1//===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10///
11/// Implements a lazy call graph analysis and related passes for the new pass
12/// manager.
13///
14/// NB: This is *not* a traditional call graph! It is a graph which models both
15/// the current calls and potential calls. As a consequence there are many
16/// edges in this call graph that do not correspond to a 'call' or 'invoke'
17/// instruction.
18///
19/// The primary use cases of this graph analysis is to facilitate iterating
20/// across the functions of a module in ways that ensure all callees are
21/// visited prior to a caller (given any SCC constraints), or vice versa. As
22/// such is it particularly well suited to organizing CGSCC optimizations such
23/// as inlining, outlining, argument promotion, etc. That is its primary use
24/// case and motivates the design. It may not be appropriate for other
25/// purposes. The use graph of functions or some other conservative analysis of
26/// call instructions may be interesting for optimizations and subsequent
27/// analyses which don't work in the context of an overly specified
28/// potential-call-edge graph.
29///
30/// To understand the specific rules and nature of this call graph analysis,
31/// see the documentation of the \c LazyCallGraph below.
32///
33//===----------------------------------------------------------------------===//
34
35#ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
36#define LLVM_ANALYSIS_LAZYCALLGRAPH_H
37
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/iterator.h"
45#include "llvm/ADT/iterator_range.h"
46#include "llvm/IR/BasicBlock.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/Module.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/Support/Allocator.h"
51#include "llvm/Support/raw_ostream.h"
52#include <iterator>
53#include <utility>
54
55namespace llvm {
56class PreservedAnalyses;
57class raw_ostream;
58
59/// A lazily constructed view of the call graph of a module.
60///
61/// With the edges of this graph, the motivating constraint that we are
62/// attempting to maintain is that function-local optimization, CGSCC-local
63/// optimizations, and optimizations transforming a pair of functions connected
64/// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
65/// DAG. That is, no optimizations will delete, remove, or add an edge such
66/// that functions already visited in a bottom-up order of the SCC DAG are no
67/// longer valid to have visited, or such that functions not yet visited in
68/// a bottom-up order of the SCC DAG are not required to have already been
69/// visited.
70///
71/// Within this constraint, the desire is to minimize the merge points of the
72/// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
73/// in the SCC DAG, the more independence there is in optimizing within it.
74/// There is a strong desire to enable parallelization of optimizations over
75/// the call graph, and both limited fanout and merge points will (artificially
76/// in some cases) limit the scaling of such an effort.
77///
78/// To this end, graph represents both direct and any potential resolution to
79/// an indirect call edge. Another way to think about it is that it represents
80/// both the direct call edges and any direct call edges that might be formed
81/// through static optimizations. Specifically, it considers taking the address
82/// of a function to be an edge in the call graph because this might be
83/// forwarded to become a direct call by some subsequent function-local
84/// optimization. The result is that the graph closely follows the use-def
85/// edges for functions. Walking "up" the graph can be done by looking at all
86/// of the uses of a function.
87///
88/// The roots of the call graph are the external functions and functions
89/// escaped into global variables. Those functions can be called from outside
90/// of the module or via unknowable means in the IR -- we may not be able to
91/// form even a potential call edge from a function body which may dynamically
92/// load the function and call it.
93///
94/// This analysis still requires updates to remain valid after optimizations
95/// which could potentially change the set of potential callees. The
96/// constraints it operates under only make the traversal order remain valid.
97///
98/// The entire analysis must be re-computed if full interprocedural
99/// optimizations run at any point. For example, globalopt completely
100/// invalidates the information in this analysis.
101///
102/// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
103/// it from the existing CallGraph. At some point, it is expected that this
104/// will be the only call graph and it will be renamed accordingly.
105class LazyCallGraph {
106public:
107  class Node;
108  class SCC;
109  class RefSCC;
110  class edge_iterator;
111  class call_edge_iterator;
112
113  /// A class used to represent edges in the call graph.
114  ///
115  /// The lazy call graph models both *call* edges and *reference* edges. Call
116  /// edges are much what you would expect, and exist when there is a 'call' or
117  /// 'invoke' instruction of some function. Reference edges are also tracked
118  /// along side these, and exist whenever any instruction (transitively
119  /// through its operands) references a function. All call edges are
120  /// inherently reference edges, and so the reference graph forms a superset
121  /// of the formal call graph.
122  ///
123  /// Furthermore, edges also may point to raw \c Function objects when those
124  /// functions have not been scanned and incorporated into the graph (yet).
