1//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13#include "MipsSEISelLowering.h"
14#include "MipsMachineFunction.h"
15#include "MipsRegisterInfo.h"
16#include "MipsTargetMachine.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/IR/Intrinsics.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23#include "llvm/Target/TargetInstrInfo.h"
24
25using namespace llvm;
26
27#define DEBUG_TYPE "mips-isel"
28
29static cl::opt<bool>
30EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
31                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
32
33static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
34                                   cl::desc("Expand double precision loads and "
35                                            "stores to their single precision "
36                                            "counterparts"));
37
38MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
39                                           const MipsSubtarget &STI)
40    : MipsTargetLowering(TM, STI) {
41  // Set up the register classes
42  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
43
44  if (Subtarget.isGP64bit())
45    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
46
47  if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
48    // Expand all truncating stores and extending loads.
49    for (MVT VT0 : MVT::vector_valuetypes()) {
50      for (MVT VT1 : MVT::vector_valuetypes()) {
51        setTruncStoreAction(VT0, VT1, Expand);
52        setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
53        setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
54        setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
55      }
56    }
57  }
58
59  if (Subtarget.hasDSP()) {
60    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
61
62    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
63      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
64
65      // Expand all builtin opcodes.
66      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
67        setOperationAction(Opc, VecTys[i], Expand);
68
69      setOperationAction(ISD::ADD, VecTys[i], Legal);
70      setOperationAction(ISD::SUB, VecTys[i], Legal);
71      setOperationAction(ISD::LOAD, VecTys[i], Legal);
72      setOperationAction(ISD::STORE, VecTys[i], Legal);
73      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
74    }
75
76    setTargetDAGCombine(ISD::SHL);
77    setTargetDAGCombine(ISD::SRA);
78    setTargetDAGCombine(ISD::SRL);
79    setTargetDAGCombine(ISD::SETCC);
80    setTargetDAGCombine(ISD::VSELECT);
81  }
82
83  if (Subtarget.hasDSPR2())
84    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
85
86  if (Subtarget.hasMSA()) {
87    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
88    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
89    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
90    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
91    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
92    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
93    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
94
95    setTargetDAGCombine(ISD::AND);
96    setTargetDAGCombine(ISD::OR);
97    setTargetDAGCombine(ISD::SRA);
98    setTargetDAGCombine(ISD::VSELECT);
99    setTargetDAGCombine(ISD::XOR);
100  }
101
102  if (!Subtarget.useSoftFloat()) {
103    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
104
105    // When dealing with single precision only, use libcalls
106    if (!Subtarget.isSingleFloat()) {
107      if (Subtarget.isFP64bit())
108        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
109      else
110        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
111    }
112  }
113
114  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
115  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
116  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
117  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
118
119  if (Subtarget.hasCnMips())
120    setOperationAction(ISD::MUL,              MVT::i64, Legal);
121  else if (Subtarget.isGP64bit())
122    setOperationAction(ISD::MUL,              MVT::i64, Custom);
123
124  if (Subtarget.isGP64bit()) {
125    setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
126    setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
127    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
128    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
129    setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
130    setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
131  }
132
133  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
134  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
135
136  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
137  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
138  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
139  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
140  setOperationAction(ISD::STORE,              MVT::i32, Custom);
141
142  setTargetDAGCombine(ISD::ADDE);
143  setTargetDAGCombine(ISD::SUBE);
144  setTargetDAGCombine(ISD::MUL);
145
146  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
147  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
148  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
149
150  if (NoDPLoadStore) {
151    setOperationAction(ISD::LOAD, MVT::f64, Custom);
152    setOperationAction(ISD::STORE, MVT::f64, Custom);
153  }
154
155  if (Subtarget.hasMips32r6()) {
156    // MIPS32r6 replaces the accumulator-based multiplies with a three register
157    // instruction
158    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
159    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
160    setOperationAction(ISD::MUL, MVT::i32, Legal);
161    setOperationAction(ISD::MULHS, MVT::i32, Legal);
162    setOperationAction(ISD::MULHU, MVT::i32, Legal);
163
164    // MIPS32r6 replaces the accumulator-based division/remainder with separate
165    // three register division and remainder instructions.
166    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
167    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168    setOperationAction(ISD::SDIV, MVT::i32, Legal);
169    setOperationAction(ISD::UDIV, MVT::i32, Legal);
170    setOperationAction(ISD::SREM, MVT::i32, Legal);
171    setOperationAction(ISD::UREM, MVT::i32, Legal);
172
173    // MIPS32r6 replaces conditional moves with an equivalent that removes the
174    // need for three GPR read ports.
175    setOperationAction(ISD::SETCC, MVT::i32, Legal);
176    setOperationAction(ISD::SELECT, MVT::i32, Legal);
177    setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
178
179    setOperationAction(ISD::SETCC, MVT::f32, Legal);
180    setOperationAction(ISD::SELECT, MVT::f32, Legal);
181    setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
182
183    assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
184    setOperationAction(ISD::SETCC, MVT::f64, Legal);
185    setOperationAction(ISD::SELECT, MVT::f64, Legal);
186    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
187
188    setOperationAction(ISD::BRCOND, MVT::Other, Legal);
189
190    // Floating point > and >= are supported via < and <=
191    setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
192    setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
193    setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
194    setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
195
196    setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
197    setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
198    setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
199    setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
200  }
201
202  if (Subtarget.hasMips64r6()) {
203    // MIPS64r6 replaces the accumulator-based multiplies with a three register
204    // instruction
205    setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
206    setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
207    setOperationAction(ISD::MUL, MVT::i64, Legal);
208    setOperationAction(ISD::MULHS, MVT::i64, Legal);
209    setOperationAction(ISD::MULHU, MVT::i64, Legal);
210
211    // MIPS32r6 replaces the accumulator-based division/remainder with separate
212    // three register division and remainder instructions.
213    setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
214    setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
215    setOperationAction(ISD::SDIV, MVT::i64, Legal);
216    setOperationAction(ISD::UDIV, MVT::i64, Legal);
217    setOperationAction(ISD::SREM, MVT::i64, Legal);
218    setOperationAction(ISD::UREM, MVT::i64, Legal);
219
220    // MIPS64r6 replaces conditional moves with an equivalent that removes the
221    // need for three GPR read ports.
222    setOperationAction(ISD::SETCC, MVT::i64, Legal);
223    setOperationAction(ISD::SELECT, MVT::i64, Legal);
224    setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
225  }
226
227  computeRegisterProperties(Subtarget.getRegisterInfo());
228}
229
230const MipsTargetLowering *
231llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
232                                 const MipsSubtarget &STI) {
233  return new MipsSETargetLowering(TM, STI);
234}
235
236const TargetRegisterClass *
237MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
238  if (VT == MVT::Untyped)
239    return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
240
241  return TargetLowering::getRepRegClassFor(VT);
242}
243
244// Enable MSA support for the given integer type and Register class.
245void MipsSETargetLowering::
246addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
247  addRegisterClass(Ty, RC);
248
249  // Expand all builtin opcodes.
250  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
251    setOperationAction(Opc, Ty, Expand);
252
253  setOperationAction(ISD::BITCAST, Ty, Legal);
254  setOperationAction(ISD::LOAD, Ty, Legal);
255  setOperationAction(ISD::STORE, Ty, Legal);
256  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
257  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
258  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
259
260  setOperationAction(ISD::ADD, Ty, Legal);
261  setOperationAction(ISD::AND, Ty, Legal);
262  setOperationAction(ISD::CTLZ, Ty, Legal);
263  setOperationAction(ISD::CTPOP, Ty, Legal);
264  setOperationAction(ISD::MUL, Ty, Legal);
265  setOperationAction(ISD::OR, Ty, Legal);
266  setOperationAction(ISD::SDIV, Ty, Legal);
267  setOperationAction(ISD::SREM, Ty, Legal);
268  setOperationAction(ISD::SHL, Ty, Legal);
269  setOperationAction(ISD::SRA, Ty, Legal);
270  setOperationAction(ISD::SRL, Ty, Legal);
271  setOperationAction(ISD::SUB, Ty, Legal);
272  setOperationAction(ISD::UDIV, Ty, Legal);
273  setOperationAction(ISD::UREM, Ty, Legal);
274  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
275  setOperationAction(ISD::VSELECT, Ty, Legal);
276  setOperationAction(ISD::XOR, Ty, Legal);
277
278  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
279    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
280    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
281    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
282    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
283  }
284
285  setOperationAction(ISD::SETCC, Ty, Legal);
286  setCondCodeAction(ISD::SETNE, Ty, Expand);
287  setCondCodeAction(ISD::SETGE, Ty, Expand);
288  setCondCodeAction(ISD::SETGT, Ty, Expand);
289  setCondCodeAction(ISD::SETUGE, Ty, Expand);
290  setCondCodeAction(ISD::SETUGT, Ty, Expand);
291}
292
293// Enable MSA support for the given floating-point type and Register class.
294void MipsSETargetLowering::
295addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
296  addRegisterClass(Ty, RC);
297
298  // Expand all builtin opcodes.
299  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
300    setOperationAction(Opc, Ty, Expand);
301
302  setOperationAction(ISD::LOAD, Ty, Legal);
303  setOperationAction(ISD::STORE, Ty, Legal);
304  setOperationAction(ISD::BITCAST, Ty, Legal);
305  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
306  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
307  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
308
309  if (Ty != MVT::v8f16) {
310    setOperationAction(ISD::FABS,  Ty, Legal);
311    setOperationAction(ISD::FADD,  Ty, Legal);
312    setOperationAction(ISD::FDIV,  Ty, Legal);
313    setOperationAction(ISD::FEXP2, Ty, Legal);
314    setOperationAction(ISD::FLOG2, Ty, Legal);
315    setOperationAction(ISD::FMA,   Ty, Legal);
316    setOperationAction(ISD::FMUL,  Ty, Legal);
317    setOperationAction(ISD::FRINT, Ty, Legal);
318    setOperationAction(ISD::FSQRT, Ty, Legal);
319    setOperationAction(ISD::FSUB,  Ty, Legal);
320    setOperationAction(ISD::VSELECT, Ty, Legal);
321
322    setOperationAction(ISD::SETCC, Ty, Legal);
323    setCondCodeAction(ISD::SETOGE, Ty, Expand);
324    setCondCodeAction(ISD::SETOGT, Ty, Expand);
325    setCondCodeAction(ISD::SETUGE, Ty, Expand);
326    setCondCodeAction(ISD::SETUGT, Ty, Expand);
327    setCondCodeAction(ISD::SETGE,  Ty, Expand);
328    setCondCodeAction(ISD::SETGT,  Ty, Expand);
329  }
330}
331
332bool
333MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
334                                                     unsigned,
335                                                     unsigned,
336                                                     bool *Fast) const {
337  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
338
339  if (Subtarget.systemSupportsUnalignedAccess()) {
340    // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
341    // implementation defined whether this is handled by hardware, software, or
342    // a hybrid of the two but it's expected that most implementations will
343    // handle the majority of cases in hardware.
344    if (Fast)
345      *Fast = true;
346    return true;
347  }
348
349  switch (SVT) {
350  case MVT::i64:
351  case MVT::i32:
352    if (Fast)
353      *Fast = true;
354    return true;
355  default:
356    return false;
357  }
358}
359
360SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
361                                             SelectionDAG &DAG) const {
362  switch(Op.getOpcode()) {
363  case ISD::LOAD:  return lowerLOAD(Op, DAG);
364  case ISD::STORE: return lowerSTORE(Op, DAG);
365  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
366  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
367  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
368  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
369  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
370  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
371  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
372                                          DAG);
373  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
374  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
375  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
376  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
377  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
378  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
379  }
380
381  return MipsTargetLowering::LowerOperation(Op, DAG);
382}
383
384// selectMADD -
385// Transforms a subgraph in CurDAG if the following pattern is found:
386//  (addc multLo, Lo0), (adde multHi, Hi0),
387// where,
388//  multHi/Lo: product of multiplication
389//  Lo0: initial value of Lo register
390//  Hi0: initial value of Hi register
391// Return true if pattern matching was successful.
392static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
393  // ADDENode's second operand must be a flag output of an ADDC node in order
394  // for the matching to be successful.
395  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
396
397  if (ADDCNode->getOpcode() != ISD::ADDC)
398    return false;
399
400  SDValue MultHi = ADDENode->getOperand(0);
401  SDValue MultLo = ADDCNode->getOperand(0);
402  SDNode *MultNode = MultHi.getNode();
403  unsigned MultOpc = MultHi.getOpcode();
404
405  // MultHi and MultLo must be generated by the same node,
406  if (MultLo.getNode() != MultNode)
407    return false;
408
409  // and it must be a multiplication.
410  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
411    return false;
412
413  // MultLo amd MultHi must be the first and second output of MultNode
414  // respectively.
415  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
416    return false;
417
418  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
419  // of the values of MultNode, in which case MultNode will be removed in later
420  // phases.
421  // If there exist users other than ADDENode or ADDCNode, this function returns
422  // here, which will result in MultNode being mapped to a single MULT
423  // instruction node rather than a pair of MULT and MADD instructions being
424  // produced.
425  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
426    return false;
427
428  SDLoc DL(ADDENode);
429
430  // Initialize accumulator.
