1//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the AArch64 implementation of the TargetRegisterInfo
11// class.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AArch64RegisterInfo.h"
16#include "AArch64FrameLowering.h"
17#include "AArch64InstrInfo.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64Subtarget.h"
20#include "MCTargetDesc/AArch64AddressingModes.h"
21#include "llvm/ADT/BitVector.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/RegisterScavenging.h"
27#include "llvm/IR/Function.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Target/TargetFrameLowering.h"
30#include "llvm/Target/TargetOptions.h"
31
32using namespace llvm;
33
34#define GET_REGINFO_TARGET_DESC
35#include "AArch64GenRegisterInfo.inc"
36
37AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
38    : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {}
39
40const MCPhysReg *
41AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
42  assert(MF && "Invalid MachineFunction pointer.");
43  if (MF->getFunction()->getCallingConv() == CallingConv::GHC)
44    // GHC set of callee saved regs is empty as all those regs are
45    // used for passing STG regs around
46    return CSR_AArch64_NoRegs_SaveList;
47  if (MF->getFunction()->getCallingConv() == CallingConv::AnyReg)
48    return CSR_AArch64_AllRegs_SaveList;
49  if (MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS)
50    return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR() ?
51           CSR_AArch64_CXX_TLS_Darwin_PE_SaveList :
52           CSR_AArch64_CXX_TLS_Darwin_SaveList;
53  if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
54          ->supportSwiftError() &&
55      MF->getFunction()->getAttributes().hasAttrSomewhere(
56          Attribute::SwiftError))
57    return CSR_AArch64_AAPCS_SwiftError_SaveList;
58  if (MF->getFunction()->getCallingConv() == CallingConv::PreserveMost)
59    return CSR_AArch64_RT_MostRegs_SaveList;
60  else
61    return CSR_AArch64_AAPCS_SaveList;
62}
63
64const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
65    const MachineFunction *MF) const {
66  assert(MF && "Invalid MachineFunction pointer.");
67  if (MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS &&
68      MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
69    return CSR_AArch64_CXX_TLS_Darwin_ViaCopy_SaveList;
70  return nullptr;
71}
72
73const uint32_t *
74AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
75                                          CallingConv::ID CC) const {
76  if (CC == CallingConv::GHC)
77    // This is academic becase all GHC calls are (supposed to be) tail calls
78    return CSR_AArch64_NoRegs_RegMask;
79  if (CC == CallingConv::AnyReg)
80    return CSR_AArch64_AllRegs_RegMask;
81  if (CC == CallingConv::CXX_FAST_TLS)
82    return CSR_AArch64_CXX_TLS_Darwin_RegMask;
83  if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
84          ->supportSwiftError() &&
85      MF.getFunction()->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
86    return CSR_AArch64_AAPCS_SwiftError_RegMask;
87  if (CC == CallingConv::PreserveMost)
88    return CSR_AArch64_RT_MostRegs_RegMask;
89  else
90    return CSR_AArch64_AAPCS_RegMask;
91}
92
93const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
94  if (TT.isOSDarwin())
95    return CSR_AArch64_TLS_Darwin_RegMask;
96
97  assert(TT.isOSBinFormatELF() && "only expect Darwin or ELF TLS");
98  return CSR_AArch64_TLS_ELF_RegMask;
99}
100
101const uint32_t *
102AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
103                                                CallingConv::ID CC) const {
104  // This should return a register mask that is the same as that returned by
105  // getCallPreservedMask but that additionally preserves the register used for
106  // the first i64 argument (which must also be the register used to return a
107  // single i64 return value)
108  //
109  // In case that the calling convention does not use the same register for
110  // both, the function should return NULL (does not currently apply)
111  assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
112  return CSR_AArch64_AAPCS_ThisReturn_RegMask;
113}
114
115BitVector
116AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
117  const AArch64FrameLowering *TFI = getFrameLowering(MF);
118
119  // FIXME: avoid re-calculating this every time.
120  BitVector Reserved(getNumRegs());
121  Reserved.set(AArch64::SP);
122  Reserved.set(AArch64::XZR);
123  Reserved.set(AArch64::WSP);
124  Reserved.set(AArch64::WZR);
125
126  if (TFI->hasFP(MF) || TT.isOSDarwin()) {
127    Reserved.set(AArch64::FP);
128    Reserved.set(AArch64::W29);
129  }
130
131  if (MF.getSubtarget<AArch64Subtarget>().isX18Reserved()) {
132    Reserved.set(AArch64::X18); // Platform register
133    Reserved.set(AArch64::W18);
134  }
135
136  if (hasBasePointer(MF)) {
137    Reserved.set(AArch64::X19);
138    Reserved.set(AArch64::W19);
139  }
140
141  return Reserved;
142}
143
144bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
145                                      unsigned Reg) const {
146  const AArch64FrameLowering *TFI = getFrameLowering(MF);
147
148  switch (Reg) {
149  default:
150    break;
151  case AArch64::SP:
152  case AArch64::XZR:
153  case AArch64::WSP:
154  case AArch64::WZR:
155    return true;
156  case AArch64::X18:
157  case AArch64::W18:
158    return MF.getSubtarget<AArch64Subtarget>().isX18Reserved();
159  case AArch64::FP:
160  case AArch64::W29:
161    return TFI->hasFP(MF) || TT.isOSDarwin();
162  case AArch64::W19:
163  case AArch64::X19:
164    return hasBasePointer(MF);
165  }
166
167  return false;
168}
169
170const TargetRegisterClass *
171AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
172                                      unsigned Kind) const {
173  return &AArch64::GPR64RegClass;
174}
175
176const TargetRegisterClass *
177AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
178  if (RC == &AArch64::CCRRegClass)
179    return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
180  return RC;
181}
182
183unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
184
185bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
186  const MachineFrameInfo *MFI = MF.getFrameInfo();
187
188  // In the presence of variable sized objects, if the fixed stack size is
189  // large enough that referencing from the FP won't result in things being
190  // in range relatively often, we can use a base pointer to allow access
191  // from the other direction like the SP normally works.