125  /// This is one of the primary ways in which the graph can be lazy. When
126  /// functions are scanned and fully incorporated into the graph, all of the
127  /// edges referencing them are updated to point to the graph \c Node objects
128  /// instead of to the raw \c Function objects. This class even provides
129  /// methods to trigger this scan on-demand by attempting to get the target
130  /// node of the graph and providing a reference back to the graph in order to
131  /// lazily build it if necessary.
132  ///
133  /// All of these forms of edges are fundamentally represented as outgoing
134  /// edges. The edges are stored in the source node and point at the target
135  /// node. This allows the edge structure itself to be a very compact data
136  /// structure: essentially a tagged pointer.
137  class Edge {
138  public:
139    /// The kind of edge in the graph.
140    enum Kind : bool { Ref = false, Call = true };
141
142    Edge();
143    explicit Edge(Function &F, Kind K);
144    explicit Edge(Node &N, Kind K);
145
146    /// Test whether the edge is null.
147    ///
148    /// This happens when an edge has been deleted. We leave the edge objects
149    /// around but clear them.
150    operator bool() const;
151
152    /// Test whether the edge represents a direct call to a function.
153    ///
154    /// This requires that the edge is not null.
155    bool isCall() const;
156
157    /// Get the function referenced by this edge.
158    ///
159    /// This requires that the edge is not null, but will succeed whether we
160    /// have built a graph node for the function yet or not.
161    Function &getFunction() const;
162
163    /// Get the call graph node referenced by this edge if one exists.
164    ///
165    /// This requires that the edge is not null. If we have built a graph node
166    /// for the function this edge points to, this will return that node,
167    /// otherwise it will return null.
168    Node *getNode() const;
169
170    /// Get the call graph node for this edge, building it if necessary.
171    ///
172    /// This requires that the edge is not null. If we have not yet built
173    /// a graph node for the function this edge points to, this will first ask
174    /// the graph to build that node, inserting it into all the relevant
175    /// structures.
176    Node &getNode(LazyCallGraph &G);
177
178  private:
179    friend class LazyCallGraph::Node;
180
181    PointerIntPair<PointerUnion<Function *, Node *>, 1, Kind> Value;
182
183    void setKind(Kind K) { Value.setInt(K); }
184  };
185
186  typedef SmallVector<Edge, 4> EdgeVectorT;
187  typedef SmallVectorImpl<Edge> EdgeVectorImplT;
188
189  /// A node in the call graph.
190  ///
191  /// This represents a single node. It's primary roles are to cache the list of
192  /// callees, de-duplicate and provide fast testing of whether a function is
193  /// a callee, and facilitate iteration of child nodes in the graph.
194  class Node {
195    friend class LazyCallGraph;
196    friend class LazyCallGraph::SCC;
197
198    LazyCallGraph *G;
199    Function &F;
200
201    // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
202    // stored directly within the node. These are both '-1' when nodes are part
203    // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
204    int DFSNumber;
205    int LowLink;
206
207    mutable EdgeVectorT Edges;
208    DenseMap<Function *, int> EdgeIndexMap;
209
210    /// Basic constructor implements the scanning of F into Edges and
211    /// EdgeIndexMap.
212    Node(LazyCallGraph &G, Function &F);
213
214    /// Internal helper to insert an edge to a function.
215    void insertEdgeInternal(Function &ChildF, Edge::Kind EK);
216
217    /// Internal helper to insert an edge to a node.
218    void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
219
220    /// Internal helper to change an edge kind.
221    void setEdgeKind(Function &ChildF, Edge::Kind EK);
222
223    /// Internal helper to remove the edge to the given function.
224    void removeEdgeInternal(Function &ChildF);
225
226    /// Print the name of this node's function.
227    friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
228      return OS << N.F.getName();
229    }
230
231    /// Dump the name of this node's function to stderr.
232    void dump() const;
233
234  public:
235    LazyCallGraph &getGraph() const { return *G; }
236
237    Function &getFunction() const { return F; }
238
239    edge_iterator begin() const {
240      return edge_iterator(Edges.begin(), Edges.end());
241    }
242    edge_iterator end() const { return edge_iterator(Edges.end(), Edges.end()); }
243
244    const Edge &operator[](int i) const { return Edges[i]; }
245    const Edge &operator[](Function &F) const {
246      assert(EdgeIndexMap.find(&F) != EdgeIndexMap.end() && "No such edge!");
247      return Edges[EdgeIndexMap.find(&F)->second];
248    }
249    const Edge &operator[](Node &N) const { return (*this)[N.getFunction()]; }
250
251    call_edge_iterator call_begin() const {
252      return call_edge_iterator(Edges.begin(), Edges.end());
253    }
254    call_edge_iterator call_end() const {
255      return call_edge_iterator(Edges.end(), Edges.end());
256    }
257
258    iterator_range<call_edge_iterator> calls() const {
259      return make_range(call_begin(), call_end());
260    }
261
262    /// Equality is defined as address equality.
