1//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips16.
11//
12//===----------------------------------------------------------------------===//
13#include "Mips16ISelLowering.h"
14#include "MCTargetDesc/MipsBaseInfo.h"
15#include "Mips16HardFloatInfo.h"
16#include "MipsMachineFunction.h"
17#include "MipsRegisterInfo.h"
18#include "MipsTargetMachine.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22
23using namespace llvm;
24
25#define DEBUG_TYPE "mips-lower"
26
27static cl::opt<bool> DontExpandCondPseudos16(
28  "mips16-dont-expand-cond-pseudo",
29  cl::init(false),
30  cl::desc("Don't expand conditional move related "
31           "pseudos for Mips 16"),
32  cl::Hidden);
33
34namespace {
35struct Mips16Libcall {
36  RTLIB::Libcall Libcall;
37  const char *Name;
38
39  bool operator<(const Mips16Libcall &RHS) const {
40    return std::strcmp(Name, RHS.Name) < 0;
41  }
42};
43
44struct Mips16IntrinsicHelperType{
45  const char* Name;
46  const char* Helper;
47
48  bool operator<(const Mips16IntrinsicHelperType &RHS) const {
49    return std::strcmp(Name, RHS.Name) < 0;
50  }
51  bool operator==(const Mips16IntrinsicHelperType &RHS) const {
52    return std::strcmp(Name, RHS.Name) == 0;
53  }
54};
55}
56
57// Libcalls for which no helper is generated. Sorted by name for binary search.
58static const Mips16Libcall HardFloatLibCalls[] = {
59  { RTLIB::ADD_F64, "__mips16_adddf3" },
60  { RTLIB::ADD_F32, "__mips16_addsf3" },
61  { RTLIB::DIV_F64, "__mips16_divdf3" },
62  { RTLIB::DIV_F32, "__mips16_divsf3" },
63  { RTLIB::OEQ_F64, "__mips16_eqdf2" },
64  { RTLIB::OEQ_F32, "__mips16_eqsf2" },
65  { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
66  { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
67  { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
68  { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
69  { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
70  { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
71  { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
72  { RTLIB::OGE_F64, "__mips16_gedf2" },
73  { RTLIB::OGE_F32, "__mips16_gesf2" },
74  { RTLIB::OGT_F64, "__mips16_gtdf2" },
75  { RTLIB::OGT_F32, "__mips16_gtsf2" },
76  { RTLIB::OLE_F64, "__mips16_ledf2" },
77  { RTLIB::OLE_F32, "__mips16_lesf2" },
78  { RTLIB::OLT_F64, "__mips16_ltdf2" },
79  { RTLIB::OLT_F32, "__mips16_ltsf2" },
80  { RTLIB::MUL_F64, "__mips16_muldf3" },
81  { RTLIB::MUL_F32, "__mips16_mulsf3" },
82  { RTLIB::UNE_F64, "__mips16_nedf2" },
83  { RTLIB::UNE_F32, "__mips16_nesf2" },
84  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
85  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
86  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
87  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
88  { RTLIB::SUB_F64, "__mips16_subdf3" },
89  { RTLIB::SUB_F32, "__mips16_subsf3" },
90  { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
91  { RTLIB::UO_F64, "__mips16_unorddf2" },
92  { RTLIB::UO_F32, "__mips16_unordsf2" }
93};
94
95static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
96  {"__fixunsdfsi", "__mips16_call_stub_2" },
97  {"ceil",  "__mips16_call_stub_df_2"},
98  {"ceilf", "__mips16_call_stub_sf_1"},
99  {"copysign",  "__mips16_call_stub_df_10"},
100  {"copysignf", "__mips16_call_stub_sf_5"},
101  {"cos",  "__mips16_call_stub_df_2"},
102  {"cosf", "__mips16_call_stub_sf_1"},
103  {"exp2",  "__mips16_call_stub_df_2"},
104  {"exp2f", "__mips16_call_stub_sf_1"},
105  {"floor",  "__mips16_call_stub_df_2"},
106  {"floorf", "__mips16_call_stub_sf_1"},
107  {"log2",  "__mips16_call_stub_df_2"},
108  {"log2f", "__mips16_call_stub_sf_1"},
109  {"nearbyint",  "__mips16_call_stub_df_2"},
110  {"nearbyintf", "__mips16_call_stub_sf_1"},
111  {"rint",  "__mips16_call_stub_df_2"},
112  {"rintf", "__mips16_call_stub_sf_1"},
113  {"sin",  "__mips16_call_stub_df_2"},
114  {"sinf", "__mips16_call_stub_sf_1"},
115  {"sqrt",  "__mips16_call_stub_df_2"},
116  {"sqrtf", "__mips16_call_stub_sf_1"},
117  {"trunc",  "__mips16_call_stub_df_2"},
118  {"truncf", "__mips16_call_stub_sf_1"},
119};
120
121Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
122                                           const MipsSubtarget &STI)
123    : MipsTargetLowering(TM, STI) {
124
125  // Set up the register classes
126  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
127
128  if (!Subtarget.useSoftFloat())
129    setMips16HardFloatLibCalls();
130
131  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
132  setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
133  setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
134  setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
135  setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
136  setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
137  setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
138  setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
139  setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
140  setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
141  setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
142  setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
143  setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
144
145  setOperationAction(ISD::ROTR, MVT::i32,  Expand);
146  setOperationAction(ISD::ROTR, MVT::i64,  Expand);
147  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64, Expand);
