1//===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===---------------------------------------------------------------------===//
9//
10// This pass analyzes vector computations and removes unnecessary
11// doubleword swaps (xxswapd instructions).  This pass is performed
12// only for little-endian VSX code generation.
13//
14// For this specific case, loads and stores of v4i32, v4f32, v2i64,
15// and v2f64 vectors are inefficient.  These are implemented using
16// the lxvd2x and stxvd2x instructions, which invert the order of
17// doublewords in a vector register.  Thus code generation inserts
18// an xxswapd after each such load, and prior to each such store.
19//
20// The extra xxswapd instructions reduce performance.  The purpose
21// of this pass is to reduce the number of xxswapd instructions
22// required for correctness.
23//
24// The primary insight is that much code that operates on vectors
25// does not care about the relative order of elements in a register,
26// so long as the correct memory order is preserved.  If we have a
27// computation where all input values are provided by lxvd2x/xxswapd,
28// all outputs are stored using xxswapd/lxvd2x, and all intermediate
29// computations are lane-insensitive (independent of element order),
30// then all the xxswapd instructions associated with the loads and
31// stores may be removed without changing observable semantics.
32//
33// This pass uses standard equivalence class infrastructure to create
34// maximal webs of computations fitting the above description.  Each
35// such web is then optimized by removing its unnecessary xxswapd
36// instructions.
37//
38// There are some lane-sensitive operations for which we can still
39// permit the optimization, provided we modify those operations
40// accordingly.  Such operations are identified as using "special
41// handling" within this module.
42//
43//===---------------------------------------------------------------------===//
44
45#include "PPCInstrInfo.h"
46#include "PPC.h"
47#include "PPCInstrBuilder.h"
48#include "PPCTargetMachine.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/EquivalenceClasses.h"
51#include "llvm/CodeGen/MachineFunctionPass.h"
52#include "llvm/CodeGen/MachineInstrBuilder.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/Format.h"
56#include "llvm/Support/raw_ostream.h"
57
58using namespace llvm;
59
60#define DEBUG_TYPE "ppc-vsx-swaps"
61
62namespace llvm {
63  void initializePPCVSXSwapRemovalPass(PassRegistry&);
64}
65
66namespace {
67
68// A PPCVSXSwapEntry is created for each machine instruction that
69// is relevant to a vector computation.
70struct PPCVSXSwapEntry {
71  // Pointer to the instruction.
72  MachineInstr *VSEMI;
73
74  // Unique ID (position in the swap vector).
75  int VSEId;
76
77  // Attributes of this node.
78  unsigned int IsLoad : 1;
79  unsigned int IsStore : 1;
80  unsigned int IsSwap : 1;
81  unsigned int MentionsPhysVR : 1;
82  unsigned int IsSwappable : 1;
83  unsigned int MentionsPartialVR : 1;
84  unsigned int SpecialHandling : 3;
85  unsigned int WebRejected : 1;
86  unsigned int WillRemove : 1;
87};
88
89enum SHValues {
90  SH_NONE = 0,
91  SH_EXTRACT,
92  SH_INSERT,
93  SH_NOSWAP_LD,
94  SH_NOSWAP_ST,
95  SH_SPLAT,
96  SH_XXPERMDI,
97  SH_COPYWIDEN
98};
99
100struct PPCVSXSwapRemoval : public MachineFunctionPass {
101
102  static char ID;
103  const PPCInstrInfo *TII;
104  MachineFunction *MF;
105  MachineRegisterInfo *MRI;
106
107  // Swap entries are allocated in a vector for better performance.
108  std::vector<PPCVSXSwapEntry> SwapVector;
109
110  // A mapping is maintained between machine instructions and
111  // their swap entries.  The key is the address of the MI.
112  DenseMap<MachineInstr*, int> SwapMap;
113
114  // Equivalence classes are used to gather webs of related computation.
115  // Swap entries are represented by their VSEId fields.
116  EquivalenceClasses<int> *EC;
117
118  PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
119    initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
120  }
121
122private:
123  // Initialize data structures.
124  void initialize(MachineFunction &MFParm);
125
126  // Walk the machine instructions to gather vector usage information.
127  // Return true iff vector mentions are present.
128  bool gatherVectorInstructions();
129
130  // Add an entry to the swap vector and swap map.
131  int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
132
133  // Hunt backwards through COPY and SUBREG_TO_REG chains for a
134  // source register.  VecIdx indicates the swap vector entry to
135  // mark as mentioning a physical register if the search leads
136  // to one.
137  unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
138
139  // Generate equivalence classes for related computations (webs).