263    bool operator==(const Node &N) const { return this == &N; }
264    bool operator!=(const Node &N) const { return !operator==(N); }
265  };
266
267  /// A lazy iterator used for both the entry nodes and child nodes.
268  ///
269  /// When this iterator is dereferenced, if not yet available, a function will
270  /// be scanned for "calls" or uses of functions and its child information
271  /// will be constructed. All of these results are accumulated and cached in
272  /// the graph.
273  class edge_iterator
274      : public iterator_adaptor_base<edge_iterator, EdgeVectorImplT::iterator,
275                                     std::forward_iterator_tag> {
276    friend class LazyCallGraph;
277    friend class LazyCallGraph::Node;
278
279    EdgeVectorImplT::iterator E;
280
281    // Build the iterator for a specific position in the edge list.
282    edge_iterator(EdgeVectorImplT::iterator BaseI,
283                  EdgeVectorImplT::iterator E)
284        : iterator_adaptor_base(BaseI), E(E) {
285      while (I != E && !*I)
286        ++I;
287    }
288
289  public:
290    edge_iterator() {}
291
292    using iterator_adaptor_base::operator++;
293    edge_iterator &operator++() {
294      do {
295        ++I;
296      } while (I != E && !*I);
297      return *this;
298    }
299  };
300
301  /// A lazy iterator over specifically call edges.
302  ///
303  /// This has the same iteration properties as the \c edge_iterator, but
304  /// restricts itself to edges which represent actual calls.
305  class call_edge_iterator
306      : public iterator_adaptor_base<call_edge_iterator,
307                                     EdgeVectorImplT::iterator,
308                                     std::forward_iterator_tag> {
309    friend class LazyCallGraph;
310    friend class LazyCallGraph::Node;
311
312    EdgeVectorImplT::iterator E;
313
314    /// Advance the iterator to the next valid, call edge.
315    void advanceToNextEdge() {
316      while (I != E && (!*I || !I->isCall()))
317        ++I;
318    }
319
320    // Build the iterator for a specific position in the edge list.
321    call_edge_iterator(EdgeVectorImplT::iterator BaseI,
322                       EdgeVectorImplT::iterator E)
323        : iterator_adaptor_base(BaseI), E(E) {
324      advanceToNextEdge();
325    }
326
327  public:
328    call_edge_iterator() {}
329
330    using iterator_adaptor_base::operator++;
331    call_edge_iterator &operator++() {
332      ++I;
333      advanceToNextEdge();
334      return *this;
335    }
336  };
337
338  /// An SCC of the call graph.
339  ///
340  /// This represents a Strongly Connected Component of the direct call graph
341  /// -- ignoring indirect calls and function references. It stores this as
342  /// a collection of call graph nodes. While the order of nodes in the SCC is
343  /// stable, it is not any particular order.
344  ///
345  /// The SCCs are nested within a \c RefSCC, see below for details about that
346  /// outer structure. SCCs do not support mutation of the call graph, that
347  /// must be done through the containing \c RefSCC in order to fully reason
348  /// about the ordering and connections of the graph.
349  class SCC {
350    friend class LazyCallGraph;
351    friend class LazyCallGraph::Node;
352
353    RefSCC *OuterRefSCC;
354    SmallVector<Node *, 1> Nodes;
355
356    template <typename NodeRangeT>
357    SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
358        : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
359
360    void clear() {
361      OuterRefSCC = nullptr;
362      Nodes.clear();
363    }
364
365    /// Print a short descrtiption useful for debugging or logging.
366    ///
367    /// We print the function names in the SCC wrapped in '()'s and skipping
368    /// the middle functions if there are a large number.
369    //
370    // Note: this is defined inline to dodge issues with GCC's interpretation
371    // of enclosing namespaces for friend function declarations.
372    friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
373      OS << '(';
374      int i = 0;
375      for (LazyCallGraph::Node &N : C) {
376        if (i > 0)
377          OS << ", ";
378        // Elide the inner elements if there are too many.
379        if (i > 8) {
380          OS << "..., " << *C.Nodes.back();
381          break;
382        }
383        OS << N;
384        ++i;
385      }
386      OS << ')';
387      return OS;
388    }
389
390    /// Dump a short description of this SCC to stderr.
391    void dump() const;
392
393#ifndef NDEBUG
394    /// Verify invariants about the SCC.
