1//===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the RegBankSelect class.
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
14#include "llvm/ADT/PostOrderIterator.h"
15#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
16#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
17#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/IR/Function.h"
20#include "llvm/Support/BlockFrequency.h"
21#include "llvm/Support/CommandLine.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Target/TargetSubtargetInfo.h"
24
25#define DEBUG_TYPE "regbankselect"
26
27using namespace llvm;
28
29static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
30    cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
31    cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
32                          "Run the Fast mode (default mapping)"),
33               clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
34                          "Use the Greedy mode (best local mapping)"),
35               clEnumValEnd));
36
37char RegBankSelect::ID = 0;
38INITIALIZE_PASS_BEGIN(RegBankSelect, "regbankselect",
39                      "Assign register bank of generic virtual registers",
40                      false, false);
41INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
42INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
43INITIALIZE_PASS_END(RegBankSelect, "regbankselect",
44                    "Assign register bank of generic virtual registers", false,
45                    false);
46
47RegBankSelect::RegBankSelect(Mode RunningMode)
48    : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr),
49      MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) {
50  initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
51  if (RegBankSelectMode.getNumOccurrences() != 0) {
52    OptMode = RegBankSelectMode;
53    if (RegBankSelectMode != RunningMode)
54      DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
55  }
56}
57
58void RegBankSelect::init(MachineFunction &MF) {
59  RBI = MF.getSubtarget().getRegBankInfo();
60  assert(RBI && "Cannot work without RegisterBankInfo");
61  MRI = &MF.getRegInfo();
62  TRI = MF.getSubtarget().getRegisterInfo();
63  if (OptMode != Mode::Fast) {
64    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
65    MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
66  } else {
67    MBFI = nullptr;
68    MBPI = nullptr;
69  }
70  MIRBuilder.setMF(MF);
71}
72
73void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
74  if (OptMode != Mode::Fast) {
75    // We could preserve the information from these two analysis but
76    // the APIs do not allow to do so yet.
77    AU.addRequired<MachineBlockFrequencyInfo>();
78    AU.addRequired<MachineBranchProbabilityInfo>();
79  }
80  MachineFunctionPass::getAnalysisUsage(AU);
81}
82
83bool RegBankSelect::assignmentMatch(
84    unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
85    bool &OnlyAssign) const {
86  // By default we assume we will have to repair something.
87  OnlyAssign = false;
88  // Each part of a break down needs to end up in a different register.
89  // In other word, Reg assignement does not match.
90  if (ValMapping.BreakDown.size() > 1)
91    return false;
92
93  const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
94  const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
95  // Reg is free of assignment, a simple assignment will make the
96  // register bank to match.
97  OnlyAssign = CurRegBank == nullptr;
98  DEBUG(dbgs() << "Does assignment already match: ";
99        if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
100        dbgs() << " against ";
101        assert(DesiredRegBrank && "The mapping must be valid");
102        dbgs() << *DesiredRegBrank << '\n';);
103  return CurRegBank == DesiredRegBrank;
104}
105
106void RegBankSelect::repairReg(
107    MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
108    RegBankSelect::RepairingPlacement &RepairPt,
109    const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
110  assert(ValMapping.BreakDown.size() == 1 && "Not yet implemented");
111  // An empty range of new register means no repairing.
112  assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
113
114  // Assume we are repairing a use and thus, the original reg will be
115  // the source of the repairing.
116  unsigned Src = MO.getReg();
117  unsigned Dst = *NewVRegs.begin();
118
119  // If we repair a definition, swap the source and destination for
120  // the repairing.
121  if (MO.isDef())
122    std::swap(Src, Dst);
123
124  assert((RepairPt.getNumInsertPoints() == 1 ||
125          TargetRegisterInfo::isPhysicalRegister(Dst)) &&
126         "We are about to create several defs for Dst");
127
128  // Build the instruction used to repair, then clone it at the right places.
