1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/IR/CallSite.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constant.h"
27#include "llvm/IR/DIBuilder.h"
28#include "llvm/IR/DebugInfo.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Module.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Transforms/IPO.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include <set>
40#include <tuple>
41using namespace llvm;
42
43#define DEBUG_TYPE "deadargelim"
44
45STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
46STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
47STATISTIC(NumArgumentsReplacedWithUndef,
48          "Number of unread args replaced with undef");
49namespace {
50  /// DAE - The dead argument elimination pass.
51  ///
52  class DAE : public ModulePass {
53  protected:
54    // DAH uses this to specify a different ID.
55    explicit DAE(char &ID) : ModulePass(ID) {}
56
57  public:
58    static char ID; // Pass identification, replacement for typeid
59    DAE() : ModulePass(ID) {
60      initializeDAEPass(*PassRegistry::getPassRegistry());
61    }
62
63    bool runOnModule(Module &M) override {
64      if (skipModule(M))
65        return false;
66      DeadArgumentEliminationPass DAEP(ShouldHackArguments());
67      ModuleAnalysisManager DummyMAM;
68      PreservedAnalyses PA = DAEP.run(M, DummyMAM);
69      return !PA.areAllPreserved();
70    }
71
72    virtual bool ShouldHackArguments() const { return false; }
73  };
74}
75
76
77char DAE::ID = 0;
78INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
79
80namespace {
81  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
82  /// deletes arguments to functions which are external.  This is only for use
83  /// by bugpoint.
84  struct DAH : public DAE {
85    static char ID;
86    DAH() : DAE(ID) {}
87
88    bool ShouldHackArguments() const override { return true; }
89  };
90}
91
92char DAH::ID = 0;
93INITIALIZE_PASS(DAH, "deadarghaX0r",
94                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
95                false, false)
96
97/// createDeadArgEliminationPass - This pass removes arguments from functions
98/// which are not used by the body of the function.
99///
100ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
101ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
102
103/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
104/// llvm.vastart is never called, the varargs list is dead for the function.
105bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
106  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
107  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
108
109  // Ensure that the function is only directly called.
110  if (Fn.hasAddressTaken())
111    return false;
112
113  // Don't touch naked functions. The assembly might be using an argument, or
114  // otherwise rely on the frame layout in a way that this analysis will not
115  // see.
116  if (Fn.hasFnAttribute(Attribute::Naked)) {
117    return false;
118  }
119
120  // Okay, we know we can transform this function if safe.  Scan its body
121  // looking for calls marked musttail or calls to llvm.vastart.
122  for (BasicBlock &BB : Fn) {
123    for (Instruction &I : BB) {
124      CallInst *CI = dyn_cast<CallInst>(&I);
125      if (!CI)
126        continue;
127      if (CI->isMustTailCall())
128        return false;
129      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
130        if (II->getIntrinsicID() == Intrinsic::vastart)
131          return false;
132      }
133    }
134  }
135
136  // If we get here, there are no calls to llvm.vastart in the function body,
137  // remove the "..." and adjust all the calls.
138
139  // Start by computing a new prototype for the function, which is the same as
140  // the old function, but doesn't have isVarArg set.
141  FunctionType *FTy = Fn.getFunctionType();
142
143  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
144  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
145                                                Params, false);
146  unsigned NumArgs = Params.size();
147
148  // Create the new function body and insert it into the module...
149  Function *NF = Function::Create(NFTy, Fn.getLinkage());
150  NF->copyAttributesFrom(&Fn);
151  NF->setComdat(Fn.getComdat());
152  Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
153  NF->takeName(&Fn);
154
155  // Loop over all of the callers of the function, transforming the call sites
156  // to pass in a smaller number of arguments into the new function.
157  //
158  std::vector<Value*> Args;
159  for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
160    CallSite CS(*I++);
161    if (!CS)
162      continue;
163    Instruction *Call = CS.getInstruction();
164
165    // Pass all the same arguments.
166    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
167
168    // Drop any attributes that were on the vararg arguments.