431  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
432                                  ADDCNode->getOperand(1),
433                                  ADDENode->getOperand(1));
434
435  // create MipsMAdd(u) node
436  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
437
438  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
439                                 MultNode->getOperand(0),// Factor 0
440                                 MultNode->getOperand(1),// Factor 1
441                                 ACCIn);
442
443  // replace uses of adde and addc here
444  if (!SDValue(ADDCNode, 0).use_empty()) {
445    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
446    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
447  }
448  if (!SDValue(ADDENode, 0).use_empty()) {
449    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
450    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
451  }
452
453  return true;
454}
455
456// selectMSUB -
457// Transforms a subgraph in CurDAG if the following pattern is found:
458//  (addc Lo0, multLo), (sube Hi0, multHi),
459// where,
460//  multHi/Lo: product of multiplication
461//  Lo0: initial value of Lo register
462//  Hi0: initial value of Hi register
463// Return true if pattern matching was successful.
464static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
465  // SUBENode's second operand must be a flag output of an SUBC node in order
466  // for the matching to be successful.
467  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
468
469  if (SUBCNode->getOpcode() != ISD::SUBC)
470    return false;
471
472  SDValue MultHi = SUBENode->getOperand(1);
473  SDValue MultLo = SUBCNode->getOperand(1);
474  SDNode *MultNode = MultHi.getNode();
475  unsigned MultOpc = MultHi.getOpcode();
476
477  // MultHi and MultLo must be generated by the same node,
478  if (MultLo.getNode() != MultNode)
479    return false;
480
481  // and it must be a multiplication.
482  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
483    return false;
484
485  // MultLo amd MultHi must be the first and second output of MultNode
486  // respectively.
487  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
488    return false;
489
490  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
491  // of the values of MultNode, in which case MultNode will be removed in later
492  // phases.
493  // If there exist users other than SUBENode or SUBCNode, this function returns
494  // here, which will result in MultNode being mapped to a single MULT
495  // instruction node rather than a pair of MULT and MSUB instructions being
496  // produced.
497  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
498    return false;
499
500  SDLoc DL(SUBENode);
501
502  // Initialize accumulator.
503  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
504                                  SUBCNode->getOperand(0),
505                                  SUBENode->getOperand(0));
506
507  // create MipsSub(u) node
508  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
509
510  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
511                                 MultNode->getOperand(0),// Factor 0
512                                 MultNode->getOperand(1),// Factor 1
513                                 ACCIn);
514
515  // replace uses of sube and subc here
516  if (!SDValue(SUBCNode, 0).use_empty()) {
517    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
518    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
519  }
520  if (!SDValue(SUBENode, 0).use_empty()) {
521    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
522    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
523  }
524
525  return true;
526}
527
528static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
529                                  TargetLowering::DAGCombinerInfo &DCI,
530                                  const MipsSubtarget &Subtarget) {
531  if (DCI.isBeforeLegalize())
532    return SDValue();
533
534  if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
535      N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
536    return SDValue(N, 0);
537
538  return SDValue();
539}
540
541// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
542//
543// Performs the following transformations:
544// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
545//   sign/zero-extension is completely overwritten by the new one performed by
546//   the ISD::AND.
547// - Removes redundant zero extensions performed by an ISD::AND.
548static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
549                                 TargetLowering::DAGCombinerInfo &DCI,
550                                 const MipsSubtarget &Subtarget) {
551  if (!Subtarget.hasMSA())
552    return SDValue();
553
554  SDValue Op0 = N->getOperand(0);
555  SDValue Op1 = N->getOperand(1);
556  unsigned Op0Opcode = Op0->getOpcode();
557
558  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
559  // where $d + 1 == 2^n and n == 32
560  // or    $d + 1 == 2^n and n <= 32 and ZExt
561  // -> (MipsVExtractZExt $a, $b, $c)
562  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
563      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
564    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
565
566    if (!Mask)
567      return SDValue();
568
569    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
570
571    if (Log2IfPositive <= 0)
572      return SDValue(); // Mask+1 is not a power of 2
573
574    SDValue Op0Op2 = Op0->getOperand(2);
575    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
576    unsigned ExtendTySize = ExtendTy.getSizeInBits();
577    unsigned Log2 = Log2IfPositive;
578
579    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
580        Log2 == ExtendTySize) {
581      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
582      return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
583                         Op0->getVTList(),
584                         makeArrayRef(Ops, Op0->getNumOperands()));
585    }
586  }
587
588  return SDValue();
589}
590
591// Determine if the specified node is a constant vector splat.
592//
593// Returns true and sets Imm if:
594// * N is a ISD::BUILD_VECTOR representing a constant splat
595//
596// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
597// differences are that it assumes the MSA has already been checked and the
598// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
599// must not be in order for binsri.d to be selectable).
600static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
601  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
602
603  if (!Node)
604    return false;
605
606  APInt SplatValue, SplatUndef;
607  unsigned SplatBitSize;
608  bool HasAnyUndefs;
609
610  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
611                             8, !IsLittleEndian))
612    return false;
613
614  Imm = SplatValue;
615
616  return true;
617}
618
619// Test whether the given node is an all-ones build_vector.
620static bool isVectorAllOnes(SDValue N) {
621  // Look through bitcasts. Endianness doesn't matter because we are looking
622  // for an all-ones value.
623  if (N->getOpcode() == ISD::BITCAST)
624    N = N->getOperand(0);
625
626  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
627
628  if (!BVN)
629    return false;
630
631  APInt SplatValue, SplatUndef;
632  unsigned SplatBitSize;
633  bool HasAnyUndefs;
634
635  // Endianness doesn't matter in this context because we are looking for
636  // an all-ones value.
637  if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
638    return SplatValue.isAllOnesValue();
639
640  return false;
641}
642
643// Test whether N is the bitwise inverse of OfNode.
644static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
645  if (N->getOpcode() != ISD::XOR)
646    return false;
647
648  if (isVectorAllOnes(N->getOperand(0)))
649    return N->getOperand(1) == OfNode;
650
651  if (isVectorAllOnes(N->getOperand(1)))
652    return N->getOperand(0) == OfNode;
653
654  return false;
655}
656
657// Perform combines where ISD::OR is the root node.
658//
659// Performs the following transformations:
660// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
661//   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
662//   vector type.
663static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
664                                TargetLowering::DAGCombinerInfo &DCI,
665                                const MipsSubtarget &Subtarget) {
666  if (!Subtarget.hasMSA())
667    return SDValue();
668
669  EVT Ty = N->getValueType(0);
670
671  if (!Ty.is128BitVector())
672    return SDValue();
673
674  SDValue Op0 = N->getOperand(0);
675  SDValue Op1 = N->getOperand(1);
676
677  if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
678    SDValue Op0Op0 = Op0->getOperand(0);
679    SDValue Op0Op1 = Op0->getOperand(1);
680    SDValue Op1Op0 = Op1->getOperand(0);
681    SDValue Op1Op1 = Op1->getOperand(1);
682    bool IsLittleEndian = !Subtarget.isLittle();
683
684    SDValue IfSet, IfClr, Cond;
685    bool IsConstantMask = false;
686    APInt Mask, InvMask;
687
688    // If Op0Op0 is an appropriate mask, try to find it's inverse in either
689    // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
690    // looking.
691    // IfClr will be set if we find a valid match.
692    if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
693      Cond = Op0Op0;
694      IfSet = Op0Op1;
695
696      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
697          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
698        IfClr = Op1Op1;
699      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
700               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
701        IfClr = Op1Op0;
702
703      IsConstantMask = true;
704    }
705
706    // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
707    // thing again using this mask.
708    // IfClr will be set if we find a valid match.
709    if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
710      Cond = Op0Op1;
711      IfSet = Op0Op0;
712
713      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
714          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
715        IfClr = Op1Op1;
716      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
717               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
718        IfClr = Op1Op0;
719
720      IsConstantMask = true;
721    }
722
723    // If IfClr is not yet set, try looking for a non-constant match.
724    // IfClr will be set if we find a valid match amongst the eight
725    // possibilities.
726    if (!IfClr.getNode()) {
727      if (isBitwiseInverse(Op0Op0, Op1Op0)) {
728        Cond = Op1Op0;
729        IfSet = Op1Op1;
730        IfClr = Op0Op1;
731      } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
732        Cond = Op1Op0;
733        IfSet = Op1Op1;
734        IfClr = Op0Op0;
735      } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
736        Cond = Op1Op1;
737        IfSet = Op1Op0;
738        IfClr = Op0Op1;
739      } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
740        Cond = Op1Op1;
741        IfSet = Op1Op0;
742        IfClr = Op0Op0;
743      } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
744        Cond = Op0Op0;
745        IfSet = Op0Op1;
746        IfClr = Op1Op1;
747      } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
748        Cond = Op0Op0;
749        IfSet = Op0Op1;
750        IfClr = Op1Op0;
751      } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
752        Cond = Op0Op1;
753        IfSet = Op0Op0;
754        IfClr = Op1Op1;
755      } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
756        Cond = Op0Op1;
757        IfSet = Op0Op0;
758        IfClr = Op1Op0;
759      }
760    }
761
762    // At this point, IfClr will be set if we have a valid match.
763    if (!IfClr.getNode())
764      return SDValue();
765
766    assert(Cond.getNode() && IfSet.getNode());
767
768    // Fold degenerate cases.
769    if (IsConstantMask) {
770      if (Mask.isAllOnesValue())
771        return IfSet;
772      else if (Mask == 0)
773        return IfClr;
774    }
775
776    // Transform the DAG into an equivalent VSELECT.
777    return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
778  }
779
780  return SDValue();
781}
782
783static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
784                                  TargetLowering::DAGCombinerInfo &DCI,
785                                  const MipsSubtarget &Subtarget) {
786  if (DCI.isBeforeLegalize())
787    return SDValue();
788
789  if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
790      selectMSUB(N, &DAG))
791    return SDValue(N, 0);
792
793  return SDValue();
794}
795
796static SDValue genConstMult(SDValue X, uint64_t C, const SDLoc &DL, EVT VT,
797                            EVT ShiftTy, SelectionDAG &DAG) {
798  // Clear the upper (64 - VT.sizeInBits) bits.
799  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
800
801  // Return 0.
802  if (C == 0)
803    return DAG.getConstant(0, DL, VT);
804
805  // Return x.
806  if (C == 1)
807    return X;
808
809  // If c is power of 2, return (shl x, log2(c)).
810  if (isPowerOf2_64(C))
811    return DAG.getNode(ISD::SHL, DL, VT, X,
812                       DAG.getConstant(Log2_64(C), DL, ShiftTy));
813
814  unsigned Log2Ceil = Log2_64_Ceil(C);
815  uint64_t Floor = 1LL << Log2_64(C);
816  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
817
818  // If |c - floor_c| <= |c - ceil_c|,
819  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
820  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
821  if (C - Floor <= Ceil - C) {
822    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
823    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
824    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
825  }
826
827  // If |c - floor_c| > |c - ceil_c|,
828  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
829  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
830  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
831  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
832}
833
834static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
835                                 const TargetLowering::DAGCombinerInfo &DCI,
836                                 const MipsSETargetLowering *TL) {
837  EVT VT = N->getValueType(0);
838
839  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
840    if (!VT.isVector())
841      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N), VT,
842                          TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
843                          DAG);
844
845  return SDValue(N, 0);
846}
847
848static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
849                                      SelectionDAG &DAG,
850                                      const MipsSubtarget &Subtarget) {
851  // See if this is a vector splat immediate node.
852  APInt SplatValue, SplatUndef;
853  unsigned SplatBitSize;
854  bool HasAnyUndefs;
855  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
856  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
857
858  if (!Subtarget.hasDSP())
859    return SDValue();
860
861  if (!BV ||
862      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
863                           EltSize, !Subtarget.isLittle()) ||
864      (SplatBitSize != EltSize) ||
865      (SplatValue.getZExtValue() >= EltSize))
866    return SDValue();
867
868  SDLoc DL(N);
869  return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
870                     DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
871}
872
873static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
874                                 TargetLowering::DAGCombinerInfo &DCI,
875                                 const MipsSubtarget &Subtarget) {
876  EVT Ty = N->getValueType(0);
877
878  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
879    return SDValue();
880
881  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
882}
883
884// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
885// constant splats into MipsISD::SHRA_DSP for DSPr2.
886//
887// Performs the following transformations:
888// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
889//   sign/zero-extension is completely overwritten by the new one performed by
890//   the ISD::SRA and ISD::SHL nodes.
891// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
892//   sequence.
893//
894// See performDSPShiftCombine for more information about the transformation
895// used for DSPr2.
896static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
897                                 TargetLowering::DAGCombinerInfo &DCI,
898                                 const MipsSubtarget &Subtarget) {
899  EVT Ty = N->getValueType(0);
900
901  if (Subtarget.hasMSA()) {
902    SDValue Op0 = N->getOperand(0);
903    SDValue Op1 = N->getOperand(1);
904
905    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
906    // where $d + sizeof($c) == 32
907    // or    $d + sizeof($c) <= 32 and SExt
908    // -> (MipsVExtractSExt $a, $b, $c)
909    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
910      SDValue Op0Op0 = Op0->getOperand(0);
911      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
912
913      if (!ShAmount)
914        return SDValue();
915
916      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
917          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
918        return SDValue();
919
920      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
921      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
922
923      if (TotalBits == 32 ||
924          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
925           TotalBits <= 32)) {
926        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
927                          Op0Op0->getOperand(2) };
928        return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
929                           Op0Op0->getVTList(),
930                           makeArrayRef(Ops, Op0Op0->getNumOperands()));
931      }
932    }
933  }
934
935  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
936    return SDValue();
937
938  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
939}
940
941
942static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
943                                 TargetLowering::DAGCombinerInfo &DCI,
944                                 const MipsSubtarget &Subtarget) {
945  EVT Ty = N->getValueType(0);
946
947  if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
948    return SDValue();
949
950  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
951}
952
953static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
954  bool IsV216 = (Ty == MVT::v2i16);
955
956  switch (CC) {
957  case ISD::SETEQ:
958  case ISD::SETNE:  return true;
959  case ISD::SETLT:
960  case ISD::SETLE:
961  case ISD::SETGT:
962  case ISD::SETGE:  return IsV216;
963  case ISD::SETULT:
964  case ISD::SETULE:
965  case ISD::SETUGT:
966  case ISD::SETUGE: return !IsV216;
967  default:          return false;
968  }
969}
970
971static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
972  EVT Ty = N->getValueType(0);
973
974  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
975    return SDValue();
976
977  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
978    return SDValue();
979
980  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
981                     N->getOperand(1), N->getOperand(2));
982}
983
984static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
985  EVT Ty = N->getValueType(0);
986
987  if (Ty.is128BitVector() && Ty.isInteger()) {
988    // Try the following combines:
989    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
990    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
991    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
992    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
993    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
994    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
995    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
996    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
997    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
998    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
999    // legalizer.