129  MachineInstr *MI = MIRBuilder.buildInstr(TargetOpcode::COPY, Dst, Src);
130  MI->removeFromParent();
131  DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst)
132               << '\n');
133  // TODO:
134  // Check if MI is legal. if not, we need to legalize all the
135  // instructions we are going to insert.
136  std::unique_ptr<MachineInstr *[]> NewInstrs(
137      new MachineInstr *[RepairPt.getNumInsertPoints()]);
138  bool IsFirst = true;
139  unsigned Idx = 0;
140  for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
141    MachineInstr *CurMI;
142    if (IsFirst)
143      CurMI = MI;
144    else
145      CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
146    InsertPt->insert(*CurMI);
147    NewInstrs[Idx++] = CurMI;
148    IsFirst = false;
149  }
150  // TODO:
151  // Legalize NewInstrs if need be.
152}
153
154uint64_t RegBankSelect::getRepairCost(
155    const MachineOperand &MO,
156    const RegisterBankInfo::ValueMapping &ValMapping) const {
157  assert(MO.isReg() && "We should only repair register operand");
158  assert(!ValMapping.BreakDown.empty() && "Nothing to map??");
159
160  bool IsSameNumOfValues = ValMapping.BreakDown.size() == 1;
161  const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
162  // If MO does not have a register bank, we should have just been
163  // able to set one unless we have to break the value down.
164  assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
165  // Def: Val <- NewDefs
166  //     Same number of values: copy
167  //     Different number: Val = build_sequence Defs1, Defs2, ...
168  // Use: NewSources <- Val.
169  //     Same number of values: copy.
170  //     Different number: Src1, Src2, ... =
171  //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
172  // We should remember that this value is available somewhere else to
173  // coalesce the value.
174
175  if (IsSameNumOfValues) {
176    const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
177    // If we repair a definition, swap the source and destination for
178    // the repairing.
179    if (MO.isDef())
180      std::swap(CurRegBank, DesiredRegBrank);
181    // TODO: It may be possible to actually avoid the copy.
182    // If we repair something where the source is defined by a copy
183    // and the source of that copy is on the right bank, we can reuse
184    // it for free.
185    // E.g.,
186    // RegToRepair<BankA> = copy AlternativeSrc<BankB>
187    // = op RegToRepair<BankA>
188    // We can simply propagate AlternativeSrc instead of copying RegToRepair
189    // into a new virtual register.
190    // We would also need to propagate this information in the
191    // repairing placement.
192    unsigned Cost =
193        RBI->copyCost(*DesiredRegBrank, *CurRegBank,
194                      RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI));
195    // TODO: use a dedicated constant for ImpossibleCost.
196    if (Cost != UINT_MAX)
197      return Cost;
198    assert(false && "Legalization not available yet");
199    // Return the legalization cost of that repairing.
200  }
201  assert(false && "Complex repairing not implemented yet");
202  return 1;
203}
204
205RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
206    MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
207    SmallVectorImpl<RepairingPlacement> &RepairPts) {
208
209  RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
210  MappingCost Cost = MappingCost::ImpossibleCost();
211  SmallVector<RepairingPlacement, 4> LocalRepairPts;
212  for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) {
213    MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost);
214    if (CurCost < Cost) {
215      Cost = CurCost;
216      BestMapping = &CurMapping;
217      RepairPts.clear();
218      for (RepairingPlacement &RepairPt : LocalRepairPts)
219        RepairPts.emplace_back(std::move(RepairPt));
220    }
221  }
222  assert(BestMapping && "No suitable mapping for instruction");
223  return *BestMapping;
224}
225
226void RegBankSelect::tryAvoidingSplit(
227    RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
228    const RegisterBankInfo::ValueMapping &ValMapping) const {
229  const MachineInstr &MI = *MO.getParent();
230  assert(RepairPt.hasSplit() && "We should not have to adjust for split");
231  // Splitting should only occur for PHIs or between terminators,
232  // because we only do local repairing.
