1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#include "llvm/ExecutionEngine/ExecutionEngine.h" 16#include "llvm/ADT/STLExtras.h" 17#include "llvm/ADT/SmallString.h" 18#include "llvm/ADT/Statistic.h" 19#include "llvm/ExecutionEngine/GenericValue.h" 20#include "llvm/ExecutionEngine/JITEventListener.h" 21#include "llvm/ExecutionEngine/RTDyldMemoryManager.h" 22#include "llvm/IR/Constants.h" 23#include "llvm/IR/DataLayout.h" 24#include "llvm/IR/DerivedTypes.h" 25#include "llvm/IR/Mangler.h" 26#include "llvm/IR/Module.h" 27#include "llvm/IR/Operator.h" 28#include "llvm/IR/ValueHandle.h" 29#include "llvm/Object/Archive.h" 30#include "llvm/Object/ObjectFile.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/DynamicLibrary.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/Host.h" 35#include "llvm/Support/MutexGuard.h" 36#include "llvm/Support/TargetRegistry.h" 37#include "llvm/Support/raw_ostream.h" 38#include "llvm/Target/TargetMachine.h" 39#include <cmath> 40#include <cstring> 41using namespace llvm; 42 43#define DEBUG_TYPE "jit" 44 45STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 46STATISTIC(NumGlobals , "Number of global vars initialized"); 47 48ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 49 std::unique_ptr<Module> M, std::string *ErrorStr, 50 std::shared_ptr<MCJITMemoryManager> MemMgr, 51 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 52 std::unique_ptr<TargetMachine> TM) = nullptr; 53 54ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( 55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr, 56 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver, 57 std::unique_ptr<TargetMachine> TM) = nullptr; 58 59ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, 60 std::string *ErrorStr) =nullptr; 61 62void JITEventListener::anchor() {} 63 64void ExecutionEngine::Init(std::unique_ptr<Module> M) { 65 CompilingLazily = false; 66 GVCompilationDisabled = false; 67 SymbolSearchingDisabled = false; 68 69 // IR module verification is enabled by default in debug builds, and disabled 70 // by default in release builds. 71#ifndef NDEBUG 72 VerifyModules = true; 73#else 74 VerifyModules = false; 75#endif 76 77 assert(M && "Module is null?"); 78 Modules.push_back(std::move(M)); 79} 80 81ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) 82 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { 83 Init(std::move(M)); 84} 85 86ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M) 87 : DL(std::move(DL)), LazyFunctionCreator(nullptr) { 88 Init(std::move(M)); 89} 90 91ExecutionEngine::~ExecutionEngine() { 92 clearAllGlobalMappings(); 93} 94 95namespace { 96/// \brief Helper class which uses a value handler to automatically deletes the 97/// memory block when the GlobalVariable is destroyed. 98class GVMemoryBlock final : public CallbackVH { 99 GVMemoryBlock(const GlobalVariable *GV) 100 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 101 102public: 103 /// \brief Returns the address the GlobalVariable should be written into. The 104 /// GVMemoryBlock object prefixes that. 105 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 106 Type *ElTy = GV->getValueType(); 107 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 108 void *RawMemory = ::operator new( 109 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); 110 new(RawMemory) GVMemoryBlock(GV); 111 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 112 } 113 114 void deleted() override { 115 // We allocated with operator new and with some extra memory hanging off the 116 // end, so don't just delete this. I'm not sure if this is actually 117 // required. 118 this->~GVMemoryBlock(); 119 ::operator delete(this); 120 } 121}; 122} // anonymous namespace 123 124char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 125 return GVMemoryBlock::Create(GV, getDataLayout()); 126} 127 128void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 129 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 130} 131 132void 133ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { 134 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 135} 136 137void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { 138 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); 139} 140 141bool ExecutionEngine::removeModule(Module *M) { 142 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { 143 Module *Found = I->get(); 144 if (Found == M) { 145 I->release(); 146 Modules.erase(I); 147 clearGlobalMappingsFromModule(M); 148 return true; 149 } 150 } 151 return false; 152} 153 154Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 155 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 156 Function *F = Modules[i]->getFunction(FnName); 157 if (F && !F->isDeclaration()) 158 return F; 159 } 160 return nullptr; 161} 162 163GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { 164 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 165 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); 166 if (GV && !GV->isDeclaration()) 167 return GV; 168 } 169 return nullptr; 170} 171 172uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { 173 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); 174 uint64_t OldVal; 175 176 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 177 // GlobalAddressMap. 