140  void formWebs();
141
142  // Analyze webs and determine those that cannot be optimized.
143  void recordUnoptimizableWebs();
144
145  // Record which swap instructions can be safely removed.
146  void markSwapsForRemoval();
147
148  // Remove swaps and update other instructions requiring special
149  // handling.  Return true iff any changes are made.
150  bool removeSwaps();
151
152  // Insert a swap instruction from SrcReg to DstReg at the given
153  // InsertPoint.
154  void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
155                  unsigned DstReg, unsigned SrcReg);
156
157  // Update instructions requiring special handling.
158  void handleSpecialSwappables(int EntryIdx);
159
160  // Dump a description of the entries in the swap vector.
161  void dumpSwapVector();
162
163  // Return true iff the given register is in the given class.
164  bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
165    if (TargetRegisterInfo::isVirtualRegister(Reg))
166      return RC->hasSubClassEq(MRI->getRegClass(Reg));
167    return RC->contains(Reg);
168  }
169
170  // Return true iff the given register is a full vector register.
171  bool isVecReg(unsigned Reg) {
172    return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
173            isRegInClass(Reg, &PPC::VRRCRegClass));
174  }
175
176  // Return true iff the given register is a partial vector register.
177  bool isScalarVecReg(unsigned Reg) {
178    return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
179            isRegInClass(Reg, &PPC::VSSRCRegClass));
180  }
181
182  // Return true iff the given register mentions all or part of a
183  // vector register.  Also sets Partial to true if the mention
184  // is for just the floating-point register overlap of the register.
185  bool isAnyVecReg(unsigned Reg, bool &Partial) {
186    if (isScalarVecReg(Reg))
187      Partial = true;
188    return isScalarVecReg(Reg) || isVecReg(Reg);
189  }
190
191public:
192  // Main entry point for this pass.
193  bool runOnMachineFunction(MachineFunction &MF) override {
194    if (skipFunction(*MF.getFunction()))
195      return false;
196
197    // If we don't have VSX on the subtarget, don't do anything.
198    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
199    if (!STI.hasVSX())
200      return false;
201
202    bool Changed = false;
203    initialize(MF);
204
205    if (gatherVectorInstructions()) {
206      formWebs();
207      recordUnoptimizableWebs();
208      markSwapsForRemoval();
209      Changed = removeSwaps();
210    }
211
212    // FIXME: See the allocation of EC in initialize().
213    delete EC;
214    return Changed;
215  }
216};
217
218// Initialize data structures for this pass.  In particular, clear the
219// swap vector and allocate the equivalence class mapping before
220// processing each function.
221void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
222  MF = &MFParm;
223  MRI = &MF->getRegInfo();
224  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
225
226  // An initial vector size of 256 appears to work well in practice.
227  // Small/medium functions with vector content tend not to incur a
228  // reallocation at this size.  Three of the vector tests in
229  // projects/test-suite reallocate, which seems like a reasonable rate.
230  const int InitialVectorSize(256);
231  SwapVector.clear();
232  SwapVector.reserve(InitialVectorSize);
233
234  // FIXME: Currently we allocate EC each time because we don't have
235  // access to the set representation on which to call clear().  Should
236  // consider adding a clear() method to the EquivalenceClasses class.
237  EC = new EquivalenceClasses<int>;
238}
239
240// Create an entry in the swap vector for each instruction that mentions
241// a full vector register, recording various characteristics of the
242// instructions there.
243bool PPCVSXSwapRemoval::gatherVectorInstructions() {
244  bool RelevantFunction = false;
245
246  for (MachineBasicBlock &MBB : *MF) {
247    for (MachineInstr &MI : MBB) {
248
249      if (MI.isDebugValue())
250        continue;
251
252      bool RelevantInstr = false;
253      bool Partial = false;
254
255      for (const MachineOperand &MO : MI.operands()) {
256        if (!MO.isReg())
257          continue;
258        unsigned Reg = MO.getReg();
259        if (isAnyVecReg(Reg, Partial)) {
260          RelevantInstr = true;
261          break;
262        }
263      }
264
265      if (!RelevantInstr)
266        continue;
267
268      RelevantFunction = true;
269
270      // Create a SwapEntry initialized to zeros, then fill in the
271      // instruction and ID fields before pushing it to the back
272      // of the swap vector.
273      PPCVSXSwapEntry SwapEntry{};
274      int VecIdx = addSwapEntry(&MI, SwapEntry);
275
276      switch(MI.getOpcode()) {
277      default:
278        // Unless noted otherwise, an instruction is considered
279        // safe for the optimization.  There are a large number of
280        // such true-SIMD instructions (all vector math, logical,
281        // select, compare, etc.).  However, if the instruction
282        // mentions a partial vector register and does not have
283        // special handling defined, it is not swappable.