169    AttributeSet PAL = CS.getAttributes();
170    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
171      SmallVector<AttributeSet, 8> AttributesVec;
172      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
173        AttributesVec.push_back(PAL.getSlotAttributes(i));
174      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
175        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
176                                                  PAL.getFnAttributes()));
177      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
178    }
179
180    SmallVector<OperandBundleDef, 1> OpBundles;
181    CS.getOperandBundlesAsDefs(OpBundles);
182
183    Instruction *New;
184    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
185      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
186                               Args, OpBundles, "", Call);
187      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
188      cast<InvokeInst>(New)->setAttributes(PAL);
189    } else {
190      New = CallInst::Create(NF, Args, OpBundles, "", Call);
191      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
192      cast<CallInst>(New)->setAttributes(PAL);
193      if (cast<CallInst>(Call)->isTailCall())
194        cast<CallInst>(New)->setTailCall();
195    }
196    New->setDebugLoc(Call->getDebugLoc());
197
198    Args.clear();
199
200    if (!Call->use_empty())
201      Call->replaceAllUsesWith(New);
202
203    New->takeName(Call);
204
205    // Finally, remove the old call from the program, reducing the use-count of
206    // F.
207    Call->eraseFromParent();
208  }
209
210  // Since we have now created the new function, splice the body of the old
211  // function right into the new function, leaving the old rotting hulk of the
212  // function empty.
213  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
214
215  // Loop over the argument list, transferring uses of the old arguments over to
216  // the new arguments, also transferring over the names as well.  While we're at
217  // it, remove the dead arguments from the DeadArguments list.
218  //
219  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
220       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
221    // Move the name and users over to the new version.
222    I->replaceAllUsesWith(&*I2);
223    I2->takeName(&*I);
224  }
225
226  // Patch the pointer to LLVM function in debug info descriptor.
227  NF->setSubprogram(Fn.getSubprogram());
228
229  // Fix up any BlockAddresses that refer to the function.
230  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
231  // Delete the bitcast that we just created, so that NF does not
232  // appear to be address-taken.
233  NF->removeDeadConstantUsers();
234  // Finally, nuke the old function.
235  Fn.eraseFromParent();
236  return true;
237}
238
239/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
240/// arguments that are unused, and changes the caller parameters to be undefined
241/// instead.
242bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
243  // We cannot change the arguments if this TU does not define the function or
244  // if the linker may choose a function body from another TU, even if the
245  // nominal linkage indicates that other copies of the function have the same
246  // semantics. In the below example, the dead load from %p may not have been
247  // eliminated from the linker-chosen copy of f, so replacing %p with undef
248  // in callers may introduce undefined behavior.
249  //
250  // define linkonce_odr void @f(i32* %p) {
251  //   %v = load i32 %p
252  //   ret void
253  // }
254  if (!Fn.hasExactDefinition())
255    return false;
256
257  // Functions with local linkage should already have been handled, except the
258  // fragile (variadic) ones which we can improve here.
259  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
260    return false;
261
262  // Don't touch naked functions. The assembly might be using an argument, or
263  // otherwise rely on the frame layout in a way that this analysis will not
264  // see.
265  if (Fn.hasFnAttribute(Attribute::Naked))
266    return false;
267
268  if (Fn.use_empty())
269    return false;
270
271  SmallVector<unsigned, 8> UnusedArgs;
272  for (Argument &Arg : Fn.args()) {
273    if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
274      UnusedArgs.push_back(Arg.getArgNo());
275  }
276
277  if (UnusedArgs.empty())
278    return false;
279
280  bool Changed = false;
281
282  for (Use &U : Fn.uses()) {
283    CallSite CS(U.getUser());
284    if (!CS || !CS.isCallee(&U))
285      continue;
286
287    // Now go through all unused args and replace them with "undef".
288    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
289      unsigned ArgNo = UnusedArgs[I];
290
291      Value *Arg = CS.getArgument(ArgNo);
292      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
293      ++NumArgumentsReplacedWithUndef;
294      Changed = true;
295    }
296  }
297
298  return Changed;
299}
300
301/// Convenience function that returns the number of return values. It returns 0
302/// for void functions and 1 for functions not returning a struct. It returns
303/// the number of struct elements for functions returning a struct.
304static unsigned NumRetVals(const Function *F) {
305  Type *RetTy = F->getReturnType();
306  if (RetTy->isVoidTy())
307    return 0;
308  else if (StructType *STy = dyn_cast<StructType>(RetTy))
309    return STy->getNumElements();
310  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
311    return ATy->getNumElements();
312  else
313    return 1;
314}
315
316/// Returns the sub-type a function will return at a given Idx. Should
317/// correspond to the result type of an ExtractValue instruction executed with
318/// just that one Idx (i.e. only top-level structure is considered).