395    ///
396    /// This will attempt to validate all of the basic invariants within an
397    /// SCC, but not that it is a strongly connected componet per-se. Primarily
398    /// useful while building and updating the graph to check that basic
399    /// properties are in place rather than having inexplicable crashes later.
400    void verify();
401#endif
402
403  public:
404    typedef pointee_iterator<SmallVectorImpl<Node *>::const_iterator> iterator;
405
406    iterator begin() const { return Nodes.begin(); }
407    iterator end() const { return Nodes.end(); }
408
409    int size() const { return Nodes.size(); }
410
411    RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
412
413    /// Provide a short name by printing this SCC to a std::string.
414    ///
415    /// This copes with the fact that we don't have a name per-se for an SCC
416    /// while still making the use of this in debugging and logging useful.
417    std::string getName() const {
418      std::string Name;
419      raw_string_ostream OS(Name);
420      OS << *this;
421      OS.flush();
422      return Name;
423    }
424  };
425
426  /// A RefSCC of the call graph.
427  ///
428  /// This models a Strongly Connected Component of function reference edges in
429  /// the call graph. As opposed to actual SCCs, these can be used to scope
430  /// subgraphs of the module which are independent from other subgraphs of the
431  /// module because they do not reference it in any way. This is also the unit
432  /// where we do mutation of the graph in order to restrict mutations to those
433  /// which don't violate this independence.
434  ///
435  /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
436  /// are necessarily within some actual SCC that nests within it. Since
437  /// a direct call *is* a reference, there will always be at least one RefSCC
438  /// around any SCC.
439  class RefSCC {
440    friend class LazyCallGraph;
441    friend class LazyCallGraph::Node;
442
443    LazyCallGraph *G;
444    SmallPtrSet<RefSCC *, 1> Parents;
445
446    /// A postorder list of the inner SCCs.
447    SmallVector<SCC *, 4> SCCs;
448
449    /// A map from SCC to index in the postorder list.
450    SmallDenseMap<SCC *, int, 4> SCCIndices;
451
452    /// Fast-path constructor. RefSCCs should instead be constructed by calling
453    /// formRefSCCFast on the graph itself.
454    RefSCC(LazyCallGraph &G);
455
456    /// Print a short description useful for debugging or logging.
457    ///
458    /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
459    /// there are a large number.
460    //
461    // Note: this is defined inline to dodge issues with GCC's interpretation
462    // of enclosing namespaces for friend function declarations.
463    friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
464      OS << '[';
465      int i = 0;
466      for (LazyCallGraph::SCC &C : RC) {
467        if (i > 0)
468          OS << ", ";
469        // Elide the inner elements if there are too many.
470        if (i > 4) {
471          OS << "..., " << *RC.SCCs.back();
472          break;
473        }
474        OS << C;
475        ++i;
476      }
477      OS << ']';
478      return OS;
479    }
480
481    /// Dump a short description of this RefSCC to stderr.
482    void dump() const;
483
484#ifndef NDEBUG
485    /// Verify invariants about the RefSCC and all its SCCs.
486    ///
487    /// This will attempt to validate all of the invariants *within* the
488    /// RefSCC, but not that it is a strongly connected component of the larger
489    /// graph. This makes it useful even when partially through an update.
490    ///
491    /// Invariants checked:
492    /// - SCCs and their indices match.
493    /// - The SCCs list is in fact in post-order.
494    void verify();
495#endif
496
497  public:
498    typedef pointee_iterator<SmallVectorImpl<SCC *>::const_iterator> iterator;
499    typedef iterator_range<iterator> range;
500    typedef pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>
501        parent_iterator;
502
503    iterator begin() const { return SCCs.begin(); }
504    iterator end() const { return SCCs.end(); }
505
506    ssize_t size() const { return SCCs.size(); }
507
508    SCC &operator[](int Idx) { return *SCCs[Idx]; }
509
510    iterator find(SCC &C) const {
511      return SCCs.begin() + SCCIndices.find(&C)->second;
512    }
513
514    parent_iterator parent_begin() const { return Parents.begin(); }
515    parent_iterator parent_end() const { return Parents.end(); }
516
517    iterator_range<parent_iterator> parents() const {
518      return make_range(parent_begin(), parent_end());
519    }
520
521    /// Test if this SCC is a parent of \a C.
522    bool isParentOf(const RefSCC &C) const { return C.isChildOf(*this); }
523
524    /// Test if this RefSCC is an ancestor of \a C.
525    bool isAncestorOf(const RefSCC &C) const { return C.isDescendantOf(*this); }
526
527    /// Test if this RefSCC is a child of \a C.
