NodeT>();
1969  }
1970
1971  // Current node.
1972  Elements += CurSize[Nodes] = P.size(Level);
1973  Node[Nodes++] = &P.node<NodeT>(Level);
1974
1975  // Do we have a right sibling?
1976  NodeRef RightSib = P.getRightSibling(Level);
1977  if (RightSib) {
1978    Elements += CurSize[Nodes] = RightSib.size();
1979    Node[Nodes++] = &RightSib.get<NodeT>();
1980  }
1981
1982  // Do we need to allocate a new node?
1983  unsigned NewNode = 0;
1984  if (Elements + 1 > Nodes * NodeT::Capacity) {
1985    // Insert NewNode at the penultimate position, or after a single node.
1986    NewNode = Nodes == 1 ? 1 : Nodes - 1;
1987    CurSize[Nodes] = CurSize[NewNode];
1988    Node[Nodes] = Node[NewNode];
1989    CurSize[NewNode] = 0;
1990    Node[NewNode] = this->map->template newNode<NodeT>();
1991    ++Nodes;
1992  }
1993
1994  // Compute the new element distribution.
1995  unsigned NewSize[4];
1996  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1997                                 CurSize, NewSize, Offset, true);
1998  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1999
2000  // Move current location to the leftmost node.
2001  if (LeftSib)
2002    P.moveLeft(Level);
2003
2004  // Elements have been rearranged, now update node sizes and stops.
2005  bool SplitRoot = false;
2006  unsigned Pos = 0;
2007  for (;;) {
2008    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2009    if (NewNode && Pos == NewNode) {
2010      SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2011      Level += SplitRoot;
2012    } else {
2013      P.setSize(Level, NewSize[Pos]);
2014      setNodeStop(Level, Stop);
2015    }
2016    if (Pos + 1 == Nodes)
2017      break;
2018    P.moveRight(Level);
2019    ++Pos;
2020  }
2021
2022  // Where was I? Find NewOffset.
2023  while(Pos != NewOffset.first) {
2024    P.moveLeft(Level);
2025    --Pos;
2026  }
2027  P.offset(Level) = NewOffset.second;
2028  return SplitRoot;
2029}
2030
2031//===----------------------------------------------------------------------===//
2032//---                       IntervalMapOverlaps                           ----//
2033//===----------------------------------------------------------------------===//
2034
2035/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2036/// IntervalMaps. The maps may be different, but the KeyT and Traits types
2037/// should be the same.
2038///
2039/// Typical uses:
2040///
2041/// 1. Test for overlap:
2042///    bool overlap = IntervalMapOverlaps(a, b).valid();
2043///
2044/// 2. Enumerate overlaps:
2045///    for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2046///
2047template <typename MapA, typename MapB>
2048class IntervalMapOverlaps {
2049  typedef typename MapA::KeyType KeyType;
2050  typedef typename MapA::KeyTraits Traits;
2051  typename MapA::const_iterator posA;
2052  typename MapB::const_iterator posB;
2053
2054  /// advance - Move posA and posB forward until reaching an overlap, or until
2055  /// either meets end.
2056  /// Don't move the iterators if they are already overlapping.
2057  void advance() {
2058    if (!valid())
2059      return;
2060
2061    if (Traits::stopLess(posA.stop(), posB.start())) {
2062      // A ends before B begins. Catch up.
2063      posA.advanceTo(posB.start());
2064      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2065        return;
2066    } else if (Traits::stopLess(posB.stop(), posA.start())) {
2067      // B ends before A begins. Catch up.
2068      posB.advanceTo(posA.start());
2069      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2070        return;
2071    } else
2072      // Already overlapping.
2073      return;
2074
2075    for (;;) {
2076      // Make a.end > b.start.
2077      posA.advanceTo(posB.start());
2078      if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2079        return;
2080      // Make b.end > a.start.
2081      posB.advanceTo(posA.start());
2082      if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2083        return;
2084    }
2085  }
2086
2087public:
2088  /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2089  IntervalMapOverlaps(const MapA &a, const MapB &b)
2090    : posA(b.empty() ? a.end() : a.find(b.start())),
2091      posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2092
2093  /// valid - Return true if iterator is at an overlap.
2094  bool valid() const {
2095    return posA.valid() && posB.valid();
2096  }
2097
2098  /// a - access the left hand side in the overlap.
2099  const typename MapA::const_iterator &a() const { return posA; }
2100
2101  /// b - access the right hand side in the overlap.
2102  const typename MapB::const_iterator &b() const { return posB; }
2103
2104  /// start - Beginning of the overlapping interval.
2105  KeyType start() const {
2106    KeyType ak = a().start();
2107    KeyType bk = b().start();
2108    return Traits::startLess(ak, bk) ? bk : ak;
2109  }
2110
2111  /// stop - End of the overlapping interval.
2112  KeyType stop() const {
2113    KeyType ak = a().stop();
2114    KeyType bk = b().stop();
2115    return Traits::startLess(ak, bk) ? ak : bk;
2116  }
2117
2118  /// skipA - Move to the next overlap that doesn't involve a().
2119  void skipA() {
2120    ++posA;
2121    advance();
2122  }
2123
2124  /// skipB - Move to the next overlap that doesn't involve b().
2125  void skipB() {
2126    ++posB;
2127    advance();
2128  }
2129
2130  /// Preincrement - Move to the next overlap.
2131  IntervalMapOverlaps &operator++() {
2132    // Bump the iterator that ends first. The other one may have more overlaps.
2133    if (Traits::startLess(posB.stop(), posA.stop()))
2134      skipB();
2135    else
2136      skipA();
2137    return *this;
2138  }
2139
2140  /// advanceTo - Move to the first overlapping interval with
2141  /// stopLess(x, stop()).
2142  void advanceTo(KeyType x) {
2143    if (!valid())
2144      return;
2145    // Make sure advanceTo sees monotonic keys.
2146    if (Traits::stopLess(posA.stop(), x))
2147      posA.advanceTo(x);
2148    if (Traits::stopLess(posB.stop(), x))
2149      posB.advanceTo(x);
2150    advance();
2151  }
2152};
2153
2154} // namespace llvm
2155
2156#endif
2157