319static Type *getRetComponentType(const Function *F, unsigned Idx) {
320  Type *RetTy = F->getReturnType();
321  assert(!RetTy->isVoidTy() && "void type has no subtype");
322
323  if (StructType *STy = dyn_cast<StructType>(RetTy))
324    return STy->getElementType(Idx);
325  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
326    return ATy->getElementType();
327  else
328    return RetTy;
329}
330
331/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
332/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
333/// liveness of Use.
334DeadArgumentEliminationPass::Liveness
335DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
336                                           UseVector &MaybeLiveUses) {
337  // We're live if our use or its Function is already marked as live.
338  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
339    return Live;
340
341  // We're maybe live otherwise, but remember that we must become live if
342  // Use becomes live.
343  MaybeLiveUses.push_back(Use);
344  return MaybeLive;
345}
346
347
348/// SurveyUse - This looks at a single use of an argument or return value
349/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
350/// if it causes the used value to become MaybeLive.
351///
352/// RetValNum is the return value number to use when this use is used in a
353/// return instruction. This is used in the recursion, you should always leave
354/// it at 0.
355DeadArgumentEliminationPass::Liveness
356DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
357                                       unsigned RetValNum) {
358    const User *V = U->getUser();
359    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
360      // The value is returned from a function. It's only live when the
361      // function's return value is live. We use RetValNum here, for the case
362      // that U is really a use of an insertvalue instruction that uses the
363      // original Use.
364      const Function *F = RI->getParent()->getParent();
365      if (RetValNum != -1U) {
366        RetOrArg Use = CreateRet(F, RetValNum);
367        // We might be live, depending on the liveness of Use.
368        return MarkIfNotLive(Use, MaybeLiveUses);
369      } else {
370        DeadArgumentEliminationPass::Liveness Result = MaybeLive;
371        for (unsigned i = 0; i < NumRetVals(F); ++i) {
372          RetOrArg Use = CreateRet(F, i);
373          // We might be live, depending on the liveness of Use. If any
374          // sub-value is live, then the entire value is considered live. This
375          // is a conservative choice, and better tracking is possible.
376          DeadArgumentEliminationPass::Liveness SubResult =
377              MarkIfNotLive(Use, MaybeLiveUses);
378          if (Result != Live)
379            Result = SubResult;
380        }
381        return Result;
382      }
383    }
384    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
385      if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
386          && IV->hasIndices())
387        // The use we are examining is inserted into an aggregate. Our liveness
388        // depends on all uses of that aggregate, but if it is used as a return
389        // value, only index at which we were inserted counts.
390        RetValNum = *IV->idx_begin();
391
392      // Note that if we are used as the aggregate operand to the insertvalue,
393      // we don't change RetValNum, but do survey all our uses.
394
395      Liveness Result = MaybeLive;
396      for (const Use &UU : IV->uses()) {
397        Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
398        if (Result == Live)
399          break;
400      }
401      return Result;
402    }
403
404    if (auto CS = ImmutableCallSite(V)) {
405      const Function *F = CS.getCalledFunction();
406      if (F) {
407        // Used in a direct call.
408
409        // The function argument is live if it is used as a bundle operand.
410        if (CS.isBundleOperand(U))
411          return Live;
412
413        // Find the argument number. We know for sure that this use is an
414        // argument, since if it was the function argument this would be an
415        // indirect call and the we know can't be looking at a value of the
416        // label type (for the invoke instruction).
417        unsigned ArgNo = CS.getArgumentNo(U);
418
419        if (ArgNo >= F->getFunctionType()->getNumParams())
420          // The value is passed in through a vararg! Must be live.
421          return Live;
422
423        assert(CS.getArgument(ArgNo)
424               == CS->getOperand(U->getOperandNo())
425               && "Argument is not where we expected it");
426
427        // Value passed to a normal call. It's only live when the corresponding
428        // argument to the called function turns out live.
429        RetOrArg Use = CreateArg(F, ArgNo);
430        return MarkIfNotLive(Use, MaybeLiveUses);
431      }
432    }
433    // Used in any other way? Value must be live.
434    return Live;
435}
436
437/// SurveyUses - This looks at all the uses of the given value
438/// Returns the Liveness deduced from the uses of this value.
439///
440/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
441/// the result is Live, MaybeLiveUses might be modified but its content should
442/// be ignored (since it might not be complete).
