1//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live range for register v if there is no instruction with number j' >= j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation ranges can have holes,
15// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16// individual segment is represented as an instance of LiveRange::Segment,
17// and the whole range is represented as an instance of LiveRange.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/CodeGen/LiveInterval.h"
22
23#include "LiveRangeUtils.h"
24#include "RegisterCoalescer.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36//===----------------------------------------------------------------------===//
37// Implementation of various methods necessary for calculation of live ranges.
38// The implementation of the methods abstracts from the concrete type of the
39// segment collection.
40//
41// Implementation of the class follows the Template design pattern. The base
42// class contains generic algorithms that call collection-specific methods,
43// which are provided in concrete subclasses. In order to avoid virtual calls
44// these methods are provided by means of C++ template instantiation.
45// The base class calls the methods of the subclass through method impl(),
46// which casts 'this' pointer to the type of the subclass.
47//
48//===----------------------------------------------------------------------===//
49
50template <typename ImplT, typename IteratorT, typename CollectionT>
51class CalcLiveRangeUtilBase {
52protected:
53  LiveRange *LR;
54
55protected:
56  CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
57
58public:
59  typedef LiveRange::Segment Segment;
60  typedef IteratorT iterator;
61
62  VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
63    assert(!Def.isDead() && "Cannot define a value at the dead slot");
64
65    iterator I = impl().find(Def);
66    if (I == segments().end()) {
67      VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
68      impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
69      return VNI;
70    }
71
72    Segment *S = segmentAt(I);
73    if (SlotIndex::isSameInstr(Def, S->start)) {
74      assert(S->valno->def == S->start && "Inconsistent existing value def");
75
76      // It is possible to have both normal and early-clobber defs of the same
77      // register on an instruction. It doesn't make a lot of sense, but it is
78      // possible to specify in inline assembly.
79      //
80      // Just convert everything to early-clobber.
81      Def = std::min(Def, S->start);
82      if (Def != S->start)
83        S->start = S->valno->def = Def;
84      return S->valno;
85    }
86    assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
87    VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
88    segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
89    return VNI;
90  }
91
92  VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
93    if (segments().empty())
94      return nullptr;
95    iterator I =
96        impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
97    if (I == segments().begin())
98      return nullptr;
99    --I;
100    if (I->end <= StartIdx)
101      return nullptr;
102    if (I->end < Use)
103      extendSegmentEndTo(I, Use);
104    return I->valno;
105  }
106
107  /// This method is used when we want to extend the segment specified
108  /// by I to end at the specified endpoint. To do this, we should
109  /// merge and eliminate all segments that this will overlap
110  /// with. The iterator is not invalidated.
111  void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
112    assert(I != segments().end() && "Not a valid segment!");
113    Segment *S = segmentAt(I);
114    VNInfo *ValNo = I->valno;
115
116    // Search for the first segment that we can't merge with.
117    iterator MergeTo = std::next(I);
118    for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
119      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
120
121    // If NewEnd was in the middle of a segment, make sure to get its endpoint.
122    S->end = std::max(NewEnd, std::prev(MergeTo)->end);
123
124    // If the newly formed segment now touches the segment after it and if they
125    // have the same value number, merge the two segments into one segment.
126    if (MergeTo != segments().end() && MergeTo->start <= I->end &&
127        MergeTo->valno == ValNo) {
128      S->end = MergeTo->end;
129      ++MergeTo;
130    }
131
132    // Erase any dead segments.
133    segments().erase(std::next(I), MergeTo);
134  }
135
136  /// This method is used when we want to extend the segment specified
137  /// by I to start at the specified endpoint.  To do this, we should
138  /// merge and eliminate all segments that this will overlap with.
139  iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
140    assert(I != segments().end() && "Not a valid segment!");
141    Segment *S = segmentAt(I);
142    VNInfo *ValNo = I->valno;
143
144    // Search for the first segment that we can't merge with.
145    iterator MergeTo = I;
146    do {
147      if (MergeTo == segments().begin()) {
148        S->start = NewStart;
149        segments().erase(MergeTo, I);
150        return I;
151      }
152      assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
153      --MergeTo;
154    } while (NewStart <= MergeTo->start);
155
156    // If we start in the middle of another segment, just delete a range and
157    // extend that segment.
158    if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
159      segmentAt(MergeTo)->end = S->end;
160    } else {
161      // Otherwise, extend the segment right after.
162      ++MergeTo;
163      Segment *MergeToSeg = segmentAt(MergeTo);
164      MergeToSeg->start = NewStart;
165      MergeToSeg->end = S->end;
166    }
167
168    segments().erase(std::next(MergeTo), std::next(I));
169    return MergeTo;
170  }
171
172  iterator addSegment(Segment S) {
173    SlotIndex Start = S.start, End = S.end;
174    iterator I = impl().findInsertPos(S);
175
176    // If the inserted segment starts in the middle or right at the end of
177    // another segment, just extend that segment to contain the segment of S.