149
150  computeRegisterProperties(STI.getRegisterInfo());
151}
152
153const MipsTargetLowering *
154llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
155                                 const MipsSubtarget &STI) {
156  return new Mips16TargetLowering(TM, STI);
157}
158
159bool
160Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
161                                                     unsigned,
162                                                     unsigned,
163                                                     bool *Fast) const {
164  return false;
165}
166
167MachineBasicBlock *
168Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
169                                                  MachineBasicBlock *BB) const {
170  switch (MI.getOpcode()) {
171  default:
172    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
173  case Mips::SelBeqZ:
174    return emitSel16(Mips::BeqzRxImm16, MI, BB);
175  case Mips::SelBneZ:
176    return emitSel16(Mips::BnezRxImm16, MI, BB);
177  case Mips::SelTBteqZCmpi:
178    return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
179  case Mips::SelTBteqZSlti:
180    return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
181  case Mips::SelTBteqZSltiu:
182    return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
183  case Mips::SelTBtneZCmpi:
184    return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
185  case Mips::SelTBtneZSlti:
186    return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
187  case Mips::SelTBtneZSltiu:
188    return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
189  case Mips::SelTBteqZCmp:
190    return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
191  case Mips::SelTBteqZSlt:
192    return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
193  case Mips::SelTBteqZSltu:
194    return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
195  case Mips::SelTBtneZCmp:
196    return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
197  case Mips::SelTBtneZSlt:
198    return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
199  case Mips::SelTBtneZSltu:
200    return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
201  case Mips::BteqzT8CmpX16:
202    return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
203  case Mips::BteqzT8SltX16:
204    return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
205  case Mips::BteqzT8SltuX16:
206    // TBD: figure out a way to get this or remove the instruction
207    // altogether.
208    return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
209  case Mips::BtnezT8CmpX16:
210    return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
211  case Mips::BtnezT8SltX16:
212    return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
213  case Mips::BtnezT8SltuX16:
214    // TBD: figure out a way to get this or remove the instruction
215    // altogether.
216    return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
217  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
218    Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
219  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
220    Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
221  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
222    Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
223  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
224    Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
225  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
226    Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
227  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
228    Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
229    break;
230  case Mips::SltCCRxRy16:
231    return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
232    break;
233  case Mips::SltiCCRxImmX16:
234    return emitFEXT_CCRXI16_ins
235      (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
236  case Mips::SltiuCCRxImmX16:
237    return emitFEXT_CCRXI16_ins
238      (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
239  case Mips::SltuCCRxRy16:
240    return emitFEXT_CCRX16_ins
241      (Mips::SltuRxRy16, MI, BB);
242  }
243}
244
245bool Mips16TargetLowering::isEligibleForTailCallOptimization(
246    const CCState &CCInfo, unsigned NextStackOffset,
247    const MipsFunctionInfo &FI) const {
248  // No tail call optimization for mips16.
249  return false;
250}
251
252void Mips16TargetLowering::setMips16HardFloatLibCalls() {
253  for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
254    assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
255           "Array not sorted!");
256    if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
257      setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
258  }
259
260  setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
261  setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
262}
263
264//
265// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
266// cleaner way to do all of this but it will have to wait until the traditional
267// gcc mechanism is completed.
268//
269// For Pic, in order for Mips16 code to call Mips32 code which according the abi
270// have either arguments or returned values placed in floating point registers,
271// we use a set of helper functions. (This includes functions which return type
272//  complex which on Mips are returned in a pair of floating point registers).