192  // Furthermore, if both variable sized objects are present, and the
193  // stack needs to be dynamically re-aligned, the base pointer is the only
194  // reliable way to reference the locals.
195  if (MFI->hasVarSizedObjects()) {
196    if (needsStackRealignment(MF))
197      return true;
198    // Conservatively estimate whether the negative offset from the frame
199    // pointer will be sufficient to reach. If a function has a smallish
200    // frame, it's less likely to have lots of spills and callee saved
201    // space, so it's all more likely to be within range of the frame pointer.
202    // If it's wrong, we'll materialize the constant and still get to the
203    // object; it's just suboptimal. Negative offsets use the unscaled
204    // load/store instructions, which have a 9-bit signed immediate.
205    return MFI->getLocalFrameSize() >= 256;
206  }
207
208  return false;
209}
210
211unsigned
212AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
213  const AArch64FrameLowering *TFI = getFrameLowering(MF);
214  return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
215}
216
217bool AArch64RegisterInfo::requiresRegisterScavenging(
218    const MachineFunction &MF) const {
219  return true;
220}
221
222bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
223    const MachineFunction &MF) const {
224  return true;
225}
226
227bool
228AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
229  const MachineFrameInfo *MFI = MF.getFrameInfo();
230  // AArch64FrameLowering::resolveFrameIndexReference() can always fall back
231  // to the stack pointer, so only put the emergency spill slot next to the
232  // FP when there's no better way to access it (SP or base pointer).
233  return MFI->hasVarSizedObjects() && !hasBasePointer(MF);
234}
235
236bool AArch64RegisterInfo::requiresFrameIndexScavenging(
237    const MachineFunction &MF) const {
238  return true;
239}
240
241bool
242AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
243  const MachineFrameInfo *MFI = MF.getFrameInfo();
244  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->adjustsStack())
245    return true;
246  return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken();
247}
248
249/// needsFrameBaseReg - Returns true if the instruction's frame index
250/// reference would be better served by a base register other than FP
251/// or SP. Used by LocalStackFrameAllocation to determine which frame index
252/// references it should create new base registers for.
253bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
254                                            int64_t Offset) const {
255  for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
256    assert(i < MI->getNumOperands() &&
257           "Instr doesn't have FrameIndex operand!");
258
259  // It's the load/store FI references that cause issues, as it can be difficult
260  // to materialize the offset if it won't fit in the literal field. Estimate
261  // based on the size of the local frame and some conservative assumptions
262  // about the rest of the stack frame (note, this is pre-regalloc, so
263  // we don't know everything for certain yet) whether this offset is likely
264  // to be out of range of the immediate. Return true if so.
265
266  // We only generate virtual base registers for loads and stores, so
267  // return false for everything else.
268  if (!MI->mayLoad() && !MI->mayStore())
269    return false;
270
271  // Without a virtual base register, if the function has variable sized
272  // objects, all fixed-size local references will be via the frame pointer,
273  // Approximate the offset and see if it's legal for the instruction.
274  // Note that the incoming offset is based on the SP value at function entry,
275  // so it'll be negative.
276  MachineFunction &MF = *MI->getParent()->getParent();
277  const AArch64FrameLowering *TFI = getFrameLowering(MF);
278  MachineFrameInfo *MFI = MF.getFrameInfo();
279
280  // Estimate an offset from the frame pointer.
281  // Conservatively assume all GPR callee-saved registers get pushed.
282  // FP, LR, X19-X28, D8-D15. 64-bits each.
283  int64_t FPOffset = Offset - 16 * 20;
284  // Estimate an offset from the stack pointer.
285  // The incoming offset is relating to the SP at the start of the function,
286  // but when we access the local it'll be relative to the SP after local
287  // allocation, so adjust our SP-relative offset by that allocation size.
288  Offset += MFI->getLocalFrameSize();
289  // Assume that we'll have at least some spill slots allocated.
290  // FIXME: This is a total SWAG number. We should run some statistics
291  //        and pick a real one.