178    if (I != segments().begin()) {
179      iterator B = std::prev(I);
180      if (S.valno == B->valno) {
181        if (B->start <= Start && B->end >= Start) {
182          extendSegmentEndTo(B, End);
183          return B;
184        }
185      } else {
186        // Check to make sure that we are not overlapping two live segments with
187        // different valno's.
188        assert(B->end <= Start &&
189               "Cannot overlap two segments with differing ValID's"
190               " (did you def the same reg twice in a MachineInstr?)");
191      }
192    }
193
194    // Otherwise, if this segment ends in the middle of, or right next
195    // to, another segment, merge it into that segment.
196    if (I != segments().end()) {
197      if (S.valno == I->valno) {
198        if (I->start <= End) {
199          I = extendSegmentStartTo(I, Start);
200
201          // If S is a complete superset of a segment, we may need to grow its
202          // endpoint as well.
203          if (End > I->end)
204            extendSegmentEndTo(I, End);
205          return I;
206        }
207      } else {
208        // Check to make sure that we are not overlapping two live segments with
209        // different valno's.
210        assert(I->start >= End &&
211               "Cannot overlap two segments with differing ValID's");
212      }
213    }
214
215    // Otherwise, this is just a new segment that doesn't interact with
216    // anything.
217    // Insert it.
218    return segments().insert(I, S);
219  }
220
221private:
222  ImplT &impl() { return *static_cast<ImplT *>(this); }
223
224  CollectionT &segments() { return impl().segmentsColl(); }
225
226  Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
227};
228
229//===----------------------------------------------------------------------===//
230//   Instantiation of the methods for calculation of live ranges
231//   based on a segment vector.
232//===----------------------------------------------------------------------===//
233
234class CalcLiveRangeUtilVector;
235typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
236                              LiveRange::Segments> CalcLiveRangeUtilVectorBase;
237
238class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
239public:
240  CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
241
242private:
243  friend CalcLiveRangeUtilVectorBase;
244
245  LiveRange::Segments &segmentsColl() { return LR->segments; }
246
247  void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
248
249  iterator find(SlotIndex Pos) { return LR->find(Pos); }
250
251  iterator findInsertPos(Segment S) {
252    return std::upper_bound(LR->begin(), LR->end(), S.start);
253  }
254};
255
256//===----------------------------------------------------------------------===//
257//   Instantiation of the methods for calculation of live ranges
258//   based on a segment set.
259//===----------------------------------------------------------------------===//
260
261class CalcLiveRangeUtilSet;
262typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
263                              LiveRange::SegmentSet::iterator,
264                              LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
265
266class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
267public:
268  CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
269
270private:
271  friend CalcLiveRangeUtilSetBase;
272
273  LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
274
275  void insertAtEnd(const Segment &S) {
276    LR->segmentSet->insert(LR->segmentSet->end(), S);
277  }
278
279  iterator find(SlotIndex Pos) {
280    iterator I =
281        LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
282    if (I == LR->segmentSet->begin())
283      return I;
284    iterator PrevI = std::prev(I);
285    if (Pos < (*PrevI).end)
286      return PrevI;
287    return I;
288  }
289
290  iterator findInsertPos(Segment S) {
291    iterator I = LR->segmentSet->upper_bound(S);
292    if (I != LR->segmentSet->end() && !(S.start < *I))
293      ++I;
294    return I;
295  }
296};
297} // namespace
298
299//===----------------------------------------------------------------------===//
300//   LiveRange methods
301//===----------------------------------------------------------------------===//
302
303LiveRange::iterator LiveRange::find(SlotIndex Pos) {
304  // This algorithm is basically std::upper_bound.
305  // Unfortunately, std::upper_bound cannot be used with mixed types until we
306  // adopt C++0x. Many libraries can do it, but not all.
307  if (empty() || Pos >= endIndex())
308    return end();
309  iterator I = begin();
310  size_t Len = size();
311  do {
312    size_t Mid = Len >> 1;
313    if (Pos < I[Mid].end) {
314      Len = Mid;
315    } else {
316      I += Mid + 1;
317      Len -= Mid + 1;
318    }
319  } while (Len);
320  return I;
321}
322
323VNInfo *LiveRange::createDeadDef(SlotIndex Def,
324                                  VNInfo::Allocator &VNInfoAllocator) {
325  // Use the segment set, if it is available.
326  if (segmentSet != nullptr)
327    return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
328  // Otherwise use the segment vector.
329  return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
330}
331
332// overlaps - Return true if the intersection of the two live ranges is
333// not empty.
334//
335// An example for overlaps():
336//
337// 0: A = ...
338// 4: B = ...
339// 8: C = A + B ;; last use of A
340//
341// The live ranges should look like:
342//
343// A = [3, 11)
344// B = [7, x)
345// C = [11, y)
346//
347// A->overlaps(C) should return false since we want to be able to join
348// A and C.
