1//===-- HexagonDisassembler.cpp - Disassembler for Hexagon ISA ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexagon-disassembler"
11
12#include "Hexagon.h"
13#include "MCTargetDesc/HexagonBaseInfo.h"
14#include "MCTargetDesc/HexagonMCChecker.h"
15#include "MCTargetDesc/HexagonMCTargetDesc.h"
16#include "MCTargetDesc/HexagonMCInstrInfo.h"
17#include "MCTargetDesc/HexagonInstPrinter.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/MC/MCDisassembler/MCDisassembler.h"
20#include "llvm/MC/MCContext.h"
21#include "llvm/MC/MCExpr.h"
22#include "llvm/MC/MCFixedLenDisassembler.h"
23#include "llvm/MC/MCInst.h"
24#include "llvm/MC/MCInstrDesc.h"
25#include "llvm/MC/MCInstrInfo.h"
26#include "llvm/MC/MCSubtargetInfo.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/LEB128.h"
30#include "llvm/Support/MemoryObject.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Support/TargetRegistry.h"
33
34using namespace llvm;
35using namespace Hexagon;
36
37typedef MCDisassembler::DecodeStatus DecodeStatus;
38
39namespace {
40/// \brief Hexagon disassembler for all Hexagon platforms.
41class HexagonDisassembler : public MCDisassembler {
42public:
43  std::unique_ptr<MCInstrInfo const> const MCII;
44  std::unique_ptr<MCInst *> CurrentBundle;
45  HexagonDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
46                      MCInstrInfo const *MCII)
47      : MCDisassembler(STI, Ctx), MCII(MCII), CurrentBundle(new MCInst *) {}
48
49  DecodeStatus getSingleInstruction(MCInst &Instr, MCInst &MCB,
50                                    ArrayRef<uint8_t> Bytes, uint64_t Address,
51                                    raw_ostream &VStream, raw_ostream &CStream,
52                                    bool &Complete) const;
53  DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
54                              ArrayRef<uint8_t> Bytes, uint64_t Address,
55                              raw_ostream &VStream,
56                              raw_ostream &CStream) const override;
57
58  void adjustExtendedInstructions(MCInst &MCI, MCInst const &MCB) const;
59  void addSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst) const;
60};
61}
62
63// Forward declare these because the auto-generated code will reference them.
64// Definitions are further down.
65
66static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
67                                               uint64_t Address,
68                                               const void *Decoder);
69static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
70                                                   uint64_t Address,
71                                                   const void *Decoder);
72static DecodeStatus DecodeVectorRegsRegisterClass(MCInst &Inst, unsigned RegNo,
73                                                  uint64_t Address,
74                                                  const void *Decoder);
75static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
76                                                  uint64_t Address,
77                                                  const void *Decoder);
78static DecodeStatus DecodeVecDblRegsRegisterClass(MCInst &Inst, unsigned RegNo,
79                                                  uint64_t Address,
80                                                  const void *Decoder);
81static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
82                                                uint64_t Address,
83                                                const void *Decoder);
84static DecodeStatus DecodeVecPredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
85                                                   uint64_t Address,
86                                                   const void *Decoder);
87static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
88                                               uint64_t Address,
89                                               const void *Decoder);
90static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
91                                               uint64_t Address,
92                                               const void *Decoder);
93static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
94                                                 uint64_t Address,
95                                                 const void *Decoder);
96
97static DecodeStatus decodeSpecial(MCInst &MI, uint32_t insn);
98static DecodeStatus decodeImmext(MCInst &MI, uint32_t insn,
99                                 void const *Decoder);
100
101static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
102                                 raw_ostream &os);
103
104static unsigned getRegFromSubinstEncoding(unsigned encoded_reg);
105
106static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
107                                       uint64_t Address, const void *Decoder);
108static DecodeStatus s16ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
109                                  const void *Decoder);
110static DecodeStatus s12ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
111                                  const void *Decoder);
112static DecodeStatus s11_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
113                                    const void *Decoder);
114static DecodeStatus s11_1ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
115                                    const void *Decoder);
116static DecodeStatus s11_2ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
117                                    const void *Decoder);
118static DecodeStatus s11_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
119                                    const void *Decoder);
120static DecodeStatus s10ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
121                                  const void *Decoder);
122static DecodeStatus s8ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
123                                 const void *Decoder);
124static DecodeStatus s6_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
125                                   const void *Decoder);
126static DecodeStatus s4_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
127                                   const void *Decoder);
128static DecodeStatus s4_1ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
129                                   const void *Decoder);
130static DecodeStatus s4_2ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
131                                   const void *Decoder);
132static DecodeStatus s4_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
133                                   const void *Decoder);
134static DecodeStatus s4_6ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
135                                   const void *Decoder);
136static DecodeStatus s3_6ImmDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
137                                   const void *Decoder);
138static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
139                                    const void *Decoder);
140
141#include "HexagonGenDisassemblerTables.inc"
142
143static MCDisassembler *createHexagonDisassembler(const Target &T,
144                                                 const MCSubtargetInfo &STI,
145                                                 MCContext &Ctx) {
146  return new HexagonDisassembler(STI, Ctx, T.createMCInstrInfo());
147}
148
149extern "C" void LLVMInitializeHexagonDisassembler() {
150  TargetRegistry::RegisterMCDisassembler(TheHexagonTarget,
151                                         createHexagonDisassembler);
152}
153
154DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
155                                                 ArrayRef<uint8_t> Bytes,
156                                                 uint64_t Address,
157                                                 raw_ostream &os,
158                                                 raw_ostream &cs) const {
159  DecodeStatus Result = DecodeStatus::Success;
160  bool Complete = false;
161  Size = 0;
162
163  *CurrentBundle = &MI;
164  MI = HexagonMCInstrInfo::createBundle();
165  while (Result == Success && Complete == false) {
166    if (Bytes.size() < HEXAGON_INSTR_SIZE)
167      return MCDisassembler::Fail;
168    MCInst *Inst = new (getContext()) MCInst;
169    Result = getSingleInstruction(*Inst, MI, Bytes, Address, os, cs, Complete);
170    MI.addOperand(MCOperand::createInst(Inst));
171    Size += HEXAGON_INSTR_SIZE;
172    Bytes = Bytes.slice(HEXAGON_INSTR_SIZE);
173  }
174  if(Result == MCDisassembler::Fail)
175    return Result;
176  HexagonMCChecker Checker (*MCII, STI, MI, MI, *getContext().getRegisterInfo());
177  if(!Checker.check())
178    return MCDisassembler::Fail;
179  return MCDisassembler::Success;
180}
181
182namespace {
183HexagonDisassembler const &disassembler(void const *Decoder) {
184  return *static_cast<HexagonDisassembler const *>(Decoder);
185}
186MCContext &contextFromDecoder(void const *Decoder) {
187  return disassembler(Decoder).getContext();
188}
189}
190
191DecodeStatus HexagonDisassembler::getSingleInstruction(
192    MCInst &MI, MCInst &MCB, ArrayRef<uint8_t> Bytes, uint64_t Address,
193    raw_ostream &os, raw_ostream &cs, bool &Complete) const {
194  assert(Bytes.size() >= HEXAGON_INSTR_SIZE);
195
196  uint32_t Instruction =
197      (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | (Bytes[0] << 0);
198
199  auto BundleSize = HexagonMCInstrInfo::bundleSize(MCB);
200  if ((Instruction & HexagonII::INST_PARSE_MASK) ==
201      HexagonII::INST_PARSE_LOOP_END) {
202    if (BundleSize == 0)
203      HexagonMCInstrInfo::setInnerLoop(MCB);
204    else if (BundleSize == 1)
205      HexagonMCInstrInfo::setOuterLoop(MCB);
206    else
207      return DecodeStatus::Fail;
208  }
209
210  DecodeStatus Result = DecodeStatus::Success;
211  if ((Instruction & HexagonII::INST_PARSE_MASK) ==
212      HexagonII::INST_PARSE_DUPLEX) {
213    // Determine the instruction class of each instruction in the duplex.
214    unsigned duplexIClass, IClassLow, IClassHigh;
215
216    duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1);
217    switch (duplexIClass) {
218    default:
219      return MCDisassembler::Fail;
220    case 0:
221      IClassLow = HexagonII::HSIG_L1;
222      IClassHigh = HexagonII::HSIG_L1;
223      break;
224    case 1:
225      IClassLow = HexagonII::HSIG_L2;
226      IClassHigh = HexagonII::HSIG_L1;
227      break;
228    case 2:
229      IClassLow = HexagonII::HSIG_L2;
230      IClassHigh = HexagonII::HSIG_L2;
231      break;
232    case 3:
233      IClassLow = HexagonII::HSIG_A;
234      IClassHigh = HexagonII::HSIG_A;
235      break;
236    case 4:
237      IClassLow = HexagonII::HSIG_L1;
238      IClassHigh = HexagonII::HSIG_A;
239      break;
240    case 5:
241      IClassLow = HexagonII::HSIG_L2;
242      IClassHigh = HexagonII::HSIG_A;
243      break;
244    case 6:
245      IClassLow = HexagonII::HSIG_S1;
246      IClassHigh = HexagonII::HSIG_A;
247      break;
248    case 7:
249      IClassLow = HexagonII::HSIG_S2;
250      IClassHigh = HexagonII::HSIG_A;
251      break;
252    case 8:
253      IClassLow = HexagonII::HSIG_S1;
254      IClassHigh = HexagonII::HSIG_L1;
255      break;
256    case 9:
257      IClassLow = HexagonII::HSIG_S1;
258      IClassHigh = HexagonII::HSIG_L2;
259      break;
260    case 10:
261      IClassLow = HexagonII::HSIG_S1;
262      IClassHigh = HexagonII::HSIG_S1;
263      break;
264    case 11:
265      IClassLow = HexagonII::HSIG_S2;
266      IClassHigh = HexagonII::HSIG_S1;
267      break;
268    case 12:
269      IClassLow = HexagonII::HSIG_S2;
270      IClassHigh = HexagonII::HSIG_L1;
271      break;
272    case 13:
273      IClassLow = HexagonII::HSIG_S2;
274      IClassHigh = HexagonII::HSIG_L2;
275      break;
276    case 14:
277      IClassLow = HexagonII::HSIG_S2;
278      IClassHigh = HexagonII::HSIG_S2;
279      break;
280    }
281
282    // Set the MCInst to be a duplex instruction. Which one doesn't matter.
