1//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11// Details of the algorithm:
12//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/DIBuilder.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/InlineAsm.h"
35#include "llvm/IR/InstVisitor.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/LLVMContext.h"
38#include "llvm/IR/MDBuilder.h"
39#include "llvm/IR/Module.h"
40#include "llvm/IR/Type.h"
41#include "llvm/MC/MCSectionMachO.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/DataTypes.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/Endian.h"
46#include "llvm/Support/SwapByteOrder.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Transforms/Instrumentation.h"
49#include "llvm/Transforms/Scalar.h"
50#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
51#include "llvm/Transforms/Utils/BasicBlockUtils.h"
52#include "llvm/Transforms/Utils/Cloning.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Transforms/Utils/ModuleUtils.h"
55#include "llvm/Transforms/Utils/PromoteMemToReg.h"
56#include <algorithm>
57#include <string>
58#include <system_error>
59
60using namespace llvm;
61
62#define DEBUG_TYPE "asan"
63
64static const uint64_t kDefaultShadowScale = 3;
65static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
66static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
67static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
68static const uint64_t kIOSShadowOffset64 = 0x120200000;
69static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
70static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
71static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
72static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
73static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
74static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
75static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
76static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
77static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
78static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
79static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
80static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
81// TODO(wwchrome): Experimental for asan Win64, may change.
82static const uint64_t kWindowsShadowOffset64 = 0x1ULL << 45;  // 32TB.
83
84static const size_t kMinStackMallocSize = 1 << 6;   // 64B
85static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
86static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
87static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
88
89static const char *const kAsanModuleCtorName = "asan.module_ctor";
90static const char *const kAsanModuleDtorName = "asan.module_dtor";
91static const uint64_t kAsanCtorAndDtorPriority = 1;
92static const char *const kAsanReportErrorTemplate = "__asan_report_";
93static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
94static const char *const kAsanUnregisterGlobalsName =
95    "__asan_unregister_globals";
96static const char *const kAsanRegisterImageGlobalsName =
97  "__asan_register_image_globals";
98static const char *const kAsanUnregisterImageGlobalsName =
99  "__asan_unregister_image_globals";
100static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
101static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
102static const char *const kAsanInitName = "__asan_init";
103static const char *const kAsanVersionCheckName =
104    "__asan_version_mismatch_check_v8";
105static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
106static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
107static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
108static const int kMaxAsanStackMallocSizeClass = 10;
109static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
110static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
111static const char *const kAsanGenPrefix = "__asan_gen_";
112static const char *const kODRGenPrefix = "__odr_asan_gen_";
113static const char *const kSanCovGenPrefix = "__sancov_gen_";
114static const char *const kAsanPoisonStackMemoryName =
115    "__asan_poison_stack_memory";
116static const char *const kAsanUnpoisonStackMemoryName =
117    "__asan_unpoison_stack_memory";
118static const char *const kAsanGlobalsRegisteredFlagName =
119    "__asan_globals_registered";
120
121static const char *const kAsanOptionDetectUseAfterReturn =
122    "__asan_option_detect_stack_use_after_return";
123
124static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
125static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
126
127// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
128static const size_t kNumberOfAccessSizes = 5;
129
130static const unsigned kAllocaRzSize = 32;
131
132// Command-line flags.
133static cl::opt<bool> ClEnableKasan(
134    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
135    cl::Hidden, cl::init(false));
136static cl::opt<bool> ClRecover(
137    "asan-recover",
138    cl::desc("Enable recovery mode (continue-after-error)."),
139    cl::Hidden, cl::init(false));
140
141// This flag may need to be replaced with -f[no-]asan-reads.
142static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
143                                       cl::desc("instrument read instructions"),
144                                       cl::Hidden, cl::init(true));
145static cl::opt<bool> ClInstrumentWrites(
146    "asan-instrument-writes", cl::desc("instrument write instructions"),
147    cl::Hidden, cl::init(true));
148static cl::opt<bool> ClInstrumentAtomics(
149    "asan-instrument-atomics",
150    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
151    cl::init(true));
152static cl::opt<bool> ClAlwaysSlowPath(
153    "asan-always-slow-path",
154    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
155    cl::init(false));
156// This flag limits the number of instructions to be instrumented
157// in any given BB. Normally, this should be set to unlimited (INT_MAX),
158// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
159// set it to 10000.
160static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
161    "asan-max-ins-per-bb", cl::init(10000),
162    cl::desc("maximal number of instructions to instrument in any given BB"),
163    cl::Hidden);
164// This flag may need to be replaced with -f[no]asan-stack.
165static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
166                             cl::Hidden, cl::init(true));
167static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
168                                      cl::desc("Check stack-use-after-return"),
169                                      cl::Hidden, cl::init(true));
170static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
171                                     cl::desc("Check stack-use-after-scope"),
172                                     cl::Hidden, cl::init(false));
173// This flag may need to be replaced with -f[no]asan-globals.
174static cl::opt<bool> ClGlobals("asan-globals",
175                               cl::desc("Handle global objects"), cl::Hidden,
176                               cl::init(true));
177static cl::opt<bool> ClInitializers("asan-initialization-order",
178                                    cl::desc("Handle C++ initializer order"),
179                                    cl::Hidden, cl::init(true));
180static cl::opt<bool> ClInvalidPointerPairs(
181    "asan-detect-invalid-pointer-pair",
182    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
183    cl::init(false));
184static cl::opt<unsigned> ClRealignStack(
185    "asan-realign-stack",
186    cl::desc("Realign stack to the value of this flag (power of two)"),
187    cl::Hidden, cl::init(32));
188static cl::opt<int> ClInstrumentationWithCallsThreshold(
189    "asan-instrumentation-with-call-threshold",
190    cl::desc(
191        "If the function being instrumented contains more than "
192        "this number of memory accesses, use callbacks instead of "
193        "inline checks (-1 means never use callbacks)."),
194    cl::Hidden, cl::init(7000));
195static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
196    "asan-memory-access-callback-prefix",
197    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
198    cl::init("__asan_"));
199static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
200                                         cl::desc("instrument dynamic allocas"),
201                                         cl::Hidden, cl::init(true));
202static cl::opt<bool> ClSkipPromotableAllocas(
203    "asan-skip-promotable-allocas",
204    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
205    cl::init(true));
206
207// These flags allow to change the shadow mapping.
208// The shadow mapping looks like
209//    Shadow = (Mem >> scale) + offset
210static cl::opt<int> ClMappingScale("asan-mapping-scale",
211                                   cl::desc("scale of asan shadow mapping"),
212                                   cl::Hidden, cl::init(0));
213static cl::opt<unsigned long long> ClMappingOffset(
214    "asan-mapping-offset",
215    cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
216    cl::init(0));
217
218// Optimization flags. Not user visible, used mostly for testing
219// and benchmarking the tool.
220static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
221                           cl::Hidden, cl::init(true));
222static cl::opt<bool> ClOptSameTemp(
223    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
224    cl::Hidden, cl::init(true));
225static cl::opt<bool> ClOptGlobals("asan-opt-globals",
226                                  cl::desc("Don't instrument scalar globals"),
227                                  cl::Hidden, cl::init(true));
228static cl::opt<bool> ClOptStack(
229    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
230    cl::Hidden, cl::init(false));
231
232static cl::opt<bool> ClDynamicAllocaStack(
233    "asan-stack-dynamic-alloca",
234    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
235    cl::init(true));
236
237static cl::opt<uint32_t> ClForceExperiment(
238    "asan-force-experiment",
239    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
240    cl::init(0));
241
242static cl::opt<bool>
243    ClUsePrivateAliasForGlobals("asan-use-private-alias",
244                                cl::desc("Use private aliases for global"
245                                         " variables"),
246                                cl::Hidden, cl::init(false));
247
248static cl::opt<bool>
249    ClUseMachOGlobalsSection("asan-globals-live-support",
250                             cl::desc("Use linker features to support dead "
251                                      "code stripping of globals "
252                                      "(Mach-O only)"),
253                             cl::Hidden, cl::init(false));
254
255// Debug flags.
256static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
257                            cl::init(0));
258static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
259                                 cl::Hidden, cl::init(0));
260static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
261                                        cl::desc("Debug func"));
262static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
263                               cl::Hidden, cl::init(-1));
264static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
265                               cl::Hidden, cl::init(-1));
266
267STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
268STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
269STATISTIC(NumOptimizedAccessesToGlobalVar,
270          "Number of optimized accesses to global vars");
271STATISTIC(NumOptimizedAccessesToStackVar,
272          "Number of optimized accesses to stack vars");
273
274namespace {
275/// Frontend-provided metadata for source location.
276struct LocationMetadata {
277  StringRef Filename;
278  int LineNo;
279  int ColumnNo;
280
281  LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
282
283  bool empty() const { return Filename.empty(); }
284
285  void parse(MDNode *MDN) {
286    assert(MDN->getNumOperands() == 3);
287    MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
288    Filename = DIFilename->getString();
289    LineNo =
290        mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
291    ColumnNo =
292        mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
293  }
294};
295
296/// Frontend-provided metadata for global variables.
297class GlobalsMetadata {
298 public:
299  struct Entry {
300    Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
301    LocationMetadata SourceLoc;
302    StringRef Name;
303    bool IsDynInit;
304    bool IsBlacklisted;
305  };
306
307  GlobalsMetadata() : inited_(false) {}
308
309  void reset() {
310    inited_ = false;
311    Entries.clear();
312  }
313
314  void init(Module &M) {
315    assert(!inited_);
316    inited_ = true;
317    NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
318    if (!Globals) return;
319    for (auto MDN : Globals->operands()) {
320      // Metadata node contains the global and the fields of "Entry".