349//
350bool LiveRange::overlapsFrom(const LiveRange& other,
351                             const_iterator StartPos) const {
352  assert(!empty() && "empty range");
353  const_iterator i = begin();
354  const_iterator ie = end();
355  const_iterator j = StartPos;
356  const_iterator je = other.end();
357
358  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
359         StartPos != other.end() && "Bogus start position hint!");
360
361  if (i->start < j->start) {
362    i = std::upper_bound(i, ie, j->start);
363    if (i != begin()) --i;
364  } else if (j->start < i->start) {
365    ++StartPos;
366    if (StartPos != other.end() && StartPos->start <= i->start) {
367      assert(StartPos < other.end() && i < end());
368      j = std::upper_bound(j, je, i->start);
369      if (j != other.begin()) --j;
370    }
371  } else {
372    return true;
373  }
374
375  if (j == je) return false;
376
377  while (i != ie) {
378    if (i->start > j->start) {
379      std::swap(i, j);
380      std::swap(ie, je);
381    }
382
383    if (i->end > j->start)
384      return true;
385    ++i;
386  }
387
388  return false;
389}
390
391bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
392                         const SlotIndexes &Indexes) const {
393  assert(!empty() && "empty range");
394  if (Other.empty())
395    return false;
396
397  // Use binary searches to find initial positions.
398  const_iterator I = find(Other.beginIndex());
399  const_iterator IE = end();
400  if (I == IE)
401    return false;
402  const_iterator J = Other.find(I->start);
403  const_iterator JE = Other.end();
404  if (J == JE)
405    return false;
406
407  for (;;) {
408    // J has just been advanced to satisfy:
409    assert(J->end >= I->start);
410    // Check for an overlap.
411    if (J->start < I->end) {
412      // I and J are overlapping. Find the later start.
413      SlotIndex Def = std::max(I->start, J->start);
414      // Allow the overlap if Def is a coalescable copy.
415      if (Def.isBlock() ||
416          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
417        return true;
418    }
419    // Advance the iterator that ends first to check for more overlaps.
420    if (J->end > I->end) {
421      std::swap(I, J);
422      std::swap(IE, JE);
423    }
424    // Advance J until J->end >= I->start.
425    do
426      if (++J == JE)
427        return false;
428    while (J->end < I->start);
429  }
430}
431
432/// overlaps - Return true if the live range overlaps an interval specified
433/// by [Start, End).
434bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
435  assert(Start < End && "Invalid range");
436  const_iterator I = std::lower_bound(begin(), end(), End);
437  return I != begin() && (--I)->end > Start;
438}
439
440bool LiveRange::covers(const LiveRange &Other) const {
441  if (empty())
442    return Other.empty();
443
444  const_iterator I = begin();
445  for (const Segment &O : Other.segments) {
446    I = advanceTo(I, O.start);
447    if (I == end() || I->start > O.start)
448      return false;
449
450    // Check adjacent live segments and see if we can get behind O.end.
451    while (I->end < O.end) {
452      const_iterator Last = I;
453      // Get next segment and abort if it was not adjacent.
454      ++I;
455      if (I == end() || Last->end != I->start)
456        return false;
457    }
458  }
459  return true;
460}
461
462/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
463/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
464/// it can be nuked later.
465void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
466  if (ValNo->id == getNumValNums()-1) {
467    do {
468      valnos.pop_back();
469    } while (!valnos.empty() && valnos.back()->isUnused());
470  } else {
471    ValNo->markUnused();
472  }
473}
474
475/// RenumberValues - Renumber all values in order of appearance and delete the
476/// remaining unused values.
477void LiveRange::RenumberValues() {
478  SmallPtrSet<VNInfo*, 8> Seen;
479  valnos.clear();
480  for (const Segment &S : segments) {
481    VNInfo *VNI = S.valno;
482    if (!Seen.insert(VNI).second)
483      continue;
484    assert(!VNI->isUnused() && "Unused valno used by live segment");
485    VNI->id = (unsigned)valnos.size();
486    valnos.push_back(VNI);
487  }
488}
489
490void LiveRange::addSegmentToSet(Segment S) {
491  CalcLiveRangeUtilSet(this).addSegment(S);
492}
493
494LiveRange::iterator LiveRange::addSegment(Segment S) {
495  // Use the segment set, if it is available.
496  if (segmentSet != nullptr) {
497    addSegmentToSet(S);
498    return end();
499  }
500  // Otherwise use the segment vector.
501  return CalcLiveRangeUtilVector(this).addSegment(S);
502}
503
504void LiveRange::append(const Segment S) {
505  // Check that the segment belongs to the back of the list.
506  assert(segments.empty() || segments.back().end <= S.start);
507  segments.push_back(S);
508}
509
510/// extendInBlock - If this range is live before Kill in the basic
511/// block that starts at StartIdx, extend it to be live up to Kill and return
512/// the value. If there is no live range before Kill, return NULL.
513VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
514  // Use the segment set, if it is available.
515  if (segmentSet != nullptr)
516    return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
517  // Otherwise use the segment vector.
518  return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
519}
520
521/// Remove the specified segment from this range.  Note that the segment must
522/// be in a single Segment in its entirety.
523void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
524                              bool RemoveDeadValNo) {
525  // Find the Segment containing this span.
526  iterator I = find(Start);
527  assert(I != end() && "Segment is not in range!");
528  assert(I->containsInterval(Start, End)
529         && "Segment is not entirely in range!");
530
531  // If the span we are removing is at the start of the Segment, adjust it.
532  VNInfo *ValNo = I->valno;
533  if (I->start == Start) {
534    if (I->end == End) {
535      if (RemoveDeadValNo) {
536        // Check if val# is dead.
537        bool isDead = true;
538        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
539          if (II != I && II->valno == ValNo) {
540            isDead = false;
541            break;
542          }
543        if (isDead) {
544          // Now that ValNo is dead, remove it.
545          markValNoForDeletion(ValNo);
546        }
547      }
548
549      segments.erase(I);  // Removed the whole Segment.
550    } else
551      I->start = End;
552    return;
553  }
554
555  // Otherwise if the span we are removing is at the end of the Segment,
556  // adjust the other way.
557  if (I->end == End) {
558    I->end = Start;
559    return;
560  }
561
562  // Otherwise, we are splitting the Segment into two pieces.
563  SlotIndex OldEnd = I->end;
564  I->end = Start;   // Trim the old segment.
565
566  // Insert the new one.
567  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
568}
569
570/// removeValNo - Remove all the segments defined by the specified value#.
571/// Also remove the value# from value# list.
572void LiveRange::removeValNo(VNInfo *ValNo) {
573  if (empty()) return;
574  segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
575    return S.valno == ValNo;
576  }), end());
577  // Now that ValNo is dead, remove it.
578  markValNoForDeletion(ValNo);
579}
580
581void LiveRange::join(LiveRange &Other,
582                     const int *LHSValNoAssignments,
583                     const int *RHSValNoAssignments,
584                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
585  verify();
586
587  // Determine if any of our values are mapped.  This is uncommon, so we want
588  // to avoid the range scan if not.
589  bool MustMapCurValNos = false;
590  unsigned NumVals = getNumValNums();
591  unsigned NumNewVals = NewVNInfo.size();
592  for (unsigned i = 0; i != NumVals; ++i) {
593    unsigned LHSValID = LHSValNoAssignments[i];
594    if (i != LHSValID ||
595        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
596      MustMapCurValNos = true;
597      break;
598    }
599  }
600
601  // If we have to apply a mapping to our base range assignment, rewrite it now.
602  if (MustMapCurValNos && !empty()) {
603    // Map the first live range.
604
605    iterator OutIt = begin();
606    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
607    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
608      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
609      assert(nextValNo && "Huh?");
610
611      // If this live range has the same value # as its immediate predecessor,
612      // and if they are neighbors, remove one Segment.  This happens when we
613      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
614      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
615        OutIt->end = I->end;
616      } else {
617        // Didn't merge. Move OutIt to the next segment,
618        ++OutIt;
619        OutIt->valno = nextValNo;
620        if (OutIt != I) {
621          OutIt->start = I->start;
622          OutIt->end = I->end;
623        }
624      }
625    }
626    // If we merge some segments, chop off the end.
627    ++OutIt;
628    segments.erase(OutIt, end());
629  }
630
631  // Rewrite Other values before changing the VNInfo ids.
632  // This can leave Other in an invalid state because we're not coalescing
633  // touching segments that now have identical values. That's OK since Other is
634  // not supposed to be valid after calling join();
635  for (Segment &S : Other.segments)
636    S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
637
638  // Update val# info. Renumber them and make sure they all belong to this
639  // LiveRange now. Also remove dead val#'s.
640  unsigned NumValNos = 0;
641  for (unsigned i = 0; i < NumNewVals; ++i) {
642    VNInfo *VNI = NewVNInfo[i];
643    if (VNI) {
644      if (NumValNos >= NumVals)
645        valnos.push_back(VNI);
646      else
647        valnos[NumValNos] = VNI;
648      VNI->id = NumValNos++;  // Renumber val#.
649    }
650  }
651  if (NumNewVals < NumVals)
652    valnos.resize(NumNewVals);  // shrinkify
653
654  // Okay, now insert the RHS live segments into the LHS.
655  LiveRangeUpdater Updater(this);
656  for (Segment &S : Other.segments)
657    Updater.add(S);
658}
659
660/// Merge all of the segments in RHS into this live range as the specified
661/// value number.  The segments in RHS are allowed to overlap with segments in
662/// the current range, but only if the overlapping segments have the
663/// specified value number.
