1//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
44///
45///                           Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61/// practice.
62///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwritting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
67///
68///                            Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91
92//===----------------------------------------------------------------------===//
93
94#include "llvm/ADT/DepthFirstIterator.h"
95#include "llvm/ADT/SmallString.h"
96#include "llvm/ADT/SmallVector.h"
97#include "llvm/ADT/StringExtras.h"
98#include "llvm/ADT/Triple.h"
99#include "llvm/IR/DataLayout.h"
100#include "llvm/IR/Function.h"
101#include "llvm/IR/IRBuilder.h"
102#include "llvm/IR/InlineAsm.h"
103#include "llvm/IR/InstVisitor.h"
104#include "llvm/IR/IntrinsicInst.h"
105#include "llvm/IR/LLVMContext.h"
106#include "llvm/IR/MDBuilder.h"
107#include "llvm/IR/Module.h"
108#include "llvm/IR/Type.h"
109#include "llvm/IR/ValueMap.h"
110#include "llvm/Support/CommandLine.h"
111#include "llvm/Support/Debug.h"
112#include "llvm/Support/raw_ostream.h"
113#include "llvm/Transforms/Instrumentation.h"
114#include "llvm/Transforms/Utils/BasicBlockUtils.h"
115#include "llvm/Transforms/Utils/Local.h"
116#include "llvm/Transforms/Utils/ModuleUtils.h"
117
118using namespace llvm;
119
120#define DEBUG_TYPE "msan"
121
122static const unsigned kOriginSize = 4;
123static const unsigned kMinOriginAlignment = 4;
124static const unsigned kShadowTLSAlignment = 8;
125
126// These constants must be kept in sync with the ones in msan.h.
127static const unsigned kParamTLSSize = 800;
128static const unsigned kRetvalTLSSize = 800;
129
130// Accesses sizes are powers of two: 1, 2, 4, 8.
131static const size_t kNumberOfAccessSizes = 4;
132
133/// \brief Track origins of uninitialized values.
134///
135/// Adds a section to MemorySanitizer report that points to the allocation
136/// (stack or heap) the uninitialized bits came from originally.
137static cl::opt<int> ClTrackOrigins("msan-track-origins",
138       cl::desc("Track origins (allocation sites) of poisoned memory"),
139       cl::Hidden, cl::init(0));
140static cl::opt<bool> ClKeepGoing("msan-keep-going",
141       cl::desc("keep going after reporting a UMR"),
142       cl::Hidden, cl::init(false));
143static cl::opt<bool> ClPoisonStack("msan-poison-stack",
144       cl::desc("poison uninitialized stack variables"),
145       cl::Hidden, cl::init(true));
146static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
147       cl::desc("poison uninitialized stack variables with a call"),
148       cl::Hidden, cl::init(false));
149static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
150       cl::desc("poison uninitialized stack variables with the given pattern"),
151       cl::Hidden, cl::init(0xff));
152static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
153       cl::desc("poison undef temps"),
154       cl::Hidden, cl::init(true));
155
156static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
157       cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
158       cl::Hidden, cl::init(true));
159
160static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
161       cl::desc("exact handling of relational integer ICmp"),
162       cl::Hidden, cl::init(false));
163
164// This flag controls whether we check the shadow of the address
165// operand of load or store. Such bugs are very rare, since load from
166// a garbage address typically results in SEGV, but still happen
167// (e.g. only lower bits of address are garbage, or the access happens
168// early at program startup where malloc-ed memory is more likely to
169// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
170static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
171       cl::desc("report accesses through a pointer which has poisoned shadow"),
172       cl::Hidden, cl::init(true));
173
174static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
175       cl::desc("print out instructions with default strict semantics"),
176       cl::Hidden, cl::init(false));
177
178static cl::opt<int> ClInstrumentationWithCallThreshold(
179    "msan-instrumentation-with-call-threshold",
180    cl::desc(
181        "If the function being instrumented requires more than "
182        "this number of checks and origin stores, use callbacks instead of "
183        "inline checks (-1 means never use callbacks)."),
184    cl::Hidden, cl::init(3500));
185
186// This is an experiment to enable handling of cases where shadow is a non-zero
187// compile-time constant. For some unexplainable reason they were silently
188// ignored in the instrumentation.
189static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
190       cl::desc("Insert checks for constant shadow values"),
191       cl::Hidden, cl::init(false));
192
193// This is off by default because of a bug in gold:
194// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
195static cl::opt<bool> ClWithComdat("msan-with-comdat",
196       cl::desc("Place MSan constructors in comdat sections"),
197       cl::Hidden, cl::init(false));
198
199static const char *const kMsanModuleCtorName = "msan.module_ctor";
200static const char *const kMsanInitName = "__msan_init";
201
202namespace {
203
204// Memory map parameters used in application-to-shadow address calculation.
205// Offset = (Addr & ~AndMask) ^ XorMask
206// Shadow = ShadowBase + Offset
207// Origin = OriginBase + Offset
208struct MemoryMapParams {
209  uint64_t AndMask;
210  uint64_t XorMask;
211  uint64_t ShadowBase;
212  uint64_t OriginBase;
213};
214
215struct PlatformMemoryMapParams {
216  const MemoryMapParams *bits32;
217  const MemoryMapParams *bits64;
218};
219
220// i386 Linux
221static const MemoryMapParams Linux_I386_MemoryMapParams = {
222  0x000080000000,  // AndMask
223  0,               // XorMask (not used)
224  0,               // ShadowBase (not used)
225  0x000040000000,  // OriginBase
226};
227
228// x86_64 Linux
229static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
230#ifdef MSAN_LINUX_X86_64_OLD_MAPPING
231  0x400000000000,  // AndMask
232  0,               // XorMask (not used)
233  0,               // ShadowBase (not used)
234  0x200000000000,  // OriginBase
235#else
236  0,               // AndMask (not used)
237  0x500000000000,  // XorMask
238  0,               // ShadowBase (not used)
239  0x100000000000,  // OriginBase
240#endif
241};
242
243// mips64 Linux
244static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
245  0x004000000000,  // AndMask
246  0,               // XorMask (not used)
247  0,               // ShadowBase (not used)
248  0x002000000000,  // OriginBase
249};
250
251// ppc64 Linux
252static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
253  0x200000000000,  // AndMask
254  0x100000000000,  // XorMask
255  0x080000000000,  // ShadowBase
256  0x1C0000000000,  // OriginBase
257};
258
259// aarch64 Linux
260static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
261  0,               // AndMask (not used)
262  0x06000000000,   // XorMask
263  0,               // ShadowBase (not used)
264  0x01000000000,   // OriginBase
265};
266
267// i386 FreeBSD
268static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
269  0x000180000000,  // AndMask
270  0x000040000000,  // XorMask
271  0x000020000000,  // ShadowBase
272  0x000700000000,  // OriginBase
273};
274
275// x86_64 FreeBSD
276static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
277  0xc00000000000,  // AndMask
278  0x200000000000,  // XorMask
279  0x100000000000,  // ShadowBase
280  0x380000000000,  // OriginBase
281};
282
283static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
284  &Linux_I386_MemoryMapParams,
285  &Linux_X86_64_MemoryMapParams,
286};
287
288static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
289  nullptr,
290  &Linux_MIPS64_MemoryMapParams,
291};
292
293static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
294  nullptr,
295  &Linux_PowerPC64_MemoryMapParams,
296};
297
298static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
299  nullptr,
300  &Linux_AArch64_MemoryMapParams,
301};
302
303static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
304  &FreeBSD_I386_MemoryMapParams,
305  &FreeBSD_X86_64_MemoryMapParams,
306};
307
308/// \brief An instrumentation pass implementing detection of uninitialized
309/// reads.
310///
311/// MemorySanitizer: instrument the code in module to find
312/// uninitialized reads.
313class MemorySanitizer : public FunctionPass {
314 public:
315  MemorySanitizer(int TrackOrigins = 0)
316      : FunctionPass(ID),
317        TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
318        WarningFn(nullptr) {}
319  const char *getPassName() const override { return "MemorySanitizer"; }
320  void getAnalysisUsage(AnalysisUsage &AU) const override {
321    AU.addRequired<TargetLibraryInfoWrapperPass>();
322  }
323  bool runOnFunction(Function &F) override;
324  bool doInitialization(Module &M) override;
325  static char ID;  // Pass identification, replacement for typeid.
326
327 private:
328  void initializeCallbacks(Module &M);
329
330  /// \brief Track origins (allocation points) of uninitialized values.
331  int TrackOrigins;
332
333  LLVMContext *C;
334  Type *IntptrTy;
335  Type *OriginTy;
336  /// \brief Thread-local shadow storage for function parameters.
337  GlobalVariable *ParamTLS;
338  /// \brief Thread-local origin storage for function parameters.
339  GlobalVariable *ParamOriginTLS;
340  /// \brief Thread-local shadow storage for function return value.
341  GlobalVariable *RetvalTLS;
342  /// \brief Thread-local origin storage for function return value.
343  GlobalVariable *RetvalOriginTLS;
344  /// \brief Thread-local shadow storage for in-register va_arg function
345  /// parameters (x86_64-specific).
346  GlobalVariable *VAArgTLS;
347  /// \brief Thread-local shadow storage for va_arg overflow area
348  /// (x86_64-specific).
349  GlobalVariable *VAArgOverflowSizeTLS;
350  /// \brief Thread-local space used to pass origin value to the UMR reporting
351  /// function.
352  GlobalVariable *OriginTLS;
353
354  /// \brief The run-time callback to print a warning.
355  Value *WarningFn;
356  // These arrays are indexed by log2(AccessSize).
357  Value *MaybeWarningFn[kNumberOfAccessSizes];
358  Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
359
360  /// \brief Run-time helper that generates a new origin value for a stack
361  /// allocation.
362  Value *MsanSetAllocaOrigin4Fn;
363  /// \brief Run-time helper that poisons stack on function entry.
364  Value *MsanPoisonStackFn;
365  /// \brief Run-time helper that records a store (or any event) of an
366  /// uninitialized value and returns an updated origin id encoding this info.
367  Value *MsanChainOriginFn;
368  /// \brief MSan runtime replacements for memmove, memcpy and memset.
369  Value *MemmoveFn, *MemcpyFn, *MemsetFn;
370
371  /// \brief Memory map parameters used in application-to-shadow calculation.
372  const MemoryMapParams *MapParams;
373
374  MDNode *ColdCallWeights;
375  /// \brief Branch weights for origin store.
376  MDNode *OriginStoreWeights;
377  /// \brief An empty volatile inline asm that prevents callback merge.
378  InlineAsm *EmptyAsm;
379  Function *MsanCtorFunction;
380
381  friend struct MemorySanitizerVisitor;
382  friend struct VarArgAMD64Helper;
383  friend struct VarArgMIPS64Helper;
384  friend struct VarArgAArch64Helper;
385  friend struct VarArgPowerPC64Helper;
386};
387} // anonymous namespace
388
389char MemorySanitizer::ID = 0;
390INITIALIZE_PASS_BEGIN(
391    MemorySanitizer, "msan",
392    "MemorySanitizer: detects uninitialized reads.", false, false)
393INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
394INITIALIZE_PASS_END(
395    MemorySanitizer, "msan",
396    "MemorySanitizer: detects uninitialized reads.", false, false)
397
398FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
399  return new MemorySanitizer(TrackOrigins);
400}
401
402/// \brief Create a non-const global initialized with the given string.
403///
404/// Creates a writable global for Str so that we can pass it to the
405/// run-time lib. Runtime uses first 4 bytes of the string to store the
406/// frame ID, so the string needs to be mutable.
407static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
408                                                            StringRef Str) {
409  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
410  return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
411                            GlobalValue::PrivateLinkage, StrConst, "");
412}
413
414/// \brief Insert extern declaration of runtime-provided functions and globals.
415void MemorySanitizer::initializeCallbacks(Module &M) {
416  // Only do this once.
417  if (WarningFn)
418    return;
419
420  IRBuilder<> IRB(*C);
421  // Create the callback.
422  // FIXME: this function should have "Cold" calling conv,
423  // which is not yet implemented.