321      assert(MDN->getNumOperands() == 5);
322      auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
323      // The optimizer may optimize away a global entirely.
324      if (!GV) continue;
325      // We can already have an entry for GV if it was merged with another
326      // global.
327      Entry &E = Entries[GV];
328      if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
329        E.SourceLoc.parse(Loc);
330      if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
331        E.Name = Name->getString();
332      ConstantInt *IsDynInit =
333          mdconst::extract<ConstantInt>(MDN->getOperand(3));
334      E.IsDynInit |= IsDynInit->isOne();
335      ConstantInt *IsBlacklisted =
336          mdconst::extract<ConstantInt>(MDN->getOperand(4));
337      E.IsBlacklisted |= IsBlacklisted->isOne();
338    }
339  }
340
341  /// Returns metadata entry for a given global.
342  Entry get(GlobalVariable *G) const {
343    auto Pos = Entries.find(G);
344    return (Pos != Entries.end()) ? Pos->second : Entry();
345  }
346
347 private:
348  bool inited_;
349  DenseMap<GlobalVariable *, Entry> Entries;
350};
351
352/// This struct defines the shadow mapping using the rule:
353///   shadow = (mem >> Scale) ADD-or-OR Offset.
354struct ShadowMapping {
355  int Scale;
356  uint64_t Offset;
357  bool OrShadowOffset;
358};
359
360static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
361                                      bool IsKasan) {
362  bool IsAndroid = TargetTriple.isAndroid();
363  bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
364  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
365  bool IsLinux = TargetTriple.isOSLinux();
366  bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
367                 TargetTriple.getArch() == llvm::Triple::ppc64le;
368  bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz;
369  bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86;
370  bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
371  bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
372                  TargetTriple.getArch() == llvm::Triple::mipsel;
373  bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
374                  TargetTriple.getArch() == llvm::Triple::mips64el;
375  bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
376  bool IsWindows = TargetTriple.isOSWindows();
377
378  ShadowMapping Mapping;
379
380  if (LongSize == 32) {
381    // Android is always PIE, which means that the beginning of the address
382    // space is always available.
383    if (IsAndroid)
384      Mapping.Offset = 0;
385    else if (IsMIPS32)
386      Mapping.Offset = kMIPS32_ShadowOffset32;
387    else if (IsFreeBSD)
388      Mapping.Offset = kFreeBSD_ShadowOffset32;
389    else if (IsIOS)
390      // If we're targeting iOS and x86, the binary is built for iOS simulator.
391      Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
392    else if (IsWindows)
393      Mapping.Offset = kWindowsShadowOffset32;
394    else
395      Mapping.Offset = kDefaultShadowOffset32;
396  } else {  // LongSize == 64
397    if (IsPPC64)
398      Mapping.Offset = kPPC64_ShadowOffset64;
399    else if (IsSystemZ)
400      Mapping.Offset = kSystemZ_ShadowOffset64;
401    else if (IsFreeBSD)
402      Mapping.Offset = kFreeBSD_ShadowOffset64;
403    else if (IsLinux && IsX86_64) {
404      if (IsKasan)
405        Mapping.Offset = kLinuxKasan_ShadowOffset64;
406      else
407        Mapping.Offset = kSmallX86_64ShadowOffset;
408    } else if (IsWindows && IsX86_64) {
409      Mapping.Offset = kWindowsShadowOffset64;
410    } else if (IsMIPS64)
411      Mapping.Offset = kMIPS64_ShadowOffset64;
412    else if (IsIOS)
413      // If we're targeting iOS and x86, the binary is built for iOS simulator.
414      Mapping.Offset = IsX86_64 ? kIOSSimShadowOffset64 : kIOSShadowOffset64;
415    else if (IsAArch64)
416      Mapping.Offset = kAArch64_ShadowOffset64;
417    else
418      Mapping.Offset = kDefaultShadowOffset64;
419  }
420
421  Mapping.Scale = kDefaultShadowScale;
422  if (ClMappingScale.getNumOccurrences() > 0) {
423    Mapping.Scale = ClMappingScale;
424  }
425
426  if (ClMappingOffset.getNumOccurrences() > 0) {
427    Mapping.Offset = ClMappingOffset;
428  }
429
430  // OR-ing shadow offset if more efficient (at least on x86) if the offset
431  // is a power of two, but on ppc64 we have to use add since the shadow
432  // offset is not necessary 1/8-th of the address space.  On SystemZ,
433  // we could OR the constant in a single instruction, but it's more
434  // efficient to load it once and use indexed addressing.
435  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ
436                           && !(Mapping.Offset & (Mapping.Offset - 1));
437
438  return Mapping;
439}
440
441static size_t RedzoneSizeForScale(int MappingScale) {
442  // Redzone used for stack and globals is at least 32 bytes.
443  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
444  return std::max(32U, 1U << MappingScale);
445}
446
447/// AddressSanitizer: instrument the code in module to find memory bugs.
448struct AddressSanitizer : public FunctionPass {
449  explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
450                            bool UseAfterScope = false)
451      : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
452        Recover(Recover || ClRecover),
453        UseAfterScope(UseAfterScope || ClUseAfterScope) {
454    initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
455  }
456  const char *getPassName() const override {
457    return "AddressSanitizerFunctionPass";
458  }
459  void getAnalysisUsage(AnalysisUsage &AU) const override {
460    AU.addRequired<DominatorTreeWrapperPass>();
461    AU.addRequired<TargetLibraryInfoWrapperPass>();
462  }
463  uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
464    uint64_t ArraySize = 1;
465    if (AI->isArrayAllocation()) {
466      ConstantInt *CI = dyn_cast<ConstantInt>(AI->getArraySize());
467      assert(CI && "non-constant array size");
468      ArraySize = CI->getZExtValue();
469    }
470    Type *Ty = AI->getAllocatedType();
471    uint64_t SizeInBytes =
472        AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
473    return SizeInBytes * ArraySize;
474  }
475  /// Check if we want (and can) handle this alloca.
476  bool isInterestingAlloca(AllocaInst &AI);
477
478  /// If it is an interesting memory access, return the PointerOperand
479  /// and set IsWrite/Alignment. Otherwise return nullptr.
480  Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
481                                   uint64_t *TypeSize, unsigned *Alignment);
482  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
483                     bool UseCalls, const DataLayout &DL);
484  void instrumentPointerComparisonOrSubtraction(Instruction *I);
485  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
486                         Value *Addr, uint32_t TypeSize, bool IsWrite,
487                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
488  void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
489                                        uint32_t TypeSize, bool IsWrite,
490                                        Value *SizeArgument, bool UseCalls,
491                                        uint32_t Exp);
492  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
493                           Value *ShadowValue, uint32_t TypeSize);
494  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
495                                 bool IsWrite, size_t AccessSizeIndex,
496                                 Value *SizeArgument, uint32_t Exp);
497  void instrumentMemIntrinsic(MemIntrinsic *MI);
498  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
499  bool runOnFunction(Function &F) override;
500  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
501  void markEscapedLocalAllocas(Function &F);
502  bool doInitialization(Module &M) override;
503  bool doFinalization(Module &M) override;
504  static char ID;  // Pass identification, replacement for typeid
505
506  DominatorTree &getDominatorTree() const { return *DT; }
507
508 private:
509  void initializeCallbacks(Module &M);
510
511  bool LooksLikeCodeInBug11395(Instruction *I);
512  bool GlobalIsLinkerInitialized(GlobalVariable *G);
513  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
514                    uint64_t TypeSize) const;
515
516  /// Helper to cleanup per-function state.
517  struct FunctionStateRAII {
518    AddressSanitizer *Pass;
519    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
520      assert(Pass->ProcessedAllocas.empty() &&
521             "last pass forgot to clear cache");
522    }
523    ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); }
524  };
525
526  LLVMContext *C;
527  Triple TargetTriple;
528  int LongSize;
529  bool CompileKernel;
530  bool Recover;
531  bool UseAfterScope;
532  Type *IntptrTy;
533  ShadowMapping Mapping;
534  DominatorTree *DT;
535  Function *AsanCtorFunction = nullptr;
536  Function *AsanInitFunction = nullptr;
537  Function *AsanHandleNoReturnFunc;
538  Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
539  // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
540  Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
541  Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
542  // This array is indexed by AccessIsWrite and Experiment.
543  Function *AsanErrorCallbackSized[2][2];
544  Function *AsanMemoryAccessCallbackSized[2][2];
545  Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
546  InlineAsm *EmptyAsm;
547  GlobalsMetadata GlobalsMD;
548  DenseMap<AllocaInst *, bool> ProcessedAllocas;
549
550  friend struct FunctionStackPoisoner;
551};
552
553class AddressSanitizerModule : public ModulePass {
554 public:
555  explicit AddressSanitizerModule(bool CompileKernel = false,
556                                  bool Recover = false)
557      : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
558        Recover(Recover || ClRecover) {}
559  bool runOnModule(Module &M) override;
560  static char ID;  // Pass identification, replacement for typeid
561  const char *getPassName() const override { return "AddressSanitizerModule"; }
562
563 private:
564  void initializeCallbacks(Module &M);
565
566  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
567  bool ShouldInstrumentGlobal(GlobalVariable *G);
568  bool ShouldUseMachOGlobalsSection() const;
569  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
570  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
571  size_t MinRedzoneSizeForGlobal() const {
572    return RedzoneSizeForScale(Mapping.Scale);
573  }
574
575  GlobalsMetadata GlobalsMD;
576  bool CompileKernel;
577  bool Recover;
578  Type *IntptrTy;
579  LLVMContext *C;
580  Triple TargetTriple;
581  ShadowMapping Mapping;
582  Function *AsanPoisonGlobals;
583  Function *AsanUnpoisonGlobals;
584  Function *AsanRegisterGlobals;
585  Function *AsanUnregisterGlobals;
586  Function *AsanRegisterImageGlobals;
587  Function *AsanUnregisterImageGlobals;
588};
589
590// Stack poisoning does not play well with exception handling.