273//
274// This is an encoding that we inherited from gcc.
275// In Mips traditional O32, N32 ABI, floating point numbers are passed in
276// floating point argument registers 1,2 only when the first and optionally
277// the second arguments are float (sf) or double (df).
278// For Mips16 we are only concerned with the situations where floating point
279// arguments are being passed in floating point registers by the ABI, because
280// Mips16 mode code cannot execute floating point instructions to load those
281// values and hence helper functions are needed.
282// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
283// the helper function suffixs for these are:
284//                        0,  1,    5,        9,         2,   6,        10
285// this suffix can then be calculated as follows:
286// for a given argument Arg:
287//     Arg1x, Arg2x = 1 :  Arg is sf
288//                    2 :  Arg is df
289//                    0:   Arg is neither sf or df
290// So this stub is the string for number Arg1x + Arg2x*4.
291// However not all numbers between 0 and 10 are possible, we check anyway and
292// assert if the impossible exists.
293//
294
295unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
296  (ArgListTy &Args) const {
297  unsigned int resultNum = 0;
298  if (Args.size() >= 1) {
299    Type *t = Args[0].Ty;
300    if (t->isFloatTy()) {
301      resultNum = 1;
302    }
303    else if (t->isDoubleTy()) {
304      resultNum = 2;
305    }
306  }
307  if (resultNum) {
308    if (Args.size() >=2) {
309      Type *t = Args[1].Ty;
310      if (t->isFloatTy()) {
311        resultNum += 4;
312      }
313      else if (t->isDoubleTy()) {
314        resultNum += 8;
315      }
316    }
317  }
318  return resultNum;
319}
320
321//
322// Prefixes are attached to stub numbers depending on the return type.
323// return type: float  sf_
324//              double df_
325//              single complex sc_
326//              double complext dc_
327//              others  NO PREFIX
328//
329//
330// The full name of a helper function is__mips16_call_stub +
331//    return type dependent prefix + stub number
332//
333// FIXME: This is something that probably should be in a different source file
334// and perhaps done differently but my main purpose is to not waste runtime
335// on something that we can enumerate in the source. Another possibility is
336// to have a python script to generate these mapping tables. This will do
337// for now. There are a whole series of helper function mapping arrays, one
338// for each return type class as outlined above. There there are 11 possible
339// entries. Ones with 0 are ones which should never be selected.
340//
341// All the arrays are similar except for ones which return neither
342// sf, df, sc, dc, in which we only care about ones which have sf or df as a
343// first parameter.
344//
345#define P_ "__mips16_call_stub_"
346#define MAX_STUB_NUMBER 10
347#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
348#define T P "0" , T1
349#define P P_
350static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
351  {nullptr, T1 };
352#undef P
353#define P P_ "sf_"
354static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
355  { T };
356#undef P
357#define P P_ "df_"
358static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
359  { T };
360#undef P
361#define P P_ "sc_"
362static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
363  { T };
364#undef P
365#define P P_ "dc_"
366static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
367  { T };
368#undef P
369#undef P_
370
371
372const char* Mips16TargetLowering::
373  getMips16HelperFunction
374    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
375  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
376#ifndef NDEBUG
377  const unsigned int maxStubNum = 10;
378  assert(stubNum <= maxStubNum);
379  const bool validStubNum[maxStubNum+1] =
380    {true, true, true, false, false, true, true, false, false, true, true};
381  assert(validStubNum[stubNum]);
382#endif
383  const char *result;
384  if (RetTy->isFloatTy()) {
385    result = sfMips16Helper[stubNum];
386  }
387  else if (RetTy ->isDoubleTy()) {
388    result = dfMips16Helper[stubNum];
389  }
390  else if (RetTy->isStructTy()) {
391    // check if it's complex
392    if (RetTy->getNumContainedTypes() == 2) {
393      if ((RetTy->getContainedType(0)->isFloatTy()) &&
394          (RetTy->getContainedType(1)->isFloatTy())) {
395        result = scMips16Helper[stubNum];
396      }
397      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
398               (RetTy->getContainedType(1)->isDoubleTy())) {
399        result = dcMips16Helper[stubNum];
400      }
401      else {
402        llvm_unreachable("Uncovered condition");
403      }
404    }
405    else {
406      llvm_unreachable("Uncovered condition");
407    }
408  }
409  else {
410    if (stubNum == 0) {
411      needHelper = false;
412      return "";
413    }
414    result = vMips16Helper[stubNum];
415  }
416  needHelper = true;
417  return result;
418}
419
420void Mips16TargetLowering::
421getOpndList(SmallVectorImpl<SDValue> &Ops,
422            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
423            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
424            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
425            SDValue Chain) const {
426  SelectionDAG &DAG = CLI.DAG;
427  MachineFunction &MF = DAG.getMachineFunction();
428  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
429  const char* Mips16HelperFunction = nullptr;
430  bool NeedMips16Helper = false;
431
432  if (Subtarget.inMips16HardFloat()) {
433    //
434    // currently we don't have symbols tagged with the mips16 or mips32
435    // qualifier so we will assume that we don't know what kind it is.