424  StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
425                                        : "__msan_warning_noreturn";
426  WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
427
428  for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
429       AccessSizeIndex++) {
430    unsigned AccessSize = 1 << AccessSizeIndex;
431    std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
432    MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
433        FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
434        IRB.getInt32Ty(), nullptr);
435
436    FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
437    MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
438        FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
439        IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
440  }
441
442  MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
443    "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
444    IRB.getInt8PtrTy(), IntptrTy, nullptr);
445  MsanPoisonStackFn =
446      M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
447                            IRB.getInt8PtrTy(), IntptrTy, nullptr);
448  MsanChainOriginFn = M.getOrInsertFunction(
449    "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
450  MemmoveFn = M.getOrInsertFunction(
451    "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
452    IRB.getInt8PtrTy(), IntptrTy, nullptr);
453  MemcpyFn = M.getOrInsertFunction(
454    "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
455    IntptrTy, nullptr);
456  MemsetFn = M.getOrInsertFunction(
457    "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
458    IntptrTy, nullptr);
459
460  // Create globals.
461  RetvalTLS = new GlobalVariable(
462    M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
463    GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
464    GlobalVariable::InitialExecTLSModel);
465  RetvalOriginTLS = new GlobalVariable(
466    M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
467    "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
468
469  ParamTLS = new GlobalVariable(
470    M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
471    GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
472    GlobalVariable::InitialExecTLSModel);
473  ParamOriginTLS = new GlobalVariable(
474    M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
475    GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
476    nullptr, GlobalVariable::InitialExecTLSModel);
477
478  VAArgTLS = new GlobalVariable(
479    M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
480    GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
481    GlobalVariable::InitialExecTLSModel);
482  VAArgOverflowSizeTLS = new GlobalVariable(
483    M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
484    "__msan_va_arg_overflow_size_tls", nullptr,
485    GlobalVariable::InitialExecTLSModel);
486  OriginTLS = new GlobalVariable(
487    M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
488    "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
489
490  // We insert an empty inline asm after __msan_report* to avoid callback merge.
491  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
492                            StringRef(""), StringRef(""),
493                            /*hasSideEffects=*/true);
494}
495
496/// \brief Module-level initialization.
497///
498/// inserts a call to __msan_init to the module's constructor list.
499bool MemorySanitizer::doInitialization(Module &M) {
500  auto &DL = M.getDataLayout();
501
502  Triple TargetTriple(M.getTargetTriple());
503  switch (TargetTriple.getOS()) {
504    case Triple::FreeBSD:
505      switch (TargetTriple.getArch()) {
506        case Triple::x86_64:
507          MapParams = FreeBSD_X86_MemoryMapParams.bits64;
508          break;
509        case Triple::x86:
510          MapParams = FreeBSD_X86_MemoryMapParams.bits32;
511          break;
512        default:
513          report_fatal_error("unsupported architecture");
514      }
515      break;
516    case Triple::Linux:
517      switch (TargetTriple.getArch()) {
518        case Triple::x86_64:
519          MapParams = Linux_X86_MemoryMapParams.bits64;
520          break;
521        case Triple::x86:
522          MapParams = Linux_X86_MemoryMapParams.bits32;
523          break;
524        case Triple::mips64:
525        case Triple::mips64el:
526          MapParams = Linux_MIPS_MemoryMapParams.bits64;
527          break;
528        case Triple::ppc64:
529        case Triple::ppc64le:
530          MapParams = Linux_PowerPC_MemoryMapParams.bits64;
531          break;
532        case Triple::aarch64:
533        case Triple::aarch64_be:
534          MapParams = Linux_ARM_MemoryMapParams.bits64;
535          break;
536        default:
537          report_fatal_error("unsupported architecture");
538      }
539      break;
540    default:
541      report_fatal_error("unsupported operating system");
542  }
543
544  C = &(M.getContext());
545  IRBuilder<> IRB(*C);
546  IntptrTy = IRB.getIntPtrTy(DL);
547  OriginTy = IRB.getInt32Ty();
548
549  ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
550  OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
551
552  std::tie(MsanCtorFunction, std::ignore) =
553      createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
554                                          /*InitArgTypes=*/{},
555                                          /*InitArgs=*/{});
556  if (ClWithComdat) {
557    Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
558    MsanCtorFunction->setComdat(MsanCtorComdat);
559    appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction);
560  } else {
561    appendToGlobalCtors(M, MsanCtorFunction, 0);
562  }
563
564
565  if (TrackOrigins)
566    new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
567                       IRB.getInt32(TrackOrigins), "__msan_track_origins");
568
569  if (ClKeepGoing)
570    new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
571                       IRB.getInt32(ClKeepGoing), "__msan_keep_going");
572
573  return true;
574}
575
576namespace {
577
578/// \brief A helper class that handles instrumentation of VarArg
579/// functions on a particular platform.
580///
581/// Implementations are expected to insert the instrumentation
582/// necessary to propagate argument shadow through VarArg function
583/// calls. Visit* methods are called during an InstVisitor pass over
584/// the function, and should avoid creating new basic blocks. A new
585/// instance of this class is created for each instrumented function.
586struct VarArgHelper {
587  /// \brief Visit a CallSite.
588  virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
589
590  /// \brief Visit a va_start call.
591  virtual void visitVAStartInst(VAStartInst &I) = 0;
592
593  /// \brief Visit a va_copy call.
594  virtual void visitVACopyInst(VACopyInst &I) = 0;
595
596  /// \brief Finalize function instrumentation.
597  ///
598  /// This method is called after visiting all interesting (see above)
599  /// instructions in a function.
600  virtual void finalizeInstrumentation() = 0;
601
602  virtual ~VarArgHelper() {}
603};
604
605struct MemorySanitizerVisitor;
606
607VarArgHelper*
608CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
609                   MemorySanitizerVisitor &Visitor);
610
611unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
612  if (TypeSize <= 8) return 0;
613  return Log2_32_Ceil((TypeSize + 7) / 8);
614}
615
616/// This class does all the work for a given function. Store and Load
617/// instructions store and load corresponding shadow and origin
618/// values. Most instructions propagate shadow from arguments to their
619/// return values. Certain instructions (most importantly, BranchInst)
620/// test their argument shadow and print reports (with a runtime call) if it's
621/// non-zero.
622struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
623  Function &F;
624  MemorySanitizer &MS;
625  SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
626  ValueMap<Value*, Value*> ShadowMap, OriginMap;
627  std::unique_ptr<VarArgHelper> VAHelper;
628  const TargetLibraryInfo *TLI;
629
630  // The following flags disable parts of MSan instrumentation based on
631  // blacklist contents and command-line options.
632  bool InsertChecks;
633  bool PropagateShadow;
634  bool PoisonStack;
635  bool PoisonUndef;
636  bool CheckReturnValue;
637
638  struct ShadowOriginAndInsertPoint {
639    Value *Shadow;
640    Value *Origin;
641    Instruction *OrigIns;
642    ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
643      : Shadow(S), Origin(O), OrigIns(I) { }
644  };
645  SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
646  SmallVector<StoreInst *, 16> StoreList;
647
648  MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
649      : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
650    bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
651    InsertChecks = SanitizeFunction;
652    PropagateShadow = SanitizeFunction;
653    PoisonStack = SanitizeFunction && ClPoisonStack;
654    PoisonUndef = SanitizeFunction && ClPoisonUndef;
655    // FIXME: Consider using SpecialCaseList to specify a list of functions that
656    // must always return fully initialized values. For now, we hardcode "main".
657    CheckReturnValue = SanitizeFunction && (F.getName() == "main");
658    TLI = &MS.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
659
660    DEBUG(if (!InsertChecks)
661          dbgs() << "MemorySanitizer is not inserting checks into '"
662                 << F.getName() << "'\n");
663  }
664
665  Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
666    if (MS.TrackOrigins <= 1) return V;
667    return IRB.CreateCall(MS.MsanChainOriginFn, V);
668  }
669
670  Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
671    const DataLayout &DL = F.getParent()->getDataLayout();
672    unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
673    if (IntptrSize == kOriginSize) return Origin;
674    assert(IntptrSize == kOriginSize * 2);
675    Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
676    return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
677  }
678
679  /// \brief Fill memory range with the given origin value.
680  void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
681                   unsigned Size, unsigned Alignment) {
682    const DataLayout &DL = F.getParent()->getDataLayout();
683    unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
684    unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
685    assert(IntptrAlignment >= kMinOriginAlignment);
686    assert(IntptrSize >= kOriginSize);
687
688    unsigned Ofs = 0;
689    unsigned CurrentAlignment = Alignment;
690    if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
691      Value *IntptrOrigin = originToIntptr(IRB, Origin);
692      Value *IntptrOriginPtr =
693          IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
694      for (unsigned i = 0; i < Size / IntptrSize; ++i) {
695        Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
696                       : IntptrOriginPtr;
697        IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
698        Ofs += IntptrSize / kOriginSize;
699        CurrentAlignment = IntptrAlignment;
700      }
701    }
702
703    for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
704      Value *GEP =
705          i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
706      IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
707      CurrentAlignment = kMinOriginAlignment;
708    }
709  }
710
711  void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
712                   unsigned Alignment, bool AsCall) {
713    const DataLayout &DL = F.getParent()->getDataLayout();
714    unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
715    unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
716    if (Shadow->getType()->isAggregateType()) {
717      paintOrigin(IRB, updateOrigin(Origin, IRB),
718                  getOriginPtr(Addr, IRB, Alignment), StoreSize,
719                  OriginAlignment);
720    } else {
721      Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
722      Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
723      if (ConstantShadow) {
724        if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
725          paintOrigin(IRB, updateOrigin(Origin, IRB),
726                      getOriginPtr(Addr, IRB, Alignment), StoreSize,
727                      OriginAlignment);
728        return;
729      }
730
731      unsigned TypeSizeInBits =
732          DL.getTypeSizeInBits(ConvertedShadow->getType());
733      unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
734      if (AsCall && SizeIndex < kNumberOfAccessSizes) {
735        Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
736        Value *ConvertedShadow2 = IRB.CreateZExt(
737            ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
738        IRB.CreateCall(Fn, {ConvertedShadow2,
739                            IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
740                            Origin});
741      } else {
742        Value *Cmp = IRB.CreateICmpNE(
743            ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
744        Instruction *CheckTerm = SplitBlockAndInsertIfThen(
745            Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
746        IRBuilder<> IRBNew(CheckTerm);
747        paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
748                    getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
749                    OriginAlignment);
750      }
751    }
752  }
753
754  void materializeStores(bool InstrumentWithCalls) {
755    for (StoreInst *SI : StoreList) {
756      IRBuilder<> IRB(SI);
757      Value *Val = SI->getValueOperand();
758      Value *Addr = SI->getPointerOperand();
759      Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
760      Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
761
762      StoreInst *NewSI =
763          IRB.CreateAlignedStore(Shadow, ShadowPtr, SI->getAlignment());
764      DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
765      (void)NewSI;
766
767      if (ClCheckAccessAddress)
768        insertShadowCheck(Addr, SI);
769
770      if (SI->isAtomic())
771        SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
772
773      if (MS.TrackOrigins && !SI->isAtomic())
774        storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI->getAlignment(),
775                    InstrumentWithCalls);
776    }
777  }
778
779  void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
780                           bool AsCall) {
781    IRBuilder<> IRB(OrigIns);
782    DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
783    Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
784    DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
785
786    Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
787    if (ConstantShadow) {
788      if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
789        if (MS.TrackOrigins) {
790          IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
791                          MS.OriginTLS);
792        }
793        IRB.CreateCall(MS.WarningFn, {});
794        IRB.CreateCall(MS.EmptyAsm, {});
795        // FIXME: Insert UnreachableInst if !ClKeepGoing?
796        // This may invalidate some of the following checks and needs to be done
797        // at the very end.
798      }
799      return;
800    }
801
802    const DataLayout &DL = OrigIns->getModule()->getDataLayout();
803
804    unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
805    unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
806    if (AsCall && SizeIndex < kNumberOfAccessSizes) {
807      Value *Fn = MS.MaybeWarningFn[SizeIndex];
808      Value *ConvertedShadow2 =
809          IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
810      IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
811                                                ? Origin
812                                                : (Value *)IRB.getInt32(0)});
813    } else {
814      Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
815                                    getCleanShadow(ConvertedShadow), "_mscmp");
816      Instruction *CheckTerm = SplitBlockAndInsertIfThen(
817          Cmp, OrigIns,
818          /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
819
820      IRB.SetInsertPoint(CheckTerm);
821      if (MS.TrackOrigins) {
822        IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
823                        MS.OriginTLS);
824      }
825      IRB.CreateCall(MS.WarningFn, {});
826      IRB.CreateCall(MS.EmptyAsm, {});
827      DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
828    }
829  }
830
831  void materializeChecks(bool InstrumentWithCalls) {
832    for (const auto &ShadowData : InstrumentationList) {
833      Instruction *OrigIns = ShadowData.OrigIns;
834      Value *Shadow = ShadowData.Shadow;
835      Value *Origin = ShadowData.Origin;
836      materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
837    }
838    DEBUG(dbgs() << "DONE:\n" << F);
839  }
840
841  /// \brief Add MemorySanitizer instrumentation to a function.