664void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
665                                       VNInfo *LHSValNo) {
666  LiveRangeUpdater Updater(this);
667  for (const Segment &S : RHS.segments)
668    Updater.add(S.start, S.end, LHSValNo);
669}
670
671/// MergeValueInAsValue - Merge all of the live segments of a specific val#
672/// in RHS into this live range as the specified value number.
673/// The segments in RHS are allowed to overlap with segments in the
674/// current range, it will replace the value numbers of the overlaped
675/// segments with the specified value number.
676void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
677                                    const VNInfo *RHSValNo,
678                                    VNInfo *LHSValNo) {
679  LiveRangeUpdater Updater(this);
680  for (const Segment &S : RHS.segments)
681    if (S.valno == RHSValNo)
682      Updater.add(S.start, S.end, LHSValNo);
683}
684
685/// MergeValueNumberInto - This method is called when two value nubmers
686/// are found to be equivalent.  This eliminates V1, replacing all
687/// segments with the V1 value number with the V2 value number.  This can
688/// cause merging of V1/V2 values numbers and compaction of the value space.
689VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
690  assert(V1 != V2 && "Identical value#'s are always equivalent!");
691
692  // This code actually merges the (numerically) larger value number into the
693  // smaller value number, which is likely to allow us to compactify the value
694  // space.  The only thing we have to be careful of is to preserve the
695  // instruction that defines the result value.
696
697  // Make sure V2 is smaller than V1.
698  if (V1->id < V2->id) {
699    V1->copyFrom(*V2);
700    std::swap(V1, V2);
701  }
702
703  // Merge V1 segments into V2.
704  for (iterator I = begin(); I != end(); ) {
705    iterator S = I++;
706    if (S->valno != V1) continue;  // Not a V1 Segment.
707
708    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
709    // range, extend it.
710    if (S != begin()) {
711      iterator Prev = S-1;
712      if (Prev->valno == V2 && Prev->end == S->start) {
713        Prev->end = S->end;
714
715        // Erase this live-range.
716        segments.erase(S);
717        I = Prev+1;
718        S = Prev;
719      }
720    }
721
722    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
723    // Ensure that it is a V2 live-range.
724    S->valno = V2;
725
726    // If we can merge it into later V2 segments, do so now.  We ignore any
727    // following V1 segments, as they will be merged in subsequent iterations
728    // of the loop.
729    if (I != end()) {
730      if (I->start == S->end && I->valno == V2) {
731        S->end = I->end;
732        segments.erase(I);
733        I = S+1;
734      }
735    }
736  }
737
738  // Now that V1 is dead, remove it.
739  markValNoForDeletion(V1);
740
741  return V2;
742}
743
744void LiveRange::flushSegmentSet() {
745  assert(segmentSet != nullptr && "segment set must have been created");
746  assert(
747      segments.empty() &&
748      "segment set can be used only initially before switching to the array");
749  segments.append(segmentSet->begin(), segmentSet->end());
750  segmentSet = nullptr;
751  verify();
752}
753
754bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
755  ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
756  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
757
758  // If there are no regmask slots, we have nothing to search.
759  if (SlotI == SlotE)
760    return false;
761
762  // Start our search at the first segment that ends after the first slot.
763  const_iterator SegmentI = find(*SlotI);
764  const_iterator SegmentE = end();
765
766  // If there are no segments that end after the first slot, we're done.
767  if (SegmentI == SegmentE)
768    return false;
769
770  // Look for each slot in the live range.
771  for ( ; SlotI != SlotE; ++SlotI) {
772    // Go to the next segment that ends after the current slot.
773    // The slot may be within a hole in the range.
774    SegmentI = advanceTo(SegmentI, *SlotI);
775    if (SegmentI == SegmentE)
776      return false;
777
778    // If this segment contains the slot, we're done.
779    if (SegmentI->contains(*SlotI))
780      return true;
781    // Otherwise, look for the next slot.
782  }
783
784  // We didn't find a segment containing any of the slots.
785  return false;
786}
787
788void LiveInterval::freeSubRange(SubRange *S) {
789  S->~SubRange();
790  // Memory was allocated with BumpPtr allocator and is not freed here.
791}
792
793void LiveInterval::removeEmptySubRanges() {
794  SubRange **NextPtr = &SubRanges;
795  SubRange *I = *NextPtr;
796  while (I != nullptr) {
797    if (!I->empty()) {
798      NextPtr = &I->Next;
799      I = *NextPtr;
800      continue;
801    }
802    // Skip empty subranges until we find the first nonempty one.