283    MI.setOpcode(Hexagon::DuplexIClass0);
284
285    // Decode each instruction in the duplex.
286    // Create an MCInst for each instruction.
287    unsigned instLow = Instruction & 0x1fff;
288    unsigned instHigh = (Instruction >> 16) & 0x1fff;
289    unsigned opLow;
290    if (GetSubinstOpcode(IClassLow, instLow, opLow, os) !=
291        MCDisassembler::Success)
292      return MCDisassembler::Fail;
293    unsigned opHigh;
294    if (GetSubinstOpcode(IClassHigh, instHigh, opHigh, os) !=
295        MCDisassembler::Success)
296      return MCDisassembler::Fail;
297    MCInst *MILow = new (getContext()) MCInst;
298    MILow->setOpcode(opLow);
299    MCInst *MIHigh = new (getContext()) MCInst;
300    MIHigh->setOpcode(opHigh);
301    addSubinstOperands(MILow, opLow, instLow);
302    addSubinstOperands(MIHigh, opHigh, instHigh);
303    // see ConvertToSubInst() in
304    // lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
305
306    // Add the duplex instruction MCInsts as operands to the passed in MCInst.
307    MCOperand OPLow = MCOperand::createInst(MILow);
308    MCOperand OPHigh = MCOperand::createInst(MIHigh);
309    MI.addOperand(OPLow);
310    MI.addOperand(OPHigh);
311    Complete = true;
312  } else {
313    if ((Instruction & HexagonII::INST_PARSE_MASK) ==
314        HexagonII::INST_PARSE_PACKET_END)
315      Complete = true;
316    // Calling the auto-generated decoder function.
317    Result =
318        decodeInstruction(DecoderTable32, MI, Instruction, Address, this, STI);
319
320    // If a, "standard" insn isn't found check special cases.
321    if (MCDisassembler::Success != Result ||
322        MI.getOpcode() == Hexagon::A4_ext) {
323      Result = decodeImmext(MI, Instruction, this);
324      if (MCDisassembler::Success != Result) {
325        Result = decodeSpecial(MI, Instruction);
326      }
327    } else {
328      // If the instruction is a compound instruction, register values will
329      // follow the duplex model, so the register values in the MCInst are
330      // incorrect. If the instruction is a compound, loop through the
331      // operands and change registers appropriately.
332      if (llvm::HexagonMCInstrInfo::getType(*MCII, MI) ==
333          HexagonII::TypeCOMPOUND) {
334        for (MCInst::iterator i = MI.begin(), last = MI.end(); i < last; ++i) {
335          if (i->isReg()) {
336            unsigned reg = i->getReg() - Hexagon::R0;
337            i->setReg(getRegFromSubinstEncoding(reg));
338          }
339        }
340      }
341    }
342  }
343
344  if (HexagonMCInstrInfo::isNewValue(*MCII, MI)) {
345    unsigned OpIndex = HexagonMCInstrInfo::getNewValueOp(*MCII, MI);
346    MCOperand &MCO = MI.getOperand(OpIndex);
347    assert(MCO.isReg() && "New value consumers must be registers");
348    unsigned Register =
349        getContext().getRegisterInfo()->getEncodingValue(MCO.getReg());
350    if ((Register & 0x6) == 0)
351      // HexagonPRM 10.11 Bit 1-2 == 0 is reserved
352      return MCDisassembler::Fail;
353    unsigned Lookback = (Register & 0x6) >> 1;
354    unsigned Offset = 1;
355    bool Vector = HexagonMCInstrInfo::isVector(*MCII, MI);
356    auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
357    auto i = Instructions.end() - 1;
358    for (auto n = Instructions.begin() - 1;; --i, ++Offset) {
359      if (i == n)
360        // Couldn't find producer
361        return MCDisassembler::Fail;
362      if (Vector && !HexagonMCInstrInfo::isVector(*MCII, *i->getInst()))
363        // Skip scalars when calculating distances for vectors
364        ++Lookback;
365      if (HexagonMCInstrInfo::isImmext(*i->getInst()))
366        ++Lookback;
367      if (Offset == Lookback)
368        break;
369    }
370    auto const &Inst = *i->getInst();
371    bool SubregBit = (Register & 0x1) != 0;
372    if (SubregBit && HexagonMCInstrInfo::hasNewValue2(*MCII, Inst)) {
373      // If subreg bit is set we're selecting the second produced newvalue
374      unsigned Producer =
375          HexagonMCInstrInfo::getNewValueOperand2(*MCII, Inst).getReg();
376      assert(Producer != Hexagon::NoRegister);
377      MCO.setReg(Producer);
378    } else if (HexagonMCInstrInfo::hasNewValue(*MCII, Inst)) {
379      unsigned Producer =
380          HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg();
381      if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
382        Producer = ((Producer - Hexagon::W0) << 1) + SubregBit + Hexagon::V0;
383      else if (SubregBit)
384        // Hexagon PRM 10.11 New-value operands
385        // Nt[0] is reserved and should always be encoded as zero.
386        return MCDisassembler::Fail;
387      assert(Producer != Hexagon::NoRegister);
388      MCO.setReg(Producer);
389    } else
390      return MCDisassembler::Fail;
391  }
392
393  adjustExtendedInstructions(MI, MCB);
394  MCInst const *Extender =
395    HexagonMCInstrInfo::extenderForIndex(MCB,
396                                         HexagonMCInstrInfo::bundleSize(MCB));
397  if(Extender != nullptr) {
398    MCInst const & Inst = HexagonMCInstrInfo::isDuplex(*MCII, MI) ?
399                          *MI.getOperand(1).getInst() : MI;
400    if (!HexagonMCInstrInfo::isExtendable(*MCII, Inst) &&
401        !HexagonMCInstrInfo::isExtended(*MCII, Inst))
402      return MCDisassembler::Fail;
403  }
404  return Result;
405}
406
407void HexagonDisassembler::adjustExtendedInstructions(MCInst &MCI,
408                                                     MCInst const &MCB) const {
409  if (!HexagonMCInstrInfo::hasExtenderForIndex(
410          MCB, HexagonMCInstrInfo::bundleSize(MCB))) {
411    unsigned opcode;
412    // This code is used by the disassembler to disambiguate between GP
413    // relative and absolute addressing instructions since they both have
414    // same encoding bits. However, an absolute addressing instruction must
415    // follow an immediate extender. Disassembler alwaus select absolute
416    // addressing instructions first and uses this code to change them into
417    // GP relative instruction in the absence of the corresponding immediate
418    // extender.