233  assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
234
235  assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
236         "Repairing placement does not match operand");
237
238  // If we need splitting for phis, that means it is because we
239  // could not find an insertion point before the terminators of
240  // the predecessor block for this argument. In other words,
241  // the input value is defined by one of the terminators.
242  assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
243
244  // We split to repair the use of a phi or a terminator.
245  if (!MO.isDef()) {
246    if (MI.isTerminator()) {
247      assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
248             "Need to split for the first terminator?!");
249    } else {
250      // For the PHI case, the split may not be actually required.
251      // In the copy case, a phi is already a copy on the incoming edge,
252      // therefore there is no need to split.
253      if (ValMapping.BreakDown.size() == 1)
254        // This is a already a copy, there is nothing to do.
255        RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
256    }
257    return;
258  }
259
260  // At this point, we need to repair a defintion of a terminator.
261
262  // Technically we need to fix the def of MI on all outgoing
263  // edges of MI to keep the repairing local. In other words, we
264  // will create several definitions of the same register. This
265  // does not work for SSA unless that definition is a physical
266  // register.
267  // However, there are other cases where we can get away with
268  // that while still keeping the repairing local.
269  assert(MI.isTerminator() && MO.isDef() &&
270         "This code is for the def of a terminator");
271
272  // Since we use RPO traversal, if we need to repair a definition
273  // this means this definition could be:
274  // 1. Used by PHIs (i.e., this VReg has been visited as part of the
275  //    uses of a phi.), or
276  // 2. Part of a target specific instruction (i.e., the target applied
277  //    some register class constraints when creating the instruction.)
278  // If the constraints come for #2, the target said that another mapping
279  // is supported so we may just drop them. Indeed, if we do not change
280  // the number of registers holding that value, the uses will get fixed
281  // when we get to them.
282  // Uses in PHIs may have already been proceeded though.
283  // If the constraints come for #1, then, those are weak constraints and
284  // no actual uses may rely on them. However, the problem remains mainly
285  // the same as for #2. If the value stays in one register, we could
286  // just switch the register bank of the definition, but we would need to
287  // account for a repairing cost for each phi we silently change.
288  //
289  // In any case, if the value needs to be broken down into several
290  // registers, the repairing is not local anymore as we need to patch
291  // every uses to rebuild the value in just one register.
292  //
293  // To summarize:
294  // - If the value is in a physical register, we can do the split and
295  //   fix locally.
296  // Otherwise if the value is in a virtual register:
297  // - If the value remains in one register, we do not have to split
298  //   just switching the register bank would do, but we need to account
299  //   in the repairing cost all the phi we changed.
300  // - If the value spans several registers, then we cannot do a local
301  //   repairing.
302
303  // Check if this is a physical or virtual register.
304  unsigned Reg = MO.getReg();
305  if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
306    // We are going to split every outgoing edges.
307    // Check that this is possible.
308    // FIXME: The machine representation is currently broken
309    // since it also several terminators in one basic block.
310    // Because of that we would technically need a way to get
311    // the targets of just one terminator to know which edges
312    // we have to split.
313    // Assert that we do not hit the ill-formed representation.
314
315    // If there are other terminators before that one, some of
316    // the outgoing edges may not be dominated by this definition.
317    assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
318           "Do not know which outgoing edges are relevant");
319    const MachineInstr *Next = MI.getNextNode();
320    assert((!Next || Next->isUnconditionalBranch()) &&
321           "Do not know where each terminator ends up");
322    if (Next)
323      // If the next terminator uses Reg, this means we have
324      // to split right after MI and thus we need a way to ask
325      // which outgoing edges are affected.
326      assert(!Next->readsRegister(Reg) && "Need to split between terminators");
327    // We will split all the edges and repair there.
328  } else {
329    // This is a virtual register defined by a terminator.
330    if (ValMapping.BreakDown.size() == 1) {
331      // There is nothing to repair, but we may actually lie on
332      // the repairing cost because of the PHIs already proceeded
333      // as already stated.