443DeadArgumentEliminationPass::Liveness
444DeadArgumentEliminationPass::SurveyUses(const Value *V,
445                                        UseVector &MaybeLiveUses) {
446  // Assume it's dead (which will only hold if there are no uses at all..).
447  Liveness Result = MaybeLive;
448  // Check each use.
449  for (const Use &U : V->uses()) {
450    Result = SurveyUse(&U, MaybeLiveUses);
451    if (Result == Live)
452      break;
453  }
454  return Result;
455}
456
457// SurveyFunction - This performs the initial survey of the specified function,
458// checking out whether or not it uses any of its incoming arguments or whether
459// any callers use the return value.  This fills in the LiveValues set and Uses
460// map.
461//
462// We consider arguments of non-internal functions to be intrinsically alive as
463// well as arguments to functions which have their "address taken".
464//
465void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
466  // Functions with inalloca parameters are expecting args in a particular
467  // register and memory layout.
468  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
469    MarkLive(F);
470    return;
471  }
472
473  // Don't touch naked functions. The assembly might be using an argument, or
474  // otherwise rely on the frame layout in a way that this analysis will not
475  // see.
476  if (F.hasFnAttribute(Attribute::Naked)) {
477    MarkLive(F);
478    return;
479  }
480
481  unsigned RetCount = NumRetVals(&F);
482  // Assume all return values are dead
483  typedef SmallVector<Liveness, 5> RetVals;
484  RetVals RetValLiveness(RetCount, MaybeLive);
485
486  typedef SmallVector<UseVector, 5> RetUses;
487  // These vectors map each return value to the uses that make it MaybeLive, so
488  // we can add those to the Uses map if the return value really turns out to be
489  // MaybeLive. Initialized to a list of RetCount empty lists.
490  RetUses MaybeLiveRetUses(RetCount);
491
492  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
493    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
494      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
495          != F.getFunctionType()->getReturnType()) {
496        // We don't support old style multiple return values.
497        MarkLive(F);
498        return;
499      }
500
501  if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
502    MarkLive(F);
503    return;
504  }
505
506  DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
507               << F.getName() << "\n");
508  // Keep track of the number of live retvals, so we can skip checks once all
509  // of them turn out to be live.
510  unsigned NumLiveRetVals = 0;
511  // Loop all uses of the function.
512  for (const Use &U : F.uses()) {
513    // If the function is PASSED IN as an argument, its address has been
514    // taken.
515    ImmutableCallSite CS(U.getUser());
516    if (!CS || !CS.isCallee(&U)) {
517      MarkLive(F);
518      return;
519    }
520
521    // If this use is anything other than a call site, the function is alive.
522    const Instruction *TheCall = CS.getInstruction();
523    if (!TheCall) {   // Not a direct call site?
524      MarkLive(F);
525      return;
526    }
527
528    // If we end up here, we are looking at a direct call to our function.
529
530    // Now, check how our return value(s) is/are used in this caller. Don't
531    // bother checking return values if all of them are live already.
532    if (NumLiveRetVals == RetCount)
533      continue;
534
535    // Check all uses of the return value.
536    for (const Use &U : TheCall->uses()) {
537      if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
538        // This use uses a part of our return value, survey the uses of
539        // that part and store the results for this index only.
540        unsigned Idx = *Ext->idx_begin();
541        if (RetValLiveness[Idx] != Live) {
542          RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
543          if (RetValLiveness[Idx] == Live)
544            NumLiveRetVals++;
545        }
546      } else {
547        // Used by something else than extractvalue. Survey, but assume that the
548        // result applies to all sub-values.
549        UseVector MaybeLiveAggregateUses;
550        if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
551          NumLiveRetVals = RetCount;
552          RetValLiveness.assign(RetCount, Live);
553          break;
554        } else {
555          for (unsigned i = 0; i != RetCount; ++i) {
556            if (RetValLiveness[i] != Live)
557              MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
558                                         MaybeLiveAggregateUses.end());
559          }
560        }
561      }
562    }
563  }
564
565  // Now we've inspected all callers, record the liveness of our return values.
566  for (unsigned i = 0; i != RetCount; ++i)
567    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
568
569  DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
570               << F.getName() << "\n");
571
572  // Now, check all of our arguments.