284        if (Partial)
285          SwapVector[VecIdx].MentionsPartialVR = 1;
286        else
287          SwapVector[VecIdx].IsSwappable = 1;
288        break;
289      case PPC::XXPERMDI: {
290        // This is a swap if it is of the form XXPERMDI t, s, s, 2.
291        // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
292        // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
293        // for example.  We have to look through chains of COPY and
294        // SUBREG_TO_REG to find the real source value for comparison.
295        // If the real source value is a physical register, then mark the
296        // XXPERMDI as mentioning a physical register.
297        int immed = MI.getOperand(3).getImm();
298        if (immed == 2) {
299          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
300                                               VecIdx);
301          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
302                                               VecIdx);
303          if (trueReg1 == trueReg2)
304            SwapVector[VecIdx].IsSwap = 1;
305          else {
306            // We can still handle these if the two registers are not
307            // identical, by adjusting the form of the XXPERMDI.
308            SwapVector[VecIdx].IsSwappable = 1;
309            SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
310          }
311        // This is a doubleword splat if it is of the form
312        // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we
313        // must look through chains of copy-likes to find the source
314        // register.  We turn off the marking for mention of a physical
315        // register, because splatting it is safe; the optimization
316        // will not swap the value in the physical register.  Whether
317        // or not the two input registers are identical, we can handle
318        // these by adjusting the form of the XXPERMDI.
319        } else if (immed == 0 || immed == 3) {
320
321          SwapVector[VecIdx].IsSwappable = 1;
322          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
323
324          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
325                                               VecIdx);
326          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
327                                               VecIdx);
328          if (trueReg1 == trueReg2)
329            SwapVector[VecIdx].MentionsPhysVR = 0;
330
331        } else {
332          // We can still handle these by adjusting the form of the XXPERMDI.
333          SwapVector[VecIdx].IsSwappable = 1;
334          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
335        }
336        break;
337      }
338      case PPC::LVX:
339        // Non-permuting loads are currently unsafe.  We can use special
340        // handling for this in the future.  By not marking these as
341        // IsSwap, we ensure computations containing them will be rejected
342        // for now.
343        SwapVector[VecIdx].IsLoad = 1;
344        break;
345      case PPC::LXVD2X:
346      case PPC::LXVW4X:
347        // Permuting loads are marked as both load and swap, and are
348        // safe for optimization.
349        SwapVector[VecIdx].IsLoad = 1;
350        SwapVector[VecIdx].IsSwap = 1;
351        break;
352      case PPC::LXSDX:
353      case PPC::LXSSPX:
354        // A load of a floating-point value into the high-order half of
355        // a vector register is safe, provided that we introduce a swap
356        // following the load, which will be done by the SUBREG_TO_REG
357        // support.  So just mark these as safe.
358        SwapVector[VecIdx].IsLoad = 1;
359        SwapVector[VecIdx].IsSwappable = 1;
360        break;
361      case PPC::STVX:
362        // Non-permuting stores are currently unsafe.  We can use special
363        // handling for this in the future.  By not marking these as
364        // IsSwap, we ensure computations containing them will be rejected
365        // for now.
366        SwapVector[VecIdx].IsStore = 1;
367        break;
368      case PPC::STXVD2X:
369      case PPC::STXVW4X:
370        // Permuting stores are marked as both store and swap, and are
371        // safe for optimization.
372        SwapVector[VecIdx].IsStore = 1;
373        SwapVector[VecIdx].IsSwap = 1;
374        break;
375      case PPC::COPY:
376        // These are fine provided they are moving between full vector
377        // register classes.
378        if (isVecReg(MI.getOperand(0).getReg()) &&
379            isVecReg(MI.getOperand(1).getReg()))
380          SwapVector[VecIdx].IsSwappable = 1;
381        // If we have a copy from one scalar floating-point register
382        // to another, we can accept this even if it is a physical
383        // register.  The only way this gets involved is if it feeds
384        // a SUBREG_TO_REG, which is handled by introducing a swap.
385        else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
386                 isScalarVecReg(MI.getOperand(1).getReg()))
387          SwapVector[VecIdx].IsSwappable = 1;
388        break;
389      case PPC::SUBREG_TO_REG: {
390        // These are fine provided they are moving between full vector
391        // register classes.  If they are moving from a scalar
392        // floating-point class to a vector class, we can handle those
393        // as well, provided we introduce a swap.  It is generally the
394        // case that we will introduce fewer swaps than we remove, but
395        // (FIXME) a cost model could be used.  However, introduced
396        // swaps could potentially be CSEd, so this is not trivial.