1000    SDValue Op0 = N->getOperand(0);
1001
1002    if (Op0->getOpcode() != ISD::SETCC)
1003      return SDValue();
1004
1005    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
1006    bool Signed;
1007
1008    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
1009      Signed = true;
1010    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
1011      Signed = false;
1012    else
1013      return SDValue();
1014
1015    SDValue Op1 = N->getOperand(1);
1016    SDValue Op2 = N->getOperand(2);
1017    SDValue Op0Op0 = Op0->getOperand(0);
1018    SDValue Op0Op1 = Op0->getOperand(1);
1019
1020    if (Op1 == Op0Op0 && Op2 == Op0Op1)
1021      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
1022                         Ty, Op1, Op2);
1023    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
1024      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
1025                         Ty, Op1, Op2);
1026  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
1027    SDValue SetCC = N->getOperand(0);
1028
1029    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
1030      return SDValue();
1031
1032    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
1033                       SetCC.getOperand(0), SetCC.getOperand(1),
1034                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
1035  }
1036
1037  return SDValue();
1038}
1039
1040static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
1041                                 const MipsSubtarget &Subtarget) {
1042  EVT Ty = N->getValueType(0);
1043
1044  if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1045    // Try the following combines:
1046    //   (xor (or $a, $b), (build_vector allones))
1047    //   (xor (or $a, $b), (bitcast (build_vector allones)))
1048    SDValue Op0 = N->getOperand(0);
1049    SDValue Op1 = N->getOperand(1);
1050    SDValue NotOp;
1051
1052    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1053      NotOp = Op1;
1054    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1055      NotOp = Op0;
1056    else
1057      return SDValue();
1058
1059    if (NotOp->getOpcode() == ISD::OR)
1060      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1061                         NotOp->getOperand(1));
1062  }
1063
1064  return SDValue();
1065}
1066
1067SDValue
1068MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1069  SelectionDAG &DAG = DCI.DAG;
1070  SDValue Val;
1071
1072  switch (N->getOpcode()) {
1073  case ISD::ADDE:
1074    return performADDECombine(N, DAG, DCI, Subtarget);
1075  case ISD::AND:
1076    Val = performANDCombine(N, DAG, DCI, Subtarget);
1077    break;
1078  case ISD::OR:
1079    Val = performORCombine(N, DAG, DCI, Subtarget);
1080    break;
1081  case ISD::SUBE:
1082    return performSUBECombine(N, DAG, DCI, Subtarget);
1083  case ISD::MUL:
1084    return performMULCombine(N, DAG, DCI, this);
1085  case ISD::SHL:
1086    return performSHLCombine(N, DAG, DCI, Subtarget);
1087  case ISD::SRA:
1088    return performSRACombine(N, DAG, DCI, Subtarget);
1089  case ISD::SRL:
1090    return performSRLCombine(N, DAG, DCI, Subtarget);
1091  case ISD::VSELECT:
1092    return performVSELECTCombine(N, DAG);
1093  case ISD::XOR:
1094    Val = performXORCombine(N, DAG, Subtarget);
1095    break;
1096  case ISD::SETCC:
1097    Val = performSETCCCombine(N, DAG);
1098    break;
1099  }
1100
1101  if (Val.getNode()) {
1102    DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1103          N->printrWithDepth(dbgs(), &DAG);
1104          dbgs() << "\n=> \n";
1105          Val.getNode()->printrWithDepth(dbgs(), &DAG);
1106          dbgs() << "\n");
1107    return Val;
1108  }
1109
1110  return MipsTargetLowering::PerformDAGCombine(N, DCI);
1111}
1112
1113MachineBasicBlock *
1114MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1115                                                  MachineBasicBlock *BB) const {
1116  switch (MI.getOpcode()) {
1117  default:
1118    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1119  case Mips::BPOSGE32_PSEUDO:
1120    return emitBPOSGE32(MI, BB);
1121  case Mips::SNZ_B_PSEUDO:
1122    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1123  case Mips::SNZ_H_PSEUDO:
1124    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1125  case Mips::SNZ_W_PSEUDO:
1126    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1127  case Mips::SNZ_D_PSEUDO:
1128    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1129  case Mips::SNZ_V_PSEUDO:
1130    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1131  case Mips::SZ_B_PSEUDO:
1132    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1133  case Mips::SZ_H_PSEUDO:
1134    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1135  case Mips::SZ_W_PSEUDO:
1136    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1137  case Mips::SZ_D_PSEUDO:
1138    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1139  case Mips::SZ_V_PSEUDO:
1140    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1141  case Mips::COPY_FW_PSEUDO:
1142    return emitCOPY_FW(MI, BB);
1143  case Mips::COPY_FD_PSEUDO:
1144    return emitCOPY_FD(MI, BB);
1145  case Mips::INSERT_FW_PSEUDO:
1146    return emitINSERT_FW(MI, BB);
1147  case Mips::INSERT_FD_PSEUDO:
1148    return emitINSERT_FD(MI, BB);
1149  case Mips::INSERT_B_VIDX_PSEUDO:
1150  case Mips::INSERT_B_VIDX64_PSEUDO:
1151    return emitINSERT_DF_VIDX(MI, BB, 1, false);
1152  case Mips::INSERT_H_VIDX_PSEUDO:
1153  case Mips::INSERT_H_VIDX64_PSEUDO:
1154    return emitINSERT_DF_VIDX(MI, BB, 2, false);
1155  case Mips::INSERT_W_VIDX_PSEUDO:
1156  case Mips::INSERT_W_VIDX64_PSEUDO:
1157    return emitINSERT_DF_VIDX(MI, BB, 4, false);
1158  case Mips::INSERT_D_VIDX_PSEUDO:
1159  case Mips::INSERT_D_VIDX64_PSEUDO:
1160    return emitINSERT_DF_VIDX(MI, BB, 8, false);
1161  case Mips::INSERT_FW_VIDX_PSEUDO:
1162  case Mips::INSERT_FW_VIDX64_PSEUDO:
1163    return emitINSERT_DF_VIDX(MI, BB, 4, true);
1164  case Mips::INSERT_FD_VIDX_PSEUDO:
1165  case Mips::INSERT_FD_VIDX64_PSEUDO:
1166    return emitINSERT_DF_VIDX(MI, BB, 8, true);
1167  case Mips::FILL_FW_PSEUDO:
1168    return emitFILL_FW(MI, BB);
1169  case Mips::FILL_FD_PSEUDO:
1170    return emitFILL_FD(MI, BB);
1171  case Mips::FEXP2_W_1_PSEUDO:
1172    return emitFEXP2_W_1(MI, BB);
1173  case Mips::FEXP2_D_1_PSEUDO:
1174    return emitFEXP2_D_1(MI, BB);
1175  }
1176}
1177
1178bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1179    const CCState &CCInfo, unsigned NextStackOffset,
1180    const MipsFunctionInfo &FI) const {
1181  if (!EnableMipsTailCalls)
1182    return false;
1183
1184  // Exception has to be cleared with eret.
1185  if (FI.isISR())
1186    return false;
1187
1188  // Return false if either the callee or caller has a byval argument.
1189  if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1190    return false;
1191
1192  // Return true if the callee's argument area is no larger than the
1193  // caller's.
1194  return NextStackOffset <= FI.getIncomingArgSize();
1195}
1196
1197void MipsSETargetLowering::
1198getOpndList(SmallVectorImpl<SDValue> &Ops,
1199            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1200            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1201            bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1202            SDValue Chain) const {
1203  Ops.push_back(Callee);
1204  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1205                                  InternalLinkage, IsCallReloc, CLI, Callee,
1206                                  Chain);
1207}
1208
1209SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1210  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1211
1212  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1213    return MipsTargetLowering::lowerLOAD(Op, DAG);
1214
1215  // Replace a double precision load with two i32 loads and a buildpair64.
1216  SDLoc DL(Op);
1217  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1218  EVT PtrVT = Ptr.getValueType();
1219
1220  // i32 load from lower address.
1221  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1222                           MachinePointerInfo(), Nd.isVolatile(),
1223                           Nd.isNonTemporal(), Nd.isInvariant(),
1224                           Nd.getAlignment());
1225
1226  // i32 load from higher address.
1227  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1228  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1229                           MachinePointerInfo(), Nd.isVolatile(),
1230                           Nd.isNonTemporal(), Nd.isInvariant(),
1231                           std::min(Nd.getAlignment(), 4U));
1232
1233  if (!Subtarget.isLittle())
1234    std::swap(Lo, Hi);
1235
1236  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1237  SDValue Ops[2] = {BP, Hi.getValue(1)};
1238  return DAG.getMergeValues(Ops, DL);
1239}
1240
1241SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1242  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1243
1244  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1245    return MipsTargetLowering::lowerSTORE(Op, DAG);
1246
1247  // Replace a double precision store with two extractelement64s and i32 stores.
1248  SDLoc DL(Op);
1249  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1250  EVT PtrVT = Ptr.getValueType();
1251  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1252                           Val, DAG.getConstant(0, DL, MVT::i32));
1253  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1254                           Val, DAG.getConstant(1, DL, MVT::i32));
1255
1256  if (!Subtarget.isLittle())
1257    std::swap(Lo, Hi);
1258
1259  // i32 store to lower address.
1260  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1261                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1262                       Nd.getAAInfo());
1263
1264  // i32 store to higher address.
1265  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1266  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1267                      Nd.isVolatile(), Nd.isNonTemporal(),
1268                      std::min(Nd.getAlignment(), 4U), Nd.getAAInfo());
1269}
1270
1271SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1272                                          bool HasLo, bool HasHi,
1273                                          SelectionDAG &DAG) const {
1274  // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1275  assert(!Subtarget.hasMips32r6());
1276
1277  EVT Ty = Op.getOperand(0).getValueType();
1278  SDLoc DL(Op);
1279  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1280                             Op.getOperand(0), Op.getOperand(1));
1281  SDValue Lo, Hi;
1282
1283  if (HasLo)
1284    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1285  if (HasHi)
1286    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1287
1288  if (!HasLo || !HasHi)
1289    return HasLo ? Lo : Hi;
1290
1291  SDValue Vals[] = { Lo, Hi };
1292  return DAG.getMergeValues(Vals, DL);
1293}
1294
1295static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1296  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1297                             DAG.getConstant(0, DL, MVT::i32));
1298  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1299                             DAG.getConstant(1, DL, MVT::i32));
1300  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1301}
1302
1303static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1304  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1305  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1306  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1307}
1308
1309// This function expands mips intrinsic nodes which have 64-bit input operands
1310// or output values.
1311//
1312// out64 = intrinsic-node in64
1313// =>
1314// lo = copy (extract-element (in64, 0))
1315// hi = copy (extract-element (in64, 1))
1316// mips-specific-node
1317// v0 = copy lo
1318// v1 = copy hi
1319// out64 = merge-values (v0, v1)
1320//
1321static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1322  SDLoc DL(Op);
1323  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1324  SmallVector<SDValue, 3> Ops;
1325  unsigned OpNo = 0;
1326
1327  // See if Op has a chain input.
1328  if (HasChainIn)
1329    Ops.push_back(Op->getOperand(OpNo++));
1330
1331  // The next operand is the intrinsic opcode.
1332  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1333
1334  // See if the next operand has type i64.
1335  SDValue Opnd = Op->getOperand(++OpNo), In64;
1336
1337  if (Opnd.getValueType() == MVT::i64)
1338    In64 = initAccumulator(Opnd, DL, DAG);
1339  else
1340    Ops.push_back(Opnd);
1341
1342  // Push the remaining operands.
1343  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1344    Ops.push_back(Op->getOperand(OpNo));
1345
1346  // Add In64 to the end of the list.
1347  if (In64.getNode())
1348    Ops.push_back(In64);
1349
1350  // Scan output.
1351  SmallVector<EVT, 2> ResTys;
1352
1353  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1354       I != E; ++I)
1355    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1356
1357  // Create node.
1358  SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1359  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1360
1361  if (!HasChainIn)
1362    return Out;
1363
1364  assert(Val->getValueType(1) == MVT::Other);
1365  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1366  return DAG.getMergeValues(Vals, DL);
1367}
1368
1369// Lower an MSA copy intrinsic into the specified SelectionDAG node
1370static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1371  SDLoc DL(Op);
1372  SDValue Vec = Op->getOperand(1);
1373  SDValue Idx = Op->getOperand(2);
1374  EVT ResTy = Op->getValueType(0);
1375  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1376
1377  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1378                               DAG.getValueType(EltTy));
1379
1380  return Result;
1381}
1382
1383static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1384  EVT ResVecTy = Op->getValueType(0);
1385  EVT ViaVecTy = ResVecTy;
1386  SDLoc DL(Op);
1387
1388  // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1389  // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1390  // lanes.