528    bool isChildOf(const RefSCC &C) const {
529      return Parents.count(const_cast<RefSCC *>(&C));
530    }
531
532    /// Test if this RefSCC is a descendant of \a C.
533    bool isDescendantOf(const RefSCC &C) const;
534
535    /// Provide a short name by printing this SCC to a std::string.
536    ///
537    /// This copes with the fact that we don't have a name per-se for an SCC
538    /// while still making the use of this in debugging and logging useful.
539    std::string getName() const {
540      std::string Name;
541      raw_string_ostream OS(Name);
542      OS << *this;
543      OS.flush();
544      return Name;
545    }
546
547    ///@{
548    /// \name Mutation API
549    ///
550    /// These methods provide the core API for updating the call graph in the
551    /// presence of a (potentially still in-flight) DFS-found SCCs.
552    ///
553    /// Note that these methods sometimes have complex runtimes, so be careful
554    /// how you call them.
555
556    /// Make an existing internal ref edge into a call edge.
557    ///
558    /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
559    /// If that happens, the deleted SCC pointers are returned. These SCCs are
560    /// not in a valid state any longer but the pointers will remain valid
561    /// until destruction of the parent graph instance for the purpose of
562    /// clearing cached information.
563    ///
564    /// After this operation, both SourceN's SCC and TargetN's SCC may move
565    /// position within this RefSCC's postorder list. Any SCCs merged are
566    /// merged into the TargetN's SCC in order to preserve reachability analyses
567    /// which took place on that SCC.
568    SmallVector<SCC *, 1> switchInternalEdgeToCall(Node &SourceN,
569                                                   Node &TargetN);
570
571    /// Make an existing internal call edge into a ref edge.
572    ///
573    /// If SourceN and TargetN are part of a single SCC, it may be split up due
574    /// to breaking a cycle in the call edges that formed it. If that happens,
575    /// then this routine will insert new SCCs into the postorder list *before*
576    /// the SCC of TargetN (previously the SCC of both). This preserves
577    /// postorder as the TargetN can reach all of the other nodes by definition
578    /// of previously being in a single SCC formed by the cycle from SourceN to
579    /// TargetN. The newly added nodes are added *immediately* and contiguously
580    /// prior to the TargetN SCC and so they may be iterated starting from
581    /// there.
582    void switchInternalEdgeToRef(Node &SourceN, Node &TargetN);
583
584    /// Make an existing outgoing ref edge into a call edge.
585    ///
586    /// Note that this is trivial as there are no cyclic impacts and there
587    /// remains a reference edge.
588    void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
589
590    /// Make an existing outgoing call edge into a ref edge.
591    ///
592    /// This is trivial as there are no cyclic impacts and there remains
593    /// a reference edge.
594    void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
595
596    /// Insert a ref edge from one node in this RefSCC to another in this
597    /// RefSCC.
598    ///
599    /// This is always a trivial operation as it doesn't change any part of the
600    /// graph structure besides connecting the two nodes.
601    ///
602    /// Note that we don't support directly inserting internal *call* edges
603    /// because that could change the graph structure and requires returning
604    /// information about what became invalid. As a consequence, the pattern
605    /// should be to first insert the necessary ref edge, and then to switch it
606    /// to a call edge if needed and handle any invalidation that results. See
607    /// the \c switchInternalEdgeToCall routine for details.
608    void insertInternalRefEdge(Node &SourceN, Node &TargetN);
609
610    /// Insert an edge whose parent is in this RefSCC and child is in some
611    /// child RefSCC.
612    ///
613    /// There must be an existing path from the \p SourceN to the \p TargetN.
614    /// This operation is inexpensive and does not change the set of SCCs and
615    /// RefSCCs in the graph.
616    void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
617
618    /// Insert an edge whose source is in a descendant RefSCC and target is in
619    /// this RefSCC.
620    ///
621    /// There must be an existing path from the target to the source in this
622    /// case.
623    ///
624    /// NB! This is has the potential to be a very expensive function. It
625    /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
626    /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
627    /// participate in the cycle can in the worst case require traversing every
628    /// RefSCC in the graph. Every attempt is made to avoid that, but passes
629    /// must still exercise caution calling this routine repeatedly.
630    ///
631    /// Also note that this can only insert ref edges. In order to insert
632    /// a call edge, first insert a ref edge and then switch it to a call edge.
633    /// These are intentionally kept as separate interfaces because each step
634    /// of the operation invalidates a different set of data structures.
635    ///
636    /// This returns all the RefSCCs which were merged into the this RefSCC
637    /// (the target's). This allows callers to invalidate any cached
638    /// information.