803    do {
804      SubRange *Next = I->Next;
805      freeSubRange(I);
806      I = Next;
807    } while (I != nullptr && I->empty());
808    *NextPtr = I;
809  }
810}
811
812void LiveInterval::clearSubRanges() {
813  for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
814    Next = I->Next;
815    freeSubRange(I);
816  }
817  SubRanges = nullptr;
818}
819
820unsigned LiveInterval::getSize() const {
821  unsigned Sum = 0;
822  for (const Segment &S : segments)
823    Sum += S.start.distance(S.end);
824  return Sum;
825}
826
827raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
828  return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
829}
830
831#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
832LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
833  dbgs() << *this << '\n';
834}
835#endif
836
837void LiveRange::print(raw_ostream &OS) const {
838  if (empty())
839    OS << "EMPTY";
840  else {
841    for (const Segment &S : segments) {
842      OS << S;
843      assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
844    }
845  }
846
847  // Print value number info.
848  if (getNumValNums()) {
849    OS << "  ";
850    unsigned vnum = 0;
851    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
852         ++i, ++vnum) {
853      const VNInfo *vni = *i;
854      if (vnum) OS << ' ';
855      OS << vnum << '@';
856      if (vni->isUnused()) {
857        OS << 'x';
858      } else {
859        OS << vni->def;
860        if (vni->isPHIDef())
861          OS << "-phi";
862      }
863    }
864  }
865}
866
867void LiveInterval::SubRange::print(raw_ostream &OS) const {
868  OS << " L" << PrintLaneMask(LaneMask) << ' '
869     << static_cast<const LiveRange&>(*this);
870}
871
872void LiveInterval::print(raw_ostream &OS) const {
873  OS << PrintReg(reg) << ' ';
874  super::print(OS);
875  // Print subranges
876  for (const SubRange &SR : subranges())
877    OS << SR;
878}
879
880#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
881LLVM_DUMP_METHOD void LiveRange::dump() const {
882  dbgs() << *this << '\n';
883}
884
885LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
886  dbgs() << *this << '\n';
887}
888
889LLVM_DUMP_METHOD void LiveInterval::dump() const {
890  dbgs() << *this << '\n';
891}
892#endif
893
894#ifndef NDEBUG
895void LiveRange::verify() const {
896  for (const_iterator I = begin(), E = end(); I != E; ++I) {
897    assert(I->start.isValid());
898    assert(I->end.isValid());
899    assert(I->start < I->end);
900    assert(I->valno != nullptr);
901    assert(I->valno->id < valnos.size());
902    assert(I->valno == valnos[I->valno->id]);
903    if (std::next(I) != E) {
904      assert(I->end <= std::next(I)->start);
905      if (I->end == std::next(I)->start)
906        assert(I->valno != std::next(I)->valno);
907    }
908  }
909}
910
911void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
912  super::verify();
913
914  // Make sure SubRanges are fine and LaneMasks are disjunct.
915  LaneBitmask Mask = 0;
916  LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
917  for (const SubRange &SR : subranges()) {
918    // Subrange lanemask should be disjunct to any previous subrange masks.
919    assert((Mask & SR.LaneMask) == 0);
920    Mask |= SR.LaneMask;
921
922    // subrange mask should not contained in maximum lane mask for the vreg.
923    assert((Mask & ~MaxMask) == 0);
924    // empty subranges must be removed.
925    assert(!SR.empty());
926
927    SR.verify();
928    // Main liverange should cover subrange.
929    assert(covers(SR));
930  }
931}
932#endif
933
934
935//===----------------------------------------------------------------------===//
936//                           LiveRangeUpdater class
937//===----------------------------------------------------------------------===//
938//
939// The LiveRangeUpdater class always maintains these invariants:
940//
941// - When LastStart is invalid, Spills is empty and the iterators are invalid.
942//   This is the initial state, and the state created by flush().
943//   In this state, isDirty() returns false.
944//
945// Otherwise, segments are kept in three separate areas:
946//
947// 1. [begin; WriteI) at the front of LR.
948// 2. [ReadI; end) at the back of LR.
949// 3. Spills.
950//
951// - LR.begin() <= WriteI <= ReadI <= LR.end().
952// - Segments in all three areas are fully ordered and coalesced.
953// - Segments in area 1 precede and can't coalesce with segments in area 2.
954// - Segments in Spills precede and can't coalesce with segments in area 2.
955// - No coalescing is possible between segments in Spills and segments in area
956//   1, and there are no overlapping segments.
957//
958// The segments in Spills are not ordered with respect to the segments in area
959// 1. They need to be merged.
960//
961// When they exist, Spills.back().start <= LastStart,
962//                 and WriteI[-1].start <= LastStart.
963
964void LiveRangeUpdater::print(raw_ostream &OS) const {
965  if (!isDirty()) {
966    if (LR)
967      OS << "Clean updater: " << *LR << '\n';
968    else
969      OS << "Null updater.\n";
970    return;
971  }
972  assert(LR && "Can't have null LR in dirty updater.");
973  OS << " updater with gap = " << (ReadI - WriteI)
974     << ", last start = " << LastStart
975     << ":\n  Area 1:";
976  for (const auto &S : make_range(LR->begin(), WriteI))
977    OS << ' ' << S;
978  OS << "\n  Spills:";
979  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
980    OS << ' ' << Spills[I];
981  OS << "\n  Area 2:";
982  for (const auto &S : make_range(ReadI, LR->end()))
983    OS << ' ' << S;
984  OS << '\n';
985}
986
987LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
988  print(errs());
989}
990
991// Determine if A and B should be coalesced.