178 if (I == GlobalAddressMap.end()) 179 OldVal = 0; 180 else { 181 GlobalAddressReverseMap.erase(I->second); 182 OldVal = I->second; 183 GlobalAddressMap.erase(I); 184 } 185 186 return OldVal; 187} 188 189std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { 190 assert(GV->hasName() && "Global must have name."); 191 192 MutexGuard locked(lock); 193 SmallString<128> FullName; 194 195 const DataLayout &DL = 196 GV->getParent()->getDataLayout().isDefault() 197 ? getDataLayout() 198 : GV->getParent()->getDataLayout(); 199 200 Mangler::getNameWithPrefix(FullName, GV->getName(), DL); 201 return FullName.str(); 202} 203 204void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 205 MutexGuard locked(lock); 206 addGlobalMapping(getMangledName(GV), (uint64_t) Addr); 207} 208 209void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { 210 MutexGuard locked(lock); 211 212 assert(!Name.empty() && "Empty GlobalMapping symbol name!"); 213 214 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); 215 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; 216 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 217 CurVal = Addr; 218 219 // If we are using the reverse mapping, add it too. 220 if (!EEState.getGlobalAddressReverseMap().empty()) { 221 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 222 assert((!V.empty() || !Name.empty()) && 223 "GlobalMapping already established!"); 224 V = Name; 225 } 226} 227 228void ExecutionEngine::clearAllGlobalMappings() { 229 MutexGuard locked(lock); 230 231 EEState.getGlobalAddressMap().clear(); 232 EEState.getGlobalAddressReverseMap().clear(); 233} 234 235void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 236 MutexGuard locked(lock); 237 238 for (GlobalObject &GO : M->global_objects()) 239 EEState.RemoveMapping(getMangledName(&GO)); 240} 241 242uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, 243 void *Addr) { 244 MutexGuard locked(lock); 245 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); 246} 247 248uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { 249 MutexGuard locked(lock); 250 251 ExecutionEngineState::GlobalAddressMapTy &Map = 252 EEState.getGlobalAddressMap(); 253 254 // Deleting from the mapping? 255 if (!Addr) 256 return EEState.RemoveMapping(Name); 257 258 uint64_t &CurVal = Map[Name]; 259 uint64_t OldVal = CurVal; 260 261 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 262 EEState.getGlobalAddressReverseMap().erase(CurVal); 263 CurVal = Addr; 264 265 // If we are using the reverse mapping, add it too. 266 if (!EEState.getGlobalAddressReverseMap().empty()) { 267 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; 268 assert((!V.empty() || !Name.empty()) && 269 "GlobalMapping already established!"); 270 V = Name; 271 } 272 return OldVal; 273} 274 275uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { 276 MutexGuard locked(lock); 277 uint64_t Address = 0; 278 ExecutionEngineState::GlobalAddressMapTy::iterator I = 279 EEState.getGlobalAddressMap().find(S); 280 if (I != EEState.getGlobalAddressMap().end()) 281 Address = I->second; 282 return Address; 283} 284 285 286void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { 287 MutexGuard locked(lock); 288 if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) 289 return Address; 290 return nullptr; 291} 292 293void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 294 MutexGuard locked(lock); 295 return getPointerToGlobalIfAvailable(getMangledName(GV)); 296} 297 298const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 299 MutexGuard locked(lock); 300 301 // If we haven't computed the reverse mapping yet, do so first. 302 if (EEState.getGlobalAddressReverseMap().empty()) { 303 for (ExecutionEngineState::GlobalAddressMapTy::iterator 304 I = EEState.getGlobalAddressMap().begin(), 305 E = EEState.getGlobalAddressMap().end(); I != E; ++I) { 306 StringRef Name = I->first(); 307 uint64_t Addr = I->second; 308 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 309 Addr, Name)); 310 } 311 } 312 313 std::map<uint64_t, std::string>::iterator I = 314 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); 315 316 if (I != EEState.getGlobalAddressReverseMap().end()) { 317 StringRef Name = I->second; 318 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 319 if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) 320 return GV; 321 } 322 return nullptr; 323} 324 325namespace { 326class ArgvArray { 327 std::unique_ptr<char[]> Array; 328 std::vector<std::unique_ptr<char[]>> Values; 329public: 330 /// Turn a vector of strings into a nice argv style array of pointers to null 331 /// terminated strings. 332 void *reset(LLVMContext &C, ExecutionEngine *EE, 333 const std::vector<std::string> &InputArgv); 334}; 335} // anonymous namespace 336void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 337 const std::vector<std::string> &InputArgv) { 338 Values.clear(); // Free the old contents. 339 Values.reserve(InputArgv.size()); 340 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 341 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); 342 343 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); 344 Type *SBytePtr = Type::getInt8PtrTy(C); 345 346 for (unsigned i = 0; i != InputArgv.size(); ++i) { 347 unsigned Size = InputArgv[i].size()+1; 348 auto Dest = make_unique<char[]>(Size); 349 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); 350 351 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); 352 Dest[Size-1] = 0; 353 354 // Endian safe: Array[i] = (PointerTy)Dest; 355 EE->StoreValueToMemory(PTOGV(Dest.get()), 356 (GenericValue*)(&Array[i*PtrSize]), SBytePtr); 357 Values.push_back(std::move(Dest)); 358 } 359 360 // Null terminate it 361 EE->StoreValueToMemory(PTOGV(nullptr), 362 (GenericValue*)(&Array[InputArgv.size()*PtrSize]), 363 SBytePtr); 364 return Array.get(); 365} 366 367void ExecutionEngine::runStaticConstructorsDestructors(Module &module, 368 bool isDtors) { 369 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 370 GlobalVariable *GV = module.getNamedGlobal(Name); 371 372 // If this global has internal linkage, or if it has a use, then it must be 373 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 374 // this is the case, don't execute any of the global ctors, __main will do 375 // it. 376 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 377 378 // Should be an array of '{ i32, void ()* }' structs. The first value is 379 // the init priority, which we ignore. 