1391  SDValue LaneA;
1392  SDValue LaneB = Op->getOperand(2);
1393
1394  if (ResVecTy == MVT::v2i64) {
1395    LaneA = DAG.getConstant(0, DL, MVT::i32);
1396    ViaVecTy = MVT::v4i32;
1397  } else
1398    LaneA = LaneB;
1399
1400  SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1401                      LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1402
1403  SDValue Result = DAG.getBuildVector(
1404      ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1405
1406  if (ViaVecTy != ResVecTy)
1407    Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
1408
1409  return Result;
1410}
1411
1412static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1413  return DAG.getConstant(Op->getConstantOperandVal(ImmOp), SDLoc(Op),
1414                         Op->getValueType(0));
1415}
1416
1417static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1418                                   bool BigEndian, SelectionDAG &DAG) {
1419  EVT ViaVecTy = VecTy;
1420  SDValue SplatValueA = SplatValue;
1421  SDValue SplatValueB = SplatValue;
1422  SDLoc DL(SplatValue);
1423
1424  if (VecTy == MVT::v2i64) {
1425    // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1426    ViaVecTy = MVT::v4i32;
1427
1428    SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1429    SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1430                              DAG.getConstant(32, DL, MVT::i32));
1431    SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1432  }
1433
1434  // We currently hold the parts in little endian order. Swap them if
1435  // necessary.
1436  if (BigEndian)
1437    std::swap(SplatValueA, SplatValueB);
1438
1439  SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1440                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1441                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1442                      SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1443
1444  SDValue Result = DAG.getBuildVector(
1445      ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1446
1447  if (VecTy != ViaVecTy)
1448    Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1449
1450  return Result;
1451}
1452
1453static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1454                                        unsigned Opc, SDValue Imm,
1455                                        bool BigEndian) {
1456  EVT VecTy = Op->getValueType(0);
1457  SDValue Exp2Imm;
1458  SDLoc DL(Op);
1459
1460  // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1461  // here for now.
1462  if (VecTy == MVT::v2i64) {
1463    if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1464      APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1465
1466      SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1467                                           MVT::i32);
1468      SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1469
1470      if (BigEndian)
1471        std::swap(BitImmLoOp, BitImmHiOp);
1472
1473      Exp2Imm = DAG.getNode(
1474          ISD::BITCAST, DL, MVT::v2i64,
1475          DAG.getBuildVector(MVT::v4i32, DL,
1476                             {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1477    }
1478  }
1479
1480  if (!Exp2Imm.getNode()) {
1481    // We couldnt constant fold, do a vector shift instead
1482
1483    // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1484    // only values 0-63 are valid.
1485    if (VecTy == MVT::v2i64)
1486      Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1487
1488    Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1489
1490    Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1491                          Exp2Imm);
1492  }
1493
1494  return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1495}
1496
1497static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1498  EVT ResTy = Op->getValueType(0);
1499  SDLoc DL(Op);
1500  SDValue One = DAG.getConstant(1, DL, ResTy);
1501  SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
1502
1503  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1504                     DAG.getNOT(DL, Bit, ResTy));
1505}
1506
1507static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1508  SDLoc DL(Op);
1509  EVT ResTy = Op->getValueType(0);
1510  APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
1511                 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1512  SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1513
1514  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1515}
1516
1517SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1518                                                      SelectionDAG &DAG) const {
1519  SDLoc DL(Op);
1520
1521  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1522  default:
1523    return SDValue();
1524  case Intrinsic::mips_shilo:
1525    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1526  case Intrinsic::mips_dpau_h_qbl:
1527    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1528  case Intrinsic::mips_dpau_h_qbr:
1529    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1530  case Intrinsic::mips_dpsu_h_qbl:
1531    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1532  case Intrinsic::mips_dpsu_h_qbr:
1533    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1534  case Intrinsic::mips_dpa_w_ph:
1535    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1536  case Intrinsic::mips_dps_w_ph:
1537    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1538  case Intrinsic::mips_dpax_w_ph:
1539    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1540  case Intrinsic::mips_dpsx_w_ph:
1541    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1542  case Intrinsic::mips_mulsa_w_ph:
1543    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1544  case Intrinsic::mips_mult:
1545    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1546  case Intrinsic::mips_multu:
1547    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1548  case Intrinsic::mips_madd:
1549    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1550  case Intrinsic::mips_maddu:
1551    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1552  case Intrinsic::mips_msub:
1553    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1554  case Intrinsic::mips_msubu:
1555    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1556  case Intrinsic::mips_addv_b:
1557  case Intrinsic::mips_addv_h:
1558  case Intrinsic::mips_addv_w:
1559  case Intrinsic::mips_addv_d:
1560    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1561                       Op->getOperand(2));
1562  case Intrinsic::mips_addvi_b:
1563  case Intrinsic::mips_addvi_h:
1564  case Intrinsic::mips_addvi_w:
1565  case Intrinsic::mips_addvi_d:
1566    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1567                       lowerMSASplatImm(Op, 2, DAG));
1568  case Intrinsic::mips_and_v:
1569    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1570                       Op->getOperand(2));
1571  case Intrinsic::mips_andi_b:
1572    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1573                       lowerMSASplatImm(Op, 2, DAG));
1574  case Intrinsic::mips_bclr_b:
1575  case Intrinsic::mips_bclr_h:
1576  case Intrinsic::mips_bclr_w:
1577  case Intrinsic::mips_bclr_d:
1578    return lowerMSABitClear(Op, DAG);
1579  case Intrinsic::mips_bclri_b:
1580  case Intrinsic::mips_bclri_h:
1581  case Intrinsic::mips_bclri_w:
1582  case Intrinsic::mips_bclri_d:
1583    return lowerMSABitClearImm(Op, DAG);
1584  case Intrinsic::mips_binsli_b:
1585  case Intrinsic::mips_binsli_h:
1586  case Intrinsic::mips_binsli_w:
1587  case Intrinsic::mips_binsli_d: {
1588    // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1589    EVT VecTy = Op->getValueType(0);
1590    EVT EltTy = VecTy.getVectorElementType();
1591    APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1592                                       Op->getConstantOperandVal(3));
1593    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1594                       DAG.getConstant(Mask, DL, VecTy, true),
1595                       Op->getOperand(2), Op->getOperand(1));
1596  }
1597  case Intrinsic::mips_binsri_b:
1598  case Intrinsic::mips_binsri_h:
1599  case Intrinsic::mips_binsri_w:
1600  case Intrinsic::mips_binsri_d: {
1601    // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1602    EVT VecTy = Op->getValueType(0);
1603    EVT EltTy = VecTy.getVectorElementType();
1604    APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1605                                      Op->getConstantOperandVal(3));
1606    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1607                       DAG.getConstant(Mask, DL, VecTy, true),
1608                       Op->getOperand(2), Op->getOperand(1));
1609  }
1610  case Intrinsic::mips_bmnz_v:
1611    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1612                       Op->getOperand(2), Op->getOperand(1));
1613  case Intrinsic::mips_bmnzi_b:
1614    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1615                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1616                       Op->getOperand(1));
1617  case Intrinsic::mips_bmz_v:
1618    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1619                       Op->getOperand(1), Op->getOperand(2));
1620  case Intrinsic::mips_bmzi_b:
1621    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1622                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1623                       Op->getOperand(2));
1624  case Intrinsic::mips_bneg_b:
1625  case Intrinsic::mips_bneg_h:
1626  case Intrinsic::mips_bneg_w:
1627  case Intrinsic::mips_bneg_d: {
1628    EVT VecTy = Op->getValueType(0);
1629    SDValue One = DAG.getConstant(1, DL, VecTy);
1630
1631    return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1632                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1633                                   Op->getOperand(2)));
1634  }
1635  case Intrinsic::mips_bnegi_b:
1636  case Intrinsic::mips_bnegi_h:
1637  case Intrinsic::mips_bnegi_w:
1638  case Intrinsic::mips_bnegi_d:
1639    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1640                                    !Subtarget.isLittle());
1641  case Intrinsic::mips_bnz_b:
1642  case Intrinsic::mips_bnz_h:
1643  case Intrinsic::mips_bnz_w:
1644  case Intrinsic::mips_bnz_d:
1645    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1646                       Op->getOperand(1));
1647  case Intrinsic::mips_bnz_v:
1648    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1649                       Op->getOperand(1));
1650  case Intrinsic::mips_bsel_v:
1651    // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1652    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1653                       Op->getOperand(1), Op->getOperand(3),
1654                       Op->getOperand(2));
1655  case Intrinsic::mips_bseli_b:
1656    // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1657    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1658                       Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1659                       Op->getOperand(2));
1660  case Intrinsic::mips_bset_b:
1661  case Intrinsic::mips_bset_h:
1662  case Intrinsic::mips_bset_w:
1663  case Intrinsic::mips_bset_d: {
1664    EVT VecTy = Op->getValueType(0);
1665    SDValue One = DAG.getConstant(1, DL, VecTy);
1666
1667    return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1668                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1669                                   Op->getOperand(2)));
1670  }
1671  case Intrinsic::mips_bseti_b:
1672  case Intrinsic::mips_bseti_h:
1673  case Intrinsic::mips_bseti_w:
1674  case Intrinsic::mips_bseti_d:
1675    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1676                                    !Subtarget.isLittle());
1677  case Intrinsic::mips_bz_b:
1678  case Intrinsic::mips_bz_h:
1679  case Intrinsic::mips_bz_w:
1680  case Intrinsic::mips_bz_d:
1681    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1682                       Op->getOperand(1));
1683  case Intrinsic::mips_bz_v:
1684    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1685                       Op->getOperand(1));
1686  case Intrinsic::mips_ceq_b:
1687  case Intrinsic::mips_ceq_h:
1688  case Intrinsic::mips_ceq_w:
1689  case Intrinsic::mips_ceq_d:
1690    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1691                        Op->getOperand(2), ISD::SETEQ);
1692  case Intrinsic::mips_ceqi_b:
1693  case Intrinsic::mips_ceqi_h:
1694  case Intrinsic::mips_ceqi_w:
1695  case Intrinsic::mips_ceqi_d:
1696    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1697                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1698  case Intrinsic::mips_cle_s_b:
1699  case Intrinsic::mips_cle_s_h:
1700  case Intrinsic::mips_cle_s_w:
1701  case Intrinsic::mips_cle_s_d:
1702    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1703                        Op->getOperand(2), ISD::SETLE);
1704  case Intrinsic::mips_clei_s_b:
1705  case Intrinsic::mips_clei_s_h:
1706  case Intrinsic::mips_clei_s_w:
1707  case Intrinsic::mips_clei_s_d:
1708    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1709                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1710  case Intrinsic::mips_cle_u_b:
1711  case Intrinsic::mips_cle_u_h:
1712  case Intrinsic::mips_cle_u_w:
1713  case Intrinsic::mips_cle_u_d:
1714    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1715                        Op->getOperand(2), ISD::SETULE);
1716  case Intrinsic::mips_clei_u_b:
1717  case Intrinsic::mips_clei_u_h:
1718  case Intrinsic::mips_clei_u_w:
1719  case Intrinsic::mips_clei_u_d:
1720    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1721                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1722  case Intrinsic::mips_clt_s_b:
1723  case Intrinsic::mips_clt_s_h:
1724  case Intrinsic::mips_clt_s_w:
1725  case Intrinsic::mips_clt_s_d:
1726    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1727                        Op->getOperand(2), ISD::SETLT);
1728  case Intrinsic::mips_clti_s_b:
1729  case Intrinsic::mips_clti_s_h:
1730  case Intrinsic::mips_clti_s_w:
1731  case Intrinsic::mips_clti_s_d:
1732    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1733                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1734  case Intrinsic::mips_clt_u_b:
1735  case Intrinsic::mips_clt_u_h:
1736  case Intrinsic::mips_clt_u_w:
1737  case Intrinsic::mips_clt_u_d:
1738    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1739                        Op->getOperand(2), ISD::SETULT);
1740  case Intrinsic::mips_clti_u_b:
1741  case Intrinsic::mips_clti_u_h:
1742  case Intrinsic::mips_clti_u_w:
1743  case Intrinsic::mips_clti_u_d:
1744    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1745                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1746  case Intrinsic::mips_copy_s_b:
1747  case Intrinsic::mips_copy_s_h:
1748  case Intrinsic::mips_copy_s_w:
1749    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1750  case Intrinsic::mips_copy_s_d:
1751    if (Subtarget.hasMips64())
1752      // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1753      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1754    else {
1755      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1756      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1757      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1758                         Op->getValueType(0), Op->getOperand(1),
1759                         Op->getOperand(2));
1760    }
1761  case Intrinsic::mips_copy_u_b:
1762  case Intrinsic::mips_copy_u_h:
1763  case Intrinsic::mips_copy_u_w:
1764    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1765  case Intrinsic::mips_copy_u_d:
1766    if (Subtarget.hasMips64())
1767      // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1768      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1769    else {
1770      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1771      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1772      // Note: When i64 is illegal, this results in copy_s.w instructions
1773      // instead of copy_u.w instructions. This makes no difference to the
1774      // behaviour since i64 is only illegal when the register file is 32-bit.
1775      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1776                         Op->getValueType(0), Op->getOperand(1),
1777                         Op->getOperand(2));
1778    }
1779  case Intrinsic::mips_div_s_b:
1780  case Intrinsic::mips_div_s_h:
1781  case Intrinsic::mips_div_s_w:
1782  case Intrinsic::mips_div_s_d:
1783    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1784                       Op->getOperand(2));
1785  case Intrinsic::mips_div_u_b:
1786  case Intrinsic::mips_div_u_h:
1787  case Intrinsic::mips_div_u_w:
1788  case Intrinsic::mips_div_u_d:
1789    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1790                       Op->getOperand(2));
1791  case Intrinsic::mips_fadd_w:
1792  case Intrinsic::mips_fadd_d: {
1793    // TODO: If intrinsics have fast-math-flags, propagate them.