639    ///
640    /// FIXME: We could possibly optimize this quite a bit for cases where the
641    /// caller and callee are very nearby in the graph. See comments in the
642    /// implementation for details, but that use case might impact users.
643    SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
644                                                   Node &TargetN);
645
646    /// Remove an edge whose source is in this RefSCC and target is *not*.
647    ///
648    /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
649    /// from this SCC have been fully explored by any in-flight DFS graph
650    /// formation, so this is always safe to call once you have the source
651    /// RefSCC.
652    ///
653    /// This operation does not change the cyclic structure of the graph and so
654    /// is very inexpensive. It may change the connectivity graph of the SCCs
655    /// though, so be careful calling this while iterating over them.
656    void removeOutgoingEdge(Node &SourceN, Node &TargetN);
657
658    /// Remove a ref edge which is entirely within this RefSCC.
659    ///
660    /// Both the \a SourceN and the \a TargetN must be within this RefSCC.
661    /// Removing such an edge may break cycles that form this RefSCC and thus
662    /// this operation may change the RefSCC graph significantly. In
663    /// particular, this operation will re-form new RefSCCs based on the
664    /// remaining connectivity of the graph. The following invariants are
665    /// guaranteed to hold after calling this method:
666    ///
667    /// 1) This RefSCC is still a RefSCC in the graph.
668    /// 2) This RefSCC will be the parent of any new RefSCCs. Thus, this RefSCC
669    ///    is preserved as the root of any new RefSCC DAG formed.
670    /// 3) No RefSCC other than this RefSCC has its member set changed (this is
671    ///    inherent in the definition of removing such an edge).
672    /// 4) All of the parent links of the RefSCC graph will be updated to
673    ///    reflect the new RefSCC structure.
674    /// 5) All RefSCCs formed out of this RefSCC, excluding this RefSCC, will
675    ///    be returned in post-order.
676    /// 6) The order of the RefSCCs in the vector will be a valid postorder
677    ///    traversal of the new RefSCCs.
678    ///
679    /// These invariants are very important to ensure that we can build
680    /// optimization pipelines on top of the CGSCC pass manager which
681    /// intelligently update the RefSCC graph without invalidating other parts
682    /// of the RefSCC graph.
683    ///
684    /// Note that we provide no routine to remove a *call* edge. Instead, you
685    /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
686    /// This split API is intentional as each of these two steps can invalidate
687    /// a different aspect of the graph structure and needs to have the
688    /// invalidation handled independently.
689    ///
690    /// The runtime complexity of this method is, in the worst case, O(V+E)
691    /// where V is the number of nodes in this RefSCC and E is the number of
692    /// edges leaving the nodes in this RefSCC. Note that E includes both edges
693    /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
694    /// effort has been made to minimize the overhead of common cases such as
695    /// self-edges and edge removals which result in a spanning tree with no
696    /// more cycles. There are also detailed comments within the implementation
697    /// on techniques which could substantially improve this routine's
698    /// efficiency.
699    SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
700                                                   Node &TargetN);
701
702    ///@}
703  };
704
705  /// A post-order depth-first SCC iterator over the call graph.
706  ///
707  /// This iterator triggers the Tarjan DFS-based formation of the SCC DAG for
708  /// the call graph, walking it lazily in depth-first post-order. That is, it
709  /// always visits SCCs for a callee prior to visiting the SCC for a caller
710  /// (when they are in different SCCs).
711  class postorder_ref_scc_iterator
712      : public iterator_facade_base<postorder_ref_scc_iterator,
713                                    std::forward_iterator_tag, RefSCC> {
714    friend class LazyCallGraph;
715    friend class LazyCallGraph::Node;
716
717    /// Nonce type to select the constructor for the end iterator.
718    struct IsAtEndT {};
719
720    LazyCallGraph *G;
721    RefSCC *C;
722
723    // Build the begin iterator for a node.
724    postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G) {
725      C = G.getNextRefSCCInPostOrder();
726    }
727
728    // Build the end iterator for a node. This is selected purely by overload.
729    postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/)
730        : G(&G), C(nullptr) {}
731
732  public:
733    bool operator==(const postorder_ref_scc_iterator &Arg) const {
734      return G == Arg.G && C == Arg.C;
735    }
736
737    reference operator*() const { return *C; }
738
739    using iterator_facade_base::operator++;
740    postorder_ref_scc_iterator &operator++() {
741      C = G->getNextRefSCCInPostOrder();
742      return *this;
743    }
744  };
745
746  /// Construct a graph for the given module.
747  ///
748  /// This sets up the graph and computes all of the entry points of the graph.