419    switch (MCI.getOpcode()) {
420    case Hexagon::S2_storerbabs:
421      opcode = Hexagon::S2_storerbgp;
422      break;
423    case Hexagon::S2_storerhabs:
424      opcode = Hexagon::S2_storerhgp;
425      break;
426    case Hexagon::S2_storerfabs:
427      opcode = Hexagon::S2_storerfgp;
428      break;
429    case Hexagon::S2_storeriabs:
430      opcode = Hexagon::S2_storerigp;
431      break;
432    case Hexagon::S2_storerbnewabs:
433      opcode = Hexagon::S2_storerbnewgp;
434      break;
435    case Hexagon::S2_storerhnewabs:
436      opcode = Hexagon::S2_storerhnewgp;
437      break;
438    case Hexagon::S2_storerinewabs:
439      opcode = Hexagon::S2_storerinewgp;
440      break;
441    case Hexagon::S2_storerdabs:
442      opcode = Hexagon::S2_storerdgp;
443      break;
444    case Hexagon::L4_loadrb_abs:
445      opcode = Hexagon::L2_loadrbgp;
446      break;
447    case Hexagon::L4_loadrub_abs:
448      opcode = Hexagon::L2_loadrubgp;
449      break;
450    case Hexagon::L4_loadrh_abs:
451      opcode = Hexagon::L2_loadrhgp;
452      break;
453    case Hexagon::L4_loadruh_abs:
454      opcode = Hexagon::L2_loadruhgp;
455      break;
456    case Hexagon::L4_loadri_abs:
457      opcode = Hexagon::L2_loadrigp;
458      break;
459    case Hexagon::L4_loadrd_abs:
460      opcode = Hexagon::L2_loadrdgp;
461      break;
462    default:
463      opcode = MCI.getOpcode();
464    }
465    MCI.setOpcode(opcode);
466  }
467}
468
469namespace llvm {
470extern const MCInstrDesc HexagonInsts[];
471}
472
473static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
474                                        ArrayRef<MCPhysReg> Table) {
475  if (RegNo < Table.size()) {
476    Inst.addOperand(MCOperand::createReg(Table[RegNo]));
477    return MCDisassembler::Success;
478  }
479
480  return MCDisassembler::Fail;
481}
482
483static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
484                                                   uint64_t Address,
485                                                   const void *Decoder) {
486  return DecodeIntRegsRegisterClass(Inst, RegNo, Address, Decoder);
487}
488
489static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
490                                               uint64_t Address,
491                                               const void *Decoder) {
492  static const MCPhysReg IntRegDecoderTable[] = {
493      Hexagon::R0,  Hexagon::R1,  Hexagon::R2,  Hexagon::R3,  Hexagon::R4,
494      Hexagon::R5,  Hexagon::R6,  Hexagon::R7,  Hexagon::R8,  Hexagon::R9,
495      Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
496      Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
497      Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
498      Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
499      Hexagon::R30, Hexagon::R31};
500
501  return DecodeRegisterClass(Inst, RegNo, IntRegDecoderTable);
502}
503
504static DecodeStatus DecodeVectorRegsRegisterClass(MCInst &Inst, unsigned RegNo,
505                                                  uint64_t /*Address*/,
506                                                  const void *Decoder) {
507  static const MCPhysReg VecRegDecoderTable[] = {
508      Hexagon::V0,  Hexagon::V1,  Hexagon::V2,  Hexagon::V3,  Hexagon::V4,
509      Hexagon::V5,  Hexagon::V6,  Hexagon::V7,  Hexagon::V8,  Hexagon::V9,
510      Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14,
511      Hexagon::V15, Hexagon::V16, Hexagon::V17, Hexagon::V18, Hexagon::V19,
512      Hexagon::V20, Hexagon::V21, Hexagon::V22, Hexagon::V23, Hexagon::V24,
513      Hexagon::V25, Hexagon::V26, Hexagon::V27, Hexagon::V28, Hexagon::V29,
514      Hexagon::V30, Hexagon::V31};
515
516  return DecodeRegisterClass(Inst, RegNo, VecRegDecoderTable);
517}
518
519static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
520                                                  uint64_t /*Address*/,
521                                                  const void *Decoder) {
522  static const MCPhysReg DoubleRegDecoderTable[] = {
523      Hexagon::D0,  Hexagon::D1,  Hexagon::D2,  Hexagon::D3,
524      Hexagon::D4,  Hexagon::D5,  Hexagon::D6,  Hexagon::D7,
525      Hexagon::D8,  Hexagon::D9,  Hexagon::D10, Hexagon::D11,
526      Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15};
527
528  return DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable);
529}
530
531static DecodeStatus DecodeVecDblRegsRegisterClass(MCInst &Inst, unsigned RegNo,
532                                                  uint64_t /*Address*/,
533                                                  const void *Decoder) {
534  static const MCPhysReg VecDblRegDecoderTable[] = {
535      Hexagon::W0,  Hexagon::W1,  Hexagon::W2,  Hexagon::W3,
536      Hexagon::W4,  Hexagon::W5,  Hexagon::W6,  Hexagon::W7,
537      Hexagon::W8,  Hexagon::W9,  Hexagon::W10, Hexagon::W11,
538      Hexagon::W12, Hexagon::W13, Hexagon::W14, Hexagon::W15};
539
540  return (DecodeRegisterClass(Inst, RegNo >> 1, VecDblRegDecoderTable));
541}
542
543static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
544                                                uint64_t /*Address*/,
545                                                const void *Decoder) {
546  static const MCPhysReg PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1,
547                                                  Hexagon::P2, Hexagon::P3};
548
549  return DecodeRegisterClass(Inst, RegNo, PredRegDecoderTable);
550}
551
552static DecodeStatus DecodeVecPredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
553                                                   uint64_t /*Address*/,
554                                                   const void *Decoder) {
555  static const MCPhysReg VecPredRegDecoderTable[] = {Hexagon::Q0, Hexagon::Q1,
556                                                     Hexagon::Q2, Hexagon::Q3};
557
558  return DecodeRegisterClass(Inst, RegNo, VecPredRegDecoderTable);
559}
560
561static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
562                                               uint64_t /*Address*/,
563                                               const void *Decoder) {
564  static const MCPhysReg CtrlRegDecoderTable[] = {
565    Hexagon::SA0, Hexagon::LC0, Hexagon::SA1, Hexagon::LC1,
566    Hexagon::P3_0, Hexagon::C5, Hexagon::C6, Hexagon::C7,
567    Hexagon::USR, Hexagon::PC, Hexagon::UGP, Hexagon::GP,
568    Hexagon::CS0, Hexagon::CS1, Hexagon::UPCL, Hexagon::UPC
569  };
570
571  if (RegNo >= array_lengthof(CtrlRegDecoderTable))
572    return MCDisassembler::Fail;
573
574  if (CtrlRegDecoderTable[RegNo] == Hexagon::NoRegister)
575    return MCDisassembler::Fail;
576
577  unsigned Register = CtrlRegDecoderTable[RegNo];
578  Inst.addOperand(MCOperand::createReg(Register));
579  return MCDisassembler::Success;
580}
581
582static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
583                                                 uint64_t /*Address*/,
584                                                 const void *Decoder) {
585  static const MCPhysReg CtrlReg64DecoderTable[] = {
586      Hexagon::C1_0,   Hexagon::NoRegister,
587      Hexagon::C3_2,   Hexagon::NoRegister,
588      Hexagon::C7_6,   Hexagon::NoRegister,
589      Hexagon::C9_8,   Hexagon::NoRegister,
590      Hexagon::C11_10, Hexagon::NoRegister,
591      Hexagon::CS,     Hexagon::NoRegister,
592      Hexagon::UPC,    Hexagon::NoRegister
593  };
594
595  if (RegNo >= array_lengthof(CtrlReg64DecoderTable))
596    return MCDisassembler::Fail;
597
598  if (CtrlReg64DecoderTable[RegNo] == Hexagon::NoRegister)
599    return MCDisassembler::Fail;
600
601  unsigned Register = CtrlReg64DecoderTable[RegNo];
602  Inst.addOperand(MCOperand::createReg(Register));
603  return MCDisassembler::Success;
604}
605
606static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
607                                               uint64_t /*Address*/,
608                                               const void *Decoder) {
609  unsigned Register = 0;
610  switch (RegNo) {
611  case 0:
612    Register = Hexagon::M0;
613    break;
614  case 1:
615    Register = Hexagon::M1;
616    break;
617  default:
618    return MCDisassembler::Fail;
619  }
620  Inst.addOperand(MCOperand::createReg(Register));
621  return MCDisassembler::Success;
622}
623
624namespace {
625uint32_t fullValue(MCInstrInfo const &MCII,
626                  MCInst &MCB,
627                  MCInst &MI,
628                  int64_t Value) {
629  MCInst const *Extender = HexagonMCInstrInfo::extenderForIndex(
630    MCB, HexagonMCInstrInfo::bundleSize(MCB));
631  if(!Extender || MI.size() != HexagonMCInstrInfo::getExtendableOp(MCII, MI))
632    return Value;
633  unsigned Alignment = HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
634  uint32_t Lower6 = static_cast<uint32_t>(Value >> Alignment) & 0x3f;
635  int64_t Bits;
636  bool Success = Extender->getOperand(0).getExpr()->evaluateAsAbsolute(Bits);
637  assert(Success);(void)Success;
638  uint32_t Upper26 = static_cast<uint32_t>(Bits);
639  uint32_t Operand = Upper26 | Lower6;
640  return Operand;
641}
642template <size_t T>
643void signedDecoder(MCInst &MI, unsigned tmp, const void *Decoder) {
644  HexagonDisassembler const &Disassembler = disassembler(Decoder);
645  int64_t FullValue = fullValue(*Disassembler.MCII,
646                                **Disassembler.CurrentBundle,