334      // Though the code will be correct.
335      assert(0 && "Repairing cost may not be accurate");
336    } else {
337      // We need to do non-local repairing. Basically, patch all
338      // the uses (i.e., phis) that we already proceeded.
339      // For now, just say this mapping is not possible.
340      RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
341    }
342  }
343}
344
345RegBankSelect::MappingCost RegBankSelect::computeMapping(
346    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
347    SmallVectorImpl<RepairingPlacement> &RepairPts,
348    const RegBankSelect::MappingCost *BestCost) {
349  assert((MBFI || !BestCost) && "Costs comparison require MBFI");
350
351  // If mapped with InstrMapping, MI will have the recorded cost.
352  MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
353  bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
354  assert(!Saturated && "Possible mapping saturated the cost");
355  DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
356  DEBUG(dbgs() << "With: " << InstrMapping << '\n');
357  RepairPts.clear();
358  if (BestCost && Cost > *BestCost)
359    return Cost;
360
361  // Moreover, to realize this mapping, the register bank of each operand must
362  // match this mapping. In other words, we may need to locally reassign the
363  // register banks. Account for that repairing cost as well.
364  // In this context, local means in the surrounding of MI.
365  for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
366       ++OpIdx) {
367    const MachineOperand &MO = MI.getOperand(OpIdx);
368    if (!MO.isReg())
369      continue;
370    unsigned Reg = MO.getReg();
371    if (!Reg)
372      continue;
373    DEBUG(dbgs() << "Opd" << OpIdx);
374    const RegisterBankInfo::ValueMapping &ValMapping =
375        InstrMapping.getOperandMapping(OpIdx);
376    // If Reg is already properly mapped, this is free.
377    bool Assign;
378    if (assignmentMatch(Reg, ValMapping, Assign)) {
379      DEBUG(dbgs() << " is free (match).\n");
380      continue;
381    }
382    if (Assign) {
383      DEBUG(dbgs() << " is free (simple assignment).\n");
384      RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
385                                                RepairingPlacement::Reassign));
386      continue;
387    }
388
389    // Find the insertion point for the repairing code.
390    RepairPts.emplace_back(
391        RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
392    RepairingPlacement &RepairPt = RepairPts.back();
393
394    // If we need to split a basic block to materialize this insertion point,
395    // we may give a higher cost to this mapping.
396    // Nevertheless, we may get away with the split, so try that first.
397    if (RepairPt.hasSplit())
398      tryAvoidingSplit(RepairPt, MO, ValMapping);
399
400    // Check that the materialization of the repairing is possible.
401    if (!RepairPt.canMaterialize())
402      return MappingCost::ImpossibleCost();
403
404    // Account for the split cost and repair cost.
405    // Unless the cost is already saturated or we do not care about the cost.
406    if (!BestCost || Saturated)
407      continue;
408
409    // To get accurate information we need MBFI and MBPI.
410    // Thus, if we end up here this information should be here.
411    assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
412
413    // FIXME: We will have to rework the repairing cost model.
414    // The repairing cost depends on the register bank that MO has.
415    // However, when we break down the value into different values,
416    // MO may not have a register bank while still needing repairing.
417    // For the fast mode, we don't compute the cost so that is fine,
418    // but still for the repairing code, we will have to make a choice.
419    // For the greedy mode, we should choose greedily what is the best
420    // choice based on the next use of MO.
421
422    // Sums up the repairing cost of MO at each insertion point.
423    uint64_t RepairCost = getRepairCost(MO, ValMapping);
424    // Bias used for splitting: 5%.
425    const uint64_t PercentageForBias = 5;
426    uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
427    // We should not need more than a couple of instructions to repair
428    // an assignment. In other words, the computation should not
429    // overflow because the repairing cost is free of basic block
430    // frequency.