397        if (isVecReg(MI.getOperand(0).getReg()) &&
398            isVecReg(MI.getOperand(2).getReg()))
399          SwapVector[VecIdx].IsSwappable = 1;
400        else if (isVecReg(MI.getOperand(0).getReg()) &&
401                 isScalarVecReg(MI.getOperand(2).getReg())) {
402          SwapVector[VecIdx].IsSwappable = 1;
403          SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
404        }
405        break;
406      }
407      case PPC::VSPLTB:
408      case PPC::VSPLTH:
409      case PPC::VSPLTW:
410      case PPC::XXSPLTW:
411        // Splats are lane-sensitive, but we can use special handling
412        // to adjust the source lane for the splat.
413        SwapVector[VecIdx].IsSwappable = 1;
414        SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
415        break;
416      // The presence of the following lane-sensitive operations in a
417      // web will kill the optimization, at least for now.  For these
418      // we do nothing, causing the optimization to fail.
419      // FIXME: Some of these could be permitted with special handling,
420      // and will be phased in as time permits.
421      // FIXME: There is no simple and maintainable way to express a set
422      // of opcodes having a common attribute in TableGen.  Should this
423      // change, this is a prime candidate to use such a mechanism.
424      case PPC::INLINEASM:
425      case PPC::EXTRACT_SUBREG:
426      case PPC::INSERT_SUBREG:
427      case PPC::COPY_TO_REGCLASS:
428      case PPC::LVEBX:
429      case PPC::LVEHX:
430      case PPC::LVEWX:
431      case PPC::LVSL:
432      case PPC::LVSR:
433      case PPC::LVXL:
434      case PPC::STVEBX:
435      case PPC::STVEHX:
436      case PPC::STVEWX:
437      case PPC::STVXL:
438        // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
439        // by adding special handling for narrowing copies as well as
440        // widening ones.  However, I've experimented with this, and in
441        // practice we currently do not appear to use STXSDX fed by
442        // a narrowing copy from a full vector register.  Since I can't
443        // generate any useful test cases, I've left this alone for now.
444      case PPC::STXSDX:
445      case PPC::STXSSPX:
446      case PPC::VCIPHER:
447      case PPC::VCIPHERLAST:
448      case PPC::VMRGHB:
449      case PPC::VMRGHH:
450      case PPC::VMRGHW:
451      case PPC::VMRGLB:
452      case PPC::VMRGLH:
453      case PPC::VMRGLW:
454      case PPC::VMULESB:
455      case PPC::VMULESH:
456      case PPC::VMULESW:
457      case PPC::VMULEUB:
458      case PPC::VMULEUH:
459      case PPC::VMULEUW:
460      case PPC::VMULOSB:
461      case PPC::VMULOSH:
462      case PPC::VMULOSW:
463      case PPC::VMULOUB:
464      case PPC::VMULOUH:
465      case PPC::VMULOUW:
466      case PPC::VNCIPHER:
467      case PPC::VNCIPHERLAST:
468      case PPC::VPERM:
469      case PPC::VPERMXOR:
470      case PPC::VPKPX:
471      case PPC::VPKSHSS:
472      case PPC::VPKSHUS:
473      case PPC::VPKSDSS:
474      case PPC::VPKSDUS:
475      case PPC::VPKSWSS:
476      case PPC::VPKSWUS:
477      case PPC::VPKUDUM:
478      case PPC::VPKUDUS:
479      case PPC::VPKUHUM:
480      case PPC::VPKUHUS:
481      case PPC::VPKUWUM:
482      case PPC::VPKUWUS:
483      case PPC::VPMSUMB:
484      case PPC::VPMSUMD:
485      case PPC::VPMSUMH:
486      case PPC::VPMSUMW:
487      case PPC::VRLB:
488      case PPC::VRLD:
489      case PPC::VRLH:
490      case PPC::VRLW:
491      case PPC::VSBOX:
492      case PPC::VSHASIGMAD:
493      case PPC::VSHASIGMAW:
494      case PPC::VSL:
495      case PPC::VSLDOI:
496      case PPC::VSLO:
497      case PPC::VSR:
498      case PPC::VSRO:
499      case PPC::VSUM2SWS:
500      case PPC::VSUM4SBS:
501      case PPC::VSUM4SHS:
502      case PPC::VSUM4UBS:
503      case PPC::VSUMSWS:
504      case PPC::VUPKHPX:
505      case PPC::VUPKHSB:
506      case PPC::VUPKHSH:
507      case PPC::VUPKHSW:
508      case PPC::VUPKLPX:
509      case PPC::VUPKLSB:
510      case PPC::VUPKLSH:
511      case PPC::VUPKLSW:
512      case PPC::XXMRGHW:
513      case PPC::XXMRGLW:
514      // XXSLDWI could be replaced by a general permute with one of three
515      // permute control vectors (for shift values 1, 2, 3).  However,
516      // VPERM has a more restrictive register class.