842  bool runOnFunction() {
843    MS.initializeCallbacks(*F.getParent());
844
845    // In the presence of unreachable blocks, we may see Phi nodes with
846    // incoming nodes from such blocks. Since InstVisitor skips unreachable
847    // blocks, such nodes will not have any shadow value associated with them.
848    // It's easier to remove unreachable blocks than deal with missing shadow.
849    removeUnreachableBlocks(F);
850
851    // Iterate all BBs in depth-first order and create shadow instructions
852    // for all instructions (where applicable).
853    // For PHI nodes we create dummy shadow PHIs which will be finalized later.
854    for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
855      visit(*BB);
856
857
858    // Finalize PHI nodes.
859    for (PHINode *PN : ShadowPHINodes) {
860      PHINode *PNS = cast<PHINode>(getShadow(PN));
861      PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
862      size_t NumValues = PN->getNumIncomingValues();
863      for (size_t v = 0; v < NumValues; v++) {
864        PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
865        if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
866      }
867    }
868
869    VAHelper->finalizeInstrumentation();
870
871    bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
872                               InstrumentationList.size() + StoreList.size() >
873                                   (unsigned)ClInstrumentationWithCallThreshold;
874
875    // Delayed instrumentation of StoreInst.
876    // This may add new checks to be inserted later.
877    materializeStores(InstrumentWithCalls);
878
879    // Insert shadow value checks.
880    materializeChecks(InstrumentWithCalls);
881
882    return true;
883  }
884
885  /// \brief Compute the shadow type that corresponds to a given Value.
886  Type *getShadowTy(Value *V) {
887    return getShadowTy(V->getType());
888  }
889
890  /// \brief Compute the shadow type that corresponds to a given Type.
891  Type *getShadowTy(Type *OrigTy) {
892    if (!OrigTy->isSized()) {
893      return nullptr;
894    }
895    // For integer type, shadow is the same as the original type.
896    // This may return weird-sized types like i1.
897    if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
898      return IT;
899    const DataLayout &DL = F.getParent()->getDataLayout();
900    if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
901      uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
902      return VectorType::get(IntegerType::get(*MS.C, EltSize),
903                             VT->getNumElements());
904    }
905    if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
906      return ArrayType::get(getShadowTy(AT->getElementType()),
907                            AT->getNumElements());
908    }
909    if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
910      SmallVector<Type*, 4> Elements;
911      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
912        Elements.push_back(getShadowTy(ST->getElementType(i)));
913      StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
914      DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
915      return Res;
916    }
917    uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
918    return IntegerType::get(*MS.C, TypeSize);
919  }
920
921  /// \brief Flatten a vector type.
922  Type *getShadowTyNoVec(Type *ty) {
923    if (VectorType *vt = dyn_cast<VectorType>(ty))
924      return IntegerType::get(*MS.C, vt->getBitWidth());
925    return ty;
926  }
927
928  /// \brief Convert a shadow value to it's flattened variant.
929  Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
930    Type *Ty = V->getType();
931    Type *NoVecTy = getShadowTyNoVec(Ty);
932    if (Ty == NoVecTy) return V;
933    return IRB.CreateBitCast(V, NoVecTy);
934  }
935
936  /// \brief Compute the integer shadow offset that corresponds to a given
937  /// application address.
938  ///
939  /// Offset = (Addr & ~AndMask) ^ XorMask
940  Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
941    Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
942
943    uint64_t AndMask = MS.MapParams->AndMask;
944    if (AndMask)
945      OffsetLong =
946          IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
947
948    uint64_t XorMask = MS.MapParams->XorMask;
949    if (XorMask)
950      OffsetLong =
951          IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
952    return OffsetLong;
953  }
954
955  /// \brief Compute the shadow address that corresponds to a given application
956  /// address.
957  ///
958  /// Shadow = ShadowBase + Offset
959  Value *getShadowPtr(Value *Addr, Type *ShadowTy,
960                      IRBuilder<> &IRB) {
961    Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
962    uint64_t ShadowBase = MS.MapParams->ShadowBase;
963    if (ShadowBase != 0)
964      ShadowLong =
965        IRB.CreateAdd(ShadowLong,
966                      ConstantInt::get(MS.IntptrTy, ShadowBase));
967    return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
968  }
969
970  /// \brief Compute the origin address that corresponds to a given application
971  /// address.
972  ///
973  /// OriginAddr = (OriginBase + Offset) & ~3ULL
974  Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
975    Value *OriginLong = getShadowPtrOffset(Addr, IRB);
976    uint64_t OriginBase = MS.MapParams->OriginBase;
977    if (OriginBase != 0)
978      OriginLong =
979        IRB.CreateAdd(OriginLong,
980                      ConstantInt::get(MS.IntptrTy, OriginBase));
981    if (Alignment < kMinOriginAlignment) {
982      uint64_t Mask = kMinOriginAlignment - 1;
983      OriginLong = IRB.CreateAnd(OriginLong,
984                                 ConstantInt::get(MS.IntptrTy, ~Mask));
985    }
986    return IRB.CreateIntToPtr(OriginLong,
987                              PointerType::get(IRB.getInt32Ty(), 0));
988  }
989
990  /// \brief Compute the shadow address for a given function argument.
991  ///
992  /// Shadow = ParamTLS+ArgOffset.
993  Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
994                                 int ArgOffset) {
995    Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
996    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
997    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
998                              "_msarg");
999  }
1000
1001  /// \brief Compute the origin address for a given function argument.
1002  Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
1003                                 int ArgOffset) {
1004    if (!MS.TrackOrigins) return nullptr;
1005    Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
1006    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
1007    return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
1008                              "_msarg_o");
1009  }
1010
1011  /// \brief Compute the shadow address for a retval.
1012  Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
1013    Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
1014    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
1015                              "_msret");
1016  }
1017
1018  /// \brief Compute the origin address for a retval.
1019  Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
1020    // We keep a single origin for the entire retval. Might be too optimistic.
1021    return MS.RetvalOriginTLS;
1022  }
1023
1024  /// \brief Set SV to be the shadow value for V.
1025  void setShadow(Value *V, Value *SV) {
1026    assert(!ShadowMap.count(V) && "Values may only have one shadow");
1027    ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
1028  }
1029
1030  /// \brief Set Origin to be the origin value for V.
1031  void setOrigin(Value *V, Value *Origin) {
1032    if (!MS.TrackOrigins) return;
1033    assert(!OriginMap.count(V) && "Values may only have one origin");
1034    DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
1035    OriginMap[V] = Origin;
1036  }
1037
1038  /// \brief Create a clean shadow value for a given value.
1039  ///
1040  /// Clean shadow (all zeroes) means all bits of the value are defined
1041  /// (initialized).
1042  Constant *getCleanShadow(Value *V) {
1043    Type *ShadowTy = getShadowTy(V);
1044    if (!ShadowTy)
1045      return nullptr;
1046    return Constant::getNullValue(ShadowTy);
1047  }
1048
1049  /// \brief Create a dirty shadow of a given shadow type.
1050  Constant *getPoisonedShadow(Type *ShadowTy) {
1051    assert(ShadowTy);
1052    if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
1053      return Constant::getAllOnesValue(ShadowTy);
1054    if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
1055      SmallVector<Constant *, 4> Vals(AT->getNumElements(),
1056                                      getPoisonedShadow(AT->getElementType()));
1057      return ConstantArray::get(AT, Vals);
1058    }
1059    if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
1060      SmallVector<Constant *, 4> Vals;
1061      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
1062        Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
1063      return ConstantStruct::get(ST, Vals);
1064    }
1065    llvm_unreachable("Unexpected shadow type");
1066  }
1067
1068  /// \brief Create a dirty shadow for a given value.
1069  Constant *getPoisonedShadow(Value *V) {
1070    Type *ShadowTy = getShadowTy(V);
1071    if (!ShadowTy)
1072      return nullptr;
1073    return getPoisonedShadow(ShadowTy);
1074  }
1075
1076  /// \brief Create a clean (zero) origin.
1077  Value *getCleanOrigin() {
1078    return Constant::getNullValue(MS.OriginTy);
1079  }
1080
1081  /// \brief Get the shadow value for a given Value.
1082  ///
1083  /// This function either returns the value set earlier with setShadow,
1084  /// or extracts if from ParamTLS (for function arguments).
1085  Value *getShadow(Value *V) {
1086    if (!PropagateShadow) return getCleanShadow(V);
1087    if (Instruction *I = dyn_cast<Instruction>(V)) {
1088      // For instructions the shadow is already stored in the map.
1089      Value *Shadow = ShadowMap[V];
1090      if (!Shadow) {
1091        DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1092        (void)I;
1093        assert(Shadow && "No shadow for a value");
1094      }
1095      return Shadow;
1096    }
1097    if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1098      Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1099      DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1100      (void)U;
1101      return AllOnes;
1102    }
1103    if (Argument *A = dyn_cast<Argument>(V)) {
1104      // For arguments we compute the shadow on demand and store it in the map.
1105      Value **ShadowPtr = &ShadowMap[V];
1106      if (*ShadowPtr)
1107        return *ShadowPtr;
1108      Function *F = A->getParent();
1109      IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
1110      unsigned ArgOffset = 0;
1111      const DataLayout &DL = F->getParent()->getDataLayout();
1112      for (auto &FArg : F->args()) {
1113        if (!FArg.getType()->isSized()) {
1114          DEBUG(dbgs() << "Arg is not sized\n");
1115          continue;
1116        }
1117        unsigned Size =
1118            FArg.hasByValAttr()
1119                ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1120                : DL.getTypeAllocSize(FArg.getType());
1121        if (A == &FArg) {
1122          bool Overflow = ArgOffset + Size > kParamTLSSize;
1123          Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1124          if (FArg.hasByValAttr()) {
1125            // ByVal pointer itself has clean shadow. We copy the actual
1126            // argument shadow to the underlying memory.
1127            // Figure out maximal valid memcpy alignment.
1128            unsigned ArgAlign = FArg.getParamAlignment();
1129            if (ArgAlign == 0) {
1130              Type *EltType = A->getType()->getPointerElementType();
1131              ArgAlign = DL.getABITypeAlignment(EltType);
1132            }
1133            if (Overflow) {
1134              // ParamTLS overflow.
1135              EntryIRB.CreateMemSet(
1136                  getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
1137                  Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
1138            } else {
1139              unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1140              Value *Cpy = EntryIRB.CreateMemCpy(
1141                  getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
1142                  CopyAlign);
1143              DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
1144              (void)Cpy;
1145            }
1146            *ShadowPtr = getCleanShadow(V);
1147          } else {
1148            if (Overflow) {
1149              // ParamTLS overflow.
1150              *ShadowPtr = getCleanShadow(V);
1151            } else {
1152              *ShadowPtr =
1153                  EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1154            }
1155          }
1156          DEBUG(dbgs() << "  ARG:    "  << FArg << " ==> " <<
1157                **ShadowPtr << "\n");
1158          if (MS.TrackOrigins && !Overflow) {
1159            Value *OriginPtr =
1160                getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1161            setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
1162          } else {
1163            setOrigin(A, getCleanOrigin());
1164          }
1165        }
1166        ArgOffset += alignTo(Size, kShadowTLSAlignment);
1167      }
1168      assert(*ShadowPtr && "Could not find shadow for an argument");
1169      return *ShadowPtr;
1170    }
1171    // For everything else the shadow is zero.
1172    return getCleanShadow(V);
1173  }
1174
1175  /// \brief Get the shadow for i-th argument of the instruction I.
1176  Value *getShadow(Instruction *I, int i) {
1177    return getShadow(I->getOperand(i));
1178  }
1179
1180  /// \brief Get the origin for a value.