431    assert(((RepairCost < RepairCost * PercentageForBias) &&
432            (RepairCost * PercentageForBias <
433             RepairCost * PercentageForBias + 99)) &&
434           "Repairing involves more than a billion of instructions?!");
435    for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
436      assert(InsertPt->canMaterialize() && "We should not have made it here");
437      // We will applied some basic block frequency and those uses uint64_t.
438      if (!InsertPt->isSplit())
439        Saturated = Cost.addLocalCost(RepairCost);
440      else {
441        uint64_t CostForInsertPt = RepairCost;
442        // Again we shouldn't overflow here givent that
443        // CostForInsertPt is frequency free at this point.
444        assert(CostForInsertPt + Bias > CostForInsertPt &&
445               "Repairing + split bias overflows");
446        CostForInsertPt += Bias;
447        uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
448        // Check if we just overflowed.
449        if ((Saturated = PtCost < CostForInsertPt))
450          Cost.saturate();
451        else
452          Saturated = Cost.addNonLocalCost(PtCost);
453      }
454
455      // Stop looking into what it takes to repair, this is already
456      // too expensive.
457      if (BestCost && Cost > *BestCost)
458        return Cost;
459
460      // No need to accumulate more cost information.
461      // We need to still gather the repairing information though.
462      if (Saturated)
463        break;
464    }
465  }
466  return Cost;
467}
468
469void RegBankSelect::applyMapping(
470    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
471    SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
472  // OpdMapper will hold all the information needed for the rewritting.
473  RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
474
475  // First, place the repairing code.
476  for (RepairingPlacement &RepairPt : RepairPts) {
477    assert(RepairPt.canMaterialize() &&
478           RepairPt.getKind() != RepairingPlacement::Impossible &&
479           "This mapping is impossible");
480    assert(RepairPt.getKind() != RepairingPlacement::None &&
481           "This should not make its way in the list");
482    unsigned OpIdx = RepairPt.getOpIdx();
483    MachineOperand &MO = MI.getOperand(OpIdx);
484    const RegisterBankInfo::ValueMapping &ValMapping =
485        InstrMapping.getOperandMapping(OpIdx);
486    unsigned BreakDownSize = ValMapping.BreakDown.size();
487    (void)BreakDownSize;
488    unsigned Reg = MO.getReg();
489
490    switch (RepairPt.getKind()) {
491    case RepairingPlacement::Reassign:
492      assert(BreakDownSize == 1 &&
493             "Reassignment should only be for simple mapping");
494      MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
495      break;
496    case RepairingPlacement::Insert:
497      OpdMapper.createVRegs(OpIdx);
498      repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx));
499      break;
500    default:
501      llvm_unreachable("Other kind should not happen");
502    }
503  }
504  // Second, rewrite the instruction.
505  DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
506  RBI->applyMapping(OpdMapper);
507}
508
509void RegBankSelect::assignInstr(MachineInstr &MI) {
510  DEBUG(dbgs() << "Assign: " << MI);
511  // Remember the repairing placement for all the operands.
512  SmallVector<RepairingPlacement, 4> RepairPts;
513
514  RegisterBankInfo::InstructionMapping BestMapping;
515  if (OptMode == RegBankSelect::Mode::Fast) {
516    BestMapping = RBI->getInstrMapping(MI);
517    MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts);
518    (void)DefaultCost;
519    assert(DefaultCost != MappingCost::ImpossibleCost() &&
520           "Default mapping is not suited");
521  } else {
522    RegisterBankInfo::InstructionMappings PossibleMappings =
523        RBI->getInstrPossibleMappings(MI);
524    assert(!PossibleMappings.empty() &&
525           "Do not know how to map this instruction");
526    BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts));
527  }
528  // Make sure the mapping is valid for MI.
529  assert(BestMapping.verify(MI) && "Invalid instruction mapping");
530
531  DEBUG(dbgs() << "Mapping: " << BestMapping << '\n');
532
533  // After this call, MI may not be valid anymore.
534  // Do not use it.