573  unsigned i = 0;
574  UseVector MaybeLiveArgUses;
575  for (Function::const_arg_iterator AI = F.arg_begin(),
576       E = F.arg_end(); AI != E; ++AI, ++i) {
577    Liveness Result;
578    if (F.getFunctionType()->isVarArg()) {
579      // Variadic functions will already have a va_arg function expanded inside
580      // them, making them potentially very sensitive to ABI changes resulting
581      // from removing arguments entirely, so don't. For example AArch64 handles
582      // register and stack HFAs very differently, and this is reflected in the
583      // IR which has already been generated.
584      Result = Live;
585    } else {
586      // See what the effect of this use is (recording any uses that cause
587      // MaybeLive in MaybeLiveArgUses).
588      Result = SurveyUses(&*AI, MaybeLiveArgUses);
589    }
590
591    // Mark the result.
592    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
593    // Clear the vector again for the next iteration.
594    MaybeLiveArgUses.clear();
595  }
596}
597
598/// MarkValue - This function marks the liveness of RA depending on L. If L is
599/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
600/// such that RA will be marked live if any use in MaybeLiveUses gets marked
601/// live later on.
602void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
603                                            const UseVector &MaybeLiveUses) {
604  switch (L) {
605    case Live: MarkLive(RA); break;
606    case MaybeLive:
607    {
608      // Note any uses of this value, so this return value can be
609      // marked live whenever one of the uses becomes live.
610      for (const auto &MaybeLiveUse : MaybeLiveUses)
611        Uses.insert(std::make_pair(MaybeLiveUse, RA));
612      break;
613    }
614  }
615}
616
617/// MarkLive - Mark the given Function as alive, meaning that it cannot be
618/// changed in any way. Additionally,
619/// mark any values that are used as this function's parameters or by its return
620/// values (according to Uses) live as well.
621void DeadArgumentEliminationPass::MarkLive(const Function &F) {
622  DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
623               << F.getName() << "\n");
624  // Mark the function as live.
625  LiveFunctions.insert(&F);
626  // Mark all arguments as live.
627  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
628    PropagateLiveness(CreateArg(&F, i));
629  // Mark all return values as live.
630  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
631    PropagateLiveness(CreateRet(&F, i));
632}
633
634/// MarkLive - Mark the given return value or argument as live. Additionally,
635/// mark any values that are used by this value (according to Uses) live as
636/// well.
637void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
638  if (LiveFunctions.count(RA.F))
639    return; // Function was already marked Live.
640
641  if (!LiveValues.insert(RA).second)
642    return; // We were already marked Live.
643
644  DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
645               << RA.getDescription() << " live\n");
646  PropagateLiveness(RA);
647}
648
649/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
650/// to any other values it uses (according to Uses).
651void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
652  // We don't use upper_bound (or equal_range) here, because our recursive call
653  // to ourselves is likely to cause the upper_bound (which is the first value
654  // not belonging to RA) to become erased and the iterator invalidated.
655  UseMap::iterator Begin = Uses.lower_bound(RA);
656  UseMap::iterator E = Uses.end();
657  UseMap::iterator I;
658  for (I = Begin; I != E && I->first == RA; ++I)
659    MarkLive(I->second);
660
661  // Erase RA from the Uses map (from the lower bound to wherever we ended up
662  // after the loop).
663  Uses.erase(Begin, I);
664}
665
666// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
667// that are not in LiveValues. Transform the function and all of the callees of
668// the function to not have these arguments and return values.
669//
670bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
671  // Don't modify fully live functions
672  if (LiveFunctions.count(F))
673    return false;
674
675  // Start by computing a new prototype for the function, which is the same as
676  // the old function, but has fewer arguments and a different return type.
677  FunctionType *FTy = F->getFunctionType();
678  std::vector<Type*> Params;
679
680  // Keep track of if we have a live 'returned' argument
681  bool HasLiveReturnedArg = false;
682
683  // Set up to build a new list of parameter attributes.
684  SmallVector<AttributeSet, 8> AttributesVec;
685  const AttributeSet &PAL = F->getAttributes();
686
687  // Remember which arguments are still alive.
688  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
689  // Construct the new parameter list from non-dead arguments. Also construct
690  // a new set of parameter attributes to correspond. Skip the first parameter
691  // attribute, since that belongs to the return value.