1181  Value *getOrigin(Value *V) {
1182    if (!MS.TrackOrigins) return nullptr;
1183    if (!PropagateShadow) return getCleanOrigin();
1184    if (isa<Constant>(V)) return getCleanOrigin();
1185    assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1186           "Unexpected value type in getOrigin()");
1187    Value *Origin = OriginMap[V];
1188    assert(Origin && "Missing origin");
1189    return Origin;
1190  }
1191
1192  /// \brief Get the origin for i-th argument of the instruction I.
1193  Value *getOrigin(Instruction *I, int i) {
1194    return getOrigin(I->getOperand(i));
1195  }
1196
1197  /// \brief Remember the place where a shadow check should be inserted.
1198  ///
1199  /// This location will be later instrumented with a check that will print a
1200  /// UMR warning in runtime if the shadow value is not 0.
1201  void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1202    assert(Shadow);
1203    if (!InsertChecks) return;
1204#ifndef NDEBUG
1205    Type *ShadowTy = Shadow->getType();
1206    assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1207           "Can only insert checks for integer and vector shadow types");
1208#endif
1209    InstrumentationList.push_back(
1210        ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1211  }
1212
1213  /// \brief Remember the place where a shadow check should be inserted.
1214  ///
1215  /// This location will be later instrumented with a check that will print a
1216  /// UMR warning in runtime if the value is not fully defined.
1217  void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1218    assert(Val);
1219    Value *Shadow, *Origin;
1220    if (ClCheckConstantShadow) {
1221      Shadow = getShadow(Val);
1222      if (!Shadow) return;
1223      Origin = getOrigin(Val);
1224    } else {
1225      Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1226      if (!Shadow) return;
1227      Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1228    }
1229    insertShadowCheck(Shadow, Origin, OrigIns);
1230  }
1231
1232  AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1233    switch (a) {
1234      case AtomicOrdering::NotAtomic:
1235        return AtomicOrdering::NotAtomic;
1236      case AtomicOrdering::Unordered:
1237      case AtomicOrdering::Monotonic:
1238      case AtomicOrdering::Release:
1239        return AtomicOrdering::Release;
1240      case AtomicOrdering::Acquire:
1241      case AtomicOrdering::AcquireRelease:
1242        return AtomicOrdering::AcquireRelease;
1243      case AtomicOrdering::SequentiallyConsistent:
1244        return AtomicOrdering::SequentiallyConsistent;
1245    }
1246    llvm_unreachable("Unknown ordering");
1247  }
1248
1249  AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1250    switch (a) {
1251      case AtomicOrdering::NotAtomic:
1252        return AtomicOrdering::NotAtomic;
1253      case AtomicOrdering::Unordered:
1254      case AtomicOrdering::Monotonic:
1255      case AtomicOrdering::Acquire:
1256        return AtomicOrdering::Acquire;
1257      case AtomicOrdering::Release:
1258      case AtomicOrdering::AcquireRelease:
1259        return AtomicOrdering::AcquireRelease;
1260      case AtomicOrdering::SequentiallyConsistent:
1261        return AtomicOrdering::SequentiallyConsistent;
1262    }
1263    llvm_unreachable("Unknown ordering");
1264  }
1265
1266  // ------------------- Visitors.
1267
1268  /// \brief Instrument LoadInst
1269  ///
1270  /// Loads the corresponding shadow and (optionally) origin.
1271  /// Optionally, checks that the load address is fully defined.
1272  void visitLoadInst(LoadInst &I) {
1273    assert(I.getType()->isSized() && "Load type must have size");
1274    IRBuilder<> IRB(I.getNextNode());
1275    Type *ShadowTy = getShadowTy(&I);
1276    Value *Addr = I.getPointerOperand();
1277    if (PropagateShadow && !I.getMetadata("nosanitize")) {
1278      Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1279      setShadow(&I,
1280                IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1281    } else {
1282      setShadow(&I, getCleanShadow(&I));
1283    }
1284
1285    if (ClCheckAccessAddress)
1286      insertShadowCheck(I.getPointerOperand(), &I);
1287
1288    if (I.isAtomic())
1289      I.setOrdering(addAcquireOrdering(I.getOrdering()));
1290
1291    if (MS.TrackOrigins) {
1292      if (PropagateShadow) {
1293        unsigned Alignment = I.getAlignment();
1294        unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1295        setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1296                                            OriginAlignment));
1297      } else {
1298        setOrigin(&I, getCleanOrigin());
1299      }
1300    }
1301  }
1302
1303  /// \brief Instrument StoreInst
1304  ///
1305  /// Stores the corresponding shadow and (optionally) origin.
1306  /// Optionally, checks that the store address is fully defined.
1307  void visitStoreInst(StoreInst &I) {
1308    StoreList.push_back(&I);
1309  }
1310
1311  void handleCASOrRMW(Instruction &I) {
1312    assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1313
1314    IRBuilder<> IRB(&I);
1315    Value *Addr = I.getOperand(0);
1316    Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1317
1318    if (ClCheckAccessAddress)
1319      insertShadowCheck(Addr, &I);
1320
1321    // Only test the conditional argument of cmpxchg instruction.
1322    // The other argument can potentially be uninitialized, but we can not
1323    // detect this situation reliably without possible false positives.
1324    if (isa<AtomicCmpXchgInst>(I))
1325      insertShadowCheck(I.getOperand(1), &I);
1326
1327    IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1328
1329    setShadow(&I, getCleanShadow(&I));
1330    setOrigin(&I, getCleanOrigin());
1331  }
1332
1333  void visitAtomicRMWInst(AtomicRMWInst &I) {
1334    handleCASOrRMW(I);
1335    I.setOrdering(addReleaseOrdering(I.getOrdering()));
1336  }
1337
1338  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1339    handleCASOrRMW(I);
1340    I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1341  }
1342
1343  // Vector manipulation.
1344  void visitExtractElementInst(ExtractElementInst &I) {
1345    insertShadowCheck(I.getOperand(1), &I);
1346    IRBuilder<> IRB(&I);
1347    setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1348              "_msprop"));
1349    setOrigin(&I, getOrigin(&I, 0));
1350  }
1351
1352  void visitInsertElementInst(InsertElementInst &I) {
1353    insertShadowCheck(I.getOperand(2), &I);
1354    IRBuilder<> IRB(&I);
1355    setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1356              I.getOperand(2), "_msprop"));
1357    setOriginForNaryOp(I);
1358  }
1359
1360  void visitShuffleVectorInst(ShuffleVectorInst &I) {
1361    insertShadowCheck(I.getOperand(2), &I);
1362    IRBuilder<> IRB(&I);
1363    setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1364              I.getOperand(2), "_msprop"));
1365    setOriginForNaryOp(I);
1366  }
1367
1368  // Casts.
1369  void visitSExtInst(SExtInst &I) {
1370    IRBuilder<> IRB(&I);
1371    setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1372    setOrigin(&I, getOrigin(&I, 0));
1373  }
1374
1375  void visitZExtInst(ZExtInst &I) {
1376    IRBuilder<> IRB(&I);
1377    setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1378    setOrigin(&I, getOrigin(&I, 0));
1379  }
1380
1381  void visitTruncInst(TruncInst &I) {
1382    IRBuilder<> IRB(&I);
1383    setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1384    setOrigin(&I, getOrigin(&I, 0));
1385  }
1386
1387  void visitBitCastInst(BitCastInst &I) {
1388    // Special case: if this is the bitcast (there is exactly 1 allowed) between
1389    // a musttail call and a ret, don't instrument. New instructions are not
1390    // allowed after a musttail call.
1391    if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
1392      if (CI->isMustTailCall())
1393        return;
1394    IRBuilder<> IRB(&I);
1395    setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1396    setOrigin(&I, getOrigin(&I, 0));
1397  }
1398
1399  void visitPtrToIntInst(PtrToIntInst &I) {
1400    IRBuilder<> IRB(&I);
1401    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1402             "_msprop_ptrtoint"));
1403    setOrigin(&I, getOrigin(&I, 0));
1404  }
1405
1406  void visitIntToPtrInst(IntToPtrInst &I) {
1407    IRBuilder<> IRB(&I);
1408    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1409             "_msprop_inttoptr"));
1410    setOrigin(&I, getOrigin(&I, 0));
1411  }
1412
1413  void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1414  void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1415  void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1416  void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1417  void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1418  void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1419
1420  /// \brief Propagate shadow for bitwise AND.
1421  ///
1422  /// This code is exact, i.e. if, for example, a bit in the left argument
1423  /// is defined and 0, then neither the value not definedness of the
1424  /// corresponding bit in B don't affect the resulting shadow.
1425  void visitAnd(BinaryOperator &I) {
1426    IRBuilder<> IRB(&I);
1427    //  "And" of 0 and a poisoned value results in unpoisoned value.
1428    //  1&1 => 1;     0&1 => 0;     p&1 => p;
1429    //  1&0 => 0;     0&0 => 0;     p&0 => 0;
1430    //  1&p => p;     0&p => 0;     p&p => p;
1431    //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1432    Value *S1 = getShadow(&I, 0);
1433    Value *S2 = getShadow(&I, 1);
1434    Value *V1 = I.getOperand(0);
1435    Value *V2 = I.getOperand(1);
1436    if (V1->getType() != S1->getType()) {
1437      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1438      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1439    }
1440    Value *S1S2 = IRB.CreateAnd(S1, S2);
1441    Value *V1S2 = IRB.CreateAnd(V1, S2);
1442    Value *S1V2 = IRB.CreateAnd(S1, V2);
1443    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1444    setOriginForNaryOp(I);
1445  }
1446
1447  void visitOr(BinaryOperator &I) {
1448    IRBuilder<> IRB(&I);
1449    //  "Or" of 1 and a poisoned value results in unpoisoned value.
1450    //  1|1 => 1;     0|1 => 1;     p|1 => 1;
1451    //  1|0 => 1;     0|0 => 0;     p|0 => p;
1452    //  1|p => 1;     0|p => p;     p|p => p;
1453    //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1454    Value *S1 = getShadow(&I, 0);
1455    Value *S2 = getShadow(&I, 1);
1456    Value *V1 = IRB.CreateNot(I.getOperand(0));
1457    Value *V2 = IRB.CreateNot(I.getOperand(1));
1458    if (V1->getType() != S1->getType()) {
1459      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1460      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1461    }
1462    Value *S1S2 = IRB.CreateAnd(S1, S2);
1463    Value *V1S2 = IRB.CreateAnd(V1, S2);
1464    Value *S1V2 = IRB.CreateAnd(S1, V2);
1465    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1466    setOriginForNaryOp(I);
1467  }
1468
1469  /// \brief Default propagation of shadow and/or origin.
1470  ///
1471  /// This class implements the general case of shadow propagation, used in all
1472  /// cases where we don't know and/or don't care about what the operation
1473  /// actually does. It converts all input shadow values to a common type
1474  /// (extending or truncating as necessary), and bitwise OR's them.
1475  ///
1476  /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1477  /// fully initialized), and less prone to false positives.
1478  ///
1479  /// This class also implements the general case of origin propagation. For a
1480  /// Nary operation, result origin is set to the origin of an argument that is
1481  /// not entirely initialized. If there is more than one such arguments, the
1482  /// rightmost of them is picked. It does not matter which one is picked if all
1483  /// arguments are initialized.
1484  template <bool CombineShadow>
1485  class Combiner {
1486    Value *Shadow;
1487    Value *Origin;
1488    IRBuilder<> &IRB;
1489    MemorySanitizerVisitor *MSV;
1490
1491  public:
1492    Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1493      Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
1494
1495    /// \brief Add a pair of shadow and origin values to the mix.
1496    Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1497      if (CombineShadow) {
1498        assert(OpShadow);
1499        if (!Shadow)
1500          Shadow = OpShadow;
1501        else {
1502          OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1503          Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1504        }
1505      }
1506
1507      if (MSV->MS.TrackOrigins) {
1508        assert(OpOrigin);
1509        if (!Origin) {
1510          Origin = OpOrigin;
1511        } else {
1512          Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1513          // No point in adding something that might result in 0 origin value.
1514          if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1515            Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1516            Value *Cond =
1517                IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1518            Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1519          }
1520        }
1521      }
1522      return *this;
1523    }
1524
1525    /// \brief Add an application value to the mix.