380 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 381 if (!InitList) 382 return; 383 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 384 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 385 if (!CS) continue; 386 387 Constant *FP = CS->getOperand(1); 388 if (FP->isNullValue()) 389 continue; // Found a sentinal value, ignore. 390 391 // Strip off constant expression casts. 392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 393 if (CE->isCast()) 394 FP = CE->getOperand(0); 395 396 // Execute the ctor/dtor function! 397 if (Function *F = dyn_cast<Function>(FP)) 398 runFunction(F, None); 399 400 // FIXME: It is marginally lame that we just do nothing here if we see an 401 // entry we don't recognize. It might not be unreasonable for the verifier 402 // to not even allow this and just assert here. 403 } 404} 405 406void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 407 // Execute global ctors/dtors for each module in the program. 408 for (std::unique_ptr<Module> &M : Modules) 409 runStaticConstructorsDestructors(*M, isDtors); 410} 411 412#ifndef NDEBUG 413/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 414static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 415 unsigned PtrSize = EE->getDataLayout().getPointerSize(); 416 for (unsigned i = 0; i < PtrSize; ++i) 417 if (*(i + (uint8_t*)Loc)) 418 return false; 419 return true; 420} 421#endif 422 423int ExecutionEngine::runFunctionAsMain(Function *Fn, 424 const std::vector<std::string> &argv, 425 const char * const * envp) { 426 std::vector<GenericValue> GVArgs; 427 GenericValue GVArgc; 428 GVArgc.IntVal = APInt(32, argv.size()); 429 430 // Check main() type 431 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 432 FunctionType *FTy = Fn->getFunctionType(); 433 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 434 435 // Check the argument types. 436 if (NumArgs > 3) 437 report_fatal_error("Invalid number of arguments of main() supplied"); 438 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 439 report_fatal_error("Invalid type for third argument of main() supplied"); 440 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 441 report_fatal_error("Invalid type for second argument of main() supplied"); 442 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 443 report_fatal_error("Invalid type for first argument of main() supplied"); 444 if (!FTy->getReturnType()->isIntegerTy() && 445 !FTy->getReturnType()->isVoidTy()) 446 report_fatal_error("Invalid return type of main() supplied"); 447 448 ArgvArray CArgv; 449 ArgvArray CEnv; 450 if (NumArgs) { 451 GVArgs.push_back(GVArgc); // Arg #0 = argc. 452 if (NumArgs > 1) { 453 // Arg #1 = argv. 454 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 455 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 456 "argv[0] was null after CreateArgv"); 457 if (NumArgs > 2) { 458 std::vector<std::string> EnvVars; 459 for (unsigned i = 0; envp[i]; ++i) 460 EnvVars.emplace_back(envp[i]); 461 // Arg #2 = envp. 462 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 463 } 464 } 465 } 466 467 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 468} 469 470EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} 471 472EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) 473 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), 474 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), 475 CMModel(CodeModel::JITDefault), UseOrcMCJITReplacement(false) { 476// IR module verification is enabled by default in debug builds, and disabled 477// by default in release builds. 478#ifndef NDEBUG 479 VerifyModules = true; 480#else 481 VerifyModules = false; 482#endif 483} 484 485EngineBuilder::~EngineBuilder() = default; 486 487EngineBuilder &EngineBuilder::setMCJITMemoryManager( 488 std::unique_ptr<RTDyldMemoryManager> mcjmm) { 489 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm)); 490 MemMgr = SharedMM; 491 Resolver = SharedMM; 492 return *this; 493} 494 495EngineBuilder& 496EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) { 497 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM)); 498 return *this; 499} 500 501EngineBuilder& 502EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) { 503 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR)); 504 return *this; 505} 506 507ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 508 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 509 510 // Make sure we can resolve symbols in the program as well. The zero arg 511 // to the function tells DynamicLibrary to load the program, not a library. 512 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 513 return nullptr; 514 515 // If the user specified a memory manager but didn't specify which engine to 516 // create, we assume they only want the JIT, and we fail if they only want 517 // the interpreter. 