517      case PPC::XXSLDWI:
518        break;
519      }
520    }
521  }
522
523  if (RelevantFunction) {
524    DEBUG(dbgs() << "Swap vector when first built\n\n");
525    dumpSwapVector();
526  }
527
528  return RelevantFunction;
529}
530
531// Add an entry to the swap vector and swap map, and make a
532// singleton equivalence class for the entry.
533int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
534                                  PPCVSXSwapEntry& SwapEntry) {
535  SwapEntry.VSEMI = MI;
536  SwapEntry.VSEId = SwapVector.size();
537  SwapVector.push_back(SwapEntry);
538  EC->insert(SwapEntry.VSEId);
539  SwapMap[MI] = SwapEntry.VSEId;
540  return SwapEntry.VSEId;
541}
542
543// This is used to find the "true" source register for an
544// XXPERMDI instruction, since MachineCSE does not handle the
545// "copy-like" operations (Copy and SubregToReg).  Returns
546// the original SrcReg unless it is the target of a copy-like
547// operation, in which case we chain backwards through all
548// such operations to the ultimate source register.  If a
549// physical register is encountered, we stop the search and
550// flag the swap entry indicated by VecIdx (the original
551// XXPERMDI) as mentioning a physical register.
552unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
553                                             unsigned VecIdx) {
554  MachineInstr *MI = MRI->getVRegDef(SrcReg);
555  if (!MI->isCopyLike())
556    return SrcReg;
557
558  unsigned CopySrcReg;
559  if (MI->isCopy())
560    CopySrcReg = MI->getOperand(1).getReg();
561  else {
562    assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
563    CopySrcReg = MI->getOperand(2).getReg();
564  }
565
566  if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) {
567    if (!isScalarVecReg(CopySrcReg))
568      SwapVector[VecIdx].MentionsPhysVR = 1;
569    return CopySrcReg;
570  }
571
572  return lookThruCopyLike(CopySrcReg, VecIdx);
573}
574
575// Generate equivalence classes for related computations (webs) by
576// def-use relationships of virtual registers.  Mention of a physical
577// register terminates the generation of equivalence classes as this
578// indicates a use of a parameter, definition of a return value, use
579// of a value returned from a call, or definition of a parameter to a
580// call.  Computations with physical register mentions are flagged
581// as such so their containing webs will not be optimized.
582void PPCVSXSwapRemoval::formWebs() {
583
584  DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
585
586  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
587
588    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
589
590    DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
591    DEBUG(MI->dump());
592
593    // It's sufficient to walk vector uses and join them to their unique
594    // definitions.  In addition, check full vector register operands
595    // for physical regs.  We exclude partial-vector register operands
596    // because we can handle them if copied to a full vector.
597    for (const MachineOperand &MO : MI->operands()) {
598      if (!MO.isReg())
599        continue;
600
601      unsigned Reg = MO.getReg();
602      if (!isVecReg(Reg) && !isScalarVecReg(Reg))
603        continue;
604
605      if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
606        if (!(MI->isCopy() && isScalarVecReg(Reg)))
607          SwapVector[EntryIdx].MentionsPhysVR = 1;
608        continue;
609      }
610
611      if (!MO.isUse())
612        continue;
613
614      MachineInstr* DefMI = MRI->getVRegDef(Reg);
615      assert(SwapMap.find(DefMI) != SwapMap.end() &&
616             "Inconsistency: def of vector reg not found in swap map!");
617      int DefIdx = SwapMap[DefMI];
618      (void)EC->unionSets(SwapVector[DefIdx].VSEId,
619                          SwapVector[EntryIdx].VSEId);
620
621      DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId,
622                             SwapVector[EntryIdx].VSEId));
623      DEBUG(dbgs() << "  Def: ");
624      DEBUG(DefMI->dump());
625    }
626  }
627}
628
629// Walk the swap vector entries looking for conditions that prevent their
630// containing computations from being optimized.  When such conditions are
631// found, mark the representative of the computation's equivalence class
632// as rejected.
633void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
634
635  DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
636
637  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
638    int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
639
640    // If representative is already rejected, don't waste further time.