591// When an exception is thrown, we essentially bypass the code
592// that unpoisones the stack. This is why the run-time library has
593// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
594// stack in the interceptor. This however does not work inside the
595// actual function which catches the exception. Most likely because the
596// compiler hoists the load of the shadow value somewhere too high.
597// This causes asan to report a non-existing bug on 453.povray.
598// It sounds like an LLVM bug.
599struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
600  Function &F;
601  AddressSanitizer &ASan;
602  DIBuilder DIB;
603  LLVMContext *C;
604  Type *IntptrTy;
605  Type *IntptrPtrTy;
606  ShadowMapping Mapping;
607
608  SmallVector<AllocaInst *, 16> AllocaVec;
609  SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec;
610  SmallVector<Instruction *, 8> RetVec;
611  unsigned StackAlignment;
612
613  Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
614      *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
615  Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
616  Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
617
618  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
619  struct AllocaPoisonCall {
620    IntrinsicInst *InsBefore;
621    AllocaInst *AI;
622    uint64_t Size;
623    bool DoPoison;
624  };
625  SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
626
627  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
628  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
629  AllocaInst *DynamicAllocaLayout = nullptr;
630  IntrinsicInst *LocalEscapeCall = nullptr;
631
632  // Maps Value to an AllocaInst from which the Value is originated.
633  typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
634  AllocaForValueMapTy AllocaForValue;
635
636  bool HasNonEmptyInlineAsm = false;
637  bool HasReturnsTwiceCall = false;
638  std::unique_ptr<CallInst> EmptyInlineAsm;
639
640  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
641      : F(F),
642        ASan(ASan),
643        DIB(*F.getParent(), /*AllowUnresolved*/ false),
644        C(ASan.C),
645        IntptrTy(ASan.IntptrTy),
646        IntptrPtrTy(PointerType::get(IntptrTy, 0)),
647        Mapping(ASan.Mapping),
648        StackAlignment(1 << Mapping.Scale),
649        EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
650
651  bool runOnFunction() {
652    if (!ClStack) return false;
653    // Collect alloca, ret, lifetime instructions etc.
654    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
655
656    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
657
658    initializeCallbacks(*F.getParent());
659
660    poisonStack();
661
662    if (ClDebugStack) {
663      DEBUG(dbgs() << F);
664    }
665    return true;
666  }
667
668  // Finds all Alloca instructions and puts
669  // poisoned red zones around all of them.
670  // Then unpoison everything back before the function returns.
671  void poisonStack();
672
673  void createDynamicAllocasInitStorage();
674
675  // ----------------------- Visitors.
676  /// \brief Collect all Ret instructions.
677  void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
678
679  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
680                                        Value *SavedStack) {
681    IRBuilder<> IRB(InstBefore);
682    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
683    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
684    // need to adjust extracted SP to compute the address of the most recent
685    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
686    // this purpose.
687    if (!isa<ReturnInst>(InstBefore)) {
688      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
689          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
690          {IntptrTy});
691
692      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
693
694      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
695                                     DynamicAreaOffset);
696    }
697
698    IRB.CreateCall(AsanAllocasUnpoisonFunc,
699                   {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
700  }
701
702  // Unpoison dynamic allocas redzones.
703  void unpoisonDynamicAllocas() {
704    for (auto &Ret : RetVec)
705      unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
706
707    for (auto &StackRestoreInst : StackRestoreVec)
708      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
709                                       StackRestoreInst->getOperand(0));
710  }
711
712  // Deploy and poison redzones around dynamic alloca call. To do this, we
713  // should replace this call with another one with changed parameters and
714  // replace all its uses with new address, so
715  //   addr = alloca type, old_size, align
716  // is replaced by
717  //   new_size = (old_size + additional_size) * sizeof(type)
718  //   tmp = alloca i8, new_size, max(align, 32)
719  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
720  // Additional_size is added to make new memory allocation contain not only
721  // requested memory, but also left, partial and right redzones.
722  void handleDynamicAllocaCall(AllocaInst *AI);
723
724  /// \brief Collect Alloca instructions we want (and can) handle.
725  void visitAllocaInst(AllocaInst &AI) {
726    if (!ASan.isInterestingAlloca(AI)) {
727      if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI);
728      return;
729    }
730
731    StackAlignment = std::max(StackAlignment, AI.getAlignment());
732    if (!AI.isStaticAlloca())
733      DynamicAllocaVec.push_back(&AI);
734    else
735      AllocaVec.push_back(&AI);
736  }
737
738  /// \brief Collect lifetime intrinsic calls to check for use-after-scope
739  /// errors.
740  void visitIntrinsicInst(IntrinsicInst &II) {
741    Intrinsic::ID ID = II.getIntrinsicID();
742    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
743    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
744    if (!ASan.UseAfterScope)
745      return;
746    if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
747      return;
748    // Found lifetime intrinsic, add ASan instrumentation if necessary.
749    ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
750    // If size argument is undefined, don't do anything.
751    if (Size->isMinusOne()) return;
752    // Check that size doesn't saturate uint64_t and can
753    // be stored in IntptrTy.
754    const uint64_t SizeValue = Size->getValue().getLimitedValue();
755    if (SizeValue == ~0ULL ||
756        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
757      return;
758    // Find alloca instruction that corresponds to llvm.lifetime argument.
759    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
760    if (!AI || !ASan.isInterestingAlloca(*AI))
761      return;
762    bool DoPoison = (ID == Intrinsic::lifetime_end);
763    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
764    AllocaPoisonCallVec.push_back(APC);
765  }
766
767  void visitCallSite(CallSite CS) {
768    Instruction *I = CS.getInstruction();
769    if (CallInst *CI = dyn_cast<CallInst>(I)) {
770      HasNonEmptyInlineAsm |=
771          CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
772      HasReturnsTwiceCall |= CI->canReturnTwice();
773    }
774  }
775
776  // ---------------------- Helpers.
777  void initializeCallbacks(Module &M);
778
779  bool doesDominateAllExits(const Instruction *I) const {
780    for (auto Ret : RetVec) {
781      if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
782    }
783    return true;
784  }
785
786  /// Finds alloca where the value comes from.
787  AllocaInst *findAllocaForValue(Value *V);
788  void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
789                      Value *ShadowBase, bool DoPoison);
790  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
791
792  void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
793                                          int Size);
794  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
795                               bool Dynamic);
796  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
797                     Instruction *ThenTerm, Value *ValueIfFalse);
798};
799
800} // anonymous namespace
801
802char AddressSanitizer::ID = 0;
803INITIALIZE_PASS_BEGIN(
804    AddressSanitizer, "asan",
805    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
806    false)
807INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
808INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
809INITIALIZE_PASS_END(
810    AddressSanitizer, "asan",
811    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
812    false)
813FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
814                                                       bool Recover,
815                                                       bool UseAfterScope) {
816  assert(!CompileKernel || Recover);
817  return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
818}
819
820char AddressSanitizerModule::ID = 0;
821INITIALIZE_PASS(
822    AddressSanitizerModule, "asan-module",
823    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
824    "ModulePass",
825    false, false)
826ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
827                                                   bool Recover) {
828  assert(!CompileKernel || Recover);
829  return new AddressSanitizerModule(CompileKernel, Recover);
830}
831
832static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
833  size_t Res = countTrailingZeros(TypeSize / 8);
834  assert(Res < kNumberOfAccessSizes);
835  return Res;
836}
837
838// \brief Create a constant for Str so that we can pass it to the run-time lib.
839static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
840                                                    bool AllowMerging) {
841  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
842  // We use private linkage for module-local strings. If they can be merged
843  // with another one, we set the unnamed_addr attribute.
844  GlobalVariable *GV =
845      new GlobalVariable(M, StrConst->getType(), true,
846                         GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
847  if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
848  GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
849  return GV;
850}
851
852/// \brief Create a global describing a source location.
853static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
854                                                       LocationMetadata MD) {
855  Constant *LocData[] = {
856      createPrivateGlobalForString(M, MD.Filename, true),
857      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
858      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
859  };
860  auto LocStruct = ConstantStruct::getAnon(LocData);
861  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
862                               GlobalValue::PrivateLinkage, LocStruct,
863                               kAsanGenPrefix);
864  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
865  return GV;
866}
867
868/// \brief Check if \p G has been created by a trusted compiler pass.
869static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
870  // Do not instrument asan globals.
871  if (G->getName().startswith(kAsanGenPrefix) ||
872      G->getName().startswith(kSanCovGenPrefix) ||
873      G->getName().startswith(kODRGenPrefix))
874    return true;
875
876  // Do not instrument gcov counter arrays.
877  if (G->getName() == "__llvm_gcov_ctr")
878    return true;
879
880  return false;
881}
882
883Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
884  // Shadow >> scale
885  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
886  if (Mapping.Offset == 0) return Shadow;
887  // (Shadow >> scale) | offset
888  if (Mapping.OrShadowOffset)
889    return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
890  else
891    return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
892}
893
894// Instrument memset/memmove/memcpy
895void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
896  IRBuilder<> IRB(MI);
897  if (isa<MemTransferInst>(MI)) {
898    IRB.CreateCall(
899        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
900        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
901         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
902         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
903  } else if (isa<MemSetInst>(MI)) {
904    IRB.CreateCall(
905        AsanMemset,
906        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
907         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
908         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
909  }
910  MI->eraseFromParent();
911}
912
913/// Check if we want (and can) handle this alloca.
914bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
915  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
916
917  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
918    return PreviouslySeenAllocaInfo->getSecond();
919
920  bool IsInteresting =
921      (AI.getAllocatedType()->isSized() &&
922       // alloca() may be called with 0 size, ignore it.
923       ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(&AI) > 0) &&
924       // We are only interested in allocas not promotable to registers.
925       // Promotable allocas are common under -O0.
926       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
927       // inalloca allocas are not treated as static, and we don't want
928       // dynamic alloca instrumentation for them as well.
929       !AI.isUsedWithInAlloca());
930
931  ProcessedAllocas[&AI] = IsInteresting;
932  return IsInteresting;
933}
934
935/// If I is an interesting memory access, return the PointerOperand
936/// and set IsWrite/Alignment. Otherwise return nullptr.
937Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
938                                                   bool *IsWrite,
939                                                   uint64_t *TypeSize,
940                                                   unsigned *Alignment) {
941  // Skip memory accesses inserted by another instrumentation.
942  if (I->getMetadata("nosanitize")) return nullptr;
943
944  Value *PtrOperand = nullptr;
945  const DataLayout &DL = I->getModule()->getDataLayout();
946  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
947    if (!ClInstrumentReads) return nullptr;
948    *IsWrite = false;
949    *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
950    *Alignment = LI->getAlignment();
951    PtrOperand = LI->getPointerOperand();
952  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
953    if (!ClInstrumentWrites) return nullptr;
954    *IsWrite = true;
955    *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
956    *Alignment = SI->getAlignment();
957    PtrOperand = SI->getPointerOperand();
958  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
959    if (!ClInstrumentAtomics) return nullptr;
960    *IsWrite = true;
961    *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
962    *Alignment = 0;
963    PtrOperand = RMW->getPointerOperand();
964  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
965    if (!ClInstrumentAtomics) return nullptr;
966    *IsWrite = true;
967    *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
968    *Alignment = 0;
969    PtrOperand = XCHG->getPointerOperand();
970  }
971
972  // Do not instrument acesses from different address spaces; we cannot deal
973  // with them.
974  if (PtrOperand) {
975    Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
976    if (PtrTy->getPointerAddressSpace() != 0)
977      return nullptr;
978  }
979
980  // Treat memory accesses to promotable allocas as non-interesting since they
981  // will not cause memory violations. This greatly speeds up the instrumented
982  // executable at -O0.
983  if (ClSkipPromotableAllocas)
984    if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
985      return isInterestingAlloca(*AI) ? AI : nullptr;
986
987  return PtrOperand;
988}
989
990static bool isPointerOperand(Value *V) {
991  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
992}
993
994// This is a rough heuristic; it may cause both false positives and
995// false negatives. The proper implementation requires cooperation with
996// the frontend.
997static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
998  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
999    if (!Cmp->isRelational()) return false;
1000  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1001    if (BO->getOpcode() != Instruction::Sub) return false;
1002  } else {
1003    return false;
1004  }
1005  return isPointerOperand(I->getOperand(0)) &&
1006         isPointerOperand(I->getOperand(1));
1007}
1008
1009bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1010  // If a global variable does not have dynamic initialization we don't
1011  // have to instrument it.  However, if a global does not have initializer
1012  // at all, we assume it has dynamic initializer (in other TU).
1013  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1014}
1015
1016void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1017    Instruction *I) {
1018  IRBuilder<> IRB(I);
1019  Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1020  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1021  for (Value *&i : Param) {
1022    if (i->getType()->isPointerTy())
1023      i = IRB.CreatePointerCast(i, IntptrTy);
1024  }
1025  IRB.CreateCall(F, Param);
1026}
1027
1028void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1029                                     Instruction *I, bool UseCalls,
1030                                     const DataLayout &DL) {
1031  bool IsWrite = false;
1032  unsigned Alignment = 0;
1033  uint64_t TypeSize = 0;
1034  Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
1035  assert(Addr);
1036
1037  // Optimization experiments.
1038  // The experiments can be used to evaluate potential optimizations that remove
1039  // instrumentation (assess false negatives). Instead of completely removing
1040  // some instrumentation, you set Exp to a non-zero value (mask of optimization
1041  // experiments that want to remove instrumentation of this instruction).
1042  // If Exp is non-zero, this pass will emit special calls into runtime
1043  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1044  // make runtime terminate the program in a special way (with a different
1045  // exit status). Then you run the new compiler on a buggy corpus, collect
1046  // the special terminations (ideally, you don't see them at all -- no false
1047  // negatives) and make the decision on the optimization.
1048  uint32_t Exp = ClForceExperiment;
1049
1050  if (ClOpt && ClOptGlobals) {
1051    // If initialization order checking is disabled, a simple access to a
1052    // dynamically initialized global is always valid.
1053    GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1054    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1055        isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1056      NumOptimizedAccessesToGlobalVar++;
1057      return;
1058    }
1059  }
1060
1061  if (ClOpt && ClOptStack) {
1062    // A direct inbounds access to a stack variable is always valid.
1063    if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1064        isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1065      NumOptimizedAccessesToStackVar++;
1066      return;
1067    }
1068  }
1069
1070  if (IsWrite)
1071    NumInstrumentedWrites++;
1072  else
1073    NumInstrumentedReads++;
1074
1075  unsigned Granularity = 1 << Mapping.Scale;
1076  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1077  // if the data is properly aligned.
1078  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1079       TypeSize == 128) &&
1080      (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1081    return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
1082                             Exp);
1083  instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
1084                                   UseCalls, Exp);
1085}
1086
1087Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1088                                                 Value *Addr, bool IsWrite,
1089                                                 size_t AccessSizeIndex,
1090                                                 Value *SizeArgument,
1091                                                 uint32_t Exp) {
1092  IRBuilder<> IRB(InsertBefore);
1093  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1094  CallInst *Call = nullptr;
1095  if (SizeArgument) {
1096    if (Exp == 0)
1097      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1098                            {Addr, SizeArgument});
1099    else
1100      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1101                            {Addr, SizeArgument, ExpVal});
1102  } else {
1103    if (Exp == 0)
1104      Call =
1105          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1106    else
1107      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1108                            {Addr, ExpVal});
1109  }
1110
1111  // We don't do Call->setDoesNotReturn() because the BB already has
1112  // UnreachableInst at the end.
1113  // This EmptyAsm is required to avoid callback merge.
1114  IRB.CreateCall(EmptyAsm, {});
1115  return Call;
1116}
1117
1118Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1119                                           Value *ShadowValue,
1120                                           uint32_t TypeSize) {
1121  size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1122  // Addr & (Granularity - 1)
1123  Value *LastAccessedByte =
1124      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1125  // (Addr & (Granularity - 1)) + size - 1
1126  if (TypeSize / 8 > 1)
1127    LastAccessedByte = IRB.CreateAdd(
1128        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1129  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1130  LastAccessedByte =
1131      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1132  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1133  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1134}
1135
1136void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1137                                         Instruction *InsertBefore, Value *Addr,
1138                                         uint32_t TypeSize, bool IsWrite,
1139                                         Value *SizeArgument, bool UseCalls,
1140                                         uint32_t Exp) {
1141  IRBuilder<> IRB(InsertBefore);
1142  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1143  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1144
1145  if (UseCalls) {
1146    if (Exp == 0)
1147      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1148                     AddrLong);
1149    else
1150      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1151                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1152    return;
1153  }
1154
1155  Type *ShadowTy =
1156      IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1157  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1158  Value *ShadowPtr = memToShadow(AddrLong, IRB);
1159  Value *CmpVal = Constant::getNullValue(ShadowTy);
1160  Value *ShadowValue =
1161      IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1162
1163  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1164  size_t Granularity = 1ULL << Mapping.Scale;
1165  TerminatorInst *CrashTerm = nullptr;
1166
1167  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1168    // We use branch weights for the slow path check, to indicate that the slow
1169    // path is rarely taken. This seems to be the case for SPEC benchmarks.
1170    TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1171        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1172    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1173    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1174    IRB.SetInsertPoint(CheckTerm);
1175    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1176    if (Recover) {
1177      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1178    } else {
1179      BasicBlock *CrashBlock =
1180        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1181      CrashTerm = new UnreachableInst(*C, CrashBlock);
1182      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1183      ReplaceInstWithInst(CheckTerm, NewTerm);
1184    }
1185  } else {
1186    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1187  }
1188
1189  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1190                                         AccessSizeIndex, SizeArgument, Exp);
1191  Crash->setDebugLoc(OrigIns->getDebugLoc());
1192}
1193
1194// Instrument unusual size or unusual alignment.
1195// We can not do it with a single check, so we do 1-byte check for the first
1196// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1197// to report the actual access size.
1198void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1199    Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
1200    Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1201  IRBuilder<> IRB(I);
1202  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1203  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1204  if (UseCalls) {
1205    if (Exp == 0)
1206      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1207                     {AddrLong, Size});
1208    else
1209      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1210                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1211  } else {
1212    Value *LastByte = IRB.CreateIntToPtr(
1213        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1214        Addr->getType());
1215    instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
1216    instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
1217  }
1218}
1219
1220void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1221                                                  GlobalValue *ModuleName) {
1222  // Set up the arguments to our poison/unpoison functions.
1223  IRBuilder<> IRB(&GlobalInit.front(),
1224                  GlobalInit.front().getFirstInsertionPt());
1225
1226  // Add a call to poison all external globals before the given function starts.
1227  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1228  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1229
1230  // Add calls to unpoison all globals before each return instruction.