1526    Combiner &Add(Value *V) {
1527      Value *OpShadow = MSV->getShadow(V);
1528      Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
1529      return Add(OpShadow, OpOrigin);
1530    }
1531
1532    /// \brief Set the current combined values as the given instruction's shadow
1533    /// and origin.
1534    void Done(Instruction *I) {
1535      if (CombineShadow) {
1536        assert(Shadow);
1537        Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1538        MSV->setShadow(I, Shadow);
1539      }
1540      if (MSV->MS.TrackOrigins) {
1541        assert(Origin);
1542        MSV->setOrigin(I, Origin);
1543      }
1544    }
1545  };
1546
1547  typedef Combiner<true> ShadowAndOriginCombiner;
1548  typedef Combiner<false> OriginCombiner;
1549
1550  /// \brief Propagate origin for arbitrary operation.
1551  void setOriginForNaryOp(Instruction &I) {
1552    if (!MS.TrackOrigins) return;
1553    IRBuilder<> IRB(&I);
1554    OriginCombiner OC(this, IRB);
1555    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1556      OC.Add(OI->get());
1557    OC.Done(&I);
1558  }
1559
1560  size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1561    assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1562           "Vector of pointers is not a valid shadow type");
1563    return Ty->isVectorTy() ?
1564      Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1565      Ty->getPrimitiveSizeInBits();
1566  }
1567
1568  /// \brief Cast between two shadow types, extending or truncating as
1569  /// necessary.
1570  Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1571                          bool Signed = false) {
1572    Type *srcTy = V->getType();
1573    if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1574      return IRB.CreateIntCast(V, dstTy, Signed);
1575    if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1576        dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1577      return IRB.CreateIntCast(V, dstTy, Signed);
1578    size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1579    size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1580    Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1581    Value *V2 =
1582      IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1583    return IRB.CreateBitCast(V2, dstTy);
1584    // TODO: handle struct types.
1585  }
1586
1587  /// \brief Cast an application value to the type of its own shadow.
1588  Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1589    Type *ShadowTy = getShadowTy(V);
1590    if (V->getType() == ShadowTy)
1591      return V;
1592    if (V->getType()->isPtrOrPtrVectorTy())
1593      return IRB.CreatePtrToInt(V, ShadowTy);
1594    else
1595      return IRB.CreateBitCast(V, ShadowTy);
1596  }
1597
1598  /// \brief Propagate shadow for arbitrary operation.
1599  void handleShadowOr(Instruction &I) {
1600    IRBuilder<> IRB(&I);
1601    ShadowAndOriginCombiner SC(this, IRB);
1602    for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1603      SC.Add(OI->get());
1604    SC.Done(&I);
1605  }
1606
1607  // \brief Handle multiplication by constant.
1608  //
1609  // Handle a special case of multiplication by constant that may have one or
1610  // more zeros in the lower bits. This makes corresponding number of lower bits
1611  // of the result zero as well. We model it by shifting the other operand
1612  // shadow left by the required number of bits. Effectively, we transform
1613  // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1614  // We use multiplication by 2**N instead of shift to cover the case of
1615  // multiplication by 0, which may occur in some elements of a vector operand.
1616  void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1617                           Value *OtherArg) {
1618    Constant *ShadowMul;
1619    Type *Ty = ConstArg->getType();
1620    if (Ty->isVectorTy()) {
1621      unsigned NumElements = Ty->getVectorNumElements();
1622      Type *EltTy = Ty->getSequentialElementType();
1623      SmallVector<Constant *, 16> Elements;
1624      for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1625        if (ConstantInt *Elt =
1626                dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
1627          const APInt &V = Elt->getValue();
1628          APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1629          Elements.push_back(ConstantInt::get(EltTy, V2));
1630        } else {
1631          Elements.push_back(ConstantInt::get(EltTy, 1));
1632        }
1633      }
1634      ShadowMul = ConstantVector::get(Elements);
1635    } else {
1636      if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
1637        const APInt &V = Elt->getValue();
1638        APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1639        ShadowMul = ConstantInt::get(Ty, V2);
1640      } else {
1641        ShadowMul = ConstantInt::get(Ty, 1);
1642      }
1643    }
1644
1645    IRBuilder<> IRB(&I);
1646    setShadow(&I,
1647              IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1648    setOrigin(&I, getOrigin(OtherArg));
1649  }
1650
1651  void visitMul(BinaryOperator &I) {
1652    Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1653    Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1654    if (constOp0 && !constOp1)
1655      handleMulByConstant(I, constOp0, I.getOperand(1));
1656    else if (constOp1 && !constOp0)
1657      handleMulByConstant(I, constOp1, I.getOperand(0));
1658    else
1659      handleShadowOr(I);
1660  }
1661
1662  void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1663  void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1664  void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1665  void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1666  void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1667  void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1668
1669  void handleDiv(Instruction &I) {
1670    IRBuilder<> IRB(&I);
1671    // Strict on the second argument.
1672    insertShadowCheck(I.getOperand(1), &I);
1673    setShadow(&I, getShadow(&I, 0));
1674    setOrigin(&I, getOrigin(&I, 0));
1675  }
1676
1677  void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1678  void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1679  void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1680  void visitURem(BinaryOperator &I) { handleDiv(I); }
1681  void visitSRem(BinaryOperator &I) { handleDiv(I); }
1682  void visitFRem(BinaryOperator &I) { handleDiv(I); }
1683
1684  /// \brief Instrument == and != comparisons.
1685  ///
1686  /// Sometimes the comparison result is known even if some of the bits of the
1687  /// arguments are not.
1688  void handleEqualityComparison(ICmpInst &I) {
1689    IRBuilder<> IRB(&I);
1690    Value *A = I.getOperand(0);
1691    Value *B = I.getOperand(1);
1692    Value *Sa = getShadow(A);
1693    Value *Sb = getShadow(B);
1694
1695    // Get rid of pointers and vectors of pointers.
1696    // For ints (and vectors of ints), types of A and Sa match,
1697    // and this is a no-op.
1698    A = IRB.CreatePointerCast(A, Sa->getType());
1699    B = IRB.CreatePointerCast(B, Sb->getType());
1700
1701    // A == B  <==>  (C = A^B) == 0
1702    // A != B  <==>  (C = A^B) != 0
1703    // Sc = Sa | Sb
1704    Value *C = IRB.CreateXor(A, B);
1705    Value *Sc = IRB.CreateOr(Sa, Sb);
1706    // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1707    // Result is defined if one of the following is true
1708    // * there is a defined 1 bit in C
1709    // * C is fully defined
1710    // Si = !(C & ~Sc) && Sc
1711    Value *Zero = Constant::getNullValue(Sc->getType());
1712    Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1713    Value *Si =
1714      IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1715                    IRB.CreateICmpEQ(
1716                      IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1717    Si->setName("_msprop_icmp");
1718    setShadow(&I, Si);
1719    setOriginForNaryOp(I);
1720  }
1721
1722  /// \brief Build the lowest possible value of V, taking into account V's
1723  ///        uninitialized bits.
1724  Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1725                                bool isSigned) {
1726    if (isSigned) {
1727      // Split shadow into sign bit and other bits.
1728      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1729      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1730      // Maximise the undefined shadow bit, minimize other undefined bits.
1731      return
1732        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1733    } else {
1734      // Minimize undefined bits.
1735      return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1736    }
1737  }
1738
1739  /// \brief Build the highest possible value of V, taking into account V's
1740  ///        uninitialized bits.
1741  Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1742                                bool isSigned) {
1743    if (isSigned) {
1744      // Split shadow into sign bit and other bits.
1745      Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1746      Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1747      // Minimise the undefined shadow bit, maximise other undefined bits.
1748      return
1749        IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1750    } else {
1751      // Maximize undefined bits.
1752      return IRB.CreateOr(A, Sa);
1753    }
1754  }
1755
1756  /// \brief Instrument relational comparisons.
1757  ///
1758  /// This function does exact shadow propagation for all relational
1759  /// comparisons of integers, pointers and vectors of those.
1760  /// FIXME: output seems suboptimal when one of the operands is a constant
1761  void handleRelationalComparisonExact(ICmpInst &I) {
1762    IRBuilder<> IRB(&I);
1763    Value *A = I.getOperand(0);
1764    Value *B = I.getOperand(1);
1765    Value *Sa = getShadow(A);
1766    Value *Sb = getShadow(B);
1767
1768    // Get rid of pointers and vectors of pointers.
1769    // For ints (and vectors of ints), types of A and Sa match,
1770    // and this is a no-op.
1771    A = IRB.CreatePointerCast(A, Sa->getType());
1772    B = IRB.CreatePointerCast(B, Sb->getType());
1773
1774    // Let [a0, a1] be the interval of possible values of A, taking into account
1775    // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1776    // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1777    bool IsSigned = I.isSigned();
1778    Value *S1 = IRB.CreateICmp(I.getPredicate(),
1779                               getLowestPossibleValue(IRB, A, Sa, IsSigned),
1780                               getHighestPossibleValue(IRB, B, Sb, IsSigned));
1781    Value *S2 = IRB.CreateICmp(I.getPredicate(),
1782                               getHighestPossibleValue(IRB, A, Sa, IsSigned),
1783                               getLowestPossibleValue(IRB, B, Sb, IsSigned));
1784    Value *Si = IRB.CreateXor(S1, S2);
1785    setShadow(&I, Si);
1786    setOriginForNaryOp(I);
1787  }
1788
1789  /// \brief Instrument signed relational comparisons.
1790  ///
1791  /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
1792  /// bit of the shadow. Everything else is delegated to handleShadowOr().
1793  void handleSignedRelationalComparison(ICmpInst &I) {
1794    Constant *constOp;
1795    Value *op = nullptr;
1796    CmpInst::Predicate pre;
1797    if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
1798      op = I.getOperand(0);
1799      pre = I.getPredicate();
1800    } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
1801      op = I.getOperand(1);
1802      pre = I.getSwappedPredicate();
1803    } else {
1804      handleShadowOr(I);
1805      return;
1806    }
1807
1808    if ((constOp->isNullValue() &&
1809         (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
1810        (constOp->isAllOnesValue() &&
1811         (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
1812      IRBuilder<> IRB(&I);
1813      Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
1814                                        "_msprop_icmp_s");
1815      setShadow(&I, Shadow);
1816      setOrigin(&I, getOrigin(op));
1817    } else {
1818      handleShadowOr(I);
1819    }
1820  }
1821
1822  void visitICmpInst(ICmpInst &I) {
1823    if (!ClHandleICmp) {
1824      handleShadowOr(I);
1825      return;
1826    }
1827    if (I.isEquality()) {
1828      handleEqualityComparison(I);
1829      return;
1830    }
1831
1832    assert(I.isRelational());
1833    if (ClHandleICmpExact) {
1834      handleRelationalComparisonExact(I);
1835      return;
1836    }
1837    if (I.isSigned()) {
1838      handleSignedRelationalComparison(I);
1839      return;
1840    }
1841
1842    assert(I.isUnsigned());
1843    if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1844      handleRelationalComparisonExact(I);
1845      return;
1846    }
1847
1848    handleShadowOr(I);
1849  }
1850
1851  void visitFCmpInst(FCmpInst &I) {
1852    handleShadowOr(I);
1853  }
1854
1855  void handleShift(BinaryOperator &I) {
1856    IRBuilder<> IRB(&I);
1857    // If any of the S2 bits are poisoned, the whole thing is poisoned.
1858    // Otherwise perform the same shift on S1.
1859    Value *S1 = getShadow(&I, 0);
1860    Value *S2 = getShadow(&I, 1);
1861    Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1862                                   S2->getType());
1863    Value *V2 = I.getOperand(1);
1864    Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1865    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1866    setOriginForNaryOp(I);
1867  }
1868
1869  void visitShl(BinaryOperator &I) { handleShift(I); }
1870  void visitAShr(BinaryOperator &I) { handleShift(I); }
1871  void visitLShr(BinaryOperator &I) { handleShift(I); }
1872
1873  /// \brief Instrument llvm.memmove
1874  ///
1875  /// At this point we don't know if llvm.memmove will be inlined or not.
1876  /// If we don't instrument it and it gets inlined,
1877  /// our interceptor will not kick in and we will lose the memmove.
1878  /// If we instrument the call here, but it does not get inlined,
1879  /// we will memove the shadow twice: which is bad in case
1880  /// of overlapping regions. So, we simply lower the intrinsic to a call.