518 if (MemMgr) { 519 if (WhichEngine & EngineKind::JIT) 520 WhichEngine = EngineKind::JIT; 521 else { 522 if (ErrorStr) 523 *ErrorStr = "Cannot create an interpreter with a memory manager."; 524 return nullptr; 525 } 526 } 527 528 // Unless the interpreter was explicitly selected or the JIT is not linked, 529 // try making a JIT. 530 if ((WhichEngine & EngineKind::JIT) && TheTM) { 531 Triple TT(M->getTargetTriple()); 532 if (!TM->getTarget().hasJIT()) { 533 errs() << "WARNING: This target JIT is not designed for the host" 534 << " you are running. If bad things happen, please choose" 535 << " a different -march switch.\n"; 536 } 537 538 ExecutionEngine *EE = nullptr; 539 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { 540 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), 541 std::move(Resolver), 542 std::move(TheTM)); 543 EE->addModule(std::move(M)); 544 } else if (ExecutionEngine::MCJITCtor) 545 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), 546 std::move(Resolver), std::move(TheTM)); 547 548 if (EE) { 549 EE->setVerifyModules(VerifyModules); 550 return EE; 551 } 552 } 553 554 // If we can't make a JIT and we didn't request one specifically, try making 555 // an interpreter instead. 556 if (WhichEngine & EngineKind::Interpreter) { 557 if (ExecutionEngine::InterpCtor) 558 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); 559 if (ErrorStr) 560 *ErrorStr = "Interpreter has not been linked in."; 561 return nullptr; 562 } 563 564 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { 565 if (ErrorStr) 566 *ErrorStr = "JIT has not been linked in."; 567 } 568 569 return nullptr; 570} 571 572void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 573 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 574 return getPointerToFunction(F); 575 576 MutexGuard locked(lock); 577 if (void* P = getPointerToGlobalIfAvailable(GV)) 578 return P; 579 580 // Global variable might have been added since interpreter started. 581 if (GlobalVariable *GVar = 582 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 583 EmitGlobalVariable(GVar); 584 else 585 llvm_unreachable("Global hasn't had an address allocated yet!"); 586 587 return getPointerToGlobalIfAvailable(GV); 588} 589 590/// \brief Converts a Constant* into a GenericValue, including handling of 591/// ConstantExpr values. 592GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 593 // If its undefined, return the garbage. 594 if (isa<UndefValue>(C)) { 595 GenericValue Result; 596 switch (C->getType()->getTypeID()) { 597 default: 598 break; 599 case Type::IntegerTyID: 600 case Type::X86_FP80TyID: 601 case Type::FP128TyID: 602 case Type::PPC_FP128TyID: 603 // Although the value is undefined, we still have to construct an APInt 604 // with the correct bit width. 605 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 606 break; 607 case Type::StructTyID: { 608 // if the whole struct is 'undef' just reserve memory for the value. 609 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 610 unsigned int elemNum = STy->getNumElements(); 611 Result.AggregateVal.resize(elemNum); 612 for (unsigned int i = 0; i < elemNum; ++i) { 613 Type *ElemTy = STy->getElementType(i); 614 if (ElemTy->isIntegerTy()) 615 Result.AggregateVal[i].IntVal = 616 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 617 else if (ElemTy->isAggregateType()) { 618 const Constant *ElemUndef = UndefValue::get(ElemTy); 619 Result.AggregateVal[i] = getConstantValue(ElemUndef); 620 } 621 } 622 } 623 } 624 break; 625 case Type::VectorTyID: 626 // if the whole vector is 'undef' just reserve memory for the value. 627 auto* VTy = dyn_cast<VectorType>(C->getType()); 628 Type *ElemTy = VTy->getElementType(); 629 unsigned int elemNum = VTy->getNumElements(); 630 Result.AggregateVal.resize(elemNum); 631 if (ElemTy->isIntegerTy()) 632 for (unsigned int i = 0; i < elemNum; ++i) 633 Result.AggregateVal[i].IntVal = 634 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 635 break; 636 } 637 return Result; 638 } 639 640 // Otherwise, if the value is a ConstantExpr... 641 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 642 Constant *Op0 = CE->getOperand(0); 643 switch (CE->getOpcode()) { 644 case Instruction::GetElementPtr: { 645 // Compute the index 646 GenericValue Result = getConstantValue(Op0); 647 APInt Offset(DL.getPointerSizeInBits(), 0); 648 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset); 649 650 char* tmp = (char*) Result.PointerVal; 651 Result = PTOGV(tmp + Offset.getSExtValue()); 652 return Result; 653 } 654 case Instruction::Trunc: { 655 GenericValue GV = getConstantValue(Op0); 656 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 657 GV.IntVal = GV.IntVal.trunc(BitWidth); 658 return GV; 659 } 660 case Instruction::ZExt: { 661 GenericValue GV = getConstantValue(Op0); 662 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 663 GV.IntVal = GV.IntVal.zext(BitWidth); 664 return GV; 665 } 666 case Instruction::SExt: { 667 GenericValue GV = getConstantValue(Op0); 668 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 669 GV.IntVal = GV.IntVal.sext(BitWidth); 670 return GV; 671 } 672 case Instruction::FPTrunc: { 673 // FIXME long double 674 GenericValue GV = getConstantValue(Op0); 675 GV.FloatVal = float(GV.DoubleVal); 676 return GV; 677 } 678 case Instruction::FPExt:{ 679 // FIXME long double 680 GenericValue GV = getConstantValue(Op0); 681 GV.DoubleVal = double(GV.FloatVal); 682 return GV; 683 } 684 case Instruction::UIToFP: { 685 GenericValue GV = getConstantValue(Op0); 686 if (CE->getType()->isFloatTy()) 687 GV.FloatVal = float(GV.IntVal.roundToDouble()); 688 else if (CE->getType()->isDoubleTy()) 689 GV.DoubleVal = GV.IntVal.roundToDouble(); 690 else if (CE->getType()->isX86_FP80Ty()) { 691 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 692 (void)apf.convertFromAPInt(GV.IntVal, 693 false, 694 APFloat::rmNearestTiesToEven); 695 GV.IntVal = apf.bitcastToAPInt(); 696 } 697 return GV; 698 } 699 case Instruction::SIToFP: { 700 GenericValue GV = getConstantValue(Op0); 701 if (CE->getType()->isFloatTy()) 702 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 703 else if (CE->getType()->isDoubleTy()) 704 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 705 else if (CE->getType()->isX86_FP80Ty()) { 706 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 707 (void)apf.convertFromAPInt(GV.IntVal, 708 true, 709 APFloat::rmNearestTiesToEven); 710 GV.IntVal = apf.bitcastToAPInt(); 711 } 712 return GV; 713 } 714 case Instruction::FPToUI: // double->APInt conversion handles sign 715 case Instruction::FPToSI: { 716 GenericValue GV = getConstantValue(Op0); 717 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 718 if (Op0->getType()->isFloatTy()) 719 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 720 else if (Op0->getType()->isDoubleTy()) 721 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 722 else if (Op0->getType()->isX86_FP80Ty()) { 723 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 724 uint64_t v; 725 bool ignored; 726 (void)apf.convertToInteger(&v, BitWidth, 727 CE->getOpcode()==Instruction::FPToSI, 728 APFloat::rmTowardZero, &ignored); 729 GV.IntVal = v; // endian? 730 } 731 return GV; 732 } 733 case Instruction::PtrToInt: { 734 GenericValue GV = getConstantValue(Op0); 735 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); 736 assert(PtrWidth <= 64 && "Bad pointer width"); 737 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 738 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); 739 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 740 return GV; 741 } 742 case Instruction::IntToPtr: { 743 GenericValue GV = getConstantValue(Op0); 744 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); 745 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 746 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 747 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 748 return GV; 749 } 750 case Instruction::BitCast: { 751 GenericValue GV = getConstantValue(Op0); 752 Type* DestTy = CE->getType(); 753 switch (Op0->getType()->getTypeID()) { 754 default: llvm_unreachable("Invalid bitcast operand"); 755 case Type::IntegerTyID: 756 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 757 if (DestTy->isFloatTy()) 758 GV.FloatVal = GV.IntVal.bitsToFloat(); 759 else if (DestTy->isDoubleTy()) 760 GV.DoubleVal = GV.IntVal.bitsToDouble(); 761 break; 762 case Type::FloatTyID: 763 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 764 GV.IntVal = APInt::floatToBits(GV.FloatVal); 765 break; 766 case Type::DoubleTyID: 767 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 768 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 769 break; 770 case Type::PointerTyID: 771 assert(DestTy->isPointerTy() && "Invalid bitcast"); 772 break; // getConstantValue(Op0) above already converted it 773 } 774 return GV; 775 } 776 case Instruction::Add: 777 case Instruction::FAdd: 778 case Instruction::Sub: 779 case Instruction::FSub: 780 case Instruction::Mul: 781 case Instruction::FMul: 782 case Instruction::UDiv: 783 case Instruction::SDiv: 784 case Instruction::URem: 785 case Instruction::SRem: 786 case Instruction::And: 787 case Instruction::Or: 788 case Instruction::Xor: { 789 GenericValue LHS = getConstantValue(Op0); 790 GenericValue RHS = getConstantValue(CE->getOperand(1)); 791 GenericValue GV; 792 switch (CE->getOperand(0)->getType()->getTypeID()) { 793 default: llvm_unreachable("Bad add type!"); 794 case Type::IntegerTyID: 795 switch (CE->getOpcode()) { 796 default: llvm_unreachable("Invalid integer opcode"); 797 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 798 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 799 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 800 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 801 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 802 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 803 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 804 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 805 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 806 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 807 } 808 break; 809 case Type::FloatTyID: 810 switch (CE->getOpcode()) { 811 default: llvm_unreachable("Invalid float opcode"); 812 case Instruction::FAdd: 813 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 814 case Instruction::FSub: 815 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 816 case Instruction::FMul: 817 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 818 case Instruction::FDiv: 819 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 820 case Instruction::FRem: 821 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 822 } 823 break; 824 case Type::DoubleTyID: 825 switch (CE->getOpcode()) { 826 default: llvm_unreachable("Invalid double opcode"); 827 case Instruction::FAdd: 828 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 829 case Instruction::FSub: 830 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 831 case Instruction::FMul: 832 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 833 case Instruction::FDiv: 834 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 835 case Instruction::FRem: 836 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 837 } 838 break; 839 case Type::X86_FP80TyID: 840 case Type::PPC_FP128TyID: 841 case Type::FP128TyID: { 842 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 843 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 844 switch (CE->getOpcode()) { 845 default: llvm_unreachable("Invalid long