641    if (SwapVector[Repr].WebRejected)
642      continue;
643
644    // Reject webs containing mentions of physical or partial registers, or
645    // containing operations that we don't know how to handle in a lane-
646    // permuted region.
647    if (SwapVector[EntryIdx].MentionsPhysVR ||
648        SwapVector[EntryIdx].MentionsPartialVR ||
649        !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
650
651      SwapVector[Repr].WebRejected = 1;
652
653      DEBUG(dbgs() <<
654            format("Web %d rejected for physreg, partial reg, or not "
655                   "swap[pable]\n", Repr));
656      DEBUG(dbgs() << "  in " << EntryIdx << ": ");
657      DEBUG(SwapVector[EntryIdx].VSEMI->dump());
658      DEBUG(dbgs() << "\n");
659    }
660
661    // Reject webs than contain swapping loads that feed something other
662    // than a swap instruction.
663    else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
664      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
665      unsigned DefReg = MI->getOperand(0).getReg();
666
667      // We skip debug instructions in the analysis.  (Note that debug
668      // location information is still maintained by this optimization
669      // because it remains on the LXVD2X and STXVD2X instructions after
670      // the XXPERMDIs are removed.)
671      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
672        int UseIdx = SwapMap[&UseMI];
673
674        if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
675            SwapVector[UseIdx].IsStore) {
676
677          SwapVector[Repr].WebRejected = 1;
678
679          DEBUG(dbgs() <<
680                format("Web %d rejected for load not feeding swap\n", Repr));
681          DEBUG(dbgs() << "  def " << EntryIdx << ": ");
682          DEBUG(MI->dump());
683          DEBUG(dbgs() << "  use " << UseIdx << ": ");
684          DEBUG(UseMI.dump());
685          DEBUG(dbgs() << "\n");
686        }
687      }
688
689    // Reject webs that contain swapping stores that are fed by something
690    // other than a swap instruction.
691    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
692      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
693      unsigned UseReg = MI->getOperand(0).getReg();
694      MachineInstr *DefMI = MRI->getVRegDef(UseReg);
695      unsigned DefReg = DefMI->getOperand(0).getReg();
696      int DefIdx = SwapMap[DefMI];
697
698      if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
699          SwapVector[DefIdx].IsStore) {
700
701        SwapVector[Repr].WebRejected = 1;
702
703        DEBUG(dbgs() <<
704              format("Web %d rejected for store not fed by swap\n", Repr));
705        DEBUG(dbgs() << "  def " << DefIdx << ": ");
706        DEBUG(DefMI->dump());
707        DEBUG(dbgs() << "  use " << EntryIdx << ": ");
708        DEBUG(MI->dump());
709        DEBUG(dbgs() << "\n");
710      }
711
712      // Ensure all uses of the register defined by DefMI feed store
713      // instructions
714      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
715        int UseIdx = SwapMap[&UseMI];
716
717        if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
718          SwapVector[Repr].WebRejected = 1;
719
720          DEBUG(dbgs() <<
721                format("Web %d rejected for swap not feeding only stores\n",
722                       Repr));
723          DEBUG(dbgs() << "  def " << " : ");
724          DEBUG(DefMI->dump());
725          DEBUG(dbgs() << "  use " << UseIdx << ": ");
726          DEBUG(SwapVector[UseIdx].VSEMI->dump());
727          DEBUG(dbgs() << "\n");
728        }
729      }
730    }
731  }
732
733  DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
734  dumpSwapVector();
735}
736
737// Walk the swap vector entries looking for swaps fed by permuting loads
738// and swaps that feed permuting stores.  If the containing computation
739// has not been marked rejected, mark each such swap for removal.
740// (Removal is delayed in case optimization has disturbed the pattern,
741// such that multiple loads feed the same swap, etc.)
742void PPCVSXSwapRemoval::markSwapsForRemoval() {
743
744  DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
745
746  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
747
748    if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
749      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
750
751      if (!SwapVector[Repr].WebRejected) {
752        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
753        unsigned DefReg = MI->getOperand(0).getReg();
754
755        for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
756          int UseIdx = SwapMap[&UseMI];
757          SwapVector[UseIdx].WillRemove = 1;
758
759          DEBUG(dbgs() << "Marking swap fed by load for removal: ");
760          DEBUG(UseMI.dump());
761        }
762      }
763
764    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
765      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
766
767      if (!SwapVector[Repr].WebRejected) {
768        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
769        unsigned UseReg = MI->getOperand(0).getReg();
770        MachineInstr *DefMI = MRI->getVRegDef(UseReg);
771        int DefIdx = SwapMap[DefMI];
772        SwapVector[DefIdx].WillRemove = 1;
773
774        DEBUG(dbgs() << "Marking swap feeding store for removal: ");
775        DEBUG(DefMI->dump());
776      }
777
778    } else if (SwapVector[EntryIdx].IsSwappable &&
779               SwapVector[EntryIdx].SpecialHandling != 0) {
780      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
781
782      if (!SwapVector[Repr].WebRejected)
783        handleSpecialSwappables(EntryIdx);
784    }
785  }
786}
787
788// Create an xxswapd instruction and insert it prior to the given point.