1881  ///
1882  /// Similar situation exists for memcpy and memset.
1883  void visitMemMoveInst(MemMoveInst &I) {
1884    IRBuilder<> IRB(&I);
1885    IRB.CreateCall(
1886        MS.MemmoveFn,
1887        {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1888         IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1889         IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
1890    I.eraseFromParent();
1891  }
1892
1893  // Similar to memmove: avoid copying shadow twice.
1894  // This is somewhat unfortunate as it may slowdown small constant memcpys.
1895  // FIXME: consider doing manual inline for small constant sizes and proper
1896  // alignment.
1897  void visitMemCpyInst(MemCpyInst &I) {
1898    IRBuilder<> IRB(&I);
1899    IRB.CreateCall(
1900        MS.MemcpyFn,
1901        {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1902         IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1903         IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
1904    I.eraseFromParent();
1905  }
1906
1907  // Same as memcpy.
1908  void visitMemSetInst(MemSetInst &I) {
1909    IRBuilder<> IRB(&I);
1910    IRB.CreateCall(
1911        MS.MemsetFn,
1912        {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1913         IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1914         IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
1915    I.eraseFromParent();
1916  }
1917
1918  void visitVAStartInst(VAStartInst &I) {
1919    VAHelper->visitVAStartInst(I);
1920  }
1921
1922  void visitVACopyInst(VACopyInst &I) {
1923    VAHelper->visitVACopyInst(I);
1924  }
1925
1926  /// \brief Handle vector store-like intrinsics.
1927  ///
1928  /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1929  /// has 1 pointer argument and 1 vector argument, returns void.
1930  bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1931    IRBuilder<> IRB(&I);
1932    Value* Addr = I.getArgOperand(0);
1933    Value *Shadow = getShadow(&I, 1);
1934    Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1935
1936    // We don't know the pointer alignment (could be unaligned SSE store!).
1937    // Have to assume to worst case.
1938    IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1939
1940    if (ClCheckAccessAddress)
1941      insertShadowCheck(Addr, &I);
1942
1943    // FIXME: use ClStoreCleanOrigin
1944    // FIXME: factor out common code from materializeStores
1945    if (MS.TrackOrigins)
1946      IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
1947    return true;
1948  }
1949
1950  /// \brief Handle vector load-like intrinsics.
1951  ///
1952  /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1953  /// has 1 pointer argument, returns a vector.
1954  bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1955    IRBuilder<> IRB(&I);
1956    Value *Addr = I.getArgOperand(0);
1957
1958    Type *ShadowTy = getShadowTy(&I);
1959    if (PropagateShadow) {
1960      Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1961      // We don't know the pointer alignment (could be unaligned SSE load!).
1962      // Have to assume to worst case.
1963      setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1964    } else {
1965      setShadow(&I, getCleanShadow(&I));
1966    }
1967
1968    if (ClCheckAccessAddress)
1969      insertShadowCheck(Addr, &I);
1970
1971    if (MS.TrackOrigins) {
1972      if (PropagateShadow)
1973        setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
1974      else
1975        setOrigin(&I, getCleanOrigin());
1976    }
1977    return true;
1978  }
1979
1980  /// \brief Handle (SIMD arithmetic)-like intrinsics.
1981  ///
1982  /// Instrument intrinsics with any number of arguments of the same type,
1983  /// equal to the return type. The type should be simple (no aggregates or
1984  /// pointers; vectors are fine).
1985  /// Caller guarantees that this intrinsic does not access memory.
1986  bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1987    Type *RetTy = I.getType();
1988    if (!(RetTy->isIntOrIntVectorTy() ||
1989          RetTy->isFPOrFPVectorTy() ||
1990          RetTy->isX86_MMXTy()))
1991      return false;
1992
1993    unsigned NumArgOperands = I.getNumArgOperands();
1994
1995    for (unsigned i = 0; i < NumArgOperands; ++i) {
1996      Type *Ty = I.getArgOperand(i)->getType();
1997      if (Ty != RetTy)
1998        return false;
1999    }
2000
2001    IRBuilder<> IRB(&I);
2002    ShadowAndOriginCombiner SC(this, IRB);
2003    for (unsigned i = 0; i < NumArgOperands; ++i)
2004      SC.Add(I.getArgOperand(i));
2005    SC.Done(&I);
2006
2007    return true;
2008  }
2009
2010  /// \brief Heuristically instrument unknown intrinsics.
2011  ///
2012  /// The main purpose of this code is to do something reasonable with all
2013  /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
2014  /// We recognize several classes of intrinsics by their argument types and
2015  /// ModRefBehaviour and apply special intrumentation when we are reasonably
2016  /// sure that we know what the intrinsic does.
2017  ///
2018  /// We special-case intrinsics where this approach fails. See llvm.bswap
2019  /// handling as an example of that.
2020  bool handleUnknownIntrinsic(IntrinsicInst &I) {
2021    unsigned NumArgOperands = I.getNumArgOperands();
2022    if (NumArgOperands == 0)
2023      return false;
2024
2025    if (NumArgOperands == 2 &&
2026        I.getArgOperand(0)->getType()->isPointerTy() &&
2027        I.getArgOperand(1)->getType()->isVectorTy() &&
2028        I.getType()->isVoidTy() &&
2029        !I.onlyReadsMemory()) {
2030      // This looks like a vector store.
2031      return handleVectorStoreIntrinsic(I);
2032    }
2033
2034    if (NumArgOperands == 1 &&
2035        I.getArgOperand(0)->getType()->isPointerTy() &&
2036        I.getType()->isVectorTy() &&
2037        I.onlyReadsMemory()) {
2038      // This looks like a vector load.
2039      return handleVectorLoadIntrinsic(I);
2040    }
2041
2042    if (I.doesNotAccessMemory())
2043      if (maybeHandleSimpleNomemIntrinsic(I))
2044        return true;
2045
2046    // FIXME: detect and handle SSE maskstore/maskload
2047    return false;
2048  }
2049
2050  void handleBswap(IntrinsicInst &I) {
2051    IRBuilder<> IRB(&I);
2052    Value *Op = I.getArgOperand(0);
2053    Type *OpType = Op->getType();
2054    Function *BswapFunc = Intrinsic::getDeclaration(
2055      F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
2056    setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
2057    setOrigin(&I, getOrigin(Op));
2058  }
2059
2060  // \brief Instrument vector convert instrinsic.
2061  //
2062  // This function instruments intrinsics like cvtsi2ss:
2063  // %Out = int_xxx_cvtyyy(%ConvertOp)
2064  // or
2065  // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2066  // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2067  // number \p Out elements, and (if has 2 arguments) copies the rest of the
2068  // elements from \p CopyOp.
2069  // In most cases conversion involves floating-point value which may trigger a
2070  // hardware exception when not fully initialized. For this reason we require
2071  // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2072  // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2073  // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2074  // return a fully initialized value.
2075  void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2076    IRBuilder<> IRB(&I);
2077    Value *CopyOp, *ConvertOp;
2078
2079    switch (I.getNumArgOperands()) {
2080    case 3:
2081      assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
2082    case 2:
2083      CopyOp = I.getArgOperand(0);
2084      ConvertOp = I.getArgOperand(1);
2085      break;
2086    case 1:
2087      ConvertOp = I.getArgOperand(0);
2088      CopyOp = nullptr;
2089      break;
2090    default:
2091      llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2092    }
2093
2094    // The first *NumUsedElements* elements of ConvertOp are converted to the
2095    // same number of output elements. The rest of the output is copied from
2096    // CopyOp, or (if not available) filled with zeroes.
2097    // Combine shadow for elements of ConvertOp that are used in this operation,
2098    // and insert a check.
2099    // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2100    // int->any conversion.
2101    Value *ConvertShadow = getShadow(ConvertOp);
2102    Value *AggShadow = nullptr;
2103    if (ConvertOp->getType()->isVectorTy()) {
2104      AggShadow = IRB.CreateExtractElement(
2105          ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2106      for (int i = 1; i < NumUsedElements; ++i) {
2107        Value *MoreShadow = IRB.CreateExtractElement(
2108            ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2109        AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2110      }
2111    } else {
2112      AggShadow = ConvertShadow;
2113    }
2114    assert(AggShadow->getType()->isIntegerTy());
2115    insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2116
2117    // Build result shadow by zero-filling parts of CopyOp shadow that come from
2118    // ConvertOp.
2119    if (CopyOp) {
2120      assert(CopyOp->getType() == I.getType());
2121      assert(CopyOp->getType()->isVectorTy());
2122      Value *ResultShadow = getShadow(CopyOp);
2123      Type *EltTy = ResultShadow->getType()->getVectorElementType();
2124      for (int i = 0; i < NumUsedElements; ++i) {
2125        ResultShadow = IRB.CreateInsertElement(
2126            ResultShadow, ConstantInt::getNullValue(EltTy),
2127            ConstantInt::get(IRB.getInt32Ty(), i));
2128      }
2129      setShadow(&I, ResultShadow);
2130      setOrigin(&I, getOrigin(CopyOp));
2131    } else {
2132      setShadow(&I, getCleanShadow(&I));
2133      setOrigin(&I, getCleanOrigin());
2134    }
2135  }
2136
2137  // Given a scalar or vector, extract lower 64 bits (or less), and return all
2138  // zeroes if it is zero, and all ones otherwise.
2139  Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2140    if (S->getType()->isVectorTy())
2141      S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2142    assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2143    Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2144    return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2145  }
2146
2147  // Given a vector, extract its first element, and return all
2148  // zeroes if it is zero, and all ones otherwise.
2149  Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2150    Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
2151    Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
2152    return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2153  }
2154
2155  Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2156    Type *T = S->getType();
2157    assert(T->isVectorTy());
2158    Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2159    return IRB.CreateSExt(S2, T);
2160  }
2161
2162  // \brief Instrument vector shift instrinsic.
2163  //
2164  // This function instruments intrinsics like int_x86_avx2_psll_w.
2165  // Intrinsic shifts %In by %ShiftSize bits.
2166  // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2167  // size, and the rest is ignored. Behavior is defined even if shift size is
2168  // greater than register (or field) width.
2169  void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2170    assert(I.getNumArgOperands() == 2);
2171    IRBuilder<> IRB(&I);
2172    // If any of the S2 bits are poisoned, the whole thing is poisoned.
2173    // Otherwise perform the same shift on S1.
2174    Value *S1 = getShadow(&I, 0);
2175    Value *S2 = getShadow(&I, 1);
2176    Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2177                             : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2178    Value *V1 = I.getOperand(0);
2179    Value *V2 = I.getOperand(1);
2180    Value *Shift = IRB.CreateCall(I.getCalledValue(),
2181                                  {IRB.CreateBitCast(S1, V1->getType()), V2});
2182    Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2183    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2184    setOriginForNaryOp(I);
2185  }
2186
2187  // \brief Get an X86_MMX-sized vector type.
2188  Type *getMMXVectorTy(unsigned EltSizeInBits) {
2189    const unsigned X86_MMXSizeInBits = 64;
2190    return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2191                           X86_MMXSizeInBits / EltSizeInBits);
2192  }
2193
2194  // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2195  // intrinsic.
2196  Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2197    switch (id) {
2198      case llvm::Intrinsic::x86_sse2_packsswb_128:
2199      case llvm::Intrinsic::x86_sse2_packuswb_128:
2200        return llvm::Intrinsic::x86_sse2_packsswb_128;
2201
2202      case llvm::Intrinsic::x86_sse2_packssdw_128:
2203      case llvm::Intrinsic::x86_sse41_packusdw:
2204        return llvm::Intrinsic::x86_sse2_packssdw_128;
2205
2206      case llvm::Intrinsic::x86_avx2_packsswb:
2207      case llvm::Intrinsic::x86_avx2_packuswb:
2208        return llvm::Intrinsic::x86_avx2_packsswb;
2209
2210      case llvm::Intrinsic::x86_avx2_packssdw:
2211      case llvm::Intrinsic::x86_avx2_packusdw:
2212        return llvm::Intrinsic::x86_avx2_packssdw;
2213
2214      case llvm::Intrinsic::x86_mmx_packsswb:
2215      case llvm::Intrinsic::x86_mmx_packuswb:
2216        return llvm::Intrinsic::x86_mmx_packsswb;
2217
2218      case llvm::Intrinsic::x86_mmx_packssdw:
2219        return llvm::Intrinsic::x86_mmx_packssdw;
2220      default:
2221        llvm_unreachable("unexpected intrinsic id");
2222    }
2223  }
2224
2225  // \brief Instrument vector pack instrinsic.