double opcode"); 846 case Instruction::FAdd: 847 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 848 GV.IntVal = apfLHS.bitcastToAPInt(); 849 break; 850 case Instruction::FSub: 851 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 852 APFloat::rmNearestTiesToEven); 853 GV.IntVal = apfLHS.bitcastToAPInt(); 854 break; 855 case Instruction::FMul: 856 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 857 APFloat::rmNearestTiesToEven); 858 GV.IntVal = apfLHS.bitcastToAPInt(); 859 break; 860 case Instruction::FDiv: 861 apfLHS.divide(APFloat(Sem, RHS.IntVal), 862 APFloat::rmNearestTiesToEven); 863 GV.IntVal = apfLHS.bitcastToAPInt(); 864 break; 865 case Instruction::FRem: 866 apfLHS.mod(APFloat(Sem, RHS.IntVal)); 867 GV.IntVal = apfLHS.bitcastToAPInt(); 868 break; 869 } 870 } 871 break; 872 } 873 return GV; 874 } 875 default: 876 break; 877 } 878 879 SmallString<256> Msg; 880 raw_svector_ostream OS(Msg); 881 OS << "ConstantExpr not handled: " << *CE; 882 report_fatal_error(OS.str()); 883 } 884 885 // Otherwise, we have a simple constant. 886 GenericValue Result; 887 switch (C->getType()->getTypeID()) { 888 case Type::FloatTyID: 889 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 890 break; 891 case Type::DoubleTyID: 892 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 893 break; 894 case Type::X86_FP80TyID: 895 case Type::FP128TyID: 896 case Type::PPC_FP128TyID: 897 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 898 break; 899 case Type::IntegerTyID: 900 Result.IntVal = cast<ConstantInt>(C)->getValue(); 901 break; 902 case Type::PointerTyID: 903 if (isa<ConstantPointerNull>(C)) 904 Result.PointerVal = nullptr; 905 else if (const Function *F = dyn_cast<Function>(C)) 906 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 907 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 908 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 909 else 910 llvm_unreachable("Unknown constant pointer type!"); 911 break; 912 case Type::VectorTyID: { 913 unsigned elemNum; 914 Type* ElemTy; 915 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 916 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 917 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 918 919 if (CDV) { 920 elemNum = CDV->getNumElements(); 921 ElemTy = CDV->getElementType(); 922 } else if (CV || CAZ) { 923 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 924 elemNum = VTy->getNumElements(); 925 ElemTy = VTy->getElementType(); 926 } else { 927 llvm_unreachable("Unknown constant vector type!"); 928 } 929 930 Result.AggregateVal.resize(elemNum); 931 // Check if vector holds floats. 932 if(ElemTy->isFloatTy()) { 933 if (CAZ) { 934 GenericValue floatZero; 935 floatZero.FloatVal = 0.f; 936 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 937 floatZero); 938 break; 939 } 940 if(CV) { 941 for (unsigned i = 0; i < elemNum; ++i) 942 if (!isa<UndefValue>(CV->getOperand(i))) 943 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 944 CV->getOperand(i))->getValueAPF().convertToFloat(); 945 break; 946 } 947 if(CDV) 948 for (unsigned i = 0; i < elemNum; ++i) 949 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 950 951 break; 952 } 953 // Check if vector holds doubles. 954 if (ElemTy->isDoubleTy()) { 955 if (CAZ) { 956 GenericValue doubleZero; 957 doubleZero.DoubleVal = 0.0; 958 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 959 doubleZero); 960 break; 961 } 962 if(CV) { 963 for (unsigned i = 0; i < elemNum; ++i) 964 if (!isa<UndefValue>(CV->getOperand(i))) 965 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 966 CV->getOperand(i))->getValueAPF().convertToDouble(); 967 break; 968 } 969 if(CDV) 970 for (unsigned i = 0; i < elemNum; ++i) 971 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 972 973 break; 974 } 975 // Check if vector holds integers. 976 if (ElemTy->isIntegerTy()) { 977 if (CAZ) { 978 GenericValue intZero; 979 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 980 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 981 intZero); 982 break; 983 } 984 if(CV) { 985 for (unsigned i = 0; i < elemNum; ++i) 986 if (!isa<UndefValue>(CV->getOperand(i))) 987 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 988 CV->getOperand(i))->getValue(); 989 else { 990 Result.AggregateVal[i].IntVal = 991 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 992 } 993 break; 994 } 995 if(CDV) 996 for (unsigned i = 0; i < elemNum; ++i) 997 Result.AggregateVal[i].IntVal = APInt( 998 CDV->getElementType()->getPrimitiveSizeInBits(), 999 CDV->getElementAsInteger(i)); 1000 1001 break; 1002 } 1003 llvm_unreachable("Unknown constant pointer type!"); 1004 } 1005 break; 1006 1007 default: 1008 SmallString<256> Msg; 1009 raw_svector_ostream OS(Msg); 1010 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 1011 report_fatal_error(OS.str()); 1012 } 1013 1014 return Result; 1015} 1016 1017/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1018/// with the integer held in IntVal. 1019static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1020 unsigned StoreBytes) { 1021 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1022 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1023 1024 if (sys::IsLittleEndianHost) { 1025 // Little-endian host - the source is ordered from LSB to MSB. Order the 1026 // destination from LSB to MSB: Do a straight copy. 1027 memcpy(Dst, Src, StoreBytes); 1028 } else { 1029 // Big-endian host - the source is an array of 64 bit words ordered from 1030 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1031 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1032 while (StoreBytes > sizeof(uint64_t)) { 1033 StoreBytes -= sizeof(uint64_t); 1034 // May not be aligned so use memcpy. 