1794    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1795                       Op->getOperand(2));
1796  }
1797  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1798  case Intrinsic::mips_fceq_w:
1799  case Intrinsic::mips_fceq_d:
1800    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1801                        Op->getOperand(2), ISD::SETOEQ);
1802  case Intrinsic::mips_fcle_w:
1803  case Intrinsic::mips_fcle_d:
1804    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1805                        Op->getOperand(2), ISD::SETOLE);
1806  case Intrinsic::mips_fclt_w:
1807  case Intrinsic::mips_fclt_d:
1808    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1809                        Op->getOperand(2), ISD::SETOLT);
1810  case Intrinsic::mips_fcne_w:
1811  case Intrinsic::mips_fcne_d:
1812    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1813                        Op->getOperand(2), ISD::SETONE);
1814  case Intrinsic::mips_fcor_w:
1815  case Intrinsic::mips_fcor_d:
1816    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1817                        Op->getOperand(2), ISD::SETO);
1818  case Intrinsic::mips_fcueq_w:
1819  case Intrinsic::mips_fcueq_d:
1820    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1821                        Op->getOperand(2), ISD::SETUEQ);
1822  case Intrinsic::mips_fcule_w:
1823  case Intrinsic::mips_fcule_d:
1824    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1825                        Op->getOperand(2), ISD::SETULE);
1826  case Intrinsic::mips_fcult_w:
1827  case Intrinsic::mips_fcult_d:
1828    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1829                        Op->getOperand(2), ISD::SETULT);
1830  case Intrinsic::mips_fcun_w:
1831  case Intrinsic::mips_fcun_d:
1832    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1833                        Op->getOperand(2), ISD::SETUO);
1834  case Intrinsic::mips_fcune_w:
1835  case Intrinsic::mips_fcune_d:
1836    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1837                        Op->getOperand(2), ISD::SETUNE);
1838  case Intrinsic::mips_fdiv_w:
1839  case Intrinsic::mips_fdiv_d: {
1840    // TODO: If intrinsics have fast-math-flags, propagate them.
1841    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1842                       Op->getOperand(2));
1843  }
1844  case Intrinsic::mips_ffint_u_w:
1845  case Intrinsic::mips_ffint_u_d:
1846    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1847                       Op->getOperand(1));
1848  case Intrinsic::mips_ffint_s_w:
1849  case Intrinsic::mips_ffint_s_d:
1850    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1851                       Op->getOperand(1));
1852  case Intrinsic::mips_fill_b:
1853  case Intrinsic::mips_fill_h:
1854  case Intrinsic::mips_fill_w:
1855  case Intrinsic::mips_fill_d: {
1856    EVT ResTy = Op->getValueType(0);
1857    SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1858                                 Op->getOperand(1));
1859
1860    // If ResTy is v2i64 then the type legalizer will break this node down into
1861    // an equivalent v4i32.
1862    return DAG.getBuildVector(ResTy, DL, Ops);
1863  }
1864  case Intrinsic::mips_fexp2_w:
1865  case Intrinsic::mips_fexp2_d: {
1866    // TODO: If intrinsics have fast-math-flags, propagate them.
1867    EVT ResTy = Op->getValueType(0);
1868    return DAG.getNode(
1869        ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1870        DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1871  }
1872  case Intrinsic::mips_flog2_w:
1873  case Intrinsic::mips_flog2_d:
1874    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1875  case Intrinsic::mips_fmadd_w:
1876  case Intrinsic::mips_fmadd_d:
1877    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1878                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1879  case Intrinsic::mips_fmul_w:
1880  case Intrinsic::mips_fmul_d: {
1881    // TODO: If intrinsics have fast-math-flags, propagate them.
1882    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1883                       Op->getOperand(2));
1884  }
1885  case Intrinsic::mips_fmsub_w:
1886  case Intrinsic::mips_fmsub_d: {
1887    // TODO: If intrinsics have fast-math-flags, propagate them.
1888    EVT ResTy = Op->getValueType(0);
1889    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1890                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1891                                   Op->getOperand(2), Op->getOperand(3)));
1892  }
1893  case Intrinsic::mips_frint_w:
1894  case Intrinsic::mips_frint_d:
1895    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1896  case Intrinsic::mips_fsqrt_w:
1897  case Intrinsic::mips_fsqrt_d:
1898    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1899  case Intrinsic::mips_fsub_w:
1900  case Intrinsic::mips_fsub_d: {
1901    // TODO: If intrinsics have fast-math-flags, propagate them.
1902    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1903                       Op->getOperand(2));
1904  }
1905  case Intrinsic::mips_ftrunc_u_w:
1906  case Intrinsic::mips_ftrunc_u_d:
1907    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1908                       Op->getOperand(1));
1909  case Intrinsic::mips_ftrunc_s_w:
1910  case Intrinsic::mips_ftrunc_s_d:
1911    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1912                       Op->getOperand(1));
1913  case Intrinsic::mips_ilvev_b:
1914  case Intrinsic::mips_ilvev_h:
1915  case Intrinsic::mips_ilvev_w:
1916  case Intrinsic::mips_ilvev_d:
1917    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1918                       Op->getOperand(1), Op->getOperand(2));
1919  case Intrinsic::mips_ilvl_b:
1920  case Intrinsic::mips_ilvl_h:
1921  case Intrinsic::mips_ilvl_w:
1922  case Intrinsic::mips_ilvl_d:
1923    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1924                       Op->getOperand(1), Op->getOperand(2));
1925  case Intrinsic::mips_ilvod_b:
1926  case Intrinsic::mips_ilvod_h:
1927  case Intrinsic::mips_ilvod_w:
1928  case Intrinsic::mips_ilvod_d:
1929    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1930                       Op->getOperand(1), Op->getOperand(2));
1931  case Intrinsic::mips_ilvr_b:
1932  case Intrinsic::mips_ilvr_h:
1933  case Intrinsic::mips_ilvr_w:
1934  case Intrinsic::mips_ilvr_d:
1935    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1936                       Op->getOperand(1), Op->getOperand(2));
1937  case Intrinsic::mips_insert_b:
1938  case Intrinsic::mips_insert_h:
1939  case Intrinsic::mips_insert_w:
1940  case Intrinsic::mips_insert_d:
1941    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1942                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1943  case Intrinsic::mips_insve_b:
1944  case Intrinsic::mips_insve_h:
1945  case Intrinsic::mips_insve_w:
1946  case Intrinsic::mips_insve_d:
1947    return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1948                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1949                       DAG.getConstant(0, DL, MVT::i32));
1950  case Intrinsic::mips_ldi_b:
1951  case Intrinsic::mips_ldi_h:
1952  case Intrinsic::mips_ldi_w:
1953  case Intrinsic::mips_ldi_d:
1954    return lowerMSASplatImm(Op, 1, DAG);
1955  case Intrinsic::mips_lsa:
1956  case Intrinsic::mips_dlsa: {
1957    EVT ResTy = Op->getValueType(0);
1958    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1959                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1960                                   Op->getOperand(2), Op->getOperand(3)));
1961  }
1962  case Intrinsic::mips_maddv_b:
1963  case Intrinsic::mips_maddv_h:
1964  case Intrinsic::mips_maddv_w:
1965  case Intrinsic::mips_maddv_d: {
1966    EVT ResTy = Op->getValueType(0);
1967    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1968                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1969                                   Op->getOperand(2), Op->getOperand(3)));
1970  }
1971  case Intrinsic::mips_max_s_b:
1972  case Intrinsic::mips_max_s_h:
1973  case Intrinsic::mips_max_s_w:
1974  case Intrinsic::mips_max_s_d:
1975    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1976                       Op->getOperand(1), Op->getOperand(2));
1977  case Intrinsic::mips_max_u_b:
1978  case Intrinsic::mips_max_u_h:
1979  case Intrinsic::mips_max_u_w:
1980  case Intrinsic::mips_max_u_d:
1981    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1982                       Op->getOperand(1), Op->getOperand(2));
1983  case Intrinsic::mips_maxi_s_b:
1984  case Intrinsic::mips_maxi_s_h:
1985  case Intrinsic::mips_maxi_s_w:
1986  case Intrinsic::mips_maxi_s_d:
1987    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1988                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1989  case Intrinsic::mips_maxi_u_b:
1990  case Intrinsic::mips_maxi_u_h:
1991  case Intrinsic::mips_maxi_u_w:
1992  case Intrinsic::mips_maxi_u_d:
1993    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1994                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1995  case Intrinsic::mips_min_s_b:
1996  case Intrinsic::mips_min_s_h:
1997  case Intrinsic::mips_min_s_w:
1998  case Intrinsic::mips_min_s_d:
1999    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
2000                       Op->getOperand(1), Op->getOperand(2));
2001  case Intrinsic::mips_min_u_b:
2002  case Intrinsic::mips_min_u_h:
2003  case Intrinsic::mips_min_u_w:
2004  case Intrinsic::mips_min_u_d:
2005    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
2006                       Op->getOperand(1), Op->getOperand(2));
2007  case Intrinsic::mips_mini_s_b:
2008  case Intrinsic::mips_mini_s_h:
2009  case Intrinsic::mips_mini_s_w:
2010  case Intrinsic::mips_mini_s_d:
2011    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
2012                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2013  case Intrinsic::mips_mini_u_b:
2014  case Intrinsic::mips_mini_u_h:
2015  case Intrinsic::mips_mini_u_w:
2016  case Intrinsic::mips_mini_u_d:
2017    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
2018                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2019  case Intrinsic::mips_mod_s_b:
2020  case Intrinsic::mips_mod_s_h:
2021  case Intrinsic::mips_mod_s_w:
2022  case Intrinsic::mips_mod_s_d:
2023    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2024                       Op->getOperand(2));
2025  case Intrinsic::mips_mod_u_b:
2026  case Intrinsic::mips_mod_u_h:
2027  case Intrinsic::mips_mod_u_w:
2028  case Intrinsic::mips_mod_u_d:
2029    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2030                       Op->getOperand(2));
2031  case Intrinsic::mips_mulv_b:
2032  case Intrinsic::mips_mulv_h:
2033  case Intrinsic::mips_mulv_w:
2034  case Intrinsic::mips_mulv_d:
2035    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2036                       Op->getOperand(2));
2037  case Intrinsic::mips_msubv_b:
2038  case Intrinsic::mips_msubv_h:
2039  case Intrinsic::mips_msubv_w:
2040  case Intrinsic::mips_msubv_d: {
2041    EVT ResTy = Op->getValueType(0);
2042    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2043                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2044                                   Op->getOperand(2), Op->getOperand(3)));
2045  }
2046  case Intrinsic::mips_nlzc_b:
2047  case Intrinsic::mips_nlzc_h:
2048  case Intrinsic::mips_nlzc_w:
2049  case Intrinsic::mips_nlzc_d:
2050    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2051  case Intrinsic::mips_nor_v: {
2052    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2053                              Op->getOperand(1), Op->getOperand(2));
2054    return DAG.getNOT(DL, Res, Res->getValueType(0));
2055  }
2056  case Intrinsic::mips_nori_b: {
2057    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2058                               Op->getOperand(1),
2059                               lowerMSASplatImm(Op, 2, DAG));
2060    return DAG.getNOT(DL, Res, Res->getValueType(0));
2061  }
2062  case Intrinsic::mips_or_v:
2063    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2064                       Op->getOperand(2));
2065  case Intrinsic::mips_ori_b:
2066    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2067                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2068  case Intrinsic::mips_pckev_b:
2069  case Intrinsic::mips_pckev_h:
2070  case Intrinsic::mips_pckev_w:
2071  case Intrinsic::mips_pckev_d:
2072    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2073                       Op->getOperand(1), Op->getOperand(2));
2074  case Intrinsic::mips_pckod_b:
2075  case Intrinsic::mips_pckod_h:
2076  case Intrinsic::mips_pckod_w:
2077  case Intrinsic::mips_pckod_d:
2078    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2079                       Op->getOperand(1), Op->getOperand(2));
2080  case Intrinsic::mips_pcnt_b:
2081  case Intrinsic::mips_pcnt_h:
2082  case Intrinsic::mips_pcnt_w:
2083  case Intrinsic::mips_pcnt_d:
2084    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2085  case Intrinsic::mips_shf_b:
2086  case Intrinsic::mips_shf_h:
2087  case Intrinsic::mips_shf_w:
2088    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2089                       Op->getOperand(2), Op->getOperand(1));
2090  case Intrinsic::mips_sll_b:
2091  case Intrinsic::mips_sll_h:
2092  case Intrinsic::mips_sll_w:
2093  case Intrinsic::mips_sll_d:
2094    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2095                       Op->getOperand(2));
2096  case Intrinsic::mips_slli_b:
2097  case Intrinsic::mips_slli_h:
2098  case Intrinsic::mips_slli_w:
2099  case Intrinsic::mips_slli_d:
2100    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2101                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2102  case Intrinsic::mips_splat_b:
2103  case Intrinsic::mips_splat_h:
2104  case Intrinsic::mips_splat_w:
2105  case Intrinsic::mips_splat_d:
2106    // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2107    // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2108    // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2109    // Instead we lower to MipsISD::VSHF and match from there.