535  applyMapping(MI, BestMapping, RepairPts);
536}
537
538bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
539  DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
540  const Function *F = MF.getFunction();
541  Mode SaveOptMode = OptMode;
542  if (F->hasFnAttribute(Attribute::OptimizeNone))
543    OptMode = Mode::Fast;
544  init(MF);
545  // Walk the function and assign register banks to all operands.
546  // Use a RPOT to make sure all registers are assigned before we choose
547  // the best mapping of the current instruction.
548  ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
549  for (MachineBasicBlock *MBB : RPOT) {
550    // Set a sensible insertion point so that subsequent calls to
551    // MIRBuilder.
552    MIRBuilder.setMBB(*MBB);
553    for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
554         MII != End;) {
555      // MI might be invalidated by the assignment, so move the
556      // iterator before hand.
557      assignInstr(*MII++);
558    }
559  }
560  OptMode = SaveOptMode;
561  return false;
562}
563
564//------------------------------------------------------------------------------
565//                  Helper Classes Implementation
566//------------------------------------------------------------------------------
567RegBankSelect::RepairingPlacement::RepairingPlacement(
568    MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
569    RepairingPlacement::RepairingKind Kind)
570    // Default is, we are going to insert code to repair OpIdx.
571    : Kind(Kind),
572      OpIdx(OpIdx),
573      CanMaterialize(Kind != RepairingKind::Impossible),
574      HasSplit(false),
575      P(P) {
576  const MachineOperand &MO = MI.getOperand(OpIdx);
577  assert(MO.isReg() && "Trying to repair a non-reg operand");
578
579  if (Kind != RepairingKind::Insert)
580    return;
581
582  // Repairings for definitions happen after MI, uses happen before.
583  bool Before = !MO.isDef();
584
585  // Check if we are done with MI.
586  if (!MI.isPHI() && !MI.isTerminator()) {
587    addInsertPoint(MI, Before);
588    // We are done with the initialization.
589    return;
590  }
591
592  // Now, look for the special cases.
593  if (MI.isPHI()) {
594    // - PHI must be the first instructions:
595    //   * Before, we have to split the related incoming edge.
596    //   * After, move the insertion point past the last phi.
597    if (!Before) {
598      MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
599      if (It != MI.getParent()->end())
600        addInsertPoint(*It, /*Before*/ true);
601      else
602        addInsertPoint(*(--It), /*Before*/ false);
603      return;
604    }
605    // We repair a use of a phi, we may need to split the related edge.
606    MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
607    // Check if we can move the insertion point prior to the
608    // terminators of the predecessor.
609    unsigned Reg = MO.getReg();
610    MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
611    for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
612      if (It->modifiesRegister(Reg, &TRI)) {
613        // We cannot hoist the repairing code in the predecessor.
614        // Split the edge.
615        addInsertPoint(Pred, *MI.getParent());
616        return;
617      }
618    // At this point, we can insert in Pred.
619
620    // - If It is invalid, Pred is empty and we can insert in Pred
621    //   wherever we want.
622    // - If It is valid, It is the first non-terminator, insert after It.
623    if (It == Pred.end())
624      addInsertPoint(Pred, /*Beginning*/ false);
625    else
626      addInsertPoint(*It, /*Before*/ false);
627  } else {
628    // - Terminators must be the last instructions:
629    //   * Before, move the insert point before the first terminator.
630    //   * After, we have to split the outcoming edges.
631    unsigned Reg = MO.getReg();
632    if (Before) {
633      // Check whether Reg is defined by any terminator.
634      MachineBasicBlock::iterator It = MI;
635      for (auto Begin = MI.getParent()->begin();
636           --It != Begin && It->isTerminator();)
637        if (It->modifiesRegister(Reg, &TRI)) {
638          // Insert the repairing code right after the definition.
639          addInsertPoint(*It, /*Before*/ false);
640          return;
641        }
642      addInsertPoint(*It, /*Before*/ true);
643      return;
644    }
645    // Make sure Reg is not redefined by other terminators, otherwise
646    // we do not know how to split.