647                                MI, SignExtend64<T>(tmp));
648  int64_t Extended = SignExtend64<32>(FullValue);
649  HexagonMCInstrInfo::addConstant(MI, Extended,
650                                  Disassembler.getContext());
651}
652}
653
654static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
655                                       uint64_t /*Address*/,
656                                       const void *Decoder) {
657  HexagonDisassembler const &Disassembler = disassembler(Decoder);
658  int64_t FullValue = fullValue(*Disassembler.MCII,
659                                **Disassembler.CurrentBundle,
660                                MI, tmp);
661  assert(FullValue >= 0 && "Negative in unsigned decoder");
662  HexagonMCInstrInfo::addConstant(MI, FullValue, Disassembler.getContext());
663  return MCDisassembler::Success;
664}
665
666static DecodeStatus s16ImmDecoder(MCInst &MI, unsigned tmp,
667                                  uint64_t /*Address*/, const void *Decoder) {
668  signedDecoder<16>(MI, tmp, Decoder);
669  return MCDisassembler::Success;
670}
671
672static DecodeStatus s12ImmDecoder(MCInst &MI, unsigned tmp,
673                                  uint64_t /*Address*/, const void *Decoder) {
674  signedDecoder<12>(MI, tmp, Decoder);
675  return MCDisassembler::Success;
676}
677
678static DecodeStatus s11_0ImmDecoder(MCInst &MI, unsigned tmp,
679                                    uint64_t /*Address*/, const void *Decoder) {
680  signedDecoder<11>(MI, tmp, Decoder);
681  return MCDisassembler::Success;
682}
683
684static DecodeStatus s11_1ImmDecoder(MCInst &MI, unsigned tmp,
685                                    uint64_t /*Address*/, const void *Decoder) {
686  HexagonMCInstrInfo::addConstant(MI, SignExtend64<12>(tmp), contextFromDecoder(Decoder));
687  return MCDisassembler::Success;
688}
689
690static DecodeStatus s11_2ImmDecoder(MCInst &MI, unsigned tmp,
691                                    uint64_t /*Address*/, const void *Decoder) {
692  signedDecoder<13>(MI, tmp, Decoder);
693  return MCDisassembler::Success;
694}
695
696static DecodeStatus s11_3ImmDecoder(MCInst &MI, unsigned tmp,
697                                    uint64_t /*Address*/, const void *Decoder) {
698  signedDecoder<14>(MI, tmp, Decoder);
699  return MCDisassembler::Success;
700}
701
702static DecodeStatus s10ImmDecoder(MCInst &MI, unsigned tmp,
703                                  uint64_t /*Address*/, const void *Decoder) {
704  signedDecoder<10>(MI, tmp, Decoder);
705  return MCDisassembler::Success;
706}
707
708static DecodeStatus s8ImmDecoder(MCInst &MI, unsigned tmp, uint64_t /*Address*/,
709                                 const void *Decoder) {
710  signedDecoder<8>(MI, tmp, Decoder);
711  return MCDisassembler::Success;
712}
713
714static DecodeStatus s6_0ImmDecoder(MCInst &MI, unsigned tmp,
715                                   uint64_t /*Address*/, const void *Decoder) {
716  signedDecoder<6>(MI, tmp, Decoder);
717  return MCDisassembler::Success;
718}
719
720static DecodeStatus s4_0ImmDecoder(MCInst &MI, unsigned tmp,
721                                   uint64_t /*Address*/, const void *Decoder) {
722  signedDecoder<4>(MI, tmp, Decoder);
723  return MCDisassembler::Success;
724}
725
726static DecodeStatus s4_1ImmDecoder(MCInst &MI, unsigned tmp,
727                                   uint64_t /*Address*/, const void *Decoder) {
728  signedDecoder<5>(MI, tmp, Decoder);
729  return MCDisassembler::Success;
730}
731
732static DecodeStatus s4_2ImmDecoder(MCInst &MI, unsigned tmp,
733                                   uint64_t /*Address*/, const void *Decoder) {
734  signedDecoder<6>(MI, tmp, Decoder);
735  return MCDisassembler::Success;
736}
737
738static DecodeStatus s4_3ImmDecoder(MCInst &MI, unsigned tmp,
739                                   uint64_t /*Address*/, const void *Decoder) {
740  signedDecoder<7>(MI, tmp, Decoder);
741  return MCDisassembler::Success;
742}
743
744static DecodeStatus s4_6ImmDecoder(MCInst &MI, unsigned tmp,
745                                   uint64_t /*Address*/, const void *Decoder) {
746  signedDecoder<10>(MI, tmp, Decoder);
747  return MCDisassembler::Success;
748}
749
750static DecodeStatus s3_6ImmDecoder(MCInst &MI, unsigned tmp,
751                                   uint64_t /*Address*/, const void *Decoder) {
752  signedDecoder<19>(MI, tmp, Decoder);
753  return MCDisassembler::Success;
754}
755
756// custom decoder for various jump/call immediates
757static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
758                                    const void *Decoder) {
759  HexagonDisassembler const &Disassembler = disassembler(Decoder);
760  unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI);
761  // r13_2 is not extendable, so if there are no extent bits, it's r13_2
762  if (Bits == 0)
763    Bits = 15;
764  uint32_t FullValue = fullValue(*Disassembler.MCII,
765                                **Disassembler.CurrentBundle,
766                                MI, SignExtend64(tmp, Bits));
767  int64_t Extended = SignExtend64<32>(FullValue) + Address;
768  if (!Disassembler.tryAddingSymbolicOperand(MI, Extended, Address, true,
769                                              0, 4))
770    HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext());
771  return MCDisassembler::Success;
772}
773
774// Addressing mode dependent load store opcode map.
775//   - If an insn is preceded by an extender the address is absolute.
776//      - memw(##symbol) = r0
777//   - If an insn is not preceded by an extender the address is GP relative.
778//      - memw(gp + #symbol) = r0
779// Please note that the instructions must be ordered in the descending order
780// of their opcode.
781// HexagonII::INST_ICLASS_ST
782static const unsigned int StoreConditionalOpcodeData[][2] = {
783    {S4_pstorerdfnew_abs, 0xafc02084},
784    {S4_pstorerdtnew_abs, 0xafc02080},
785    {S4_pstorerdf_abs, 0xafc00084},
786    {S4_pstorerdt_abs, 0xafc00080},
787    {S4_pstorerinewfnew_abs, 0xafa03084},
788    {S4_pstorerinewtnew_abs, 0xafa03080},
789    {S4_pstorerhnewfnew_abs, 0xafa02884},
790    {S4_pstorerhnewtnew_abs, 0xafa02880},
791    {S4_pstorerbnewfnew_abs, 0xafa02084},
792    {S4_pstorerbnewtnew_abs, 0xafa02080},
793    {S4_pstorerinewf_abs, 0xafa01084},
794    {S4_pstorerinewt_abs, 0xafa01080},
795    {S4_pstorerhnewf_abs, 0xafa00884},
796    {S4_pstorerhnewt_abs, 0xafa00880},
797    {S4_pstorerbnewf_abs, 0xafa00084},
798    {S4_pstorerbnewt_abs, 0xafa00080},
799    {S4_pstorerifnew_abs, 0xaf802084},
800    {S4_pstoreritnew_abs, 0xaf802080},
801    {S4_pstorerif_abs, 0xaf800084},
802    {S4_pstorerit_abs, 0xaf800080},
803    {S4_pstorerhfnew_abs, 0xaf402084},
804    {S4_pstorerhtnew_abs, 0xaf402080},
805    {S4_pstorerhf_abs, 0xaf400084},
806    {S4_pstorerht_abs, 0xaf400080},
807    {S4_pstorerbfnew_abs, 0xaf002084},
808    {S4_pstorerbtnew_abs, 0xaf002080},
809    {S4_pstorerbf_abs, 0xaf000084},
810    {S4_pstorerbt_abs, 0xaf000080}};
811// HexagonII::INST_ICLASS_LD
812
813// HexagonII::INST_ICLASS_LD_ST_2
814static unsigned int LoadStoreOpcodeData[][2] = {{L4_loadrd_abs, 0x49c00000},
815                                                {L4_loadri_abs, 0x49800000},
816                                                {L4_loadruh_abs, 0x49600000},
817                                                {L4_loadrh_abs, 0x49400000},
818                                                {L4_loadrub_abs, 0x49200000},
819                                                {L4_loadrb_abs, 0x49000000},
820                                                {S2_storerdabs, 0x48c00000},
821                                                {S2_storerinewabs, 0x48a01000},
822                                                {S2_storerhnewabs, 0x48a00800},
823                                                {S2_storerbnewabs, 0x48a00000},
824                                                {S2_storeriabs, 0x48800000},
825                                                {S2_storerfabs, 0x48600000},
826                                                {S2_storerhabs, 0x48400000},
827                                                {S2_storerbabs, 0x48000000}};
828static const size_t NumCondS = array_lengthof(StoreConditionalOpcodeData);
829static const size_t NumLS = array_lengthof(LoadStoreOpcodeData);
830
831static DecodeStatus decodeSpecial(MCInst &MI, uint32_t insn) {
832
833  unsigned MachineOpcode = 0;
834  unsigned LLVMOpcode = 0;
835
836  if ((insn & HexagonII::INST_ICLASS_MASK) == HexagonII::INST_ICLASS_ST) {
837    for (size_t i = 0; i < NumCondS; ++i) {
838      if ((insn & StoreConditionalOpcodeData[i][1]) ==
839          StoreConditionalOpcodeData[i][1]) {
840        MachineOpcode = StoreConditionalOpcodeData[i][1];
841        LLVMOpcode = StoreConditionalOpcodeData[i][0];
842        break;
843      }
844    }
845  }
846  if ((insn & HexagonII::INST_ICLASS_MASK) == HexagonII::INST_ICLASS_LD_ST_2) {
847    for (size_t i = 0; i < NumLS; ++i) {
848      if ((insn & LoadStoreOpcodeData[i][1]) == LoadStoreOpcodeData[i][1]) {
849        MachineOpcode = LoadStoreOpcodeData[i][1];
850        LLVMOpcode = LoadStoreOpcodeData[i][0];
851        break;
852      }
853    }
854  }
855
856  if (MachineOpcode) {
857    unsigned Value = 0;
858    unsigned shift = 0;
859    MI.setOpcode(LLVMOpcode);
860    // Remove the parse bits from the insn.