1035 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1036 Src += sizeof(uint64_t); 1037 } 1038 1039 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1040 } 1041} 1042 1043void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1044 GenericValue *Ptr, Type *Ty) { 1045 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); 1046 1047 switch (Ty->getTypeID()) { 1048 default: 1049 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1050 break; 1051 case Type::IntegerTyID: 1052 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1053 break; 1054 case Type::FloatTyID: 1055 *((float*)Ptr) = Val.FloatVal; 1056 break; 1057 case Type::DoubleTyID: 1058 *((double*)Ptr) = Val.DoubleVal; 1059 break; 1060 case Type::X86_FP80TyID: 1061 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1062 break; 1063 case Type::PointerTyID: 1064 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1065 if (StoreBytes != sizeof(PointerTy)) 1066 memset(&(Ptr->PointerVal), 0, StoreBytes); 1067 1068 *((PointerTy*)Ptr) = Val.PointerVal; 1069 break; 1070 case Type::VectorTyID: 1071 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1072 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1073 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1074 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1075 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1076 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1077 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1078 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1079 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1080 } 1081 } 1082 break; 1083 } 1084 1085 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) 1086 // Host and target are different endian - reverse the stored bytes. 1087 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1088} 1089 1090/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1091/// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1092static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1093 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1094 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1095 const_cast<uint64_t *>(IntVal.getRawData())); 1096 1097 if (sys::IsLittleEndianHost) 1098 // Little-endian host - the destination must be ordered from LSB to MSB. 1099 // The source is ordered from LSB to MSB: Do a straight copy. 1100 memcpy(Dst, Src, LoadBytes); 1101 else { 1102 // Big-endian - the destination is an array of 64 bit words ordered from 1103 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1104 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1105 // a word. 1106 while (LoadBytes > sizeof(uint64_t)) { 1107 LoadBytes -= sizeof(uint64_t); 1108 // May not be aligned so use memcpy. 1109 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1110 Dst += sizeof(uint64_t); 1111 } 1112 1113 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1114 } 1115} 1116 1117/// FIXME: document 1118/// 1119void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1120 GenericValue *Ptr, 1121 Type *Ty) { 1122 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); 1123 1124 switch (Ty->getTypeID()) { 1125 case Type::IntegerTyID: 1126 // An APInt with all words initially zero. 1127 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1128 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1129 break; 1130 case Type::FloatTyID: 1131 Result.FloatVal = *((float*)Ptr); 1132 break; 1133 case Type::DoubleTyID: 1134 Result.DoubleVal = *((double*)Ptr); 1135 break; 1136 case Type::PointerTyID: 1137 Result.PointerVal = *((PointerTy*)Ptr); 1138 break; 1139 case Type::X86_FP80TyID: { 1140 // This is endian dependent, but it will only work on x86 anyway. 1141 // FIXME: Will not trap if loading a signaling NaN. 1142 uint64_t y[2]; 1143 memcpy(y, Ptr, 10); 1144 Result.IntVal = APInt(80, y); 1145 break; 1146 } 1147 case Type::VectorTyID: { 1148 auto *VT = cast<VectorType>(Ty); 1149 Type *ElemT = VT->getElementType(); 1150 const unsigned numElems = VT->getNumElements(); 1151 if (ElemT->isFloatTy()) { 1152 Result.AggregateVal.resize(numElems); 1153 for (unsigned i = 0; i < numElems; ++i) 1154 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1155 } 1156 if (ElemT->isDoubleTy()) { 1157 Result.AggregateVal.resize(numElems); 1158 for (unsigned i = 0; i < numElems; ++i) 1159 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1160 } 1161 if (ElemT->isIntegerTy()) { 1162 GenericValue intZero; 1163 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1164 intZero.IntVal = APInt(elemBitWidth, 0); 1165 Result.AggregateVal.resize(numElems, intZero); 1166 for (unsigned i = 0; i < numElems; ++i) 1167 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1168 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1169 } 1170 break; 1171 } 1172 default: 1173 SmallString<256> Msg; 1174 raw_svector_ostream OS(Msg); 1175 OS << "Cannot load value of type " << *Ty << "!"; 1176 report_fatal_error(OS.str()); 1177 } 1178} 1179 1180void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1181 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1182 DEBUG(Init->dump()); 1183 if (isa<UndefValue>(Init)) 1184 return; 1185 1186 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1187 unsigned ElementSize = 1188 getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); 1189 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1190 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1191 return; 1192 } 1193 1194 if (isa<ConstantAggregateZero>(Init)) { 1195 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); 1196 return; 1197 } 1198 1199 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1200 unsigned ElementSize = 1201 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); 1202 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1203 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1204 return; 1205 } 1206 1207 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1208 const StructLayout *SL = 1209 getDataLayout().getStructLayout(cast<StructType>(CPS->getType())); 1210 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1211 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1212 return; 1213 } 1214 1215 if (const ConstantDataSequential *CDS = 1216 dyn_cast<ConstantDataSequential>(Init)) { 1217 // CDS is already laid out in host memory order. 