692  unsigned i = 0;
693  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
694       I != E; ++I, ++i) {
695    RetOrArg Arg = CreateArg(F, i);
696    if (LiveValues.erase(Arg)) {
697      Params.push_back(I->getType());
698      ArgAlive[i] = true;
699
700      // Get the original parameter attributes (skipping the first one, that is
701      // for the return value.
702      if (PAL.hasAttributes(i + 1)) {
703        AttrBuilder B(PAL, i + 1);
704        if (B.contains(Attribute::Returned))
705          HasLiveReturnedArg = true;
706        AttributesVec.
707          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
708      }
709    } else {
710      ++NumArgumentsEliminated;
711      DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " << i
712                   << " (" << I->getName() << ") from " << F->getName()
713                   << "\n");
714    }
715  }
716
717  // Find out the new return value.
718  Type *RetTy = FTy->getReturnType();
719  Type *NRetTy = nullptr;
720  unsigned RetCount = NumRetVals(F);
721
722  // -1 means unused, other numbers are the new index
723  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
724  std::vector<Type*> RetTypes;
725
726  // If there is a function with a live 'returned' argument but a dead return
727  // value, then there are two possible actions:
728  // 1) Eliminate the return value and take off the 'returned' attribute on the
729  //    argument.
730  // 2) Retain the 'returned' attribute and treat the return value (but not the
731  //    entire function) as live so that it is not eliminated.
732  //
733  // It's not clear in the general case which option is more profitable because,
734  // even in the absence of explicit uses of the return value, code generation
735  // is free to use the 'returned' attribute to do things like eliding
736  // save/restores of registers across calls. Whether or not this happens is
737  // target and ABI-specific as well as depending on the amount of register
738  // pressure, so there's no good way for an IR-level pass to figure this out.
739  //
740  // Fortunately, the only places where 'returned' is currently generated by
741  // the FE are places where 'returned' is basically free and almost always a
742  // performance win, so the second option can just be used always for now.
743  //
744  // This should be revisited if 'returned' is ever applied more liberally.
745  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
746    NRetTy = RetTy;
747  } else {
748    // Look at each of the original return values individually.
749    for (unsigned i = 0; i != RetCount; ++i) {
750      RetOrArg Ret = CreateRet(F, i);
751      if (LiveValues.erase(Ret)) {
752        RetTypes.push_back(getRetComponentType(F, i));
753        NewRetIdxs[i] = RetTypes.size() - 1;
754      } else {
755        ++NumRetValsEliminated;
756        DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing return value "
757                     << i << " from " << F->getName() << "\n");
758      }
759    }
760    if (RetTypes.size() > 1) {
761      // More than one return type? Reduce it down to size.
762      if (StructType *STy = dyn_cast<StructType>(RetTy)) {
763        // Make the new struct packed if we used to return a packed struct
764        // already.
765        NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
766      } else {
767        assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
768        NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
769      }
770    } else if (RetTypes.size() == 1)
771      // One return type? Just a simple value then, but only if we didn't use to
772      // return a struct with that simple value before.
773      NRetTy = RetTypes.front();
774    else if (RetTypes.size() == 0)
775      // No return types? Make it void, but only if we didn't use to return {}.
776      NRetTy = Type::getVoidTy(F->getContext());
777  }
778
779  assert(NRetTy && "No new return type found?");
780
781  // The existing function return attributes.
782  AttributeSet RAttrs = PAL.getRetAttributes();
783
784  // Remove any incompatible attributes, but only if we removed all return
785  // values. Otherwise, ensure that we don't have any conflicting attributes
786  // here. Currently, this should not be possible, but special handling might be
787  // required when new return value attributes are added.
788  if (NRetTy->isVoidTy())
789    RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
790                                     AttributeSet::ReturnIndex,
791                                     AttributeFuncs::typeIncompatible(NRetTy));
792  else
793    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
794             overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
795           "Return attributes no longer compatible?");
796
797  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
798    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
799
800  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
801    AttributesVec.push_back(AttributeSet::get(F->getContext(),
802                                              PAL.getFnAttributes()));
803
804  // Reconstruct the AttributesList based on the vector we constructed.
805  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
806
807  // Create the new function type based on the recomputed parameters.
808  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
809
810  // No change?
811  if (NFTy == FTy)
812    return false;
813
814  // Create the new function body and insert it into the module...
815  Function *NF = Function::Create(NFTy, F->getLinkage());
816  NF->copyAttributesFrom(F);
817  NF->setComdat(F->getComdat());
818  NF->setAttributes(NewPAL);
819  // Insert the new function before the old function, so we won't be processing
820  // it again.