861    insn &= ~HexagonII::INST_PARSE_MASK;
862
863    switch (LLVMOpcode) {
864    default:
865      return MCDisassembler::Fail;
866      break;
867
868    case Hexagon::S4_pstorerdf_abs:
869    case Hexagon::S4_pstorerdt_abs:
870    case Hexagon::S4_pstorerdfnew_abs:
871    case Hexagon::S4_pstorerdtnew_abs: {
872      // op: Pv
873      Value = insn & UINT64_C(3);
874      DecodePredRegsRegisterClass(MI, Value, 0, 0);
875      // op: u6
876      Value = (insn >> 12) & UINT64_C(48);
877      Value |= (insn >> 3) & UINT64_C(15);
878      MI.addOperand(MCOperand::createImm(Value));
879      // op: Rtt
880      Value = (insn >> 8) & UINT64_C(31);
881      DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
882      break;
883    }
884
885    case Hexagon::S4_pstorerbnewf_abs:
886    case Hexagon::S4_pstorerbnewt_abs:
887    case Hexagon::S4_pstorerbnewfnew_abs:
888    case Hexagon::S4_pstorerbnewtnew_abs:
889    case Hexagon::S4_pstorerhnewf_abs:
890    case Hexagon::S4_pstorerhnewt_abs:
891    case Hexagon::S4_pstorerhnewfnew_abs:
892    case Hexagon::S4_pstorerhnewtnew_abs:
893    case Hexagon::S4_pstorerinewf_abs:
894    case Hexagon::S4_pstorerinewt_abs:
895    case Hexagon::S4_pstorerinewfnew_abs:
896    case Hexagon::S4_pstorerinewtnew_abs: {
897      // op: Pv
898      Value = insn & UINT64_C(3);
899      DecodePredRegsRegisterClass(MI, Value, 0, 0);
900      // op: u6
901      Value = (insn >> 12) & UINT64_C(48);
902      Value |= (insn >> 3) & UINT64_C(15);
903      MI.addOperand(MCOperand::createImm(Value));
904      // op: Nt
905      Value = (insn >> 8) & UINT64_C(7);
906      DecodeIntRegsRegisterClass(MI, Value, 0, 0);
907      break;
908    }
909
910    case Hexagon::S4_pstorerbf_abs:
911    case Hexagon::S4_pstorerbt_abs:
912    case Hexagon::S4_pstorerbfnew_abs:
913    case Hexagon::S4_pstorerbtnew_abs:
914    case Hexagon::S4_pstorerhf_abs:
915    case Hexagon::S4_pstorerht_abs:
916    case Hexagon::S4_pstorerhfnew_abs:
917    case Hexagon::S4_pstorerhtnew_abs:
918    case Hexagon::S4_pstorerif_abs:
919    case Hexagon::S4_pstorerit_abs:
920    case Hexagon::S4_pstorerifnew_abs:
921    case Hexagon::S4_pstoreritnew_abs: {
922      // op: Pv
923      Value = insn & UINT64_C(3);
924      DecodePredRegsRegisterClass(MI, Value, 0, 0);
925      // op: u6
926      Value = (insn >> 12) & UINT64_C(48);
927      Value |= (insn >> 3) & UINT64_C(15);
928      MI.addOperand(MCOperand::createImm(Value));
929      // op: Rt
930      Value = (insn >> 8) & UINT64_C(31);
931      DecodeIntRegsRegisterClass(MI, Value, 0, 0);
932      break;
933    }
934
935    case Hexagon::L4_ploadrdf_abs:
936    case Hexagon::L4_ploadrdt_abs:
937    case Hexagon::L4_ploadrdfnew_abs:
938    case Hexagon::L4_ploadrdtnew_abs: {
939      // op: Rdd
940      Value = insn & UINT64_C(31);
941      DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
942      // op: Pt
943      Value = ((insn >> 9) & UINT64_C(3));
944      DecodePredRegsRegisterClass(MI, Value, 0, 0);
945      // op: u6
946      Value = ((insn >> 15) & UINT64_C(62));
947      Value |= ((insn >> 8) & UINT64_C(1));
948      MI.addOperand(MCOperand::createImm(Value));
949      break;
950    }
951
952    case Hexagon::L4_ploadrbf_abs:
953    case Hexagon::L4_ploadrbt_abs:
954    case Hexagon::L4_ploadrbfnew_abs:
955    case Hexagon::L4_ploadrbtnew_abs:
956    case Hexagon::L4_ploadrhf_abs:
957    case Hexagon::L4_ploadrht_abs:
958    case Hexagon::L4_ploadrhfnew_abs:
959    case Hexagon::L4_ploadrhtnew_abs:
960    case Hexagon::L4_ploadrubf_abs:
961    case Hexagon::L4_ploadrubt_abs:
962    case Hexagon::L4_ploadrubfnew_abs:
963    case Hexagon::L4_ploadrubtnew_abs:
964    case Hexagon::L4_ploadruhf_abs:
965    case Hexagon::L4_ploadruht_abs:
966    case Hexagon::L4_ploadruhfnew_abs:
967    case Hexagon::L4_ploadruhtnew_abs:
968    case Hexagon::L4_ploadrif_abs:
969    case Hexagon::L4_ploadrit_abs:
970    case Hexagon::L4_ploadrifnew_abs:
971    case Hexagon::L4_ploadritnew_abs:
972      // op: Rd
973      Value = insn & UINT64_C(31);
974      DecodeIntRegsRegisterClass(MI, Value, 0, 0);
975      // op: Pt
976      Value = (insn >> 9) & UINT64_C(3);
977      DecodePredRegsRegisterClass(MI, Value, 0, 0);
978      // op: u6
979      Value = (insn >> 15) & UINT64_C(62);
980      Value |= (insn >> 8) & UINT64_C(1);
981      MI.addOperand(MCOperand::createImm(Value));
982      break;
983
984    // op: g16_2
985    case (Hexagon::L4_loadri_abs):
986      ++shift;
987    // op: g16_1
988    case Hexagon::L4_loadrh_abs:
989    case Hexagon::L4_loadruh_abs:
990      ++shift;
991    // op: g16_0
992    case Hexagon::L4_loadrb_abs:
993    case Hexagon::L4_loadrub_abs: {
994      // op: Rd
995      Value |= insn & UINT64_C(31);
996      DecodeIntRegsRegisterClass(MI, Value, 0, 0);
997      Value = (insn >> 11) & UINT64_C(49152);
998      Value |= (insn >> 7) & UINT64_C(15872);
999      Value |= (insn >> 5) & UINT64_C(511);
1000      MI.addOperand(MCOperand::createImm(Value << shift));
1001      break;
1002    }
1003
1004    case Hexagon::L4_loadrd_abs: {
1005      Value = insn & UINT64_C(31);
1006      DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
1007      Value = (insn >> 11) & UINT64_C(49152);
1008      Value |= (insn >> 7) & UINT64_C(15872);
1009      Value |= (insn >> 5) & UINT64_C(511);
1010      MI.addOperand(MCOperand::createImm(Value << 3));
1011      break;
1012    }
1013
1014    case Hexagon::S2_storerdabs: {
1015      // op: g16_3
1016      Value = (insn >> 11) & UINT64_C(49152);
1017      Value |= (insn >> 7) & UINT64_C(15872);
1018      Value |= (insn >> 5) & UINT64_C(256);
1019      Value |= insn & UINT64_C(255);
1020      MI.addOperand(MCOperand::createImm(Value << 3));
1021      // op: Rtt
1022      Value = (insn >> 8) & UINT64_C(31);
1023      DecodeDoubleRegsRegisterClass(MI, Value, 0, 0);
1024      break;
1025    }
1026
1027    // op: g16_2
1028    case Hexagon::S2_storerinewabs:
1029      ++shift;
1030    // op: g16_1
1031    case Hexagon::S2_storerhnewabs:
1032      ++shift;
1033    // op: g16_0
1034    case Hexagon::S2_storerbnewabs: {
1035      Value = (insn >> 11) & UINT64_C(49152);
1036      Value |= (insn >> 7) & UINT64_C(15872);
1037      Value |= (insn >> 5) & UINT64_C(256);
1038      Value |= insn & UINT64_C(255);
1039      MI.addOperand(MCOperand::createImm(Value << shift));
1040      // op: Nt
1041      Value = (insn >> 8) & UINT64_C(7);
1042      DecodeIntRegsRegisterClass(MI, Value, 0, 0);
1043      break;
1044    }
1045
1046    // op: g16_2
1047    case Hexagon::S2_storeriabs:
1048      ++shift;
1049    // op: g16_1
1050    case Hexagon::S2_storerhabs:
1051    case Hexagon::S2_storerfabs:
1052      ++shift;
1053    // op: g16_0
1054    case Hexagon::S2_storerbabs: {
1055      Value = (insn >> 11) & UINT64_C(49152);
1056      Value |= (insn >> 7) & UINT64_C(15872);
1057      Value |= (insn >> 5) & UINT64_C(256);
1058      Value |= insn & UINT64_C(255);
1059      MI.addOperand(MCOperand::createImm(Value << shift));
1060      // op: Rt
1061      Value = (insn >> 8) & UINT64_C(31);
1062      DecodeIntRegsRegisterClass(MI, Value, 0, 0);
1063      break;
1064    }
1065    }
1066    return MCDisassembler::Success;
1067  }
1068  return MCDisassembler::Fail;
1069}
1070
1071static DecodeStatus decodeImmext(MCInst &MI, uint32_t insn,
1072                                 void const *Decoder) {
1073
1074  // Instruction Class for a constant a extender: bits 31:28 = 0x0000
1075  if ((~insn & 0xf0000000) == 0xf0000000) {
1076    unsigned Value;
1077    // 27:16 High 12 bits of 26-bit extender.
1078    Value = (insn & 0x0fff0000) << 4;
1079    // 13:0 Low 14 bits of 26-bit extender.