2226  //
2227  // This function instruments intrinsics like x86_mmx_packsswb, that
2228  // packs elements of 2 input vectors into half as many bits with saturation.
2229  // Shadow is propagated with the signed variant of the same intrinsic applied
2230  // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2231  // EltSizeInBits is used only for x86mmx arguments.
2232  void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2233    assert(I.getNumArgOperands() == 2);
2234    bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2235    IRBuilder<> IRB(&I);
2236    Value *S1 = getShadow(&I, 0);
2237    Value *S2 = getShadow(&I, 1);
2238    assert(isX86_MMX || S1->getType()->isVectorTy());
2239
2240    // SExt and ICmpNE below must apply to individual elements of input vectors.
2241    // In case of x86mmx arguments, cast them to appropriate vector types and
2242    // back.
2243    Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2244    if (isX86_MMX) {
2245      S1 = IRB.CreateBitCast(S1, T);
2246      S2 = IRB.CreateBitCast(S2, T);
2247    }
2248    Value *S1_ext = IRB.CreateSExt(
2249        IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2250    Value *S2_ext = IRB.CreateSExt(
2251        IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
2252    if (isX86_MMX) {
2253      Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2254      S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2255      S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2256    }
2257
2258    Function *ShadowFn = Intrinsic::getDeclaration(
2259        F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2260
2261    Value *S =
2262        IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
2263    if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2264    setShadow(&I, S);
2265    setOriginForNaryOp(I);
2266  }
2267
2268  // \brief Instrument sum-of-absolute-differencies intrinsic.
2269  void handleVectorSadIntrinsic(IntrinsicInst &I) {
2270    const unsigned SignificantBitsPerResultElement = 16;
2271    bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2272    Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2273    unsigned ZeroBitsPerResultElement =
2274        ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2275
2276    IRBuilder<> IRB(&I);
2277    Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2278    S = IRB.CreateBitCast(S, ResTy);
2279    S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2280                       ResTy);
2281    S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2282    S = IRB.CreateBitCast(S, getShadowTy(&I));
2283    setShadow(&I, S);
2284    setOriginForNaryOp(I);
2285  }
2286
2287  // \brief Instrument multiply-add intrinsic.
2288  void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2289                                  unsigned EltSizeInBits = 0) {
2290    bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2291    Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2292    IRBuilder<> IRB(&I);
2293    Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2294    S = IRB.CreateBitCast(S, ResTy);
2295    S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2296                       ResTy);
2297    S = IRB.CreateBitCast(S, getShadowTy(&I));
2298    setShadow(&I, S);
2299    setOriginForNaryOp(I);
2300  }
2301
2302  // \brief Instrument compare-packed intrinsic.
2303  // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
2304  // all-ones shadow.
2305  void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
2306    IRBuilder<> IRB(&I);
2307    Type *ResTy = getShadowTy(&I);
2308    Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2309    Value *S = IRB.CreateSExt(
2310        IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
2311    setShadow(&I, S);
2312    setOriginForNaryOp(I);
2313  }
2314
2315  // \brief Instrument compare-scalar intrinsic.
2316  // This handles both cmp* intrinsics which return the result in the first
2317  // element of a vector, and comi* which return the result as i32.
2318  void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
2319    IRBuilder<> IRB(&I);
2320    Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2321    Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
2322    setShadow(&I, S);
2323    setOriginForNaryOp(I);
2324  }
2325
2326  void visitIntrinsicInst(IntrinsicInst &I) {
2327    switch (I.getIntrinsicID()) {
2328    case llvm::Intrinsic::bswap:
2329      handleBswap(I);
2330      break;
2331    case llvm::Intrinsic::x86_avx512_vcvtsd2usi64:
2332    case llvm::Intrinsic::x86_avx512_vcvtsd2usi32:
2333    case llvm::Intrinsic::x86_avx512_vcvtss2usi64:
2334    case llvm::Intrinsic::x86_avx512_vcvtss2usi32:
2335    case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2336    case llvm::Intrinsic::x86_avx512_cvttss2usi:
2337    case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2338    case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2339    case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2340    case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2341    case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2342    case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2343    case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2344    case llvm::Intrinsic::x86_sse2_cvtsd2si:
2345    case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2346    case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2347    case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2348    case llvm::Intrinsic::x86_sse2_cvtss2sd:
2349    case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2350    case llvm::Intrinsic::x86_sse2_cvttsd2si:
2351    case llvm::Intrinsic::x86_sse_cvtsi2ss:
2352    case llvm::Intrinsic::x86_sse_cvtsi642ss:
2353    case llvm::Intrinsic::x86_sse_cvtss2si64:
2354    case llvm::Intrinsic::x86_sse_cvtss2si:
2355    case llvm::Intrinsic::x86_sse_cvttss2si64:
2356    case llvm::Intrinsic::x86_sse_cvttss2si:
2357      handleVectorConvertIntrinsic(I, 1);
2358      break;
2359    case llvm::Intrinsic::x86_sse_cvtps2pi:
2360    case llvm::Intrinsic::x86_sse_cvttps2pi:
2361      handleVectorConvertIntrinsic(I, 2);
2362      break;
2363    case llvm::Intrinsic::x86_avx2_psll_w:
2364    case llvm::Intrinsic::x86_avx2_psll_d:
2365    case llvm::Intrinsic::x86_avx2_psll_q:
2366    case llvm::Intrinsic::x86_avx2_pslli_w:
2367    case llvm::Intrinsic::x86_avx2_pslli_d:
2368    case llvm::Intrinsic::x86_avx2_pslli_q:
2369    case llvm::Intrinsic::x86_avx2_psrl_w:
2370    case llvm::Intrinsic::x86_avx2_psrl_d:
2371    case llvm::Intrinsic::x86_avx2_psrl_q:
2372    case llvm::Intrinsic::x86_avx2_psra_w:
2373    case llvm::Intrinsic::x86_avx2_psra_d:
2374    case llvm::Intrinsic::x86_avx2_psrli_w:
2375    case llvm::Intrinsic::x86_avx2_psrli_d:
2376    case llvm::Intrinsic::x86_avx2_psrli_q:
2377    case llvm::Intrinsic::x86_avx2_psrai_w:
2378    case llvm::Intrinsic::x86_avx2_psrai_d:
2379    case llvm::Intrinsic::x86_sse2_psll_w:
2380    case llvm::Intrinsic::x86_sse2_psll_d:
2381    case llvm::Intrinsic::x86_sse2_psll_q:
2382    case llvm::Intrinsic::x86_sse2_pslli_w:
2383    case llvm::Intrinsic::x86_sse2_pslli_d:
2384    case llvm::Intrinsic::x86_sse2_pslli_q:
2385    case llvm::Intrinsic::x86_sse2_psrl_w:
2386    case llvm::Intrinsic::x86_sse2_psrl_d:
2387    case llvm::Intrinsic::x86_sse2_psrl_q:
2388    case llvm::Intrinsic::x86_sse2_psra_w:
2389    case llvm::Intrinsic::x86_sse2_psra_d:
2390    case llvm::Intrinsic::x86_sse2_psrli_w:
2391    case llvm::Intrinsic::x86_sse2_psrli_d:
2392    case llvm::Intrinsic::x86_sse2_psrli_q:
2393    case llvm::Intrinsic::x86_sse2_psrai_w:
2394    case llvm::Intrinsic::x86_sse2_psrai_d:
2395    case llvm::Intrinsic::x86_mmx_psll_w:
2396    case llvm::Intrinsic::x86_mmx_psll_d:
2397    case llvm::Intrinsic::x86_mmx_psll_q:
2398    case llvm::Intrinsic::x86_mmx_pslli_w:
2399    case llvm::Intrinsic::x86_mmx_pslli_d:
2400    case llvm::Intrinsic::x86_mmx_pslli_q:
2401    case llvm::Intrinsic::x86_mmx_psrl_w:
2402    case llvm::Intrinsic::x86_mmx_psrl_d:
2403    case llvm::Intrinsic::x86_mmx_psrl_q:
2404    case llvm::Intrinsic::x86_mmx_psra_w:
2405    case llvm::Intrinsic::x86_mmx_psra_d:
2406    case llvm::Intrinsic::x86_mmx_psrli_w:
2407    case llvm::Intrinsic::x86_mmx_psrli_d:
2408    case llvm::Intrinsic::x86_mmx_psrli_q:
2409    case llvm::Intrinsic::x86_mmx_psrai_w:
2410    case llvm::Intrinsic::x86_mmx_psrai_d:
2411      handleVectorShiftIntrinsic(I, /* Variable */ false);
2412      break;
2413    case llvm::Intrinsic::x86_avx2_psllv_d:
2414    case llvm::Intrinsic::x86_avx2_psllv_d_256:
2415    case llvm::Intrinsic::x86_avx2_psllv_q:
2416    case llvm::Intrinsic::x86_avx2_psllv_q_256:
2417    case llvm::Intrinsic::x86_avx2_psrlv_d:
2418    case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2419    case llvm::Intrinsic::x86_avx2_psrlv_q:
2420    case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2421    case llvm::Intrinsic::x86_avx2_psrav_d:
2422    case llvm::Intrinsic::x86_avx2_psrav_d_256:
2423      handleVectorShiftIntrinsic(I, /* Variable */ true);
2424      break;
2425
2426    case llvm::Intrinsic::x86_sse2_packsswb_128:
2427    case llvm::Intrinsic::x86_sse2_packssdw_128:
2428    case llvm::Intrinsic::x86_sse2_packuswb_128:
2429    case llvm::Intrinsic::x86_sse41_packusdw:
2430    case llvm::Intrinsic::x86_avx2_packsswb:
2431    case llvm::Intrinsic::x86_avx2_packssdw:
2432    case llvm::Intrinsic::x86_avx2_packuswb:
2433    case llvm::Intrinsic::x86_avx2_packusdw:
2434      handleVectorPackIntrinsic(I);
2435      break;
2436
2437    case llvm::Intrinsic::x86_mmx_packsswb:
2438    case llvm::Intrinsic::x86_mmx_packuswb:
2439      handleVectorPackIntrinsic(I, 16);
2440      break;
2441
2442    case llvm::Intrinsic::x86_mmx_packssdw:
2443      handleVectorPackIntrinsic(I, 32);
2444      break;
2445
2446    case llvm::Intrinsic::x86_mmx_psad_bw:
2447    case llvm::Intrinsic::x86_sse2_psad_bw:
2448    case llvm::Intrinsic::x86_avx2_psad_bw:
2449      handleVectorSadIntrinsic(I);
2450      break;
2451
2452    case llvm::Intrinsic::x86_sse2_pmadd_wd:
2453    case llvm::Intrinsic::x86_avx2_pmadd_wd:
2454    case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2455    case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2456      handleVectorPmaddIntrinsic(I);
2457      break;
2458
2459    case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2460      handleVectorPmaddIntrinsic(I, 8);
2461      break;
2462
2463    case llvm::Intrinsic::x86_mmx_pmadd_wd:
2464      handleVectorPmaddIntrinsic(I, 16);
2465      break;
2466
2467    case llvm::Intrinsic::x86_sse_cmp_ss:
2468    case llvm::Intrinsic::x86_sse2_cmp_sd:
2469    case llvm::Intrinsic::x86_sse_comieq_ss:
2470    case llvm::Intrinsic::x86_sse_comilt_ss:
2471    case llvm::Intrinsic::x86_sse_comile_ss:
2472    case llvm::Intrinsic::x86_sse_comigt_ss:
2473    case llvm::Intrinsic::x86_sse_comige_ss:
2474    case llvm::Intrinsic::x86_sse_comineq_ss:
2475    case llvm::Intrinsic::x86_sse_ucomieq_ss:
2476    case llvm::Intrinsic::x86_sse_ucomilt_ss:
2477    case llvm::Intrinsic::x86_sse_ucomile_ss:
2478    case llvm::Intrinsic::x86_sse_ucomigt_ss:
2479    case llvm::Intrinsic::x86_sse_ucomige_ss:
2480    case llvm::Intrinsic::x86_sse_ucomineq_ss:
2481    case llvm::Intrinsic::x86_sse2_comieq_sd:
2482    case llvm::Intrinsic::x86_sse2_comilt_sd:
2483    case llvm::Intrinsic::x86_sse2_comile_sd:
2484    case llvm::Intrinsic::x86_sse2_comigt_sd:
2485    case llvm::Intrinsic::x86_sse2_comige_sd:
2486    case llvm::Intrinsic::x86_sse2_comineq_sd:
2487    case llvm::Intrinsic::x86_sse2_ucomieq_sd:
2488    case llvm::Intrinsic::x86_sse2_ucomilt_sd:
2489    case llvm::Intrinsic::x86_sse2_ucomile_sd:
2490    case llvm::Intrinsic::x86_sse2_ucomigt_sd:
2491    case llvm::Intrinsic::x86_sse2_ucomige_sd:
2492    case llvm::Intrinsic::x86_sse2_ucomineq_sd:
2493      handleVectorCompareScalarIntrinsic(I);
2494      break;
2495
2496    case llvm::Intrinsic::x86_sse_cmp_ps:
2497    case llvm::Intrinsic::x86_sse2_cmp_pd:
2498      // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
2499      // generates reasonably looking IR that fails in the backend with "Do not
2500      // know how to split the result of this operator!".