1231  for (auto &BB : GlobalInit.getBasicBlockList())
1232    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1233      CallInst::Create(AsanUnpoisonGlobals, "", RI);
1234}
1235
1236void AddressSanitizerModule::createInitializerPoisonCalls(
1237    Module &M, GlobalValue *ModuleName) {
1238  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1239
1240  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1241  for (Use &OP : CA->operands()) {
1242    if (isa<ConstantAggregateZero>(OP)) continue;
1243    ConstantStruct *CS = cast<ConstantStruct>(OP);
1244
1245    // Must have a function or null ptr.
1246    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1247      if (F->getName() == kAsanModuleCtorName) continue;
1248      ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1249      // Don't instrument CTORs that will run before asan.module_ctor.
1250      if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1251      poisonOneInitializer(*F, ModuleName);
1252    }
1253  }
1254}
1255
1256bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1257  Type *Ty = G->getValueType();
1258  DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1259
1260  if (GlobalsMD.get(G).IsBlacklisted) return false;
1261  if (!Ty->isSized()) return false;
1262  if (!G->hasInitializer()) return false;
1263  if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1264  // Touch only those globals that will not be defined in other modules.
1265  // Don't handle ODR linkage types and COMDATs since other modules may be built
1266  // without ASan.
1267  if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1268      G->getLinkage() != GlobalVariable::PrivateLinkage &&
1269      G->getLinkage() != GlobalVariable::InternalLinkage)
1270    return false;
1271  if (G->hasComdat()) return false;
1272  // Two problems with thread-locals:
1273  //   - The address of the main thread's copy can't be computed at link-time.
1274  //   - Need to poison all copies, not just the main thread's one.
1275  if (G->isThreadLocal()) return false;
1276  // For now, just ignore this Global if the alignment is large.
1277  if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1278
1279  if (G->hasSection()) {
1280    StringRef Section = G->getSection();
1281
1282    // Globals from llvm.metadata aren't emitted, do not instrument them.
1283    if (Section == "llvm.metadata") return false;
1284    // Do not instrument globals from special LLVM sections.
1285    if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1286
1287    // Do not instrument function pointers to initialization and termination
1288    // routines: dynamic linker will not properly handle redzones.
1289    if (Section.startswith(".preinit_array") ||
1290        Section.startswith(".init_array") ||
1291        Section.startswith(".fini_array")) {
1292      return false;
1293    }
1294
1295    // Callbacks put into the CRT initializer/terminator sections
1296    // should not be instrumented.
1297    // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
1298    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1299    if (Section.startswith(".CRT")) {
1300      DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
1301      return false;
1302    }
1303
1304    if (TargetTriple.isOSBinFormatMachO()) {
1305      StringRef ParsedSegment, ParsedSection;
1306      unsigned TAA = 0, StubSize = 0;
1307      bool TAAParsed;
1308      std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1309          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1310      assert(ErrorCode.empty() && "Invalid section specifier.");
1311
1312      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1313      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1314      // them.
1315      if (ParsedSegment == "__OBJC" ||
1316          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1317        DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1318        return false;
1319      }
1320      // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
1321      // Constant CFString instances are compiled in the following way:
1322      //  -- the string buffer is emitted into
1323      //     __TEXT,__cstring,cstring_literals
1324      //  -- the constant NSConstantString structure referencing that buffer
1325      //     is placed into __DATA,__cfstring
1326      // Therefore there's no point in placing redzones into __DATA,__cfstring.
1327      // Moreover, it causes the linker to crash on OS X 10.7
1328      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1329        DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1330        return false;
1331      }
1332      // The linker merges the contents of cstring_literals and removes the
1333      // trailing zeroes.
1334      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1335        DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1336        return false;
1337      }
1338    }
1339  }
1340
1341  return true;
1342}
1343
1344// On Mach-O platforms, we emit global metadata in a separate section of the
1345// binary in order to allow the linker to properly dead strip. This is only
1346// supported on recent versions of ld64.
1347bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
1348  if (!ClUseMachOGlobalsSection)
1349    return false;
1350
1351  if (!TargetTriple.isOSBinFormatMachO())
1352    return false;
1353
1354  if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1355    return true;
1356  if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1357    return true;
1358  if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1359    return true;
1360
1361  return false;
1362}
1363
1364void AddressSanitizerModule::initializeCallbacks(Module &M) {
1365  IRBuilder<> IRB(*C);
1366
1367  // Declare our poisoning and unpoisoning functions.
1368  AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1369      kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1370  AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1371  AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1372      kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
1373  AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1374
1375  // Declare functions that register/unregister globals.
1376  AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1377      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1378  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1379  AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1380      M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1381                            IntptrTy, IntptrTy, nullptr));
1382  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1383
1384  // Declare the functions that find globals in a shared object and then invoke
1385  // the (un)register function on them.
1386  AsanRegisterImageGlobals = checkSanitizerInterfaceFunction(
1387      M.getOrInsertFunction(kAsanRegisterImageGlobalsName,
1388      IRB.getVoidTy(), IntptrTy, nullptr));
1389  AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
1390
1391  AsanUnregisterImageGlobals = checkSanitizerInterfaceFunction(
1392      M.getOrInsertFunction(kAsanUnregisterImageGlobalsName,
1393      IRB.getVoidTy(), IntptrTy, nullptr));
1394  AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
1395}
1396
1397// This function replaces all global variables with new variables that have
1398// trailing redzones. It also creates a function that poisons
1399// redzones and inserts this function into llvm.global_ctors.
1400bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
1401  GlobalsMD.init(M);
1402
1403  SmallVector<GlobalVariable *, 16> GlobalsToChange;
1404
1405  for (auto &G : M.globals()) {
1406    if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
1407  }
1408
1409  size_t n = GlobalsToChange.size();
1410  if (n == 0) return false;
1411
1412  // A global is described by a structure
1413  //   size_t beg;
1414  //   size_t size;
1415  //   size_t size_with_redzone;
1416  //   const char *name;
1417  //   const char *module_name;
1418  //   size_t has_dynamic_init;
1419  //   void *source_location;
1420  //   size_t odr_indicator;
1421  // We initialize an array of such structures and pass it to a run-time call.
1422  StructType *GlobalStructTy =
1423      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
1424                      IntptrTy, IntptrTy, IntptrTy, nullptr);
1425  SmallVector<Constant *, 16> Initializers(n);
1426
1427  bool HasDynamicallyInitializedGlobals = false;
1428
1429  // We shouldn't merge same module names, as this string serves as unique
1430  // module ID in runtime.
1431  GlobalVariable *ModuleName = createPrivateGlobalForString(
1432      M, M.getModuleIdentifier(), /*AllowMerging*/ false);
1433
1434  auto &DL = M.getDataLayout();
1435  for (size_t i = 0; i < n; i++) {
1436    static const uint64_t kMaxGlobalRedzone = 1 << 18;
1437    GlobalVariable *G = GlobalsToChange[i];
1438
1439    auto MD = GlobalsMD.get(G);
1440    StringRef NameForGlobal = G->getName();
1441    // Create string holding the global name (use global name from metadata
1442    // if it's available, otherwise just write the name of global variable).
1443    GlobalVariable *Name = createPrivateGlobalForString(
1444        M, MD.Name.empty() ? NameForGlobal : MD.Name,
1445        /*AllowMerging*/ true);
1446
1447    Type *Ty = G->getValueType();
1448    uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
1449    uint64_t MinRZ = MinRedzoneSizeForGlobal();
1450    // MinRZ <= RZ <= kMaxGlobalRedzone
1451    // and trying to make RZ to be ~ 1/4 of SizeInBytes.
1452    uint64_t RZ = std::max(
1453        MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
1454    uint64_t RightRedzoneSize = RZ;
1455    // Round up to MinRZ
1456    if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
1457    assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
1458    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
1459
1460    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
1461    Constant *NewInitializer =
1462        ConstantStruct::get(NewTy, G->getInitializer(),
1463                            Constant::getNullValue(RightRedZoneTy), nullptr);
1464
1465    // Create a new global variable with enough space for a redzone.
1466    GlobalValue::LinkageTypes Linkage = G->getLinkage();
1467    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
1468      Linkage = GlobalValue::InternalLinkage;
1469    GlobalVariable *NewGlobal =
1470        new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
1471                           "", G, G->getThreadLocalMode());
1472    NewGlobal->copyAttributesFrom(G);
1473    NewGlobal->setAlignment(MinRZ);
1474
1475    Value *Indices2[2];
1476    Indices2[0] = IRB.getInt32(0);
1477    Indices2[1] = IRB.getInt32(0);
1478
1479    G->replaceAllUsesWith(
1480        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
1481    NewGlobal->takeName(G);
1482    G->eraseFromParent();
1483
1484    Constant *SourceLoc;
1485    if (!MD.SourceLoc.empty()) {
1486      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
1487      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
1488    } else {
1489      SourceLoc = ConstantInt::get(IntptrTy, 0);
1490    }
1491
1492    Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
1493    GlobalValue *InstrumentedGlobal = NewGlobal;
1494
1495    bool CanUsePrivateAliases = TargetTriple.isOSBinFormatELF();
1496    if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
1497      // Create local alias for NewGlobal to avoid crash on ODR between
1498      // instrumented and non-instrumented libraries.
1499      auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
1500                                     NameForGlobal + M.getName(), NewGlobal);
1501
1502      // With local aliases, we need to provide another externally visible
1503      // symbol __odr_asan_XXX to detect ODR violation.
1504      auto *ODRIndicatorSym =
1505          new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
1506                             Constant::getNullValue(IRB.getInt8Ty()),
1507                             kODRGenPrefix + NameForGlobal, nullptr,
1508                             NewGlobal->getThreadLocalMode());
1509
1510      // Set meaningful attributes for indicator symbol.