821  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
822  NF->takeName(F);
823
824  // Loop over all of the callers of the function, transforming the call sites
825  // to pass in a smaller number of arguments into the new function.
826  //
827  std::vector<Value*> Args;
828  while (!F->use_empty()) {
829    CallSite CS(F->user_back());
830    Instruction *Call = CS.getInstruction();
831
832    AttributesVec.clear();
833    const AttributeSet &CallPAL = CS.getAttributes();
834
835    // The call return attributes.
836    AttributeSet RAttrs = CallPAL.getRetAttributes();
837
838    // Adjust in case the function was changed to return void.
839    RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
840                                     AttributeSet::ReturnIndex,
841                        AttributeFuncs::typeIncompatible(NF->getReturnType()));
842    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
843      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
844
845    // Declare these outside of the loops, so we can reuse them for the second
846    // loop, which loops the varargs.
847    CallSite::arg_iterator I = CS.arg_begin();
848    unsigned i = 0;
849    // Loop over those operands, corresponding to the normal arguments to the
850    // original function, and add those that are still alive.
851    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
852      if (ArgAlive[i]) {
853        Args.push_back(*I);
854        // Get original parameter attributes, but skip return attributes.
855        if (CallPAL.hasAttributes(i + 1)) {
856          AttrBuilder B(CallPAL, i + 1);
857          // If the return type has changed, then get rid of 'returned' on the
858          // call site. The alternative is to make all 'returned' attributes on
859          // call sites keep the return value alive just like 'returned'
860          // attributes on function declaration but it's less clearly a win
861          // and this is not an expected case anyway
862          if (NRetTy != RetTy && B.contains(Attribute::Returned))
863            B.removeAttribute(Attribute::Returned);
864          AttributesVec.
865            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
866        }
867      }
868
869    // Push any varargs arguments on the list. Don't forget their attributes.
870    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
871      Args.push_back(*I);
872      if (CallPAL.hasAttributes(i + 1)) {
873        AttrBuilder B(CallPAL, i + 1);
874        AttributesVec.
875          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
876      }
877    }
878
879    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
880      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
881                                                CallPAL.getFnAttributes()));
882
883    // Reconstruct the AttributesList based on the vector we constructed.
884    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
885
886    SmallVector<OperandBundleDef, 1> OpBundles;
887    CS.getOperandBundlesAsDefs(OpBundles);
888
889    Instruction *New;
890    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
891      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
892                               Args, OpBundles, "", Call->getParent());
893      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
894      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
895    } else {
896      New = CallInst::Create(NF, Args, OpBundles, "", Call);
897      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
898      cast<CallInst>(New)->setAttributes(NewCallPAL);
899      if (cast<CallInst>(Call)->isTailCall())
900        cast<CallInst>(New)->setTailCall();
901    }
902    New->setDebugLoc(Call->getDebugLoc());
903
904    Args.clear();
905
906    if (!Call->use_empty()) {
907      if (New->getType() == Call->getType()) {
908        // Return type not changed? Just replace users then.
909        Call->replaceAllUsesWith(New);
910        New->takeName(Call);
911      } else if (New->getType()->isVoidTy()) {
912        // Our return value has uses, but they will get removed later on.
913        // Replace by null for now.
914        if (!Call->getType()->isX86_MMXTy())
915          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
916      } else {
917        assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
918               "Return type changed, but not into a void. The old return type"
919               " must have been a struct or an array!");
920        Instruction *InsertPt = Call;
921        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
922          BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
923          InsertPt = &*NewEdge->getFirstInsertionPt();
924        }
925
926        // We used to return a struct or array. Instead of doing smart stuff
927        // with all the uses, we will just rebuild it using extract/insertvalue
928        // chaining and let instcombine clean that up.
929        //
930        // Start out building up our return value from undef
931        Value *RetVal = UndefValue::get(RetTy);
932        for (unsigned i = 0; i != RetCount; ++i)
933          if (NewRetIdxs[i] != -1) {
934            Value *V;
935            if (RetTypes.size() > 1)
936              // We are still returning a struct, so extract the value from our
937              // return value
938              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
939                                           InsertPt);
940            else
941              // We are now returning a single element, so just insert that
942              V = New;
943            // Insert the value at the old position
944            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
945          }
946        // Now, replace all uses of the old call instruction with the return
947        // struct we built
948        Call->replaceAllUsesWith(RetVal);
949        New->takeName(Call);
950      }
951    }
952
953    // Finally, remove the old call from the program, reducing the use-count of
954    // F.