789// MI is used to determine basic block and debug loc information.
790// FIXME: When inserting a swap, we should check whether SrcReg is
791// defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so,
792// then instead we should generate a copy from Reg to DstReg.
793void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
794                                   MachineBasicBlock::iterator InsertPoint,
795                                   unsigned DstReg, unsigned SrcReg) {
796  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
797          TII->get(PPC::XXPERMDI), DstReg)
798    .addReg(SrcReg)
799    .addReg(SrcReg)
800    .addImm(2);
801}
802
803// The identified swap entry requires special handling to allow its
804// containing computation to be optimized.  Perform that handling
805// here.
806// FIXME: Additional opportunities will be phased in with subsequent
807// patches.
808void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
809  switch (SwapVector[EntryIdx].SpecialHandling) {
810
811  default:
812    llvm_unreachable("Unexpected special handling type");
813
814  // For splats based on an index into a vector, add N/2 modulo N
815  // to the index, where N is the number of vector elements.
816  case SHValues::SH_SPLAT: {
817    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
818    unsigned NElts;
819
820    DEBUG(dbgs() << "Changing splat: ");
821    DEBUG(MI->dump());
822
823    switch (MI->getOpcode()) {
824    default:
825      llvm_unreachable("Unexpected splat opcode");
826    case PPC::VSPLTB: NElts = 16; break;
827    case PPC::VSPLTH: NElts = 8;  break;
828    case PPC::VSPLTW:
829    case PPC::XXSPLTW: NElts = 4;  break;
830    }
831
832    unsigned EltNo;
833    if (MI->getOpcode() == PPC::XXSPLTW)
834      EltNo = MI->getOperand(2).getImm();
835    else
836      EltNo = MI->getOperand(1).getImm();
837
838    EltNo = (EltNo + NElts / 2) % NElts;
839    if (MI->getOpcode() == PPC::XXSPLTW)
840      MI->getOperand(2).setImm(EltNo);
841    else
842      MI->getOperand(1).setImm(EltNo);
843
844    DEBUG(dbgs() << "  Into: ");
845    DEBUG(MI->dump());
846    break;
847  }
848
849  // For an XXPERMDI that isn't handled otherwise, we need to
850  // reverse the order of the operands.  If the selector operand
851  // has a value of 0 or 3, we need to change it to 3 or 0,
852  // respectively.  Otherwise we should leave it alone.  (This
853  // is equivalent to reversing the two bits of the selector
854  // operand and complementing the result.)
855  case SHValues::SH_XXPERMDI: {
856    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
857
858    DEBUG(dbgs() << "Changing XXPERMDI: ");
859    DEBUG(MI->dump());
860
861    unsigned Selector = MI->getOperand(3).getImm();
862    if (Selector == 0 || Selector == 3)
863      Selector = 3 - Selector;
864    MI->getOperand(3).setImm(Selector);
865
866    unsigned Reg1 = MI->getOperand(1).getReg();
867    unsigned Reg2 = MI->getOperand(2).getReg();
868    MI->getOperand(1).setReg(Reg2);
869    MI->getOperand(2).setReg(Reg1);
870
871    DEBUG(dbgs() << "  Into: ");
872    DEBUG(MI->dump());
873    break;
874  }
875
876  // For a copy from a scalar floating-point register to a vector
877  // register, removing swaps will leave the copied value in the
878  // wrong lane.  Insert a swap following the copy to fix this.
879  case SHValues::SH_COPYWIDEN: {
880    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
881
882    DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
883    DEBUG(MI->dump());
884
885    unsigned DstReg = MI->getOperand(0).getReg();
886    const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
887    unsigned NewVReg = MRI->createVirtualRegister(DstRC);
888
889    MI->getOperand(0).setReg(NewVReg);
890    DEBUG(dbgs() << "  Into: ");
891    DEBUG(MI->dump());
892
893    auto InsertPoint = ++MachineBasicBlock::iterator(MI);
894
895    // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
896    // is copying to a VRRC, we need to be careful to avoid a register
897    // assignment problem.  In this case we must copy from VRRC to VSRC
898    // prior to the swap, and from VSRC to VRRC following the swap.