2110    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2111                       lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2112                       Op->getOperand(1));
2113  case Intrinsic::mips_splati_b:
2114  case Intrinsic::mips_splati_h:
2115  case Intrinsic::mips_splati_w:
2116  case Intrinsic::mips_splati_d:
2117    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2118                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2119                       Op->getOperand(1));
2120  case Intrinsic::mips_sra_b:
2121  case Intrinsic::mips_sra_h:
2122  case Intrinsic::mips_sra_w:
2123  case Intrinsic::mips_sra_d:
2124    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2125                       Op->getOperand(2));
2126  case Intrinsic::mips_srai_b:
2127  case Intrinsic::mips_srai_h:
2128  case Intrinsic::mips_srai_w:
2129  case Intrinsic::mips_srai_d:
2130    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2131                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2132  case Intrinsic::mips_srl_b:
2133  case Intrinsic::mips_srl_h:
2134  case Intrinsic::mips_srl_w:
2135  case Intrinsic::mips_srl_d:
2136    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2137                       Op->getOperand(2));
2138  case Intrinsic::mips_srli_b:
2139  case Intrinsic::mips_srli_h:
2140  case Intrinsic::mips_srli_w:
2141  case Intrinsic::mips_srli_d:
2142    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2143                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2144  case Intrinsic::mips_subv_b:
2145  case Intrinsic::mips_subv_h:
2146  case Intrinsic::mips_subv_w:
2147  case Intrinsic::mips_subv_d:
2148    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2149                       Op->getOperand(2));
2150  case Intrinsic::mips_subvi_b:
2151  case Intrinsic::mips_subvi_h:
2152  case Intrinsic::mips_subvi_w:
2153  case Intrinsic::mips_subvi_d:
2154    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2155                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2156  case Intrinsic::mips_vshf_b:
2157  case Intrinsic::mips_vshf_h:
2158  case Intrinsic::mips_vshf_w:
2159  case Intrinsic::mips_vshf_d:
2160    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2161                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2162  case Intrinsic::mips_xor_v:
2163    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2164                       Op->getOperand(2));
2165  case Intrinsic::mips_xori_b:
2166    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2167                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2168  case Intrinsic::thread_pointer: {
2169    EVT PtrVT = getPointerTy(DAG.getDataLayout());
2170    return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2171  }
2172  }
2173}
2174
2175static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2176  SDLoc DL(Op);
2177  SDValue ChainIn = Op->getOperand(0);
2178  SDValue Address = Op->getOperand(2);
2179  SDValue Offset  = Op->getOperand(3);
2180  EVT ResTy = Op->getValueType(0);
2181  EVT PtrTy = Address->getValueType(0);
2182
2183  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2184
2185  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
2186                     false, false, 16);
2187}
2188
2189SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2190                                                     SelectionDAG &DAG) const {
2191  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2192  switch (Intr) {
2193  default:
2194    return SDValue();
2195  case Intrinsic::mips_extp:
2196    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2197  case Intrinsic::mips_extpdp:
2198    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2199  case Intrinsic::mips_extr_w:
2200    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2201  case Intrinsic::mips_extr_r_w:
2202    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2203  case Intrinsic::mips_extr_rs_w:
2204    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2205  case Intrinsic::mips_extr_s_h:
2206    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2207  case Intrinsic::mips_mthlip:
2208    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2209  case Intrinsic::mips_mulsaq_s_w_ph:
2210    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2211  case Intrinsic::mips_maq_s_w_phl:
2212    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2213  case Intrinsic::mips_maq_s_w_phr:
2214    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2215  case Intrinsic::mips_maq_sa_w_phl:
2216    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2217  case Intrinsic::mips_maq_sa_w_phr:
2218    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2219  case Intrinsic::mips_dpaq_s_w_ph:
2220    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2221  case Intrinsic::mips_dpsq_s_w_ph:
2222    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2223  case Intrinsic::mips_dpaq_sa_l_w:
2224    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2225  case Intrinsic::mips_dpsq_sa_l_w:
2226    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2227  case Intrinsic::mips_dpaqx_s_w_ph:
2228    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2229  case Intrinsic::mips_dpaqx_sa_w_ph:
2230    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2231  case Intrinsic::mips_dpsqx_s_w_ph:
2232    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2233  case Intrinsic::mips_dpsqx_sa_w_ph:
2234    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2235  case Intrinsic::mips_ld_b:
2236  case Intrinsic::mips_ld_h:
2237  case Intrinsic::mips_ld_w:
2238  case Intrinsic::mips_ld_d:
2239   return lowerMSALoadIntr(Op, DAG, Intr);
2240  }
2241}
2242
2243static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2244  SDLoc DL(Op);
2245  SDValue ChainIn = Op->getOperand(0);
2246  SDValue Value   = Op->getOperand(2);
2247  SDValue Address = Op->getOperand(3);
2248  SDValue Offset  = Op->getOperand(4);
2249  EVT PtrTy = Address->getValueType(0);
2250
2251  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2252
2253  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
2254                      false, 16);
2255}
2256
2257SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2258                                                  SelectionDAG &DAG) const {
2259  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2260  switch (Intr) {
2261  default:
2262    return SDValue();
2263  case Intrinsic::mips_st_b:
2264  case Intrinsic::mips_st_h:
2265  case Intrinsic::mips_st_w:
2266  case Intrinsic::mips_st_d:
2267    return lowerMSAStoreIntr(Op, DAG, Intr);
2268  }
2269}
2270
2271/// \brief Check if the given BuildVectorSDNode is a splat.
2272/// This method currently relies on DAG nodes being reused when equivalent,
2273/// so it's possible for this to return false even when isConstantSplat returns
2274/// true.
2275static bool isSplatVector(const BuildVectorSDNode *N) {
2276  unsigned int nOps = N->getNumOperands();
2277  assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2278
2279  SDValue Operand0 = N->getOperand(0);
2280
2281  for (unsigned int i = 1; i < nOps; ++i) {
2282    if (N->getOperand(i) != Operand0)
2283      return false;
2284  }
2285
2286  return true;
2287}
2288
2289// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2290//
2291// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2292// choose to sign-extend but we could have equally chosen zero-extend. The
2293// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2294// result into this node later (possibly changing it to a zero-extend in the
2295// process).
2296SDValue MipsSETargetLowering::
2297lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2298  SDLoc DL(Op);
2299  EVT ResTy = Op->getValueType(0);
2300  SDValue Op0 = Op->getOperand(0);
2301  EVT VecTy = Op0->getValueType(0);
2302
2303  if (!VecTy.is128BitVector())
2304    return SDValue();
2305
2306  if (ResTy.isInteger()) {
2307    SDValue Op1 = Op->getOperand(1);
2308    EVT EltTy = VecTy.getVectorElementType();
2309    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2310                       DAG.getValueType(EltTy));
2311  }
2312
2313  return Op;
2314}
2315
2316static bool isConstantOrUndef(const SDValue Op) {
2317  if (Op->isUndef())
2318    return true;
2319  if (isa<ConstantSDNode>(Op))
2320    return true;
2321  if (isa<ConstantFPSDNode>(Op))
2322    return true;
2323  return false;
2324}
2325
2326static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2327  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2328    if (isConstantOrUndef(Op->getOperand(i)))
2329      return true;
2330  return false;
2331}
2332
2333// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2334// backend.
2335//
2336// Lowers according to the following rules:
2337// - Constant splats are legal as-is as long as the SplatBitSize is a power of
2338//   2 less than or equal to 64 and the value fits into a signed 10-bit
2339//   immediate
2340// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2341//   is a power of 2 less than or equal to 64 and the value does not fit into a
2342//   signed 10-bit immediate
2343// - Non-constant splats are legal as-is.
2344// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2345// - All others are illegal and must be expanded.
2346SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2347                                                SelectionDAG &DAG) const {
2348  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2349  EVT ResTy = Op->getValueType(0);
2350  SDLoc DL(Op);
2351  APInt SplatValue, SplatUndef;
2352  unsigned SplatBitSize;
2353  bool HasAnyUndefs;
2354
2355  if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2356    return SDValue();
2357
2358  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2359                            HasAnyUndefs, 8,
2360                            !Subtarget.isLittle()) && SplatBitSize <= 64) {
2361    // We can only cope with 8, 16, 32, or 64-bit elements
2362    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2363        SplatBitSize != 64)
2364      return SDValue();
2365
2366    // If the value fits into a simm10 then we can use ldi.[bhwd]
2367    // However, if it isn't an integer type we will have to bitcast from an
2368    // integer type first. Also, if there are any undefs, we must lower them
2369    // to defined values first.
2370    if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
2371      return Op;
2372
2373    EVT ViaVecTy;
2374
2375    switch (SplatBitSize) {
2376    default:
2377      return SDValue();
2378    case 8:
2379      ViaVecTy = MVT::v16i8;
2380      break;
2381    case 16:
2382      ViaVecTy = MVT::v8i16;
2383      break;
2384    case 32:
2385      ViaVecTy = MVT::v4i32;
2386      break;
2387    case 64:
2388      // There's no fill.d to fall back on for 64-bit values
2389      return SDValue();
2390    }
2391
2392    // SelectionDAG::getConstant will promote SplatValue appropriately.
2393    SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2394
2395    // Bitcast to the type we originally wanted
2396    if (ViaVecTy != ResTy)
2397      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2398
2399    return Result;
2400  } else if (isSplatVector(Node))
2401    return Op;
2402  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2403    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2404    // The resulting code is the same length as the expansion, but it doesn't
2405    // use memory operations
2406    EVT ResTy = Node->getValueType(0);
2407
2408    assert(ResTy.isVector());
2409
2410    unsigned NumElts = ResTy.getVectorNumElements();
2411    SDValue Vector = DAG.getUNDEF(ResTy);
2412    for (unsigned i = 0; i < NumElts; ++i) {
2413      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2414                           Node->getOperand(i),
2415                           DAG.getConstant(i, DL, MVT::i32));
2416    }
2417    return Vector;
2418  }
2419
2420  return SDValue();
2421}
2422
2423// Lower VECTOR_SHUFFLE into SHF (if possible).
2424//
2425// SHF splits the vector into blocks of four elements, then shuffles these
2426// elements according to a <4 x i2> constant (encoded as an integer immediate).
2427//
2428// It is therefore possible to lower into SHF when the mask takes the form:
2429//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2430// When undef's appear they are treated as if they were whatever value is
2431// necessary in order to fit the above forms.
2432//
2433// For example:
2434//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2435//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2436//                                 i32 7, i32 6, i32 5, i32 4>
2437// is lowered to:
2438//   (SHF_H $w0, $w1, 27)
2439// where the 27 comes from:
2440//   3 + (2 << 2) + (1 << 4) + (0 << 6)
2441static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2442                                       SmallVector<int, 16> Indices,
2443                                       SelectionDAG &DAG) {
2444  int SHFIndices[4] = { -1, -1, -1, -1 };
2445
2446  if (Indices.size() < 4)
2447    return SDValue();
2448
2449  for (unsigned i = 0; i < 4; ++i) {
2450    for (unsigned j = i; j < Indices.size(); j += 4) {
2451      int Idx = Indices[j];
2452
2453      // Convert from vector index to 4-element subvector index
2454      // If an index refers to an element outside of the subvector then give up
2455      if (Idx != -1) {
2456        Idx -= 4 * (j / 4);
2457        if (Idx < 0 || Idx >= 4)
2458          return SDValue();
2459      }
2460
2461      // If the mask has an undef, replace it with the current index.
2462      // Note that it might still be undef if the current index is also undef
2463      if (SHFIndices[i] == -1)
2464        SHFIndices[i] = Idx;
2465
2466      // Check that non-undef values are the same as in the mask. If they
2467      // aren't then give up
2468      if (!(Idx == -1 || Idx == SHFIndices[i]))
2469        return SDValue();
2470    }
2471  }
2472
2473  // Calculate the immediate. Replace any remaining undefs with zero
2474  APInt Imm(32, 0);
2475  for (int i = 3; i >= 0; --i) {
2476    int Idx = SHFIndices[i];
2477
2478    if (Idx == -1)
2479      Idx = 0;
2480
2481    Imm <<= 2;
2482    Imm |= Idx & 0x3;
2483  }
2484
2485  SDLoc DL(Op);
2486  return DAG.getNode(MipsISD::SHF, DL, ResTy,
2487                     DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
2488}
2489
2490/// Determine whether a range fits a regular pattern of values.
2491/// This function accounts for the possibility of jumping over the End iterator.
2492template <typename ValType>
2493static bool
2494fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2495                   unsigned CheckStride,
2496                   typename SmallVectorImpl<ValType>::const_iterator End,
2497                   ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2498  auto &I = Begin;
2499
2500  while (I != End) {
2501    if (*I != -1 && *I != ExpectedIndex)
2502      return false;
2503    ExpectedIndex += ExpectedIndexStride;
2504
2505    // Incrementing past End is undefined behaviour so we must increment one
2506    // step at a time and check for End at each step.
2507    for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2508      ; // Empty loop body.
2509  }
2510  return true;
2511}
2512
2513// Determine whether VECTOR_SHUFFLE is a SPLATI.
2514//
2515// It is a SPLATI when the mask is:
2516//   <x, x, x, ...>
2517// where x is any valid index.
2518//
2519// When undef's appear in the mask they are treated as if they were whatever
2520// value is necessary in order to fit the above form.
2521static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2522                                    SmallVector<int, 16> Indices,
2523                                    SelectionDAG &DAG) {
2524  assert((Indices.size() % 2) == 0);
2525
2526  int SplatIndex = -1;
2527  for (const auto &V : Indices) {
2528    if (V != -1) {
2529      SplatIndex = V;
2530      break;
2531    }
2532  }
2533
2534  return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2535                                 0);
2536}
2537
2538// Lower VECTOR_SHUFFLE into ILVEV (if possible).
2539//
2540// ILVEV interleaves the even elements from each vector.
2541//
2542// It is possible to lower into ILVEV when the mask consists of two of the
2543// following forms interleaved:
2544//   <0, 2, 4, ...>
2545//   <n, n+2, n+4, ...>
2546// where n is the number of elements in the vector.