436    // and generate the helper
437    //
438    bool LookupHelper = true;
439    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
440      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
441
442      if (std::binary_search(std::begin(HardFloatLibCalls),
443                             std::end(HardFloatLibCalls), Find))
444        LookupHelper = false;
445      else {
446        const char *Symbol = S->getSymbol();
447        Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
448        const Mips16HardFloatInfo::FuncSignature *Signature =
449            Mips16HardFloatInfo::findFuncSignature(Symbol);
450        if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
451                                         FuncInfo->StubsNeeded.end()))) {
452          FuncInfo->StubsNeeded[Symbol] = Signature;
453          //
454          // S2 is normally saved if the stub is for a function which
455          // returns a float or double value and is not otherwise. This is
456          // because more work is required after the function the stub
457          // is calling completes, and so the stub cannot directly return
458          // and the stub has no stack space to store the return address so
459          // S2 is used for that purpose.
460          // In order to take advantage of not saving S2, we need to also
461          // optimize the call in the stub and this requires some further
462          // functionality in MipsAsmPrinter which we don't have yet.
463          // So for now we always save S2. The optimization will be done
464          // in a follow-on patch.
465          //
466          if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
467            FuncInfo->setSaveS2();
468        }
469        // one more look at list of intrinsics
470        const Mips16IntrinsicHelperType *Helper =
471            std::lower_bound(std::begin(Mips16IntrinsicHelper),
472                             std::end(Mips16IntrinsicHelper), IntrinsicFind);
473        if (Helper != std::end(Mips16IntrinsicHelper) &&
474            *Helper == IntrinsicFind) {
475          Mips16HelperFunction = Helper->Helper;
476          NeedMips16Helper = true;
477          LookupHelper = false;
478        }
479
480      }
481    } else if (GlobalAddressSDNode *G =
482                   dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
483      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
484                             G->getGlobal()->getName().data() };
485
486      if (std::binary_search(std::begin(HardFloatLibCalls),
487                             std::end(HardFloatLibCalls), Find))
488        LookupHelper = false;
489    }
490    if (LookupHelper)
491      Mips16HelperFunction =
492        getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
493  }
494
495  SDValue JumpTarget = Callee;
496
497  // T9 should contain the address of the callee function if
498  // -relocation-model=pic or it is an indirect call.
499  if (IsPICCall || !GlobalOrExternal) {
500    unsigned V0Reg = Mips::V0;
501    if (NeedMips16Helper) {
502      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
503      JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction,
504                                         getPointerTy(DAG.getDataLayout()));
505      ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
506      JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
507                                 MipsII::MO_GOT, Chain,
508                                 FuncInfo->callPtrInfo(S->getSymbol()));
509    } else
510      RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
511  }
512
513  Ops.push_back(JumpTarget);
514
515  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
516                                  InternalLinkage, IsCallReloc, CLI, Callee,
517                                  Chain);
518}
519
520MachineBasicBlock *
521Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI,
522                                MachineBasicBlock *BB) const {
523  if (DontExpandCondPseudos16)
524    return BB;
525  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
526  DebugLoc DL = MI.getDebugLoc();
527  // To "insert" a SELECT_CC instruction, we actually have to insert the
528  // diamond control-flow pattern.  The incoming instruction knows the
529  // destination vreg to set, the condition code register to branch on, the
530  // true/false values to select between, and a branch opcode to use.
531  const BasicBlock *LLVM_BB = BB->getBasicBlock();
532  MachineFunction::iterator It = ++BB->getIterator();
533
534  //  thisMBB:
535  //  ...
536  //   TrueVal = ...