647    for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
648         ++It != End;)
649      // The machine verifier should reject this kind of code.
650      assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
651    // Split each outcoming edges.
652    MachineBasicBlock &Src = *MI.getParent();
653    for (auto &Succ : Src.successors())
654      addInsertPoint(Src, Succ);
655  }
656}
657
658void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
659                                                       bool Before) {
660  addInsertPoint(*new InstrInsertPoint(MI, Before));
661}
662
663void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
664                                                       bool Beginning) {
665  addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
666}
667
668void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
669                                                       MachineBasicBlock &Dst) {
670  addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
671}
672
673void RegBankSelect::RepairingPlacement::addInsertPoint(
674    RegBankSelect::InsertPoint &Point) {
675  CanMaterialize &= Point.canMaterialize();
676  HasSplit |= Point.isSplit();
677  InsertPoints.emplace_back(&Point);
678}
679
680RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
681                                                  bool Before)
682    : InsertPoint(), Instr(Instr), Before(Before) {
683  // Since we do not support splitting, we do not need to update
684  // liveness and such, so do not do anything with P.
685  assert((!Before || !Instr.isPHI()) &&
686         "Splitting before phis requires more points");
687  assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
688         "Splitting between phis does not make sense");
689}
690
691void RegBankSelect::InstrInsertPoint::materialize() {
692  if (isSplit()) {
693    // Slice and return the beginning of the new block.
694    // If we need to split between the terminators, we theoritically
695    // need to know where the first and second set of terminators end
696    // to update the successors properly.
697    // Now, in pratice, we should have a maximum of 2 branch
698    // instructions; one conditional and one unconditional. Therefore
699    // we know how to update the successor by looking at the target of
700    // the unconditional branch.
701    // If we end up splitting at some point, then, we should update
702    // the liveness information and such. I.e., we would need to
703    // access P here.
704    // The machine verifier should actually make sure such cases
705    // cannot happen.
706    llvm_unreachable("Not yet implemented");
707  }
708  // Otherwise the insertion point is just the current or next
709  // instruction depending on Before. I.e., there is nothing to do
710  // here.
711}
712
713bool RegBankSelect::InstrInsertPoint::isSplit() const {
714  // If the insertion point is after a terminator, we need to split.
715  if (!Before)
716    return Instr.isTerminator();
717  // If we insert before an instruction that is after a terminator,
718  // we are still after a terminator.
719  return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
720}
721
722uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
723  // Even if we need to split, because we insert between terminators,
724  // this split has actually the same frequency as the instruction.
725  const MachineBlockFrequencyInfo *MBFI =
726      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
727  if (!MBFI)
728    return 1;
729  return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
730}
731
732uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
733  const MachineBlockFrequencyInfo *MBFI =
734      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
735  if (!MBFI)
736    return 1;
737  return MBFI->getBlockFreq(&MBB).getFrequency();
738}
739
740void RegBankSelect::EdgeInsertPoint::materialize() {
741  // If we end up repairing twice at the same place before materializing the
742  // insertion point, we may think we have to split an edge twice.
743  // We should have a factory for the insert point such that identical points
744  // are the same instance.
745  assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
746         "This point has already been split");
747  MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
748  assert(NewBB && "Invalid call to materialize");
749  // We reuse the destination block to hold the information of the new block.
750  DstOrSplit = NewBB;
751}
752
753uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
754  const MachineBlockFrequencyInfo *MBFI =
755      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
756  if (!MBFI)
757    return 1;
758  if (WasMaterialized)
759    return MBFI->getBlockFreq(DstOrSplit).getFrequency();
760
761  const MachineBranchProbabilityInfo *MBPI =
762      P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
763  if (!MBPI)
764    return 1;
765  // The basic block will be on the edge.
766  return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
767      .getFrequency();
768}
769
770bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
771  // If this is not a critical edge, we should not have used this insert
772  // point. Indeed, either the successor or the predecessor should
773  // have do.