955    Call->eraseFromParent();
956  }
957
958  // Since we have now created the new function, splice the body of the old
959  // function right into the new function, leaving the old rotting hulk of the
960  // function empty.
961  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
962
963  // Loop over the argument list, transferring uses of the old arguments over to
964  // the new arguments, also transferring over the names as well.
965  i = 0;
966  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
967       I2 = NF->arg_begin(); I != E; ++I, ++i)
968    if (ArgAlive[i]) {
969      // If this is a live argument, move the name and users over to the new
970      // version.
971      I->replaceAllUsesWith(&*I2);
972      I2->takeName(&*I);
973      ++I2;
974    } else {
975      // If this argument is dead, replace any uses of it with null constants
976      // (these are guaranteed to become unused later on).
977      if (!I->getType()->isX86_MMXTy())
978        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
979    }
980
981  // If we change the return value of the function we must rewrite any return
982  // instructions.  Check this now.
983  if (F->getReturnType() != NF->getReturnType())
984    for (BasicBlock &BB : *NF)
985      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
986        Value *RetVal;
987
988        if (NFTy->getReturnType()->isVoidTy()) {
989          RetVal = nullptr;
990        } else {
991          assert(RetTy->isStructTy() || RetTy->isArrayTy());
992          // The original return value was a struct or array, insert
993          // extractvalue/insertvalue chains to extract only the values we need
994          // to return and insert them into our new result.
995          // This does generate messy code, but we'll let it to instcombine to
996          // clean that up.
997          Value *OldRet = RI->getOperand(0);
998          // Start out building up our return value from undef
999          RetVal = UndefValue::get(NRetTy);
1000          for (unsigned i = 0; i != RetCount; ++i)
1001            if (NewRetIdxs[i] != -1) {
1002              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1003                                                              "oldret", RI);
1004              if (RetTypes.size() > 1) {
1005                // We're still returning a struct, so reinsert the value into
1006                // our new return value at the new index
1007
1008                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1009                                                 "newret", RI);
1010              } else {
1011                // We are now only returning a simple value, so just return the
1012                // extracted value.
1013                RetVal = EV;
1014              }
1015            }
1016        }
1017        // Replace the return instruction with one returning the new return
1018        // value (possibly 0 if we became void).
1019        ReturnInst::Create(F->getContext(), RetVal, RI);
1020        BB.getInstList().erase(RI);
1021      }
1022
1023  // Patch the pointer to LLVM function in debug info descriptor.
1024  NF->setSubprogram(F->getSubprogram());
1025
1026  // Now that the old function is dead, delete it.
1027  F->eraseFromParent();
1028
1029  return true;
1030}
1031
1032PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1033                                                   ModuleAnalysisManager &) {
1034  bool Changed = false;
1035
1036  // First pass: Do a simple check to see if any functions can have their "..."
1037  // removed.  We can do this if they never call va_start.  This loop cannot be
1038  // fused with the next loop, because deleting a function invalidates
1039  // information computed while surveying other functions.
1040  DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1041  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1042    Function &F = *I++;
1043    if (F.getFunctionType()->isVarArg())
1044      Changed |= DeleteDeadVarargs(F);
1045  }
1046
1047  // Second phase:loop through the module, determining which arguments are live.
1048  // We assume all arguments are dead unless proven otherwise (allowing us to
1049  // determine that dead arguments passed into recursive functions are dead).
1050  //
1051  DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1052  for (auto &F : M)
1053    SurveyFunction(F);
1054
1055  // Now, remove all dead arguments and return values from each function in
1056  // turn.
1057  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1058    // Increment now, because the function will probably get removed (ie.
1059    // replaced by a new one).
1060    Function *F = &*I++;
1061    Changed |= RemoveDeadStuffFromFunction(F);
1062  }
1063
1064  // Finally, look for any unused parameters in functions with non-local
1065  // linkage and replace the passed in parameters with undef.
1066  for (auto &F : M)
1067    Changed |= RemoveDeadArgumentsFromCallers(F);
1068
1069  if (!Changed)
1070    return PreservedAnalyses::all();
1071  return PreservedAnalyses::none();
1072}
1073