992static inline bool coalescable(const LiveRange::Segment &A,
993                               const LiveRange::Segment &B) {
994  assert(A.start <= B.start && "Unordered live segments.");
995  if (A.end == B.start)
996    return A.valno == B.valno;
997  if (A.end < B.start)
998    return false;
999  assert(A.valno == B.valno && "Cannot overlap different values");
1000  return true;
1001}
1002
1003void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1004  assert(LR && "Cannot add to a null destination");
1005
1006  // Fall back to the regular add method if the live range
1007  // is using the segment set instead of the segment vector.
1008  if (LR->segmentSet != nullptr) {
1009    LR->addSegmentToSet(Seg);
1010    return;
1011  }
1012
1013  // Flush the state if Start moves backwards.
1014  if (!LastStart.isValid() || LastStart > Seg.start) {
1015    if (isDirty())
1016      flush();
1017    // This brings us to an uninitialized state. Reinitialize.
1018    assert(Spills.empty() && "Leftover spilled segments");
1019    WriteI = ReadI = LR->begin();
1020  }
1021
1022  // Remember start for next time.
1023  LastStart = Seg.start;
1024
1025  // Advance ReadI until it ends after Seg.start.
1026  LiveRange::iterator E = LR->end();
1027  if (ReadI != E && ReadI->end <= Seg.start) {
1028    // First try to close the gap between WriteI and ReadI with spills.
1029    if (ReadI != WriteI)
1030      mergeSpills();
1031    // Then advance ReadI.
1032    if (ReadI == WriteI)
1033      ReadI = WriteI = LR->find(Seg.start);
1034    else
1035      while (ReadI != E && ReadI->end <= Seg.start)
1036        *WriteI++ = *ReadI++;
1037  }
1038
1039  assert(ReadI == E || ReadI->end > Seg.start);
1040
1041  // Check if the ReadI segment begins early.
1042  if (ReadI != E && ReadI->start <= Seg.start) {
1043    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1044    // Bail if Seg is completely contained in ReadI.
1045    if (ReadI->end >= Seg.end)
1046      return;
1047    // Coalesce into Seg.
1048    Seg.start = ReadI->start;
1049    ++ReadI;
1050  }
1051
1052  // Coalesce as much as possible from ReadI into Seg.
1053  while (ReadI != E && coalescable(Seg, *ReadI)) {
1054    Seg.end = std::max(Seg.end, ReadI->end);
1055    ++ReadI;
1056  }
1057
1058  // Try coalescing Spills.back() into Seg.
1059  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1060    Seg.start = Spills.back().start;
1061    Seg.end = std::max(Spills.back().end, Seg.end);
1062    Spills.pop_back();
1063  }
1064
1065  // Try coalescing Seg into WriteI[-1].
1066  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1067    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1068    return;
1069  }
1070
1071  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1072  if (WriteI != ReadI) {
1073    *WriteI++ = Seg;
1074    return;
1075  }
1076
1077  // Finally, append to LR or Spills.
1078  if (WriteI == E) {
1079    LR->segments.push_back(Seg);
1080    WriteI = ReadI = LR->end();
1081  } else
1082    Spills.push_back(Seg);
1083}
1084
1085// Merge as many spilled segments as possible into the gap between WriteI
1086// and ReadI. Advance WriteI to reflect the inserted instructions.
1087void LiveRangeUpdater::mergeSpills() {
1088  // Perform a backwards merge of Spills and [SpillI;WriteI).
1089  size_t GapSize = ReadI - WriteI;
1090  size_t NumMoved = std::min(Spills.size(), GapSize);
1091  LiveRange::iterator Src = WriteI;
1092  LiveRange::iterator Dst = Src + NumMoved;
1093  LiveRange::iterator SpillSrc = Spills.end();
1094  LiveRange::iterator B = LR->begin();
1095
1096  // This is the new WriteI position after merging spills.
1097  WriteI = Dst;
1098
1099  // Now merge Src and Spills backwards.
1100  while (Src != Dst) {
1101    if (Src != B && Src[-1].start > SpillSrc[-1].start)
1102      *--Dst = *--Src;
1103    else
1104      *--Dst = *--SpillSrc;
1105  }
1106  assert(NumMoved == size_t(Spills.end() - SpillSrc));
1107  Spills.erase(SpillSrc, Spills.end());
1108}
1109
1110void LiveRangeUpdater::flush() {
1111  if (!isDirty())
1112    return;
1113  // Clear the dirty state.
1114  LastStart = SlotIndex();
1115
1116  assert(LR && "Cannot add to a null destination");
1117
1118  // Nothing to merge?