2547// For example:
2548//   <0, 0, 2, 2, 4, 4, ...>
2549//   <0, n, 2, n+2, 4, n+4, ...>
2550//
2551// When undef's appear in the mask they are treated as if they were whatever
2552// value is necessary in order to fit the above forms.
2553static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2554                                         SmallVector<int, 16> Indices,
2555                                         SelectionDAG &DAG) {
2556  assert((Indices.size() % 2) == 0);
2557
2558  SDValue Wt;
2559  SDValue Ws;
2560  const auto &Begin = Indices.begin();
2561  const auto &End = Indices.end();
2562
2563  // Check even elements are taken from the even elements of one half or the
2564  // other and pick an operand accordingly.
2565  if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2566    Wt = Op->getOperand(0);
2567  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2568    Wt = Op->getOperand(1);
2569  else
2570    return SDValue();
2571
2572  // Check odd elements are taken from the even elements of one half or the
2573  // other and pick an operand accordingly.
2574  if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2575    Ws = Op->getOperand(0);
2576  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2577    Ws = Op->getOperand(1);
2578  else
2579    return SDValue();
2580
2581  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2582}
2583
2584// Lower VECTOR_SHUFFLE into ILVOD (if possible).
2585//
2586// ILVOD interleaves the odd elements from each vector.
2587//
2588// It is possible to lower into ILVOD when the mask consists of two of the
2589// following forms interleaved:
2590//   <1, 3, 5, ...>
2591//   <n+1, n+3, n+5, ...>
2592// where n is the number of elements in the vector.
2593// For example:
2594//   <1, 1, 3, 3, 5, 5, ...>
2595//   <1, n+1, 3, n+3, 5, n+5, ...>
2596//
2597// When undef's appear in the mask they are treated as if they were whatever
2598// value is necessary in order to fit the above forms.
2599static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2600                                         SmallVector<int, 16> Indices,
2601                                         SelectionDAG &DAG) {
2602  assert((Indices.size() % 2) == 0);
2603
2604  SDValue Wt;
2605  SDValue Ws;
2606  const auto &Begin = Indices.begin();
2607  const auto &End = Indices.end();
2608
2609  // Check even elements are taken from the odd elements of one half or the
2610  // other and pick an operand accordingly.
2611  if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2612    Wt = Op->getOperand(0);
2613  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2614    Wt = Op->getOperand(1);
2615  else
2616    return SDValue();
2617
2618  // Check odd elements are taken from the odd elements of one half or the
2619  // other and pick an operand accordingly.
2620  if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2621    Ws = Op->getOperand(0);
2622  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2623    Ws = Op->getOperand(1);
2624  else
2625    return SDValue();
2626
2627  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2628}
2629
2630// Lower VECTOR_SHUFFLE into ILVR (if possible).
2631//
2632// ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2633// each vector.
2634//
2635// It is possible to lower into ILVR when the mask consists of two of the
2636// following forms interleaved:
2637//   <0, 1, 2, ...>
2638//   <n, n+1, n+2, ...>
2639// where n is the number of elements in the vector.
2640// For example:
2641//   <0, 0, 1, 1, 2, 2, ...>
2642//   <0, n, 1, n+1, 2, n+2, ...>
2643//
2644// When undef's appear in the mask they are treated as if they were whatever
2645// value is necessary in order to fit the above forms.
2646static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2647                                        SmallVector<int, 16> Indices,
2648                                        SelectionDAG &DAG) {
2649  assert((Indices.size() % 2) == 0);
2650
2651  SDValue Wt;
2652  SDValue Ws;
2653  const auto &Begin = Indices.begin();
2654  const auto &End = Indices.end();
2655
2656  // Check even elements are taken from the right (lowest-indexed) elements of
2657  // one half or the other and pick an operand accordingly.
2658  if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2659    Wt = Op->getOperand(0);
2660  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2661    Wt = Op->getOperand(1);
2662  else
2663    return SDValue();
2664
2665  // Check odd elements are taken from the right (lowest-indexed) elements of
2666  // one half or the other and pick an operand accordingly.
2667  if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2668    Ws = Op->getOperand(0);
2669  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2670    Ws = Op->getOperand(1);
2671  else
2672    return SDValue();
2673
2674  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2675}
2676
2677// Lower VECTOR_SHUFFLE into ILVL (if possible).
2678//
2679// ILVL interleaves consecutive elements from the left (highest-indexed) half
2680// of each vector.
2681//
2682// It is possible to lower into ILVL when the mask consists of two of the
2683// following forms interleaved:
2684//   <x, x+1, x+2, ...>
2685//   <n+x, n+x+1, n+x+2, ...>
2686// where n is the number of elements in the vector and x is half n.
2687// For example:
2688//   <x, x, x+1, x+1, x+2, x+2, ...>
2689//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2690//
2691// When undef's appear in the mask they are treated as if they were whatever
2692// value is necessary in order to fit the above forms.
2693static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2694                                        SmallVector<int, 16> Indices,
2695                                        SelectionDAG &DAG) {
2696  assert((Indices.size() % 2) == 0);
2697
2698  unsigned HalfSize = Indices.size() / 2;
2699  SDValue Wt;
2700  SDValue Ws;
2701  const auto &Begin = Indices.begin();
2702  const auto &End = Indices.end();
2703
2704  // Check even elements are taken from the left (highest-indexed) elements of
2705  // one half or the other and pick an operand accordingly.
2706  if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2707    Wt = Op->getOperand(0);
2708  else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2709    Wt = Op->getOperand(1);
2710  else
2711    return SDValue();
2712
2713  // Check odd elements are taken from the left (highest-indexed) elements of
2714  // one half or the other and pick an operand accordingly.
2715  if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2716    Ws = Op->getOperand(0);
2717  else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2718                                   1))
2719    Ws = Op->getOperand(1);
2720  else
2721    return SDValue();
2722
2723  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2724}
2725
2726// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2727//
2728// PCKEV copies the even elements of each vector into the result vector.
2729//
2730// It is possible to lower into PCKEV when the mask consists of two of the
2731// following forms concatenated:
2732//   <0, 2, 4, ...>
2733//   <n, n+2, n+4, ...>
2734// where n is the number of elements in the vector.
2735// For example:
2736//   <0, 2, 4, ..., 0, 2, 4, ...>
2737//   <0, 2, 4, ..., n, n+2, n+4, ...>
2738//
2739// When undef's appear in the mask they are treated as if they were whatever
2740// value is necessary in order to fit the above forms.
2741static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2742                                         SmallVector<int, 16> Indices,
2743                                         SelectionDAG &DAG) {
2744  assert((Indices.size() % 2) == 0);
2745
2746  SDValue Wt;
2747  SDValue Ws;
2748  const auto &Begin = Indices.begin();
2749  const auto &Mid = Indices.begin() + Indices.size() / 2;
2750  const auto &End = Indices.end();
2751
2752  if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2753    Wt = Op->getOperand(0);
2754  else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2755    Wt = Op->getOperand(1);
2756  else
2757    return SDValue();
2758
2759  if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2760    Ws = Op->getOperand(0);
2761  else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2762    Ws = Op->getOperand(1);
2763  else
2764    return SDValue();
2765
2766  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2767}
2768
2769// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2770//
2771// PCKOD copies the odd elements of each vector into the result vector.
2772//
2773// It is possible to lower into PCKOD when the mask consists of two of the
2774// following forms concatenated:
2775//   <1, 3, 5, ...>
2776//   <n+1, n+3, n+5, ...>
2777// where n is the number of elements in the vector.
2778// For example:
2779//   <1, 3, 5, ..., 1, 3, 5, ...>
2780//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2781//
2782// When undef's appear in the mask they are treated as if they were whatever
2783// value is necessary in order to fit the above forms.
2784static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2785                                         SmallVector<int, 16> Indices,
2786                                         SelectionDAG &DAG) {
2787  assert((Indices.size() % 2) == 0);
2788
2789  SDValue Wt;
2790  SDValue Ws;
2791  const auto &Begin = Indices.begin();
2792  const auto &Mid = Indices.begin() + Indices.size() / 2;
2793  const auto &End = Indices.end();
2794
2795  if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2796    Wt = Op->getOperand(0);
2797  else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2798    Wt = Op->getOperand(1);
2799  else
2800    return SDValue();
2801
2802  if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2803    Ws = Op->getOperand(0);
2804  else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2805    Ws = Op->getOperand(1);
2806  else
2807    return SDValue();
2808
2809  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2810}
2811
2812// Lower VECTOR_SHUFFLE into VSHF.
2813//
2814// This mostly consists of converting the shuffle indices in Indices into a
2815// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2816// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2817// if the type is v8i16 and all the indices are less than 8 then the second
2818// operand is unused and can be replaced with anything. We choose to replace it
2819// with the used operand since this reduces the number of instructions overall.
2820static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2821                                        SmallVector<int, 16> Indices,
2822                                        SelectionDAG &DAG) {
2823  SmallVector<SDValue, 16> Ops;
2824  SDValue Op0;
2825  SDValue Op1;
2826  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2827  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2828  bool Using1stVec = false;
2829  bool Using2ndVec = false;
2830  SDLoc DL(Op);
2831  int ResTyNumElts = ResTy.getVectorNumElements();
2832
2833  for (int i = 0; i < ResTyNumElts; ++i) {
2834    // Idx == -1 means UNDEF
2835    int Idx = Indices[i];
2836
2837    if (0 <= Idx && Idx < ResTyNumElts)
2838      Using1stVec = true;
2839    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2840      Using2ndVec = true;
2841  }
2842
2843  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2844       ++I)
2845    Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2846
2847  SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2848
2849  if (Using1stVec && Using2ndVec) {
2850    Op0 = Op->getOperand(0);
2851    Op1 = Op->getOperand(1);
2852  } else if (Using1stVec)
2853    Op0 = Op1 = Op->getOperand(0);
2854  else if (Using2ndVec)
2855    Op0 = Op1 = Op->getOperand(1);
2856  else
2857    llvm_unreachable("shuffle vector mask references neither vector operand?");
2858
2859  // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2860  // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2861  // VSHF concatenates the vectors in a bitwise fashion:
2862  // <0b00, 0b01> + <0b10, 0b11> ->
2863  // 0b0100       + 0b1110       -> 0b01001110
2864  //                                <0b10, 0b11, 0b00, 0b01>
2865  // We must therefore swap the operands to get the correct result.
2866  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2867}
2868
2869// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2870// indices in the shuffle.
2871SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2872                                                  SelectionDAG &DAG) const {
2873  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2874  EVT ResTy = Op->getValueType(0);
2875
2876  if (!ResTy.is128BitVector())
2877    return SDValue();
2878
2879  int ResTyNumElts = ResTy.getVectorNumElements();
2880  SmallVector<int, 16> Indices;
2881
2882  for (int i = 0; i < ResTyNumElts; ++i)
2883    Indices.push_back(Node->getMaskElt(i));
2884
2885  // splati.[bhwd] is preferable to the others but is matched from
2886  // MipsISD::VSHF.
2887  if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2888    return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2889  SDValue Result;
2890  if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2891    return Result;
2892  if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
2893    return Result;
2894  if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
2895    return Result;
2896  if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
2897    return Result;
2898  if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
2899    return Result;
2900  if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
2901    return Result;
2902  if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
2903    return Result;
2904  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2905}
2906
2907MachineBasicBlock *
2908MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
2909                                   MachineBasicBlock *BB) const {
2910  // $bb:
2911  //  bposge32_pseudo $vr0
2912  //  =>
2913  // $bb:
2914  //  bposge32 $tbb
2915  // $fbb:
2916  //  li $vr2, 0
2917  //  b $sink
2918  // $tbb:
2919  //  li $vr1, 1
2920  // $sink:
2921  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2922
2923  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2924  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2925  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2926  DebugLoc DL = MI.getDebugLoc();
2927  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2928  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2929  MachineFunction *F = BB->getParent();
2930  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2931  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2932  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2933  F->insert(It, FBB);
2934  F->insert(It, TBB);
2935  F->insert(It, Sink);
2936
2937  // Transfer the remainder of BB and its successor edges to Sink.
2938  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2939               BB->end());
2940  Sink->transferSuccessorsAndUpdatePHIs(BB);
2941
2942  // Add successors.
2943  BB->addSuccessor(FBB);
2944  BB->addSuccessor(TBB);
2945  FBB->addSuccessor(Sink);
2946  TBB->addSuccessor(Sink);
2947
2948  // Insert the real bposge32 instruction to $BB.
2949  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2950  // Insert the real bposge32c instruction to $BB.
2951  BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
2952
2953  // Fill $FBB.
2954  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2955  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2956    .addReg(Mips::ZERO).addImm(0);
2957  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2958
2959  // Fill $TBB.
2960  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2961  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2962    .addReg(Mips::ZERO).addImm(1);
2963
2964  // Insert phi function to $Sink.
2965  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2966          MI.getOperand(0).getReg())
2967      .addReg(VR2)
2968      .addMBB(FBB)
2969      .addReg(VR1)
2970      .addMBB(TBB);
2971
2972  MI.eraseFromParent(); // The pseudo instruction is gone now.
2973  return Sink;
2974}
2975
2976MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
2977    MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
2978  // $bb:
2979  //  vany_nonzero $rd, $ws
2980  //  =>
2981  // $bb:
2982  //  bnz.b $ws, $tbb
2983  //  b $fbb
2984  // $fbb:
2985  //  li $rd1, 0
2986  //  b $sink
2987  // $tbb:
2988  //  li $rd2, 1
2989  // $sink:
2990  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2991
2992  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2993  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2994  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2995  DebugLoc DL = MI.getDebugLoc();
2996  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2997  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2998  MachineFunction *F = BB->getParent();
2999  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3000  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3001  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3002  F->insert(It, FBB);
3003  F->insert(It, TBB);
3004  F->insert(It, Sink);
3005
3006  // Transfer the remainder of BB and its successor edges to Sink.