1080    Value |= ((insn & 0x3fff) << 6);
1081    MI.setOpcode(Hexagon::A4_ext);
1082    HexagonMCInstrInfo::addConstant(MI, Value, contextFromDecoder(Decoder));
1083    return MCDisassembler::Success;
1084  }
1085  return MCDisassembler::Fail;
1086}
1087
1088// These values are from HexagonGenMCCodeEmitter.inc and HexagonIsetDx.td
1089enum subInstBinaryValues {
1090  V4_SA1_addi_BITS = 0x0000,
1091  V4_SA1_addi_MASK = 0x1800,
1092  V4_SA1_addrx_BITS = 0x1800,
1093  V4_SA1_addrx_MASK = 0x1f00,
1094  V4_SA1_addsp_BITS = 0x0c00,
1095  V4_SA1_addsp_MASK = 0x1c00,
1096  V4_SA1_and1_BITS = 0x1200,
1097  V4_SA1_and1_MASK = 0x1f00,
1098  V4_SA1_clrf_BITS = 0x1a70,
1099  V4_SA1_clrf_MASK = 0x1e70,
1100  V4_SA1_clrfnew_BITS = 0x1a50,
1101  V4_SA1_clrfnew_MASK = 0x1e70,
1102  V4_SA1_clrt_BITS = 0x1a60,
1103  V4_SA1_clrt_MASK = 0x1e70,
1104  V4_SA1_clrtnew_BITS = 0x1a40,
1105  V4_SA1_clrtnew_MASK = 0x1e70,
1106  V4_SA1_cmpeqi_BITS = 0x1900,
1107  V4_SA1_cmpeqi_MASK = 0x1f00,
1108  V4_SA1_combine0i_BITS = 0x1c00,
1109  V4_SA1_combine0i_MASK = 0x1d18,
1110  V4_SA1_combine1i_BITS = 0x1c08,
1111  V4_SA1_combine1i_MASK = 0x1d18,
1112  V4_SA1_combine2i_BITS = 0x1c10,
1113  V4_SA1_combine2i_MASK = 0x1d18,
1114  V4_SA1_combine3i_BITS = 0x1c18,
1115  V4_SA1_combine3i_MASK = 0x1d18,
1116  V4_SA1_combinerz_BITS = 0x1d08,
1117  V4_SA1_combinerz_MASK = 0x1d08,
1118  V4_SA1_combinezr_BITS = 0x1d00,
1119  V4_SA1_combinezr_MASK = 0x1d08,
1120  V4_SA1_dec_BITS = 0x1300,
1121  V4_SA1_dec_MASK = 0x1f00,
1122  V4_SA1_inc_BITS = 0x1100,
1123  V4_SA1_inc_MASK = 0x1f00,
1124  V4_SA1_seti_BITS = 0x0800,
1125  V4_SA1_seti_MASK = 0x1c00,
1126  V4_SA1_setin1_BITS = 0x1a00,
1127  V4_SA1_setin1_MASK = 0x1e40,
1128  V4_SA1_sxtb_BITS = 0x1500,
1129  V4_SA1_sxtb_MASK = 0x1f00,
1130  V4_SA1_sxth_BITS = 0x1400,
1131  V4_SA1_sxth_MASK = 0x1f00,
1132  V4_SA1_tfr_BITS = 0x1000,
1133  V4_SA1_tfr_MASK = 0x1f00,
1134  V4_SA1_zxtb_BITS = 0x1700,
1135  V4_SA1_zxtb_MASK = 0x1f00,
1136  V4_SA1_zxth_BITS = 0x1600,
1137  V4_SA1_zxth_MASK = 0x1f00,
1138  V4_SL1_loadri_io_BITS = 0x0000,
1139  V4_SL1_loadri_io_MASK = 0x1000,
1140  V4_SL1_loadrub_io_BITS = 0x1000,
1141  V4_SL1_loadrub_io_MASK = 0x1000,
1142  V4_SL2_deallocframe_BITS = 0x1f00,
1143  V4_SL2_deallocframe_MASK = 0x1fc0,
1144  V4_SL2_jumpr31_BITS = 0x1fc0,
1145  V4_SL2_jumpr31_MASK = 0x1fc4,
1146  V4_SL2_jumpr31_f_BITS = 0x1fc5,
1147  V4_SL2_jumpr31_f_MASK = 0x1fc7,
1148  V4_SL2_jumpr31_fnew_BITS = 0x1fc7,
1149  V4_SL2_jumpr31_fnew_MASK = 0x1fc7,
1150  V4_SL2_jumpr31_t_BITS = 0x1fc4,
1151  V4_SL2_jumpr31_t_MASK = 0x1fc7,
1152  V4_SL2_jumpr31_tnew_BITS = 0x1fc6,
1153  V4_SL2_jumpr31_tnew_MASK = 0x1fc7,
1154  V4_SL2_loadrb_io_BITS = 0x1000,
1155  V4_SL2_loadrb_io_MASK = 0x1800,
1156  V4_SL2_loadrd_sp_BITS = 0x1e00,
1157  V4_SL2_loadrd_sp_MASK = 0x1f00,
1158  V4_SL2_loadrh_io_BITS = 0x0000,
1159  V4_SL2_loadrh_io_MASK = 0x1800,
1160  V4_SL2_loadri_sp_BITS = 0x1c00,
1161  V4_SL2_loadri_sp_MASK = 0x1e00,
1162  V4_SL2_loadruh_io_BITS = 0x0800,
1163  V4_SL2_loadruh_io_MASK = 0x1800,
1164  V4_SL2_return_BITS = 0x1f40,
1165  V4_SL2_return_MASK = 0x1fc4,
1166  V4_SL2_return_f_BITS = 0x1f45,
1167  V4_SL2_return_f_MASK = 0x1fc7,
1168  V4_SL2_return_fnew_BITS = 0x1f47,
1169  V4_SL2_return_fnew_MASK = 0x1fc7,
1170  V4_SL2_return_t_BITS = 0x1f44,
1171  V4_SL2_return_t_MASK = 0x1fc7,
1172  V4_SL2_return_tnew_BITS = 0x1f46,
1173  V4_SL2_return_tnew_MASK = 0x1fc7,
1174  V4_SS1_storeb_io_BITS = 0x1000,
1175  V4_SS1_storeb_io_MASK = 0x1000,
1176  V4_SS1_storew_io_BITS = 0x0000,
1177  V4_SS1_storew_io_MASK = 0x1000,
1178  V4_SS2_allocframe_BITS = 0x1c00,
1179  V4_SS2_allocframe_MASK = 0x1e00,
1180  V4_SS2_storebi0_BITS = 0x1200,
1181  V4_SS2_storebi0_MASK = 0x1f00,
1182  V4_SS2_storebi1_BITS = 0x1300,
1183  V4_SS2_storebi1_MASK = 0x1f00,
1184  V4_SS2_stored_sp_BITS = 0x0a00,
1185  V4_SS2_stored_sp_MASK = 0x1e00,
1186  V4_SS2_storeh_io_BITS = 0x0000,
1187  V4_SS2_storeh_io_MASK = 0x1800,
1188  V4_SS2_storew_sp_BITS = 0x0800,
1189  V4_SS2_storew_sp_MASK = 0x1e00,
1190  V4_SS2_storewi0_BITS = 0x1000,
1191  V4_SS2_storewi0_MASK = 0x1f00,
1192  V4_SS2_storewi1_BITS = 0x1100,
1193  V4_SS2_storewi1_MASK = 0x1f00
1194};
1195
1196static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
1197                                 raw_ostream &os) {
1198  switch (IClass) {
1199  case HexagonII::HSIG_L1:
1200    if ((inst & V4_SL1_loadri_io_MASK) == V4_SL1_loadri_io_BITS)
1201      op = Hexagon::V4_SL1_loadri_io;
1202    else if ((inst & V4_SL1_loadrub_io_MASK) == V4_SL1_loadrub_io_BITS)
1203      op = Hexagon::V4_SL1_loadrub_io;
1204    else {
1205      os << "<unknown subinstruction>";
1206      return MCDisassembler::Fail;
1207    }
1208    break;
1209  case HexagonII::HSIG_L2:
1210    if ((inst & V4_SL2_deallocframe_MASK) == V4_SL2_deallocframe_BITS)
1211      op = Hexagon::V4_SL2_deallocframe;
1212    else if ((inst & V4_SL2_jumpr31_MASK) == V4_SL2_jumpr31_BITS)
1213      op = Hexagon::V4_SL2_jumpr31;
1214    else if ((inst & V4_SL2_jumpr31_f_MASK) == V4_SL2_jumpr31_f_BITS)
1215      op = Hexagon::V4_SL2_jumpr31_f;
1216    else if ((inst & V4_SL2_jumpr31_fnew_MASK) == V4_SL2_jumpr31_fnew_BITS)
1217      op = Hexagon::V4_SL2_jumpr31_fnew;
1218    else if ((inst & V4_SL2_jumpr31_t_MASK) == V4_SL2_jumpr31_t_BITS)
1219      op = Hexagon::V4_SL2_jumpr31_t;
1220    else if ((inst & V4_SL2_jumpr31_tnew_MASK) == V4_SL2_jumpr31_tnew_BITS)
1221      op = Hexagon::V4_SL2_jumpr31_tnew;
1222    else if ((inst & V4_SL2_loadrb_io_MASK) == V4_SL2_loadrb_io_BITS)
1223      op = Hexagon::V4_SL2_loadrb_io;
1224    else if ((inst & V4_SL2_loadrd_sp_MASK) == V4_SL2_loadrd_sp_BITS)
1225      op = Hexagon::V4_SL2_loadrd_sp;
1226    else if ((inst & V4_SL2_loadrh_io_MASK) == V4_SL2_loadrh_io_BITS)
1227      op = Hexagon::V4_SL2_loadrh_io;
1228    else if ((inst & V4_SL2_loadri_sp_MASK) == V4_SL2_loadri_sp_BITS)
1229      op = Hexagon::V4_SL2_loadri_sp;
1230    else if ((inst & V4_SL2_loadruh_io_MASK) == V4_SL2_loadruh_io_BITS)
1231      op = Hexagon::V4_SL2_loadruh_io;
1232    else if ((inst & V4_SL2_return_MASK) == V4_SL2_return_BITS)
1233      op = Hexagon::V4_SL2_return;
1234    else if ((inst & V4_SL2_return_f_MASK) == V4_SL2_return_f_BITS)
1235      op = Hexagon::V4_SL2_return_f;
1236    else if ((inst & V4_SL2_return_fnew_MASK) == V4_SL2_return_fnew_BITS)
1237      op = Hexagon::V4_SL2_return_fnew;
1238    else if ((inst & V4_SL2_return_t_MASK) == V4_SL2_return_t_BITS)
1239      op = Hexagon::V4_SL2_return_t;
1240    else if ((inst & V4_SL2_return_tnew_MASK) == V4_SL2_return_tnew_BITS)
1241      op = Hexagon::V4_SL2_return_tnew;
1242    else {
1243      os << "<unknown subinstruction>";
1244      return MCDisassembler::Fail;
1245    }
1246    break;
1247  case HexagonII::HSIG_A:
1248    if ((inst & V4_SA1_addi_MASK) == V4_SA1_addi_BITS)
1249      op = Hexagon::V4_SA1_addi;
1250    else if ((inst & V4_SA1_addrx_MASK) == V4_SA1_addrx_BITS)
1251      op = Hexagon::V4_SA1_addrx;
1252    else if ((inst & V4_SA1_addsp_MASK) == V4_SA1_addsp_BITS)
1253      op = Hexagon::V4_SA1_addsp;