1119  if (Spills.empty()) {
1120    LR->segments.erase(WriteI, ReadI);
1121    LR->verify();
1122    return;
1123  }
1124
1125  // Resize the WriteI - ReadI gap to match Spills.
1126  size_t GapSize = ReadI - WriteI;
1127  if (GapSize < Spills.size()) {
1128    // The gap is too small. Make some room.
1129    size_t WritePos = WriteI - LR->begin();
1130    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1131    // This also invalidated ReadI, but it is recomputed below.
1132    WriteI = LR->begin() + WritePos;
1133  } else {
1134    // Shrink the gap if necessary.
1135    LR->segments.erase(WriteI + Spills.size(), ReadI);
1136  }
1137  ReadI = WriteI + Spills.size();
1138  mergeSpills();
1139  LR->verify();
1140}
1141
1142unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1143  // Create initial equivalence classes.
1144  EqClass.clear();
1145  EqClass.grow(LR.getNumValNums());
1146
1147  const VNInfo *used = nullptr, *unused = nullptr;
1148
1149  // Determine connections.
1150  for (const VNInfo *VNI : LR.valnos) {
1151    // Group all unused values into one class.
1152    if (VNI->isUnused()) {
1153      if (unused)
1154        EqClass.join(unused->id, VNI->id);
1155      unused = VNI;
1156      continue;
1157    }
1158    used = VNI;
1159    if (VNI->isPHIDef()) {
1160      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1161      assert(MBB && "Phi-def has no defining MBB");
1162      // Connect to values live out of predecessors.
1163      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1164           PE = MBB->pred_end(); PI != PE; ++PI)
1165        if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1166          EqClass.join(VNI->id, PVNI->id);
1167    } else {
1168      // Normal value defined by an instruction. Check for two-addr redef.
1169      // FIXME: This could be coincidental. Should we really check for a tied
1170      // operand constraint?
1171      // Note that VNI->def may be a use slot for an early clobber def.
1172      if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1173        EqClass.join(VNI->id, UVNI->id);
1174    }
1175  }
1176
1177  // Lump all the unused values in with the last used value.
1178  if (used && unused)
1179    EqClass.join(used->id, unused->id);
1180
1181  EqClass.compress();
1182  return EqClass.getNumClasses();
1183}
1184
1185void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1186                                          MachineRegisterInfo &MRI) {
1187  // Rewrite instructions.
1188  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1189       RE = MRI.reg_end(); RI != RE;) {
1190    MachineOperand &MO = *RI;
1191    MachineInstr *MI = RI->getParent();
1192    ++RI;
1193    // DBG_VALUE instructions don't have slot indexes, so get the index of the
1194    // instruction before them.
1195    // Normally, DBG_VALUE instructions are removed before this function is
1196    // called, but it is not a requirement.
1197    SlotIndex Idx;
1198    if (MI->isDebugValue())
1199      Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1200    else
1201      Idx = LIS.getInstructionIndex(*MI);
1202    LiveQueryResult LRQ = LI.Query(Idx);
1203    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1204    // In the case of an <undef> use that isn't tied to any def, VNI will be
1205    // NULL. If the use is tied to a def, VNI will be the defined value.
1206    if (!VNI)
1207      continue;
1208    if (unsigned EqClass = getEqClass(VNI))
1209      MO.setReg(LIV[EqClass-1]->reg);
1210  }
1211
1212  // Distribute subregister liveranges.
1213  if (LI.hasSubRanges()) {
1214    unsigned NumComponents = EqClass.getNumClasses();
1215    SmallVector<unsigned, 8> VNIMapping;
1216    SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1217    BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1218    for (LiveInterval::SubRange &SR : LI.subranges()) {
1219      // Create new subranges in the split intervals and construct a mapping
1220      // for the VNInfos in the subrange.
1221      unsigned NumValNos = SR.valnos.size();
1222      VNIMapping.clear();
1223      VNIMapping.reserve(NumValNos);
1224      SubRanges.clear();
1225      SubRanges.resize(NumComponents-1, nullptr);
1226      for (unsigned I = 0; I < NumValNos; ++I) {
1227        const VNInfo &VNI = *SR.valnos[I];
1228        unsigned ComponentNum;
1229        if (VNI.isUnused()) {
1230          ComponentNum = 0;
1231        } else {
1232          const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1233          assert(MainRangeVNI != nullptr
1234                 && "SubRange def must have corresponding main range def");
1235          ComponentNum = getEqClass(MainRangeVNI);
1236          if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1237            SubRanges[ComponentNum-1]
1238              = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1239          }
1240        }
1241        VNIMapping.push_back(ComponentNum);
1242      }
1243      DistributeRange(SR, SubRanges.data(), VNIMapping);
1244    }
1245    LI.removeEmptySubRanges();
1246  }
1247
1248  // Distribute main liverange.
1249  DistributeRange(LI, LIV, EqClass);
1250}
1251