3007  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3008               BB->end());
3009  Sink->transferSuccessorsAndUpdatePHIs(BB);
3010
3011  // Add successors.
3012  BB->addSuccessor(FBB);
3013  BB->addSuccessor(TBB);
3014  FBB->addSuccessor(Sink);
3015  TBB->addSuccessor(Sink);
3016
3017  // Insert the real bnz.b instruction to $BB.
3018  BuildMI(BB, DL, TII->get(BranchOp))
3019      .addReg(MI.getOperand(1).getReg())
3020      .addMBB(TBB);
3021
3022  // Fill $FBB.
3023  unsigned RD1 = RegInfo.createVirtualRegister(RC);
3024  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3025    .addReg(Mips::ZERO).addImm(0);
3026  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3027
3028  // Fill $TBB.
3029  unsigned RD2 = RegInfo.createVirtualRegister(RC);
3030  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3031    .addReg(Mips::ZERO).addImm(1);
3032
3033  // Insert phi function to $Sink.
3034  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3035          MI.getOperand(0).getReg())
3036      .addReg(RD1)
3037      .addMBB(FBB)
3038      .addReg(RD2)
3039      .addMBB(TBB);
3040
3041  MI.eraseFromParent(); // The pseudo instruction is gone now.
3042  return Sink;
3043}
3044
3045// Emit the COPY_FW pseudo instruction.
3046//
3047// copy_fw_pseudo $fd, $ws, n
3048// =>
3049// copy_u_w $rt, $ws, $n
3050// mtc1     $rt, $fd
3051//
3052// When n is zero, the equivalent operation can be performed with (potentially)
3053// zero instructions due to register overlaps. This optimization is never valid
3054// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3055MachineBasicBlock *
3056MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3057                                  MachineBasicBlock *BB) const {
3058  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3059  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3060  DebugLoc DL = MI.getDebugLoc();
3061  unsigned Fd = MI.getOperand(0).getReg();
3062  unsigned Ws = MI.getOperand(1).getReg();
3063  unsigned Lane = MI.getOperand(2).getImm();
3064
3065  if (Lane == 0) {
3066    unsigned Wt = Ws;
3067    if (!Subtarget.useOddSPReg()) {
3068      // We must copy to an even-numbered MSA register so that the
3069      // single-precision sub-register is also guaranteed to be even-numbered.
3070      Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3071
3072      BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3073    }
3074
3075    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3076  } else {
3077    unsigned Wt = RegInfo.createVirtualRegister(
3078        Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3079                                  &Mips::MSA128WEvensRegClass);
3080
3081    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3082    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3083  }
3084
3085  MI.eraseFromParent(); // The pseudo instruction is gone now.
3086  return BB;
3087}
3088
3089// Emit the COPY_FD pseudo instruction.
3090//
3091// copy_fd_pseudo $fd, $ws, n
3092// =>
3093// splati.d $wt, $ws, $n
3094// copy $fd, $wt:sub_64
3095//
3096// When n is zero, the equivalent operation can be performed with (potentially)
3097// zero instructions due to register overlaps. This optimization is always
3098// valid because FR=1 mode which is the only supported mode in MSA.
3099MachineBasicBlock *
3100MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3101                                  MachineBasicBlock *BB) const {
3102  assert(Subtarget.isFP64bit());
3103
3104  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3105  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3106  unsigned Fd = MI.getOperand(0).getReg();
3107  unsigned Ws = MI.getOperand(1).getReg();
3108  unsigned Lane = MI.getOperand(2).getImm() * 2;
3109  DebugLoc DL = MI.getDebugLoc();
3110
3111  if (Lane == 0)
3112    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3113  else {
3114    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3115
3116    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3117    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3118  }
3119
3120  MI.eraseFromParent(); // The pseudo instruction is gone now.
3121  return BB;
3122}
3123
3124// Emit the INSERT_FW pseudo instruction.
3125//
3126// insert_fw_pseudo $wd, $wd_in, $n, $fs
3127// =>
3128// subreg_to_reg $wt:sub_lo, $fs
3129// insve_w $wd[$n], $wd_in, $wt[0]
3130MachineBasicBlock *
3131MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3132                                    MachineBasicBlock *BB) const {
3133  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3134  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3135  DebugLoc DL = MI.getDebugLoc();
3136  unsigned Wd = MI.getOperand(0).getReg();
3137  unsigned Wd_in = MI.getOperand(1).getReg();
3138  unsigned Lane = MI.getOperand(2).getImm();
3139  unsigned Fs = MI.getOperand(3).getReg();
3140  unsigned Wt = RegInfo.createVirtualRegister(
3141      Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3142                                &Mips::MSA128WEvensRegClass);
3143
3144  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3145      .addImm(0)
3146      .addReg(Fs)
3147      .addImm(Mips::sub_lo);
3148  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3149      .addReg(Wd_in)
3150      .addImm(Lane)
3151      .addReg(Wt)
3152      .addImm(0);
3153
3154  MI.eraseFromParent(); // The pseudo instruction is gone now.
3155  return BB;
3156}
3157
3158// Emit the INSERT_FD pseudo instruction.
3159//
3160// insert_fd_pseudo $wd, $fs, n
3161// =>
3162// subreg_to_reg $wt:sub_64, $fs
3163// insve_d $wd[$n], $wd_in, $wt[0]
3164MachineBasicBlock *
3165MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3166                                    MachineBasicBlock *BB) const {
3167  assert(Subtarget.isFP64bit());
3168
3169  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3170  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3171  DebugLoc DL = MI.getDebugLoc();
3172  unsigned Wd = MI.getOperand(0).getReg();
3173  unsigned Wd_in = MI.getOperand(1).getReg();
3174  unsigned Lane = MI.getOperand(2).getImm();
3175  unsigned Fs = MI.getOperand(3).getReg();
3176  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3177
3178  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3179      .addImm(0)
3180      .addReg(Fs)
3181      .addImm(Mips::sub_64);
3182  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3183      .addReg(Wd_in)
3184      .addImm(Lane)
3185      .addReg(Wt)
3186      .addImm(0);
3187
3188  MI.eraseFromParent(); // The pseudo instruction is gone now.
3189  return BB;
3190}
3191
3192// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3193//
3194// For integer:
3195// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3196// =>
3197// (SLL $lanetmp1, $lane, <log2size)
3198// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3199// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3200// (NEG $lanetmp2, $lanetmp1)
3201// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3202//
3203// For floating point:
3204// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3205// =>
3206// (SUBREG_TO_REG $wt, $fs, <subreg>)
3207// (SLL $lanetmp1, $lane, <log2size)
3208// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3209// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3210// (NEG $lanetmp2, $lanetmp1)
3211// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3212MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3213    MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3214    bool IsFP) const {
3215  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3216  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3217  DebugLoc DL = MI.getDebugLoc();
3218  unsigned Wd = MI.getOperand(0).getReg();
3219  unsigned SrcVecReg = MI.getOperand(1).getReg();
3220  unsigned LaneReg = MI.getOperand(2).getReg();
3221  unsigned SrcValReg = MI.getOperand(3).getReg();
3222
3223  const TargetRegisterClass *VecRC = nullptr;
3224  // FIXME: This should be true for N32 too.
3225  const TargetRegisterClass *GPRRC =
3226      Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3227  unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3228  unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3229  unsigned EltLog2Size;
3230  unsigned InsertOp = 0;
3231  unsigned InsveOp = 0;
3232  switch (EltSizeInBytes) {
3233  default:
3234    llvm_unreachable("Unexpected size");
3235  case 1:
3236    EltLog2Size = 0;
3237    InsertOp = Mips::INSERT_B;
3238    InsveOp = Mips::INSVE_B;
3239    VecRC = &Mips::MSA128BRegClass;
3240    break;
3241  case 2:
3242    EltLog2Size = 1;
3243    InsertOp = Mips::INSERT_H;
3244    InsveOp = Mips::INSVE_H;
3245    VecRC = &Mips::MSA128HRegClass;
3246    break;
3247  case 4:
3248    EltLog2Size = 2;
3249    InsertOp = Mips::INSERT_W;
3250    InsveOp = Mips::INSVE_W;
3251    VecRC = &Mips::MSA128WRegClass;
3252    break;
3253  case 8:
3254    EltLog2Size = 3;
3255    InsertOp = Mips::INSERT_D;
3256    InsveOp = Mips::INSVE_D;
3257    VecRC = &Mips::MSA128DRegClass;
3258    break;
3259  }
3260
3261  if (IsFP) {
3262    unsigned Wt = RegInfo.createVirtualRegister(VecRC);
3263    BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3264        .addImm(0)
3265        .addReg(SrcValReg)
3266        .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3267    SrcValReg = Wt;
3268  }
3269
3270  // Convert the lane index into a byte index
3271  if (EltSizeInBytes != 1) {
3272    unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3273    BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3274        .addReg(LaneReg)
3275        .addImm(EltLog2Size);
3276    LaneReg = LaneTmp1;
3277  }
3278
3279  // Rotate bytes around so that the desired lane is element zero
3280  unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3281  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3282      .addReg(SrcVecReg)
3283      .addReg(SrcVecReg)
3284      .addReg(LaneReg, 0, SubRegIdx);
3285
3286  unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3287  if (IsFP) {
3288    // Use insve.df to insert to element zero
3289    BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3290        .addReg(WdTmp1)
3291        .addImm(0)
3292        .addReg(SrcValReg)
3293        .addImm(0);
3294  } else {
3295    // Use insert.df to insert to element zero
3296    BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3297        .addReg(WdTmp1)
3298        .addReg(SrcValReg)
3299        .addImm(0);
3300  }
3301
3302  // Rotate elements the rest of the way for a full rotation.
3303  // sld.df inteprets $rt modulo the number of columns so we only need to negate
3304  // the lane index to do this.
3305  unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3306  BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3307          LaneTmp2)
3308      .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3309      .addReg(LaneReg);
3310  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3311      .addReg(WdTmp2)
3312      .addReg(WdTmp2)
3313      .addReg(LaneTmp2, 0, SubRegIdx);
3314
3315  MI.eraseFromParent(); // The pseudo instruction is gone now.
3316  return BB;
3317}
3318
3319// Emit the FILL_FW pseudo instruction.
3320//
3321// fill_fw_pseudo $wd, $fs
3322// =>
3323// implicit_def $wt1
3324// insert_subreg $wt2:subreg_lo, $wt1, $fs
3325// splati.w $wd, $wt2[0]
3326MachineBasicBlock *
3327MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3328                                  MachineBasicBlock *BB) const {
3329  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3330  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3331  DebugLoc DL = MI.getDebugLoc();
3332  unsigned Wd = MI.getOperand(0).getReg();
3333  unsigned Fs = MI.getOperand(1).getReg();
3334  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3335  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3336
3337  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3338  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3339      .addReg(Wt1)
3340      .addReg(Fs)
3341      .addImm(Mips::sub_lo);
3342  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3343
3344  MI.eraseFromParent(); // The pseudo instruction is gone now.
3345  return BB;
3346}
3347
3348// Emit the FILL_FD pseudo instruction.
3349//
3350// fill_fd_pseudo $wd, $fs
3351// =>
3352// implicit_def $wt1
3353// insert_subreg $wt2:subreg_64, $wt1, $fs
3354// splati.d $wd, $wt2[0]
3355MachineBasicBlock *
3356MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3357                                  MachineBasicBlock *BB) const {
3358  assert(Subtarget.isFP64bit());
3359
3360  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3361  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3362  DebugLoc DL = MI.getDebugLoc();
3363  unsigned Wd = MI.getOperand(0).getReg();
3364  unsigned Fs = MI.getOperand(1).getReg();
3365  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3366  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3367
3368  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3369  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3370      .addReg(Wt1)
3371      .addReg(Fs)
3372      .addImm(Mips::sub_64);
3373  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3374
3375  MI.eraseFromParent(); // The pseudo instruction is gone now.
3376  return BB;
3377}
3378
3379// Emit the FEXP2_W_1 pseudo instructions.
3380//
3381// fexp2_w_1_pseudo $wd, $wt
3382// =>
3383// ldi.w $ws, 1
3384// fexp2.w $wd, $ws, $wt
3385MachineBasicBlock *
3386MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3387                                    MachineBasicBlock *BB) const {
3388  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3389  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3390  const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3391  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3392  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3393  DebugLoc DL = MI.getDebugLoc();
3394
3395  // Splat 1.0 into a vector
3396  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3397  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3398
3399  // Emit 1.0 * fexp2(Wt)
3400  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3401      .addReg(Ws2)
3402      .addReg(MI.getOperand(1).getReg());
3403
3404  MI.eraseFromParent(); // The pseudo instruction is gone now.
3405  return BB;
3406}
3407
3408// Emit the FEXP2_D_1 pseudo instructions.
3409//
3410// fexp2_d_1_pseudo $wd, $wt
3411// =>
3412// ldi.d $ws, 1
3413// fexp2.d $wd, $ws, $wt
3414MachineBasicBlock *
3415MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3416                                    MachineBasicBlock *BB) const {
3417  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3418  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3419  const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3420  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3421  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3422  DebugLoc DL = MI.getDebugLoc();
3423
3424  // Splat 1.0 into a vector
3425  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3426  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3427
3428  // Emit 1.0 * fexp2(Wt)
3429  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3430      .addReg(Ws2)
3431      .addReg(MI.getOperand(1).getReg());
3432
3433  MI.eraseFromParent(); // The pseudo instruction is gone now.
3434  return BB;
3435}
3436