1254    else if ((inst & V4_SA1_and1_MASK) == V4_SA1_and1_BITS)
1255      op = Hexagon::V4_SA1_and1;
1256    else if ((inst & V4_SA1_clrf_MASK) == V4_SA1_clrf_BITS)
1257      op = Hexagon::V4_SA1_clrf;
1258    else if ((inst & V4_SA1_clrfnew_MASK) == V4_SA1_clrfnew_BITS)
1259      op = Hexagon::V4_SA1_clrfnew;
1260    else if ((inst & V4_SA1_clrt_MASK) == V4_SA1_clrt_BITS)
1261      op = Hexagon::V4_SA1_clrt;
1262    else if ((inst & V4_SA1_clrtnew_MASK) == V4_SA1_clrtnew_BITS)
1263      op = Hexagon::V4_SA1_clrtnew;
1264    else if ((inst & V4_SA1_cmpeqi_MASK) == V4_SA1_cmpeqi_BITS)
1265      op = Hexagon::V4_SA1_cmpeqi;
1266    else if ((inst & V4_SA1_combine0i_MASK) == V4_SA1_combine0i_BITS)
1267      op = Hexagon::V4_SA1_combine0i;
1268    else if ((inst & V4_SA1_combine1i_MASK) == V4_SA1_combine1i_BITS)
1269      op = Hexagon::V4_SA1_combine1i;
1270    else if ((inst & V4_SA1_combine2i_MASK) == V4_SA1_combine2i_BITS)
1271      op = Hexagon::V4_SA1_combine2i;
1272    else if ((inst & V4_SA1_combine3i_MASK) == V4_SA1_combine3i_BITS)
1273      op = Hexagon::V4_SA1_combine3i;
1274    else if ((inst & V4_SA1_combinerz_MASK) == V4_SA1_combinerz_BITS)
1275      op = Hexagon::V4_SA1_combinerz;
1276    else if ((inst & V4_SA1_combinezr_MASK) == V4_SA1_combinezr_BITS)
1277      op = Hexagon::V4_SA1_combinezr;
1278    else if ((inst & V4_SA1_dec_MASK) == V4_SA1_dec_BITS)
1279      op = Hexagon::V4_SA1_dec;
1280    else if ((inst & V4_SA1_inc_MASK) == V4_SA1_inc_BITS)
1281      op = Hexagon::V4_SA1_inc;
1282    else if ((inst & V4_SA1_seti_MASK) == V4_SA1_seti_BITS)
1283      op = Hexagon::V4_SA1_seti;
1284    else if ((inst & V4_SA1_setin1_MASK) == V4_SA1_setin1_BITS)
1285      op = Hexagon::V4_SA1_setin1;
1286    else if ((inst & V4_SA1_sxtb_MASK) == V4_SA1_sxtb_BITS)
1287      op = Hexagon::V4_SA1_sxtb;
1288    else if ((inst & V4_SA1_sxth_MASK) == V4_SA1_sxth_BITS)
1289      op = Hexagon::V4_SA1_sxth;
1290    else if ((inst & V4_SA1_tfr_MASK) == V4_SA1_tfr_BITS)
1291      op = Hexagon::V4_SA1_tfr;
1292    else if ((inst & V4_SA1_zxtb_MASK) == V4_SA1_zxtb_BITS)
1293      op = Hexagon::V4_SA1_zxtb;
1294    else if ((inst & V4_SA1_zxth_MASK) == V4_SA1_zxth_BITS)
1295      op = Hexagon::V4_SA1_zxth;
1296    else {
1297      os << "<unknown subinstruction>";
1298      return MCDisassembler::Fail;
1299    }
1300    break;
1301  case HexagonII::HSIG_S1:
1302    if ((inst & V4_SS1_storeb_io_MASK) == V4_SS1_storeb_io_BITS)
1303      op = Hexagon::V4_SS1_storeb_io;
1304    else if ((inst & V4_SS1_storew_io_MASK) == V4_SS1_storew_io_BITS)
1305      op = Hexagon::V4_SS1_storew_io;
1306    else {
1307      os << "<unknown subinstruction>";
1308      return MCDisassembler::Fail;
1309    }
1310    break;
1311  case HexagonII::HSIG_S2:
1312    if ((inst & V4_SS2_allocframe_MASK) == V4_SS2_allocframe_BITS)
1313      op = Hexagon::V4_SS2_allocframe;
1314    else if ((inst & V4_SS2_storebi0_MASK) == V4_SS2_storebi0_BITS)
1315      op = Hexagon::V4_SS2_storebi0;
1316    else if ((inst & V4_SS2_storebi1_MASK) == V4_SS2_storebi1_BITS)
1317      op = Hexagon::V4_SS2_storebi1;
1318    else if ((inst & V4_SS2_stored_sp_MASK) == V4_SS2_stored_sp_BITS)
1319      op = Hexagon::V4_SS2_stored_sp;
1320    else if ((inst & V4_SS2_storeh_io_MASK) == V4_SS2_storeh_io_BITS)
1321      op = Hexagon::V4_SS2_storeh_io;
1322    else if ((inst & V4_SS2_storew_sp_MASK) == V4_SS2_storew_sp_BITS)
1323      op = Hexagon::V4_SS2_storew_sp;
1324    else if ((inst & V4_SS2_storewi0_MASK) == V4_SS2_storewi0_BITS)
1325      op = Hexagon::V4_SS2_storewi0;
1326    else if ((inst & V4_SS2_storewi1_MASK) == V4_SS2_storewi1_BITS)
1327      op = Hexagon::V4_SS2_storewi1;
1328    else {
1329      os << "<unknown subinstruction>";
1330      return MCDisassembler::Fail;
1331    }
1332    break;
1333  default:
1334    os << "<unknown>";
1335    return MCDisassembler::Fail;
1336  }
1337  return MCDisassembler::Success;
1338}
1339
1340static unsigned getRegFromSubinstEncoding(unsigned encoded_reg) {
1341  if (encoded_reg < 8)
1342    return Hexagon::R0 + encoded_reg;
1343  else if (encoded_reg < 16)
1344    return Hexagon::R0 + encoded_reg + 8;
1345
1346  // patently false value
1347  return Hexagon::NoRegister;
1348}
1349
1350static unsigned getDRegFromSubinstEncoding(unsigned encoded_dreg) {
1351  if (encoded_dreg < 4)
1352    return Hexagon::D0 + encoded_dreg;
1353  else if (encoded_dreg < 8)
1354    return Hexagon::D0 + encoded_dreg + 4;
1355
1356  // patently false value
1357  return Hexagon::NoRegister;
1358}
1359
1360void HexagonDisassembler::addSubinstOperands(MCInst *MI, unsigned opcode,
1361                                             unsigned inst) const {
1362  int64_t operand;
1363  MCOperand Op;
1364  switch (opcode) {
1365  case Hexagon::V4_SL2_deallocframe:
1366  case Hexagon::V4_SL2_jumpr31:
1367  case Hexagon::V4_SL2_jumpr31_f:
1368  case Hexagon::V4_SL2_jumpr31_fnew:
1369  case Hexagon::V4_SL2_jumpr31_t:
1370  case Hexagon::V4_SL2_jumpr31_tnew:
1371  case Hexagon::V4_SL2_return:
1372  case Hexagon::V4_SL2_return_f:
1373  case Hexagon::V4_SL2_return_fnew:
1374  case Hexagon::V4_SL2_return_t:
1375  case Hexagon::V4_SL2_return_tnew:
1376    // no operands for these instructions
1377    break;
1378  case Hexagon::V4_SS2_allocframe:
1379    // u 8-4{5_3}
1380    operand = ((inst & 0x1f0) >> 4) << 3;
1381    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1382    break;
1383  case Hexagon::V4_SL1_loadri_io:
1384    // Rd 3-0, Rs 7-4, u 11-8{4_2}
1385    operand = getRegFromSubinstEncoding(inst & 0xf);
1386    Op = MCOperand::createReg(operand);
1387    MI->addOperand(Op);
1388    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1389    Op = MCOperand::createReg(operand);
1390    MI->addOperand(Op);
1391    operand = (inst & 0xf00) >> 6;
1392    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1393    break;
1394  case Hexagon::V4_SL1_loadrub_io:
1395    // Rd 3-0, Rs 7-4, u 11-8
1396    operand = getRegFromSubinstEncoding(inst & 0xf);
1397    Op = MCOperand::createReg(operand);
1398    MI->addOperand(Op);
1399    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1400    Op = MCOperand::createReg(operand);
1401    MI->addOperand(Op);
1402    operand = (inst & 0xf00) >> 8;
1403    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1404    break;
1405  case Hexagon::V4_SL2_loadrb_io:
1406    // Rd 3-0, Rs 7-4, u 10-8
1407    operand = getRegFromSubinstEncoding(inst & 0xf);
1408    Op = MCOperand::createReg(operand);
1409    MI->addOperand(Op);
1410    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1411    Op = MCOperand::createReg(operand);
1412    MI->addOperand(Op);
1413    operand = (inst & 0x700) >> 8;
1414    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1415    break;
1416  case Hexagon::V4_SL2_loadrh_io:
1417  case Hexagon::V4_SL2_loadruh_io:
1418    // Rd 3-0, Rs 7-4, u 10-8{3_1}
1419    operand = getRegFromSubinstEncoding(inst & 0xf);
1420    Op = MCOperand::createReg(operand);
1421    MI->addOperand(Op);
1422    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1423    Op = MCOperand::createReg(operand);