899    // Coalescing will usually remove all this mess.
900    if (DstRC == &PPC::VRRCRegClass) {
901      unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
902      unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
903
904      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
905              TII->get(PPC::COPY), VSRCTmp1)
906        .addReg(NewVReg);
907      DEBUG(std::prev(InsertPoint)->dump());
908
909      insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
910      DEBUG(std::prev(InsertPoint)->dump());
911
912      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
913              TII->get(PPC::COPY), DstReg)
914        .addReg(VSRCTmp2);
915      DEBUG(std::prev(InsertPoint)->dump());
916
917    } else {
918      insertSwap(MI, InsertPoint, DstReg, NewVReg);
919      DEBUG(std::prev(InsertPoint)->dump());
920    }
921    break;
922  }
923  }
924}
925
926// Walk the swap vector and replace each entry marked for removal with
927// a copy operation.
928bool PPCVSXSwapRemoval::removeSwaps() {
929
930  DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
931
932  bool Changed = false;
933
934  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
935    if (SwapVector[EntryIdx].WillRemove) {
936      Changed = true;
937      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
938      MachineBasicBlock *MBB = MI->getParent();
939      BuildMI(*MBB, MI, MI->getDebugLoc(),
940              TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
941        .addOperand(MI->getOperand(1));
942
943      DEBUG(dbgs() << format("Replaced %d with copy: ",
944                             SwapVector[EntryIdx].VSEId));
945      DEBUG(MI->dump());
946
947      MI->eraseFromParent();
948    }
949  }
950
951  return Changed;
952}
953
954// For debug purposes, dump the contents of the swap vector.
955void PPCVSXSwapRemoval::dumpSwapVector() {
956
957  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
958
959    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
960    int ID = SwapVector[EntryIdx].VSEId;
961
962    DEBUG(dbgs() << format("%6d", ID));
963    DEBUG(dbgs() << format("%6d", EC->getLeaderValue(ID)));
964    DEBUG(dbgs() << format(" BB#%3d", MI->getParent()->getNumber()));
965    DEBUG(dbgs() << format("  %14s  ", TII->getName(MI->getOpcode())));
966
967    if (SwapVector[EntryIdx].IsLoad)
968      DEBUG(dbgs() << "load ");
969    if (SwapVector[EntryIdx].IsStore)
970      DEBUG(dbgs() << "store ");
971    if (SwapVector[EntryIdx].IsSwap)
972      DEBUG(dbgs() << "swap ");
973    if (SwapVector[EntryIdx].MentionsPhysVR)
974      DEBUG(dbgs() << "physreg ");
975    if (SwapVector[EntryIdx].MentionsPartialVR)
976      DEBUG(dbgs() << "partialreg ");
977
978    if (SwapVector[EntryIdx].IsSwappable) {
979      DEBUG(dbgs() << "swappable ");
980      switch(SwapVector[EntryIdx].SpecialHandling) {
981      default:
982        DEBUG(dbgs() << "special:**unknown**");
983        break;
984      case SH_NONE:
985        break;
986      case SH_EXTRACT:
987        DEBUG(dbgs() << "special:extract ");
988        break;
989      case SH_INSERT:
990        DEBUG(dbgs() << "special:insert ");
991        break;
992      case SH_NOSWAP_LD:
993        DEBUG(dbgs() << "special:load ");
994        break;
995      case SH_NOSWAP_ST:
996        DEBUG(dbgs() << "special:store ");
997        break;
998      case SH_SPLAT:
999        DEBUG(dbgs() << "special:splat ");
1000        break;
1001      case SH_XXPERMDI:
1002        DEBUG(dbgs() << "special:xxpermdi ");
1003        break;
1004      case SH_COPYWIDEN:
1005        DEBUG(dbgs() << "special:copywiden ");
1006        break;
1007      }
1008    }
1009
1010    if (SwapVector[EntryIdx].WebRejected)
1011      DEBUG(dbgs() << "rejected ");
1012    if (SwapVector[EntryIdx].WillRemove)
1013      DEBUG(dbgs() << "remove ");
1014
1015    DEBUG(dbgs() << "\n");
1016
1017    // For no-asserts builds.
1018    (void)MI;
1019    (void)ID;
1020  }
1021
1022  DEBUG(dbgs() << "\n");
1023}
1024
1025} // end default namespace
1026
1027INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1028                      "PowerPC VSX Swap Removal", false, false)
1029INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1030                    "PowerPC VSX Swap Removal", false, false)
1031
1032char PPCVSXSwapRemoval::ID = 0;
1033FunctionPass*
1034llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
1035