749  /// No function definitions are scanned until their nodes in the graph are
750  /// requested during traversal.
751  LazyCallGraph(Module &M);
752
753  LazyCallGraph(LazyCallGraph &&G);
754  LazyCallGraph &operator=(LazyCallGraph &&RHS);
755
756  edge_iterator begin() {
757    return edge_iterator(EntryEdges.begin(), EntryEdges.end());
758  }
759  edge_iterator end() {
760    return edge_iterator(EntryEdges.end(), EntryEdges.end());
761  }
762
763  postorder_ref_scc_iterator postorder_ref_scc_begin() {
764    return postorder_ref_scc_iterator(*this);
765  }
766  postorder_ref_scc_iterator postorder_ref_scc_end() {
767    return postorder_ref_scc_iterator(*this,
768                                      postorder_ref_scc_iterator::IsAtEndT());
769  }
770
771  iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
772    return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
773  }
774
775  /// Lookup a function in the graph which has already been scanned and added.
776  Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
777
778  /// Lookup a function's SCC in the graph.
779  ///
780  /// \returns null if the function hasn't been assigned an SCC via the SCC
781  /// iterator walk.
782  SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
783
784  /// Lookup a function's RefSCC in the graph.
785  ///
786  /// \returns null if the function hasn't been assigned a RefSCC via the
787  /// RefSCC iterator walk.
788  RefSCC *lookupRefSCC(Node &N) const {
789    if (SCC *C = lookupSCC(N))
790      return &C->getOuterRefSCC();
791
792    return nullptr;
793  }
794
795  /// Get a graph node for a given function, scanning it to populate the graph
796  /// data as necessary.
797  Node &get(Function &F) {
798    Node *&N = NodeMap[&F];
799    if (N)
800      return *N;
801
802    return insertInto(F, N);
803  }
804
805  ///@{
806  /// \name Pre-SCC Mutation API
807  ///
808  /// These methods are only valid to call prior to forming any SCCs for this
809  /// call graph. They can be used to update the core node-graph during
810  /// a node-based inorder traversal that precedes any SCC-based traversal.
811  ///
812  /// Once you begin manipulating a call graph's SCCs, you must perform all
813  /// mutation of the graph via the SCC methods.
814
815  /// Update the call graph after inserting a new edge.
816  void insertEdge(Node &Caller, Function &Callee, Edge::Kind EK);
817
818  /// Update the call graph after inserting a new edge.
819  void insertEdge(Function &Caller, Function &Callee, Edge::Kind EK) {
820    return insertEdge(get(Caller), Callee, EK);
821  }
822
823  /// Update the call graph after deleting an edge.
824  void removeEdge(Node &Caller, Function &Callee);
825
826  /// Update the call graph after deleting an edge.
827  void removeEdge(Function &Caller, Function &Callee) {
828    return removeEdge(get(Caller), Callee);
829  }
830
831  ///@}
832
833private:
834  typedef SmallVectorImpl<Node *>::reverse_iterator node_stack_iterator;
835  typedef iterator_range<node_stack_iterator> node_stack_range;
836
837  /// Allocator that holds all the call graph nodes.
838  SpecificBumpPtrAllocator<Node> BPA;
839
840  /// Maps function->node for fast lookup.
841  DenseMap<const Function *, Node *> NodeMap;
842
843  /// The entry nodes to the graph.
844  ///
845  /// These nodes are reachable through "external" means. Put another way, they
846  /// escape at the module scope.
847  EdgeVectorT EntryEdges;
848
849  /// Map of the entry nodes in the graph to their indices in \c EntryEdges.
850  DenseMap<Function *, int> EntryIndexMap;
851
852  /// Allocator that holds all the call graph SCCs.
853  SpecificBumpPtrAllocator<SCC> SCCBPA;
854
855  /// Maps Function -> SCC for fast lookup.
856  DenseMap<Node *, SCC *> SCCMap;
857
858  /// Allocator that holds all the call graph RefSCCs.
859  SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
860
861  /// The leaf RefSCCs of the graph.
862  ///
863  /// These are all of the RefSCCs which have no children.
864  SmallVector<RefSCC *, 4> LeafRefSCCs;
865
866  /// Stack of nodes in the DFS walk.
867  SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
868
869  /// Set of entry nodes not-yet-processed into RefSCCs.
870  SmallVector<Function *, 4> RefSCCEntryNodes;
871
872  /// Stack of nodes the DFS has walked but not yet put into a SCC.
873  SmallVector<Node *, 4> PendingRefSCCStack;
874
875  /// Counter for the next DFS number to assign.