1511      ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
1512      ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
1513      ODRIndicatorSym->setAlignment(1);
1514      ODRIndicator = ODRIndicatorSym;
1515      InstrumentedGlobal = GA;
1516    }
1517
1518    Initializers[i] = ConstantStruct::get(
1519        GlobalStructTy,
1520        ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
1521        ConstantInt::get(IntptrTy, SizeInBytes),
1522        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
1523        ConstantExpr::getPointerCast(Name, IntptrTy),
1524        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
1525        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
1526        ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr);
1527
1528    if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
1529
1530    DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
1531  }
1532
1533
1534  GlobalVariable *AllGlobals = nullptr;
1535  GlobalVariable *RegisteredFlag = nullptr;
1536
1537  // On recent Mach-O platforms, we emit the global metadata in a way that
1538  // allows the linker to properly strip dead globals.
1539  if (ShouldUseMachOGlobalsSection()) {
1540    // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1541    // to look up the loaded image that contains it. Second, we can store in it
1542    // whether registration has already occurred, to prevent duplicate
1543    // registration.
1544    //
1545    // Common linkage allows us to coalesce needles defined in each object
1546    // file so that there's only one per shared library.
1547    RegisteredFlag = new GlobalVariable(
1548        M, IntptrTy, false, GlobalVariable::CommonLinkage,
1549        ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
1550
1551    // We also emit a structure which binds the liveness of the global
1552    // variable to the metadata struct.
1553    StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr);
1554
1555    for (size_t i = 0; i < n; i++) {
1556      GlobalVariable *Metadata = new GlobalVariable(
1557          M, GlobalStructTy, false, GlobalVariable::InternalLinkage,
1558          Initializers[i], "");
1559      Metadata->setSection("__DATA,__asan_globals,regular");
1560      Metadata->setAlignment(1); // don't leave padding in between
1561
1562      auto LivenessBinder = ConstantStruct::get(LivenessTy,
1563          Initializers[i]->getAggregateElement(0u),
1564          ConstantExpr::getPointerCast(Metadata, IntptrTy),
1565          nullptr);
1566      GlobalVariable *Liveness = new GlobalVariable(
1567          M, LivenessTy, false, GlobalVariable::InternalLinkage,
1568          LivenessBinder, "");
1569      Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
1570    }
1571  } else {
1572    // On all other platfoms, we just emit an array of global metadata
1573    // structures.
1574    ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
1575    AllGlobals = new GlobalVariable(
1576        M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
1577        ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
1578  }
1579
1580  // Create calls for poisoning before initializers run and unpoisoning after.
1581  if (HasDynamicallyInitializedGlobals)
1582    createInitializerPoisonCalls(M, ModuleName);
1583
1584  // Create a call to register the globals with the runtime.
1585  if (ShouldUseMachOGlobalsSection()) {
1586    IRB.CreateCall(AsanRegisterImageGlobals,
1587                   {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
1588  } else {
1589    IRB.CreateCall(AsanRegisterGlobals,
1590                   {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1591                    ConstantInt::get(IntptrTy, n)});
1592  }
1593
1594  // We also need to unregister globals at the end, e.g., when a shared library
1595  // gets closed.
1596  Function *AsanDtorFunction =
1597      Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1598                       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1599  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1600  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
1601
1602  if (ShouldUseMachOGlobalsSection()) {
1603    IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
1604                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
1605  } else {
1606    IRB_Dtor.CreateCall(AsanUnregisterGlobals,
1607                        {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1608                         ConstantInt::get(IntptrTy, n)});
1609  }
1610
1611  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
1612
1613  DEBUG(dbgs() << M);
1614  return true;
1615}
1616
1617bool AddressSanitizerModule::runOnModule(Module &M) {
1618  C = &(M.getContext());
1619  int LongSize = M.getDataLayout().getPointerSizeInBits();
1620  IntptrTy = Type::getIntNTy(*C, LongSize);
1621  TargetTriple = Triple(M.getTargetTriple());
1622  Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1623  initializeCallbacks(M);
1624
1625  bool Changed = false;
1626
1627  // TODO(glider): temporarily disabled globals instrumentation for KASan.
1628  if (ClGlobals && !CompileKernel) {
1629    Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
1630    assert(CtorFunc);
1631    IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
1632    Changed |= InstrumentGlobals(IRB, M);
1633  }
1634
1635  return Changed;
1636}
1637
1638void AddressSanitizer::initializeCallbacks(Module &M) {
1639  IRBuilder<> IRB(*C);
1640  // Create __asan_report* callbacks.
1641  // IsWrite, TypeSize and Exp are encoded in the function name.
1642  for (int Exp = 0; Exp < 2; Exp++) {
1643    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
1644      const std::string TypeStr = AccessIsWrite ? "store" : "load";
1645      const std::string ExpStr = Exp ? "exp_" : "";
1646      const std::string SuffixStr = CompileKernel ? "N" : "_n";
1647      const std::string EndingStr = Recover ? "_noabort" : "";
1648      Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
1649      AsanErrorCallbackSized[AccessIsWrite][Exp] =
1650          checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1651              kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
1652              IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1653      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
1654          checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1655              ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
1656              IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1657      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
1658           AccessSizeIndex++) {
1659        const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
1660        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1661            checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1662                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
1663                IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1664        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1665            checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1666                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
1667                IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1668      }
1669    }
1670  }
1671
1672  const std::string MemIntrinCallbackPrefix =
1673      CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
1674  AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1675      MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
1676      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1677  AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1678      MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
1679      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1680  AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1681      MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
1682      IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
1683
1684  AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
1685      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
1686
1687  AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1688      kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1689  AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1690      kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1691  // We insert an empty inline asm after __asan_report* to avoid callback merge.
1692  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
1693                            StringRef(""), StringRef(""),
1694                            /*hasSideEffects=*/true);
1695}
1696
1697// virtual
1698bool AddressSanitizer::doInitialization(Module &M) {
1699  // Initialize the private fields. No one has accessed them before.
1700
1701  GlobalsMD.init(M);
1702
1703  C = &(M.getContext());
1704  LongSize = M.getDataLayout().getPointerSizeInBits();
1705  IntptrTy = Type::getIntNTy(*C, LongSize);
1706  TargetTriple = Triple(M.getTargetTriple());
1707
1708  if (!CompileKernel) {
1709    std::tie(AsanCtorFunction, AsanInitFunction) =
1710        createSanitizerCtorAndInitFunctions(
1711            M, kAsanModuleCtorName, kAsanInitName,
1712            /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
1713    appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
1714  }
1715  Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1716  return true;
1717}
1718
1719bool AddressSanitizer::doFinalization(Module &M) {
1720  GlobalsMD.reset();
1721  return false;
1722}
1723
1724bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
1725  // For each NSObject descendant having a +load method, this method is invoked
1726  // by the ObjC runtime before any of the static constructors is called.
1727  // Therefore we need to instrument such methods with a call to __asan_init
1728  // at the beginning in order to initialize our runtime before any access to
1729  // the shadow memory.
1730  // We cannot just ignore these methods, because they may call other
1731  // instrumented functions.
1732  if (F.getName().find(" load]") != std::string::npos) {
1733    IRBuilder<> IRB(&F.front(), F.front().begin());
1734    IRB.CreateCall(AsanInitFunction, {});
1735    return true;
1736  }
1737  return false;
1738}
1739
1740void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
1741  // Find the one possible call to llvm.localescape and pre-mark allocas passed
1742  // to it as uninteresting. This assumes we haven't started processing allocas
1743  // yet. This check is done up front because iterating the use list in
1744  // isInterestingAlloca would be algorithmically slower.
1745  assert(ProcessedAllocas.empty() && "must process localescape before allocas");
1746
1747  // Try to get the declaration of llvm.localescape. If it's not in the module,
1748  // we can exit early.
1749  if (!F.getParent()->getFunction("llvm.localescape")) return;
1750
1751  // Look for a call to llvm.localescape call in the entry block. It can't be in
1752  // any other block.
1753  for (Instruction &I : F.getEntryBlock()) {
1754    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
1755    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
1756      // We found a call. Mark all the allocas passed in as uninteresting.
1757      for (Value *Arg : II->arg_operands()) {
1758        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
1759        assert(AI && AI->isStaticAlloca() &&
1760               "non-static alloca arg to localescape");
1761        ProcessedAllocas[AI] = false;
1762      }
1763      break;
1764    }
1765  }
1766}
1767
1768bool AddressSanitizer::runOnFunction(Function &F) {
1769  if (&F == AsanCtorFunction) return false;
1770  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
1771  DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
1772  initializeCallbacks(*F.getParent());
1773
1774  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1775
1776  // If needed, insert __asan_init before checking for SanitizeAddress attr.
1777  maybeInsertAsanInitAtFunctionEntry(F);
1778
1779  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
1780
1781  if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
1782
1783  FunctionStateRAII CleanupObj(this);
1784
1785  // We can't instrument allocas used with llvm.localescape. Only static allocas
1786  // can be passed to that intrinsic.
1787  markEscapedLocalAllocas(F);
1788
1789  // We want to instrument every address only once per basic block (unless there
1790  // are calls between uses).
1791  SmallSet<Value *, 16> TempsToInstrument;
1792  SmallVector<Instruction *, 16> ToInstrument;
1793  SmallVector<Instruction *, 8> NoReturnCalls;
1794  SmallVector<BasicBlock *, 16> AllBlocks;
1795  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
1796  int NumAllocas = 0;
1797  bool IsWrite;
1798  unsigned Alignment;
1799  uint64_t TypeSize;
1800  const TargetLibraryInfo *TLI =
1801      &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1802
1803  // Fill the set of memory operations to instrument.