1424    MI->addOperand(Op);
1425    operand = ((inst & 0x700) >> 8) << 1;
1426    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1427    break;
1428  case Hexagon::V4_SL2_loadrd_sp:
1429    // Rdd 2-0, u 7-3{5_3}
1430    operand = getDRegFromSubinstEncoding(inst & 0x7);
1431    Op = MCOperand::createReg(operand);
1432    MI->addOperand(Op);
1433    operand = ((inst & 0x0f8) >> 3) << 3;
1434    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1435    break;
1436  case Hexagon::V4_SL2_loadri_sp:
1437    // Rd 3-0, u 8-4{5_2}
1438    operand = getRegFromSubinstEncoding(inst & 0xf);
1439    Op = MCOperand::createReg(operand);
1440    MI->addOperand(Op);
1441    operand = ((inst & 0x1f0) >> 4) << 2;
1442    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1443    break;
1444  case Hexagon::V4_SA1_addi:
1445    // Rx 3-0 (x2), s7 10-4
1446    operand = getRegFromSubinstEncoding(inst & 0xf);
1447    Op = MCOperand::createReg(operand);
1448    MI->addOperand(Op);
1449    MI->addOperand(Op);
1450    operand = SignExtend64<7>((inst & 0x7f0) >> 4);
1451    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1452    break;
1453  case Hexagon::V4_SA1_addrx:
1454    // Rx 3-0 (x2), Rs 7-4
1455    operand = getRegFromSubinstEncoding(inst & 0xf);
1456    Op = MCOperand::createReg(operand);
1457    MI->addOperand(Op);
1458    MI->addOperand(Op);
1459    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1460    Op = MCOperand::createReg(operand);
1461    MI->addOperand(Op);
1462    break;
1463  case Hexagon::V4_SA1_and1:
1464  case Hexagon::V4_SA1_dec:
1465  case Hexagon::V4_SA1_inc:
1466  case Hexagon::V4_SA1_sxtb:
1467  case Hexagon::V4_SA1_sxth:
1468  case Hexagon::V4_SA1_tfr:
1469  case Hexagon::V4_SA1_zxtb:
1470  case Hexagon::V4_SA1_zxth:
1471    // Rd 3-0, Rs 7-4
1472    operand = getRegFromSubinstEncoding(inst & 0xf);
1473    Op = MCOperand::createReg(operand);
1474    MI->addOperand(Op);
1475    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1476    Op = MCOperand::createReg(operand);
1477    MI->addOperand(Op);
1478    break;
1479  case Hexagon::V4_SA1_addsp:
1480    // Rd 3-0, u 9-4{6_2}
1481    operand = getRegFromSubinstEncoding(inst & 0xf);
1482    Op = MCOperand::createReg(operand);
1483    MI->addOperand(Op);
1484    operand = ((inst & 0x3f0) >> 4) << 2;
1485    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1486    break;
1487  case Hexagon::V4_SA1_seti:
1488    // Rd 3-0, u 9-4
1489    operand = getRegFromSubinstEncoding(inst & 0xf);
1490    Op = MCOperand::createReg(operand);
1491    MI->addOperand(Op);
1492    operand = (inst & 0x3f0) >> 4;
1493    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1494    break;
1495  case Hexagon::V4_SA1_clrf:
1496  case Hexagon::V4_SA1_clrfnew:
1497  case Hexagon::V4_SA1_clrt:
1498  case Hexagon::V4_SA1_clrtnew:
1499  case Hexagon::V4_SA1_setin1:
1500    // Rd 3-0
1501    operand = getRegFromSubinstEncoding(inst & 0xf);
1502    Op = MCOperand::createReg(operand);
1503    MI->addOperand(Op);
1504    break;
1505  case Hexagon::V4_SA1_cmpeqi:
1506    // Rs 7-4, u 1-0
1507    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1508    Op = MCOperand::createReg(operand);
1509    MI->addOperand(Op);
1510    operand = inst & 0x3;
1511    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1512    break;
1513  case Hexagon::V4_SA1_combine0i:
1514  case Hexagon::V4_SA1_combine1i:
1515  case Hexagon::V4_SA1_combine2i:
1516  case Hexagon::V4_SA1_combine3i:
1517    // Rdd 2-0, u 6-5
1518    operand = getDRegFromSubinstEncoding(inst & 0x7);
1519    Op = MCOperand::createReg(operand);
1520    MI->addOperand(Op);
1521    operand = (inst & 0x060) >> 5;
1522    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1523    break;
1524  case Hexagon::V4_SA1_combinerz:
1525  case Hexagon::V4_SA1_combinezr:
1526    // Rdd 2-0, Rs 7-4
1527    operand = getDRegFromSubinstEncoding(inst & 0x7);
1528    Op = MCOperand::createReg(operand);
1529    MI->addOperand(Op);
1530    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1531    Op = MCOperand::createReg(operand);
1532    MI->addOperand(Op);
1533    break;
1534  case Hexagon::V4_SS1_storeb_io:
1535    // Rs 7-4, u 11-8, Rt 3-0
1536    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1537    Op = MCOperand::createReg(operand);
1538    MI->addOperand(Op);
1539    operand = (inst & 0xf00) >> 8;
1540    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1541    operand = getRegFromSubinstEncoding(inst & 0xf);
1542    Op = MCOperand::createReg(operand);
1543    MI->addOperand(Op);
1544    break;
1545  case Hexagon::V4_SS1_storew_io:
1546    // Rs 7-4, u 11-8{4_2}, Rt 3-0
1547    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1548    Op = MCOperand::createReg(operand);
1549    MI->addOperand(Op);
1550    operand = ((inst & 0xf00) >> 8) << 2;
1551    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1552    operand = getRegFromSubinstEncoding(inst & 0xf);
1553    Op = MCOperand::createReg(operand);
1554    MI->addOperand(Op);
1555    break;
1556  case Hexagon::V4_SS2_storebi0:
1557  case Hexagon::V4_SS2_storebi1:
1558    // Rs 7-4, u 3-0
1559    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1560    Op = MCOperand::createReg(operand);
1561    MI->addOperand(Op);
1562    operand = inst & 0xf;
1563    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1564    break;
1565  case Hexagon::V4_SS2_storewi0:
1566  case Hexagon::V4_SS2_storewi1:
1567    // Rs 7-4, u 3-0{4_2}
1568    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1569    Op = MCOperand::createReg(operand);
1570    MI->addOperand(Op);
1571    operand = (inst & 0xf) << 2;
1572    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1573    break;
1574  case Hexagon::V4_SS2_stored_sp:
1575    // s 8-3{6_3}, Rtt 2-0
1576    operand = SignExtend64<9>(((inst & 0x1f8) >> 3) << 3);
1577    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1578    operand = getDRegFromSubinstEncoding(inst & 0x7);
1579    Op = MCOperand::createReg(operand);
1580    MI->addOperand(Op);
1581    break;
1582  case Hexagon::V4_SS2_storeh_io:
1583    // Rs 7-4, u 10-8{3_1}, Rt 3-0
1584    operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
1585    Op = MCOperand::createReg(operand);
1586    MI->addOperand(Op);
1587    operand = ((inst & 0x700) >> 8) << 1;
1588    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1589    operand = getRegFromSubinstEncoding(inst & 0xf);
1590    Op = MCOperand::createReg(operand);
1591    MI->addOperand(Op);
1592    break;
1593  case Hexagon::V4_SS2_storew_sp:
1594    // u 8-4{5_2}, Rd 3-0
1595    operand = ((inst & 0x1f0) >> 4) << 2;
1596    HexagonMCInstrInfo::addConstant(*MI, operand, getContext());
1597    operand = getRegFromSubinstEncoding(inst & 0xf);
1598    Op = MCOperand::createReg(operand);
1599    MI->addOperand(Op);
1600    break;
1601  default:
1602    // don't crash with an invalid subinstruction
1603    // llvm_unreachable("Invalid subinstruction in duplex instruction");
1604    break;
1605  }
1606}
1607