537  //   setcc r1, r2, r3
538  //   bNE   r1, r0, copy1MBB
539  //   fallthrough --> copy0MBB
540  MachineBasicBlock *thisMBB  = BB;
541  MachineFunction *F = BB->getParent();
542  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
543  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
544  F->insert(It, copy0MBB);
545  F->insert(It, sinkMBB);
546
547  // Transfer the remainder of BB and its successor edges to sinkMBB.
548  sinkMBB->splice(sinkMBB->begin(), BB,
549                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
550  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
551
552  // Next, add the true and fallthrough blocks as its successors.
553  BB->addSuccessor(copy0MBB);
554  BB->addSuccessor(sinkMBB);
555
556  BuildMI(BB, DL, TII->get(Opc))
557      .addReg(MI.getOperand(3).getReg())
558      .addMBB(sinkMBB);
559
560  //  copy0MBB:
561  //   %FalseValue = ...
562  //   # fallthrough to sinkMBB
563  BB = copy0MBB;
564
565  // Update machine-CFG edges
566  BB->addSuccessor(sinkMBB);
567
568  //  sinkMBB:
569  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
570  //  ...
571  BB = sinkMBB;
572
573  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
574      .addReg(MI.getOperand(1).getReg())
575      .addMBB(thisMBB)
576      .addReg(MI.getOperand(2).getReg())
577      .addMBB(copy0MBB);
578
579  MI.eraseFromParent(); // The pseudo instruction is gone now.
580  return BB;
581}
582
583MachineBasicBlock *
584Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI,
585                                 MachineBasicBlock *BB) const {
586  if (DontExpandCondPseudos16)
587    return BB;
588  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
589  DebugLoc DL = MI.getDebugLoc();
590  // To "insert" a SELECT_CC instruction, we actually have to insert the
591  // diamond control-flow pattern.  The incoming instruction knows the
592  // destination vreg to set, the condition code register to branch on, the
593  // true/false values to select between, and a branch opcode to use.
594  const BasicBlock *LLVM_BB = BB->getBasicBlock();
595  MachineFunction::iterator It = ++BB->getIterator();
596
597  //  thisMBB:
598  //  ...
599  //   TrueVal = ...
600  //   setcc r1, r2, r3
601  //   bNE   r1, r0, copy1MBB
602  //   fallthrough --> copy0MBB
603  MachineBasicBlock *thisMBB  = BB;
604  MachineFunction *F = BB->getParent();
605  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
606  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
607  F->insert(It, copy0MBB);
608  F->insert(It, sinkMBB);
609
610  // Transfer the remainder of BB and its successor edges to sinkMBB.
611  sinkMBB->splice(sinkMBB->begin(), BB,
612                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
613  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
614
615  // Next, add the true and fallthrough blocks as its successors.
616  BB->addSuccessor(copy0MBB);
617  BB->addSuccessor(sinkMBB);
618
619  BuildMI(BB, DL, TII->get(Opc2))
620      .addReg(MI.getOperand(3).getReg())
621      .addReg(MI.getOperand(4).getReg());
622  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
623
624  //  copy0MBB:
625  //   %FalseValue = ...
626  //   # fallthrough to sinkMBB
627  BB = copy0MBB;
628
629  // Update machine-CFG edges
630  BB->addSuccessor(sinkMBB);
631
632  //  sinkMBB:
633  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
634  //  ...
635  BB = sinkMBB;
636
637  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
638      .addReg(MI.getOperand(1).getReg())
639      .addMBB(thisMBB)
640      .addReg(MI.getOperand(2).getReg())
641      .addMBB(copy0MBB);
642
643  MI.eraseFromParent(); // The pseudo instruction is gone now.
644  return BB;
645
646}
647
648MachineBasicBlock *
649Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2,
650                                  MachineInstr &MI,
651                                  MachineBasicBlock *BB) const {
652  if (DontExpandCondPseudos16)
653    return BB;
654  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
655  DebugLoc DL = MI.getDebugLoc();
656  // To "insert" a SELECT_CC instruction, we actually have to insert the
657  // diamond control-flow pattern.  The incoming instruction knows the
658  // destination vreg to set, the condition code register to branch on, the
659  // true/false values to select between, and a branch opcode to use.
660  const BasicBlock *LLVM_BB = BB->getBasicBlock();
661  MachineFunction::iterator It = ++BB->getIterator();
662
663  //  thisMBB:
664  //  ...
665  //   TrueVal = ...