1804  for (auto &BB : F) {
1805    AllBlocks.push_back(&BB);
1806    TempsToInstrument.clear();
1807    int NumInsnsPerBB = 0;
1808    for (auto &Inst : BB) {
1809      if (LooksLikeCodeInBug11395(&Inst)) return false;
1810      if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
1811                                                  &Alignment)) {
1812        if (ClOpt && ClOptSameTemp) {
1813          if (!TempsToInstrument.insert(Addr).second)
1814            continue;  // We've seen this temp in the current BB.
1815        }
1816      } else if (ClInvalidPointerPairs &&
1817                 isInterestingPointerComparisonOrSubtraction(&Inst)) {
1818        PointerComparisonsOrSubtracts.push_back(&Inst);
1819        continue;
1820      } else if (isa<MemIntrinsic>(Inst)) {
1821        // ok, take it.
1822      } else {
1823        if (isa<AllocaInst>(Inst)) NumAllocas++;
1824        CallSite CS(&Inst);
1825        if (CS) {
1826          // A call inside BB.
1827          TempsToInstrument.clear();
1828          if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
1829        }
1830        if (CallInst *CI = dyn_cast<CallInst>(&Inst))
1831          maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
1832        continue;
1833      }
1834      ToInstrument.push_back(&Inst);
1835      NumInsnsPerBB++;
1836      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
1837    }
1838  }
1839
1840  bool UseCalls =
1841      CompileKernel ||
1842      (ClInstrumentationWithCallsThreshold >= 0 &&
1843       ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
1844  const DataLayout &DL = F.getParent()->getDataLayout();
1845  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
1846                                     /*RoundToAlign=*/true);
1847
1848  // Instrument.
1849  int NumInstrumented = 0;
1850  for (auto Inst : ToInstrument) {
1851    if (ClDebugMin < 0 || ClDebugMax < 0 ||
1852        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
1853      if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
1854        instrumentMop(ObjSizeVis, Inst, UseCalls,
1855                      F.getParent()->getDataLayout());
1856      else
1857        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
1858    }
1859    NumInstrumented++;
1860  }
1861
1862  FunctionStackPoisoner FSP(F, *this);
1863  bool ChangedStack = FSP.runOnFunction();
1864
1865  // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
1866  // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
1867  for (auto CI : NoReturnCalls) {
1868    IRBuilder<> IRB(CI);
1869    IRB.CreateCall(AsanHandleNoReturnFunc, {});
1870  }
1871
1872  for (auto Inst : PointerComparisonsOrSubtracts) {
1873    instrumentPointerComparisonOrSubtraction(Inst);
1874    NumInstrumented++;
1875  }
1876
1877  bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
1878
1879  DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
1880
1881  return res;
1882}
1883
1884// Workaround for bug 11395: we don't want to instrument stack in functions
1885// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
1886// FIXME: remove once the bug 11395 is fixed.
1887bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
1888  if (LongSize != 32) return false;
1889  CallInst *CI = dyn_cast<CallInst>(I);
1890  if (!CI || !CI->isInlineAsm()) return false;
1891  if (CI->getNumArgOperands() <= 5) return false;
1892  // We have inline assembly with quite a few arguments.
1893  return true;
1894}
1895
1896void FunctionStackPoisoner::initializeCallbacks(Module &M) {
1897  IRBuilder<> IRB(*C);
1898  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
1899    std::string Suffix = itostr(i);
1900    AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
1901        M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
1902                              IntptrTy, nullptr));
1903    AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
1904        M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
1905                              IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1906  }
1907  if (ASan.UseAfterScope) {
1908    AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1909        M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
1910                              IntptrTy, IntptrTy, nullptr));
1911    AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1912        M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
1913                              IntptrTy, IntptrTy, nullptr));
1914  }
1915
1916  AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1917      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1918  AsanAllocasUnpoisonFunc =
1919      checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1920          kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1921}
1922
1923void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
1924                                           IRBuilder<> &IRB, Value *ShadowBase,
1925                                           bool DoPoison) {
1926  size_t n = ShadowBytes.size();
1927  size_t i = 0;
1928  // We need to (un)poison n bytes of stack shadow. Poison as many as we can
1929  // using 64-bit stores (if we are on 64-bit arch), then poison the rest
1930  // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
1931  for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
1932       LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
1933    for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
1934      uint64_t Val = 0;
1935      for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
1936        if (F.getParent()->getDataLayout().isLittleEndian())
1937          Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
1938        else
1939          Val = (Val << 8) | ShadowBytes[i + j];
1940      }
1941      if (!Val) continue;
1942      Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1943      Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
1944      Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
1945      IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
1946    }
1947  }
1948}
1949
1950// Fake stack allocator (asan_fake_stack.h) has 11 size classes
1951// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
1952static int StackMallocSizeClass(uint64_t LocalStackSize) {
1953  assert(LocalStackSize <= kMaxStackMallocSize);
1954  uint64_t MaxSize = kMinStackMallocSize;
1955  for (int i = 0;; i++, MaxSize *= 2)
1956    if (LocalStackSize <= MaxSize) return i;
1957  llvm_unreachable("impossible LocalStackSize");
1958}
1959
1960// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
1961// We can not use MemSet intrinsic because it may end up calling the actual
1962// memset. Size is a multiple of 8.
1963// Currently this generates 8-byte stores on x86_64; it may be better to
1964// generate wider stores.
1965void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
1966    IRBuilder<> &IRB, Value *ShadowBase, int Size) {
1967  assert(!(Size % 8));
1968
1969  // kAsanStackAfterReturnMagic is 0xf5.
1970  const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
1971
1972  for (int i = 0; i < Size; i += 8) {
1973    Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1974    IRB.CreateStore(
1975        ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
1976        IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
1977  }
1978}
1979
1980PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
1981                                          Value *ValueIfTrue,
1982                                          Instruction *ThenTerm,
1983                                          Value *ValueIfFalse) {
1984  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
1985  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
1986  PHI->addIncoming(ValueIfFalse, CondBlock);
1987  BasicBlock *ThenBlock = ThenTerm->getParent();
1988  PHI->addIncoming(ValueIfTrue, ThenBlock);
1989  return PHI;
1990}
1991
1992Value *FunctionStackPoisoner::createAllocaForLayout(
1993    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
1994  AllocaInst *Alloca;
1995  if (Dynamic) {
1996    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
1997                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
1998                              "MyAlloca");
1999  } else {
2000    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2001                              nullptr, "MyAlloca");
2002    assert(Alloca->isStaticAlloca());
2003  }
2004  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2005  size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2006  Alloca->setAlignment(FrameAlignment);
2007  return IRB.CreatePointerCast(Alloca, IntptrTy);
2008}
2009
2010void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2011  BasicBlock &FirstBB = *F.begin();
2012  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2013  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2014  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2015  DynamicAllocaLayout->setAlignment(32);
2016}
2017
2018void FunctionStackPoisoner::poisonStack() {
2019  assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
2020
2021  // Insert poison calls for lifetime intrinsics for alloca.
2022  bool HavePoisonedStaticAllocas = false;
2023  for (const auto &APC : AllocaPoisonCallVec) {
2024    assert(APC.InsBefore);
2025    assert(APC.AI);
2026    assert(ASan.isInterestingAlloca(*APC.AI));
2027    bool IsDynamicAlloca = !(*APC.AI).isStaticAlloca();
2028    if (!ClInstrumentAllocas && IsDynamicAlloca)
2029      continue;
2030
2031    IRBuilder<> IRB(APC.InsBefore);
2032    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2033    // Dynamic allocas will be unpoisoned unconditionally below in
2034    // unpoisonDynamicAllocas.
2035    // Flag that we need unpoison static allocas.
2036    HavePoisonedStaticAllocas |= (APC.DoPoison && !IsDynamicAlloca);
2037  }
2038
2039  if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) {
2040    // Handle dynamic allocas.
2041    createDynamicAllocasInitStorage();
2042    for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI);
2043
2044    unpoisonDynamicAllocas();
2045  }
2046
2047  if (AllocaVec.empty()) return;
2048
2049  int StackMallocIdx = -1;
2050  DebugLoc EntryDebugLocation;
2051  if (auto SP = F.getSubprogram())
2052    EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2053
2054  Instruction *InsBefore = AllocaVec[0];
2055  IRBuilder<> IRB(InsBefore);
2056  IRB.SetCurrentDebugLocation(EntryDebugLocation);
2057
2058  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2059  // debug info is broken, because only entry-block allocas are treated as
2060  // regular stack slots.
2061  auto InsBeforeB = InsBefore->getParent();
2062  assert(InsBeforeB == &F.getEntryBlock());
2063  for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I)
2064    if (auto *AI = dyn_cast<AllocaInst>(I))
2065      if (NonInstrumentedStaticAllocaVec.count(AI) > 0)
2066        AI->moveBefore(InsBefore);
2067
2068  // If we have a call to llvm.localescape, keep it in the entry block.
2069  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2070
2071  SmallVector<ASanStackVariableDescription, 16> SVD;
2072  SVD.reserve(AllocaVec.size());
2073  for (AllocaInst *AI : AllocaVec) {
2074    ASanStackVariableDescription D = {AI->getName().data(),
2075                                      ASan.getAllocaSizeInBytes(AI),
2076                                      AI->getAlignment(), AI, 0};
2077    SVD.push_back(D);
2078  }
2079  // Minimal header size (left redzone) is 4 pointers,
2080  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
2081  size_t MinHeaderSize = ASan.LongSize / 2;
2082  ASanStackFrameLayout L;
2083  ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize, &L);
2084  DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
2085  uint64_t LocalStackSize = L.FrameSize;
2086  bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
2087                       LocalStackSize <= kMaxStackMallocSize;
2088  bool DoDynamicAlloca = ClDynamicAllocaStack;
2089  // Don't do dynamic alloca or stack malloc if:
2090  // 1) There is inline asm: too often it makes assumptions on which registers
2091  //    are available.