876  int NextDFSNumber;
877
878  /// Helper to insert a new function, with an already looked-up entry in
879  /// the NodeMap.
880  Node &insertInto(Function &F, Node *&MappedN);
881
882  /// Helper to update pointers back to the graph object during moves.
883  void updateGraphPtrs();
884
885  /// Allocates an SCC and constructs it using the graph allocator.
886  ///
887  /// The arguments are forwarded to the constructor.
888  template <typename... Ts> SCC *createSCC(Ts &&... Args) {
889    return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
890  }
891
892  /// Allocates a RefSCC and constructs it using the graph allocator.
893  ///
894  /// The arguments are forwarded to the constructor.
895  template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
896    return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
897  }
898
899  /// Build the SCCs for a RefSCC out of a list of nodes.
900  void buildSCCs(RefSCC &RC, node_stack_range Nodes);
901
902  /// Connect a RefSCC into the larger graph.
903  ///
904  /// This walks the edges to connect the RefSCC to its children's parent set,
905  /// and updates the root leaf list.
906  void connectRefSCC(RefSCC &RC);
907
908  /// Retrieve the next node in the post-order RefSCC walk of the call graph.
909  RefSCC *getNextRefSCCInPostOrder();
910};
911
912inline LazyCallGraph::Edge::Edge() : Value() {}
913inline LazyCallGraph::Edge::Edge(Function &F, Kind K) : Value(&F, K) {}
914inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
915
916inline LazyCallGraph::Edge::operator bool() const {
917  return !Value.getPointer().isNull();
918}
919
920inline bool LazyCallGraph::Edge::isCall() const {
921  assert(*this && "Queried a null edge!");
922  return Value.getInt() == Call;
923}
924
925inline Function &LazyCallGraph::Edge::getFunction() const {
926  assert(*this && "Queried a null edge!");
927  auto P = Value.getPointer();
928  if (auto *F = P.dyn_cast<Function *>())
929    return *F;
930
931  return P.get<Node *>()->getFunction();
932}
933
934inline LazyCallGraph::Node *LazyCallGraph::Edge::getNode() const {
935  assert(*this && "Queried a null edge!");
936  auto P = Value.getPointer();
937  if (auto *N = P.dyn_cast<Node *>())
938    return N;
939
940  return nullptr;
941}
942
943inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode(LazyCallGraph &G) {
944  assert(*this && "Queried a null edge!");
945  auto P = Value.getPointer();
946  if (auto *N = P.dyn_cast<Node *>())
947    return *N;
948
949  Node &N = G.get(*P.get<Function *>());
950  Value.setPointer(&N);
951  return N;
952}
953
954// Provide GraphTraits specializations for call graphs.
955template <> struct GraphTraits<LazyCallGraph::Node *> {
956  typedef LazyCallGraph::Node NodeType;
957  typedef LazyCallGraph::edge_iterator ChildIteratorType;
958
959  static NodeType *getEntryNode(NodeType *N) { return N; }
960  static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
961  static ChildIteratorType child_end(NodeType *N) { return N->end(); }
962};
963template <> struct GraphTraits<LazyCallGraph *> {
964  typedef LazyCallGraph::Node NodeType;
965  typedef LazyCallGraph::edge_iterator ChildIteratorType;
966
967  static NodeType *getEntryNode(NodeType *N) { return N; }
968  static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
969  static ChildIteratorType child_end(NodeType *N) { return N->end(); }
970};
971
972/// An analysis pass which computes the call graph for a module.
973class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
974  friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
975  static char PassID;
976
977public:
978  /// Inform generic clients of the result type.
979  typedef LazyCallGraph Result;
980
981  /// Compute the \c LazyCallGraph for the module \c M.
982  ///
983  /// This just builds the set of entry points to the call graph. The rest is
984  /// built lazily as it is walked.
985  LazyCallGraph run(Module &M, ModuleAnalysisManager &) {
986    return LazyCallGraph(M);
987  }
988};
989
990/// A pass which prints the call graph to a \c raw_ostream.
991///
992/// This is primarily useful for testing the analysis.
993class LazyCallGraphPrinterPass
994    : public PassInfoMixin<LazyCallGraphPrinterPass> {
995  raw_ostream &OS;
996
997public:
998  explicit LazyCallGraphPrinterPass(raw_ostream &OS);
999
1000  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1001};
1002
1003/// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1004///
1005/// This is primarily useful for visualization purposes.
1006class LazyCallGraphDOTPrinterPass
1007    : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1008  raw_ostream &OS;
1009
1010public:
1011  explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1012
1013  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1014};
1015}
1016
1017#endif
1018