292  Offset += 128; // 128 bytes of spill slots
293
294  // If there is a frame pointer, try using it.
295  // The FP is only available if there is no dynamic realignment. We
296  // don't know for sure yet whether we'll need that, so we guess based
297  // on whether there are any local variables that would trigger it.
298  if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
299    return false;
300
301  // If we can reference via the stack pointer or base pointer, try that.
302  // FIXME: This (and the code that resolves the references) can be improved
303  //        to only disallow SP relative references in the live range of
304  //        the VLA(s). In practice, it's unclear how much difference that
305  //        would make, but it may be worth doing.
306  if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
307    return false;
308
309  // The offset likely isn't legal; we want to allocate a virtual base register.
310  return true;
311}
312
313bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
314                                             unsigned BaseReg,
315                                             int64_t Offset) const {
316  assert(Offset <= INT_MAX && "Offset too big to fit in int.");
317  assert(MI && "Unable to get the legal offset for nil instruction.");
318  int SaveOffset = Offset;
319  return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
320}
321
322/// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
323/// at the beginning of the basic block.
324void AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
325                                                       unsigned BaseReg,
326                                                       int FrameIdx,
327                                                       int64_t Offset) const {
328  MachineBasicBlock::iterator Ins = MBB->begin();
329  DebugLoc DL; // Defaults to "unknown"
330  if (Ins != MBB->end())
331    DL = Ins->getDebugLoc();
332  const MachineFunction &MF = *MBB->getParent();
333  const AArch64InstrInfo *TII =
334      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
335  const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
336  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
337  MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
338  unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
339
340  BuildMI(*MBB, Ins, DL, MCID, BaseReg)
341      .addFrameIndex(FrameIdx)
342      .addImm(Offset)
343      .addImm(Shifter);
344}
345
346void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
347                                            int64_t Offset) const {
348  int Off = Offset; // ARM doesn't need the general 64-bit offsets
349  unsigned i = 0;
350
351  while (!MI.getOperand(i).isFI()) {
352    ++i;
353    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
354  }
355  const MachineFunction *MF = MI.getParent()->getParent();
356  const AArch64InstrInfo *TII =
357      MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
358  bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
359  assert(Done && "Unable to resolve frame index!");
360  (void)Done;
361}
362
363void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
364                                              int SPAdj, unsigned FIOperandNum,
365                                              RegScavenger *RS) const {
366  assert(SPAdj == 0 && "Unexpected");
367
368  MachineInstr &MI = *II;
369  MachineBasicBlock &MBB = *MI.getParent();
370  MachineFunction &MF = *MBB.getParent();
371  const AArch64InstrInfo *TII =
372      MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
373  const AArch64FrameLowering *TFI = getFrameLowering(MF);
374
375  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
376  unsigned FrameReg;
377  int Offset;
378
379  // Special handling of dbg_value, stackmap and patchpoint instructions.
380  if (MI.isDebugValue() || MI.getOpcode() == TargetOpcode::STACKMAP ||
381      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
382    Offset = TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
383                                             /*PreferFP=*/true);
384    Offset += MI.getOperand(FIOperandNum + 1).getImm();
385    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
386    MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
387    return;
388  }
389
390  // Modify MI as necessary to handle as much of 'Offset' as possible
391  Offset = TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg);
392  if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
393    return;
394
395  assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
396         "Emergency spill slot is out of reach");
397
398  // If we get here, the immediate doesn't fit into the instruction.  We folded
399  // as much as possible above.  Handle the rest, providing a register that is
400  // SP+LargeImm.
401  unsigned ScratchReg =
402      MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
403  emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
404  MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
405}
406
407unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
408                                                  MachineFunction &MF) const {
409  const AArch64FrameLowering *TFI = getFrameLowering(MF);
410
411  switch (RC->getID()) {
412  default:
413    return 0;
414  case AArch64::GPR32RegClassID:
415  case AArch64::GPR32spRegClassID:
416  case AArch64::GPR32allRegClassID:
417  case AArch64::GPR64spRegClassID:
418  case AArch64::GPR64allRegClassID:
419  case AArch64::GPR64RegClassID:
420  case AArch64::GPR32commonRegClassID:
421  case AArch64::GPR64commonRegClassID:
422    return 32 - 1                                   // XZR/SP
423              - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
424              - MF.getSubtarget<AArch64Subtarget>()
425                    .isX18Reserved() // X18 reserved as platform register
426              - hasBasePointer(MF);  // X19
427  case AArch64::FPR8RegClassID:
428  case AArch64::FPR16RegClassID:
429  case AArch64::FPR32RegClassID:
430  case AArch64::FPR64RegClassID:
431  case AArch64::FPR128RegClassID:
432    return 32;
433
434  case AArch64::DDRegClassID:
435  case AArch64::DDDRegClassID:
436  case AArch64::DDDDRegClassID:
437  case AArch64::QQRegClassID:
438  case AArch64::QQQRegClassID:
439  case AArch64::QQQQRegClassID:
440    return 32;
441
442  case AArch64::FPR128_loRegClassID:
443    return 16;
444  }
445}
446