2092  // 2) There is a returns_twice call (typically setjmp), which is
2093  //    optimization-hostile, and doesn't play well with introduced indirect
2094  //    register-relative calculation of local variable addresses.
2095  DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2096  DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2097
2098  Value *StaticAlloca =
2099      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
2100
2101  Value *FakeStack;
2102  Value *LocalStackBase;
2103
2104  if (DoStackMalloc) {
2105    // void *FakeStack = __asan_option_detect_stack_use_after_return
2106    //     ? __asan_stack_malloc_N(LocalStackSize)
2107    //     : nullptr;
2108    // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
2109    Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
2110        kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
2111    Value *UseAfterReturnIsEnabled =
2112        IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
2113                         Constant::getNullValue(IRB.getInt32Ty()));
2114    Instruction *Term =
2115        SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
2116    IRBuilder<> IRBIf(Term);
2117    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2118    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
2119    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
2120    Value *FakeStackValue =
2121        IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
2122                         ConstantInt::get(IntptrTy, LocalStackSize));
2123    IRB.SetInsertPoint(InsBefore);
2124    IRB.SetCurrentDebugLocation(EntryDebugLocation);
2125    FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
2126                          ConstantInt::get(IntptrTy, 0));
2127
2128    Value *NoFakeStack =
2129        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
2130    Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
2131    IRBIf.SetInsertPoint(Term);
2132    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2133    Value *AllocaValue =
2134        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
2135    IRB.SetInsertPoint(InsBefore);
2136    IRB.SetCurrentDebugLocation(EntryDebugLocation);
2137    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
2138  } else {
2139    // void *FakeStack = nullptr;
2140    // void *LocalStackBase = alloca(LocalStackSize);
2141    FakeStack = ConstantInt::get(IntptrTy, 0);
2142    LocalStackBase =
2143        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
2144  }
2145
2146  // Replace Alloca instructions with base+offset.
2147  for (const auto &Desc : SVD) {
2148    AllocaInst *AI = Desc.AI;
2149    Value *NewAllocaPtr = IRB.CreateIntToPtr(
2150        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
2151        AI->getType());
2152    replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
2153    AI->replaceAllUsesWith(NewAllocaPtr);
2154  }
2155
2156  // The left-most redzone has enough space for at least 4 pointers.
2157  // Write the Magic value to redzone[0].
2158  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
2159  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
2160                  BasePlus0);
2161  // Write the frame description constant to redzone[1].
2162  Value *BasePlus1 = IRB.CreateIntToPtr(
2163      IRB.CreateAdd(LocalStackBase,
2164                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
2165      IntptrPtrTy);
2166  GlobalVariable *StackDescriptionGlobal =
2167      createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
2168                                   /*AllowMerging*/ true);
2169  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
2170  IRB.CreateStore(Description, BasePlus1);
2171  // Write the PC to redzone[2].
2172  Value *BasePlus2 = IRB.CreateIntToPtr(
2173      IRB.CreateAdd(LocalStackBase,
2174                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
2175      IntptrPtrTy);
2176  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
2177
2178  // Poison the stack redzones at the entry.
2179  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
2180  poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
2181
2182  auto UnpoisonStack = [&](IRBuilder<> &IRB) {
2183    if (HavePoisonedStaticAllocas) {
2184      // If we poisoned some allocas in llvm.lifetime analysis,
2185      // unpoison whole stack frame now.
2186      poisonAlloca(LocalStackBase, LocalStackSize, IRB, false);
2187    } else {
2188      poisonRedZones(L.ShadowBytes, IRB, ShadowBase, false);
2189    }
2190  };
2191
2192  // (Un)poison the stack before all ret instructions.
2193  for (auto Ret : RetVec) {
2194    IRBuilder<> IRBRet(Ret);
2195    // Mark the current frame as retired.
2196    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
2197                       BasePlus0);
2198    if (DoStackMalloc) {
2199      assert(StackMallocIdx >= 0);
2200      // if FakeStack != 0  // LocalStackBase == FakeStack
2201      //     // In use-after-return mode, poison the whole stack frame.
2202      //     if StackMallocIdx <= 4
2203      //         // For small sizes inline the whole thing:
2204      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
2205      //         **SavedFlagPtr(FakeStack) = 0
2206      //     else
2207      //         __asan_stack_free_N(FakeStack, LocalStackSize)
2208      // else
2209      //     <This is not a fake stack; unpoison the redzones>
2210      Value *Cmp =
2211          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
2212      TerminatorInst *ThenTerm, *ElseTerm;
2213      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
2214
2215      IRBuilder<> IRBPoison(ThenTerm);
2216      if (StackMallocIdx <= 4) {
2217        int ClassSize = kMinStackMallocSize << StackMallocIdx;
2218        SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
2219                                           ClassSize >> Mapping.Scale);
2220        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
2221            FakeStack,
2222            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
2223        Value *SavedFlagPtr = IRBPoison.CreateLoad(
2224            IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
2225        IRBPoison.CreateStore(
2226            Constant::getNullValue(IRBPoison.getInt8Ty()),
2227            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
2228      } else {
2229        // For larger frames call __asan_stack_free_*.
2230        IRBPoison.CreateCall(
2231            AsanStackFreeFunc[StackMallocIdx],
2232            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
2233      }
2234
2235      IRBuilder<> IRBElse(ElseTerm);
2236      UnpoisonStack(IRBElse);
2237    } else {
2238      UnpoisonStack(IRBRet);
2239    }
2240  }
2241
2242  // We are done. Remove the old unused alloca instructions.
2243  for (auto AI : AllocaVec) AI->eraseFromParent();
2244}
2245
2246void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
2247                                         IRBuilder<> &IRB, bool DoPoison) {
2248  // For now just insert the call to ASan runtime.
2249  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
2250  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
2251  IRB.CreateCall(
2252      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
2253      {AddrArg, SizeArg});
2254}
2255
2256// Handling llvm.lifetime intrinsics for a given %alloca:
2257// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
2258// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
2259//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
2260//     could be poisoned by previous llvm.lifetime.end instruction, as the
2261//     variable may go in and out of scope several times, e.g. in loops).
2262// (3) if we poisoned at least one %alloca in a function,
2263//     unpoison the whole stack frame at function exit.
2264
2265AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
2266  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2267    // We're intested only in allocas we can handle.
2268    return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
2269  // See if we've already calculated (or started to calculate) alloca for a
2270  // given value.
2271  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2272  if (I != AllocaForValue.end()) return I->second;
2273  // Store 0 while we're calculating alloca for value V to avoid
2274  // infinite recursion if the value references itself.
2275  AllocaForValue[V] = nullptr;
2276  AllocaInst *Res = nullptr;
2277  if (CastInst *CI = dyn_cast<CastInst>(V))
2278    Res = findAllocaForValue(CI->getOperand(0));
2279  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2280    for (Value *IncValue : PN->incoming_values()) {
2281      // Allow self-referencing phi-nodes.
2282      if (IncValue == PN) continue;
2283      AllocaInst *IncValueAI = findAllocaForValue(IncValue);
2284      // AI for incoming values should exist and should all be equal.
2285      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2286        return nullptr;
2287      Res = IncValueAI;
2288    }
2289  }
2290  if (Res) AllocaForValue[V] = Res;
2291  return Res;
2292}
2293
2294void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
2295  IRBuilder<> IRB(AI);
2296
2297  const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
2298  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
2299
2300  Value *Zero = Constant::getNullValue(IntptrTy);
2301  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
2302  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
2303
2304  // Since we need to extend alloca with additional memory to locate
2305  // redzones, and OldSize is number of allocated blocks with
2306  // ElementSize size, get allocated memory size in bytes by
2307  // OldSize * ElementSize.
2308  const unsigned ElementSize =
2309      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
2310  Value *OldSize =
2311      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
2312                    ConstantInt::get(IntptrTy, ElementSize));
2313
2314  // PartialSize = OldSize % 32
2315  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
2316
2317  // Misalign = kAllocaRzSize - PartialSize;
2318  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
2319
2320  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
2321  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
2322  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
2323
2324  // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
2325  // Align is added to locate left redzone, PartialPadding for possible
2326  // partial redzone and kAllocaRzSize for right redzone respectively.
2327  Value *AdditionalChunkSize = IRB.CreateAdd(
2328      ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
2329
2330  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
2331
2332  // Insert new alloca with new NewSize and Align params.
2333  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
2334  NewAlloca->setAlignment(Align);
2335
2336  // NewAddress = Address + Align
2337  Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
2338                                    ConstantInt::get(IntptrTy, Align));
2339
2340  // Insert __asan_alloca_poison call for new created alloca.
2341  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
2342
2343  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
2344  // for unpoisoning stuff.
2345  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
2346
2347  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
2348
2349  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
2350  AI->replaceAllUsesWith(NewAddressPtr);
2351
2352  // We are done. Erase old alloca from parent.
2353  AI->eraseFromParent();
2354}
2355
2356// isSafeAccess returns true if Addr is always inbounds with respect to its
2357// base object. For example, it is a field access or an array access with
2358// constant inbounds index.
2359bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
2360                                    Value *Addr, uint64_t TypeSize) const {
2361  SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
2362  if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
2363  uint64_t Size = SizeOffset.first.getZExtValue();
2364  int64_t Offset = SizeOffset.second.getSExtValue();
2365  // Three checks are required to ensure safety:
2366  // . Offset >= 0  (since the offset is given from the base ptr)
2367  // . Size >= Offset  (unsigned)
2368  // . Size - Offset >= NeededSize  (unsigned)
2369  return Offset >= 0 && Size >= uint64_t(Offset) &&
2370         Size - uint64_t(Offset) >= TypeSize / 8;
2371}
2372