666  //   setcc r1, r2, r3
667  //   bNE   r1, r0, copy1MBB
668  //   fallthrough --> copy0MBB
669  MachineBasicBlock *thisMBB  = BB;
670  MachineFunction *F = BB->getParent();
671  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
672  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
673  F->insert(It, copy0MBB);
674  F->insert(It, sinkMBB);
675
676  // Transfer the remainder of BB and its successor edges to sinkMBB.
677  sinkMBB->splice(sinkMBB->begin(), BB,
678                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
679  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
680
681  // Next, add the true and fallthrough blocks as its successors.
682  BB->addSuccessor(copy0MBB);
683  BB->addSuccessor(sinkMBB);
684
685  BuildMI(BB, DL, TII->get(Opc2))
686      .addReg(MI.getOperand(3).getReg())
687      .addImm(MI.getOperand(4).getImm());
688  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
689
690  //  copy0MBB:
691  //   %FalseValue = ...
692  //   # fallthrough to sinkMBB
693  BB = copy0MBB;
694
695  // Update machine-CFG edges
696  BB->addSuccessor(sinkMBB);
697
698  //  sinkMBB:
699  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
700  //  ...
701  BB = sinkMBB;
702
703  BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
704      .addReg(MI.getOperand(1).getReg())
705      .addMBB(thisMBB)
706      .addReg(MI.getOperand(2).getReg())
707      .addMBB(copy0MBB);
708
709  MI.eraseFromParent(); // The pseudo instruction is gone now.
710  return BB;
711
712}
713
714MachineBasicBlock *
715Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
716                                          MachineInstr &MI,
717                                          MachineBasicBlock *BB) const {
718  if (DontExpandCondPseudos16)
719    return BB;
720  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
721  unsigned regX = MI.getOperand(0).getReg();
722  unsigned regY = MI.getOperand(1).getReg();
723  MachineBasicBlock *target = MI.getOperand(2).getMBB();
724  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc))
725      .addReg(regX)
726      .addReg(regY);
727  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
728  MI.eraseFromParent(); // The pseudo instruction is gone now.
729  return BB;
730}
731
732MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
733    unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
734    MachineInstr &MI, MachineBasicBlock *BB) const {
735  if (DontExpandCondPseudos16)
736    return BB;
737  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
738  unsigned regX = MI.getOperand(0).getReg();
739  int64_t imm = MI.getOperand(1).getImm();
740  MachineBasicBlock *target = MI.getOperand(2).getMBB();
741  unsigned CmpOpc;
742  if (isUInt<8>(imm))
743    CmpOpc = CmpiOpc;
744  else if ((!ImmSigned && isUInt<16>(imm)) ||
745           (ImmSigned && isInt<16>(imm)))
746    CmpOpc = CmpiXOpc;
747  else
748    llvm_unreachable("immediate field not usable");
749  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
750  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
751  MI.eraseFromParent(); // The pseudo instruction is gone now.
752  return BB;
753}
754
755static unsigned Mips16WhichOp8uOr16simm
756  (unsigned shortOp, unsigned longOp, int64_t Imm) {
757  if (isUInt<8>(Imm))
758    return shortOp;
759  else if (isInt<16>(Imm))
760    return longOp;
761  else
762    llvm_unreachable("immediate field not usable");
763}
764
765MachineBasicBlock *
766Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI,
767                                          MachineBasicBlock *BB) const {
768  if (DontExpandCondPseudos16)
769    return BB;
770  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
771  unsigned CC = MI.getOperand(0).getReg();
772  unsigned regX = MI.getOperand(1).getReg();
773  unsigned regY = MI.getOperand(2).getReg();
774  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc))
775      .addReg(regX)
776      .addReg(regY);
777  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
778      .addReg(Mips::T8);
779  MI.eraseFromParent(); // The pseudo instruction is gone now.
780  return BB;
781}
782
783MachineBasicBlock *
784Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc,
785                                           MachineInstr &MI,
786                                           MachineBasicBlock *BB) const {
787  if (DontExpandCondPseudos16)
788    return BB;
789  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
790  unsigned CC = MI.getOperand(0).getReg();
791  unsigned regX = MI.getOperand(1).getReg();
792  int64_t Imm = MI.getOperand(2).getImm();
793  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
794  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm);
795  BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
796      .addReg(Mips::T8);
797  MI.eraseFromParent(); // The pseudo instruction is gone now.
798  return BB;
799
800}
801