1218 StringRef Data = CDS->getRawDataValues(); 1219 memcpy(Addr, Data.data(), Data.size()); 1220 return; 1221 } 1222 1223 if (Init->getType()->isFirstClassType()) { 1224 GenericValue Val = getConstantValue(Init); 1225 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1226 return; 1227 } 1228 1229 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1230 llvm_unreachable("Unknown constant type to initialize memory with!"); 1231} 1232 1233/// EmitGlobals - Emit all of the global variables to memory, storing their 1234/// addresses into GlobalAddress. This must make sure to copy the contents of 1235/// their initializers into the memory. 1236void ExecutionEngine::emitGlobals() { 1237 // Loop over all of the global variables in the program, allocating the memory 1238 // to hold them. If there is more than one module, do a prepass over globals 1239 // to figure out how the different modules should link together. 1240 std::map<std::pair<std::string, Type*>, 1241 const GlobalValue*> LinkedGlobalsMap; 1242 1243 if (Modules.size() != 1) { 1244 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1245 Module &M = *Modules[m]; 1246 for (const auto &GV : M.globals()) { 1247 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1248 GV.hasAppendingLinkage() || !GV.hasName()) 1249 continue;// Ignore external globals and globals with internal linkage. 1250 1251 const GlobalValue *&GVEntry = 1252 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1253 1254 // If this is the first time we've seen this global, it is the canonical 1255 // version. 1256 if (!GVEntry) { 1257 GVEntry = &GV; 1258 continue; 1259 } 1260 1261 // If the existing global is strong, never replace it. 1262 if (GVEntry->hasExternalLinkage()) 1263 continue; 1264 1265 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1266 // symbol. FIXME is this right for common? 1267 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1268 GVEntry = &GV; 1269 } 1270 } 1271 } 1272 1273 std::vector<const GlobalValue*> NonCanonicalGlobals; 1274 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1275 Module &M = *Modules[m]; 1276 for (const auto &GV : M.globals()) { 1277 // In the multi-module case, see what this global maps to. 1278 if (!LinkedGlobalsMap.empty()) { 1279 if (const GlobalValue *GVEntry = 1280 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1281 // If something else is the canonical global, ignore this one. 1282 if (GVEntry != &GV) { 1283 NonCanonicalGlobals.push_back(&GV); 1284 continue; 1285 } 1286 } 1287 } 1288 1289 if (!GV.isDeclaration()) { 1290 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1291 } else { 1292 // External variable reference. Try to use the dynamic loader to 1293 // get a pointer to it. 1294 if (void *SymAddr = 1295 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1296 addGlobalMapping(&GV, SymAddr); 1297 else { 1298 report_fatal_error("Could not resolve external global address: " 1299 +GV.getName()); 1300 } 1301 } 1302 } 1303 1304 // If there are multiple modules, map the non-canonical globals to their 1305 // canonical location. 1306 if (!NonCanonicalGlobals.empty()) { 1307 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1308 const GlobalValue *GV = NonCanonicalGlobals[i]; 1309 const GlobalValue *CGV = 1310 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1311 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1312 assert(Ptr && "Canonical global wasn't codegen'd!"); 1313 addGlobalMapping(GV, Ptr); 1314 } 1315 } 1316 1317 // Now that all of the globals are set up in memory, loop through them all 1318 // and initialize their contents. 1319 for (const auto &GV : M.globals()) { 1320 if (!GV.isDeclaration()) { 1321 if (!LinkedGlobalsMap.empty()) { 1322 if (const GlobalValue *GVEntry = 1323 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1324 if (GVEntry != &GV) // Not the canonical variable. 1325 continue; 1326 } 1327 EmitGlobalVariable(&GV); 1328 } 1329 } 1330 } 1331} 1332 1333// EmitGlobalVariable - This method emits the specified global variable to the 1334// address specified in GlobalAddresses, or allocates new memory if it's not 1335// already in the map. 1336void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1337 void *GA = getPointerToGlobalIfAvailable(GV); 1338 1339 if (!GA) { 1340 // If it's not already specified, allocate memory for the global. 1341 GA = getMemoryForGV(GV); 1342 1343 // If we failed to allocate memory for this global, return. 1344 if (!GA) return; 1345 1346 addGlobalMapping(GV, GA); 1347 } 1348 1349 // Don't initialize if it's thread local, let the client do it. 1350 if (!GV->isThreadLocal()) 1351 InitializeMemory(GV->getInitializer(), GA); 1352 1353 Type *ElTy = GV->getValueType(); 1354 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); 1355 NumInitBytes += (unsigned)GVSize; 1356 ++NumGlobals; 1357} 1358