774  assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
775         "Edge is not critical");
776  return Src.canSplitCriticalEdge(DstOrSplit);
777}
778
779RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
780    : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {}
781
782bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
783  // Check if this overflows.
784  if (LocalCost + Cost < LocalCost) {
785    saturate();
786    return true;
787  }
788  LocalCost += Cost;
789  return isSaturated();
790}
791
792bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
793  // Check if this overflows.
794  if (NonLocalCost + Cost < NonLocalCost) {
795    saturate();
796    return true;
797  }
798  NonLocalCost += Cost;
799  return isSaturated();
800}
801
802bool RegBankSelect::MappingCost::isSaturated() const {
803  return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
804         LocalFreq == UINT64_MAX;
805}
806
807void RegBankSelect::MappingCost::saturate() {
808  *this = ImpossibleCost();
809  --LocalCost;
810}
811
812RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
813  return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
814}
815
816bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
817  // Sort out the easy cases.
818  if (*this == Cost)
819    return false;
820  // If one is impossible to realize the other is cheaper unless it is
821  // impossible as well.
822  if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
823    return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
824  // If one is saturated the other is cheaper, unless it is saturated
825  // as well.
826  if (isSaturated() || Cost.isSaturated())
827    return isSaturated() < Cost.isSaturated();
828  // At this point we know both costs hold sensible values.
829
830  // If both values have a different base frequency, there is no much
831  // we can do but to scale everything.
832  // However, if they have the same base frequency we can avoid making
833  // complicated computation.
834  uint64_t ThisLocalAdjust;
835  uint64_t OtherLocalAdjust;
836  if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
837
838    // At this point, we know the local costs are comparable.
839    // Do the case that do not involve potential overflow first.
840    if (NonLocalCost == Cost.NonLocalCost)
841      // Since the non-local costs do not discriminate on the result,
842      // just compare the local costs.
843      return LocalCost < Cost.LocalCost;
844
845    // The base costs are comparable so we may only keep the relative
846    // value to increase our chances of avoiding overflows.
847    ThisLocalAdjust = 0;
848    OtherLocalAdjust = 0;
849    if (LocalCost < Cost.LocalCost)
850      OtherLocalAdjust = Cost.LocalCost - LocalCost;
851    else
852      ThisLocalAdjust = LocalCost - Cost.LocalCost;
853
854  } else {
855    ThisLocalAdjust = LocalCost;
856    OtherLocalAdjust = Cost.LocalCost;
857  }
858
859  // The non-local costs are comparable, just keep the relative value.
860  uint64_t ThisNonLocalAdjust = 0;
861  uint64_t OtherNonLocalAdjust = 0;
862  if (NonLocalCost < Cost.NonLocalCost)
863    OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
864  else
865    ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
866  // Scale everything to make them comparable.
867  uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
868  // Check for overflow on that operation.
869  bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
870                                           ThisScaledCost < LocalFreq);
871  uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
872  // Check for overflow on the last operation.
873  bool OtherOverflows =
874      OtherLocalAdjust &&
875      (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
876  // Add the non-local costs.
877  ThisOverflows |= ThisNonLocalAdjust &&
878                   ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
879  ThisScaledCost += ThisNonLocalAdjust;
880  OtherOverflows |= OtherNonLocalAdjust &&
881                    OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
882  OtherScaledCost += OtherNonLocalAdjust;
883  // If both overflows, we cannot compare without additional
884  // precision, e.g., APInt. Just give up on that case.
885  if (ThisOverflows && OtherOverflows)
886    return false;
887  // If one overflows but not the other, we can still compare.
888  if (ThisOverflows || OtherOverflows)
889    return ThisOverflows < OtherOverflows;
890  // Otherwise, just compare the values.
891  return ThisScaledCost < OtherScaledCost;
892}
893
894bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
895  return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
896         LocalFreq == Cost.LocalFreq;
897}
898