2501      handleVectorComparePackedIntrinsic(I);
2502      break;
2503
2504    default:
2505      if (!handleUnknownIntrinsic(I))
2506        visitInstruction(I);
2507      break;
2508    }
2509  }
2510
2511  void visitCallSite(CallSite CS) {
2512    Instruction &I = *CS.getInstruction();
2513    assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2514    if (CS.isCall()) {
2515      CallInst *Call = cast<CallInst>(&I);
2516
2517      // For inline asm, do the usual thing: check argument shadow and mark all
2518      // outputs as clean. Note that any side effects of the inline asm that are
2519      // not immediately visible in its constraints are not handled.
2520      if (Call->isInlineAsm()) {
2521        visitInstruction(I);
2522        return;
2523      }
2524
2525      assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2526
2527      // We are going to insert code that relies on the fact that the callee
2528      // will become a non-readonly function after it is instrumented by us. To
2529      // prevent this code from being optimized out, mark that function
2530      // non-readonly in advance.
2531      if (Function *Func = Call->getCalledFunction()) {
2532        // Clear out readonly/readnone attributes.
2533        AttrBuilder B;
2534        B.addAttribute(Attribute::ReadOnly)
2535          .addAttribute(Attribute::ReadNone);
2536        Func->removeAttributes(AttributeSet::FunctionIndex,
2537                               AttributeSet::get(Func->getContext(),
2538                                                 AttributeSet::FunctionIndex,
2539                                                 B));
2540      }
2541
2542      maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
2543    }
2544    IRBuilder<> IRB(&I);
2545
2546    unsigned ArgOffset = 0;
2547    DEBUG(dbgs() << "  CallSite: " << I << "\n");
2548    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2549         ArgIt != End; ++ArgIt) {
2550      Value *A = *ArgIt;
2551      unsigned i = ArgIt - CS.arg_begin();
2552      if (!A->getType()->isSized()) {
2553        DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2554        continue;
2555      }
2556      unsigned Size = 0;
2557      Value *Store = nullptr;
2558      // Compute the Shadow for arg even if it is ByVal, because
2559      // in that case getShadow() will copy the actual arg shadow to
2560      // __msan_param_tls.
2561      Value *ArgShadow = getShadow(A);
2562      Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2563      DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
2564            " Shadow: " << *ArgShadow << "\n");
2565      bool ArgIsInitialized = false;
2566      const DataLayout &DL = F.getParent()->getDataLayout();
2567      if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
2568        assert(A->getType()->isPointerTy() &&
2569               "ByVal argument is not a pointer!");
2570        Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
2571        if (ArgOffset + Size > kParamTLSSize) break;
2572        unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2573        unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
2574        Store = IRB.CreateMemCpy(ArgShadowBase,
2575                                 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2576                                 Size, Alignment);
2577      } else {
2578        Size = DL.getTypeAllocSize(A->getType());
2579        if (ArgOffset + Size > kParamTLSSize) break;
2580        Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2581                                       kShadowTLSAlignment);
2582        Constant *Cst = dyn_cast<Constant>(ArgShadow);
2583        if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
2584      }
2585      if (MS.TrackOrigins && !ArgIsInitialized)
2586        IRB.CreateStore(getOrigin(A),
2587                        getOriginPtrForArgument(A, IRB, ArgOffset));
2588      (void)Store;
2589      assert(Size != 0 && Store != nullptr);
2590      DEBUG(dbgs() << "  Param:" << *Store << "\n");
2591      ArgOffset += alignTo(Size, 8);
2592    }
2593    DEBUG(dbgs() << "  done with call args\n");
2594
2595    FunctionType *FT =
2596      cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
2597    if (FT->isVarArg()) {
2598      VAHelper->visitCallSite(CS, IRB);
2599    }
2600
2601    // Now, get the shadow for the RetVal.
2602    if (!I.getType()->isSized()) return;
2603    // Don't emit the epilogue for musttail call returns.
2604    if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
2605    IRBuilder<> IRBBefore(&I);
2606    // Until we have full dynamic coverage, make sure the retval shadow is 0.
2607    Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2608    IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
2609    BasicBlock::iterator NextInsn;
2610    if (CS.isCall()) {
2611      NextInsn = ++I.getIterator();
2612      assert(NextInsn != I.getParent()->end());
2613    } else {
2614      BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2615      if (!NormalDest->getSinglePredecessor()) {
2616        // FIXME: this case is tricky, so we are just conservative here.
2617        // Perhaps we need to split the edge between this BB and NormalDest,
2618        // but a naive attempt to use SplitEdge leads to a crash.
2619        setShadow(&I, getCleanShadow(&I));
2620        setOrigin(&I, getCleanOrigin());
2621        return;
2622      }
2623      NextInsn = NormalDest->getFirstInsertionPt();
2624      assert(NextInsn != NormalDest->end() &&
2625             "Could not find insertion point for retval shadow load");
2626    }
2627    IRBuilder<> IRBAfter(&*NextInsn);
2628    Value *RetvalShadow =
2629      IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2630                                 kShadowTLSAlignment, "_msret");
2631    setShadow(&I, RetvalShadow);
2632    if (MS.TrackOrigins)
2633      setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2634  }
2635
2636  bool isAMustTailRetVal(Value *RetVal) {
2637    if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2638      RetVal = I->getOperand(0);
2639    }
2640    if (auto *I = dyn_cast<CallInst>(RetVal)) {
2641      return I->isMustTailCall();
2642    }
2643    return false;
2644  }
2645
2646  void visitReturnInst(ReturnInst &I) {
2647    IRBuilder<> IRB(&I);
2648    Value *RetVal = I.getReturnValue();
2649    if (!RetVal) return;
2650    // Don't emit the epilogue for musttail call returns.
2651    if (isAMustTailRetVal(RetVal)) return;
2652    Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2653    if (CheckReturnValue) {
2654      insertShadowCheck(RetVal, &I);
2655      Value *Shadow = getCleanShadow(RetVal);
2656      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2657    } else {
2658      Value *Shadow = getShadow(RetVal);
2659      IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2660      // FIXME: make it conditional if ClStoreCleanOrigin==0
2661      if (MS.TrackOrigins)
2662        IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2663    }
2664  }
2665
2666  void visitPHINode(PHINode &I) {
2667    IRBuilder<> IRB(&I);
2668    if (!PropagateShadow) {
2669      setShadow(&I, getCleanShadow(&I));
2670      setOrigin(&I, getCleanOrigin());
2671      return;
2672    }
2673
2674    ShadowPHINodes.push_back(&I);
2675    setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2676                                "_msphi_s"));
2677    if (MS.TrackOrigins)
2678      setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2679                                  "_msphi_o"));
2680  }
2681
2682  void visitAllocaInst(AllocaInst &I) {
2683    setShadow(&I, getCleanShadow(&I));
2684    setOrigin(&I, getCleanOrigin());
2685    IRBuilder<> IRB(I.getNextNode());
2686    const DataLayout &DL = F.getParent()->getDataLayout();
2687    uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
2688    if (PoisonStack && ClPoisonStackWithCall) {
2689      IRB.CreateCall(MS.MsanPoisonStackFn,
2690                     {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2691                      ConstantInt::get(MS.IntptrTy, Size)});
2692    } else {
2693      Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
2694      Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2695      IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
2696    }
2697
2698    if (PoisonStack && MS.TrackOrigins) {
2699      SmallString<2048> StackDescriptionStorage;
2700      raw_svector_ostream StackDescription(StackDescriptionStorage);
2701      // We create a string with a description of the stack allocation and
2702      // pass it into __msan_set_alloca_origin.
2703      // It will be printed by the run-time if stack-originated UMR is found.
2704      // The first 4 bytes of the string are set to '----' and will be replaced
2705      // by __msan_va_arg_overflow_size_tls at the first call.
2706      StackDescription << "----" << I.getName() << "@" << F.getName();
2707      Value *Descr =
2708          createPrivateNonConstGlobalForString(*F.getParent(),
2709                                               StackDescription.str());
2710
2711      IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
2712                     {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2713                      ConstantInt::get(MS.IntptrTy, Size),
2714                      IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2715                      IRB.CreatePointerCast(&F, MS.IntptrTy)});
2716    }
2717  }
2718
2719  void visitSelectInst(SelectInst& I) {
2720    IRBuilder<> IRB(&I);
2721    // a = select b, c, d
2722    Value *B = I.getCondition();
2723    Value *C = I.getTrueValue();
2724    Value *D = I.getFalseValue();
2725    Value *Sb = getShadow(B);
2726    Value *Sc = getShadow(C);
2727    Value *Sd = getShadow(D);
2728
2729    // Result shadow if condition shadow is 0.
2730    Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2731    Value *Sa1;
2732    if (I.getType()->isAggregateType()) {
2733      // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2734      // an extra "select". This results in much more compact IR.
2735      // Sa = select Sb, poisoned, (select b, Sc, Sd)
2736      Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
2737    } else {
2738      // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2739      // If Sb (condition is poisoned), look for bits in c and d that are equal
2740      // and both unpoisoned.
2741      // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2742
2743      // Cast arguments to shadow-compatible type.
2744      C = CreateAppToShadowCast(IRB, C);
2745      D = CreateAppToShadowCast(IRB, D);
2746
2747      // Result shadow if condition shadow is 1.
2748      Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
2749    }
2750    Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2751    setShadow(&I, Sa);
2752    if (MS.TrackOrigins) {
2753      // Origins are always i32, so any vector conditions must be flattened.
2754      // FIXME: consider tracking vector origins for app vectors?
2755      if (B->getType()->isVectorTy()) {
2756        Type *FlatTy = getShadowTyNoVec(B->getType());
2757        B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
2758                                ConstantInt::getNullValue(FlatTy));
2759        Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
2760                                      ConstantInt::getNullValue(FlatTy));
2761      }
2762      // a = select b, c, d
2763      // Oa = Sb ? Ob : (b ? Oc : Od)
2764      setOrigin(
2765          &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2766                               IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2767                                                getOrigin(I.getFalseValue()))));
2768    }
2769  }
2770
2771  void visitLandingPadInst(LandingPadInst &I) {
2772    // Do nothing.
2773    // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2774    setShadow(&I, getCleanShadow(&I));
2775    setOrigin(&I, getCleanOrigin());
2776  }
2777
2778  void visitCatchSwitchInst(CatchSwitchInst &I) {
2779    setShadow(&I, getCleanShadow(&I));
2780    setOrigin(&I, getCleanOrigin());
2781  }
2782
2783  void visitFuncletPadInst(FuncletPadInst &I) {
2784    setShadow(&I, getCleanShadow(&I));
2785    setOrigin(&I, getCleanOrigin());
2786  }
2787
2788  void visitGetElementPtrInst(GetElementPtrInst &I) {
2789    handleShadowOr(I);
2790  }
2791
2792  void visitExtractValueInst(ExtractValueInst &I) {
2793    IRBuilder<> IRB(&I);
2794    Value *Agg = I.getAggregateOperand();
2795    DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
2796    Value *AggShadow = getShadow(Agg);
2797    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2798    Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2799    DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
2800    setShadow(&I, ResShadow);
2801    setOriginForNaryOp(I);
2802  }
2803
2804  void visitInsertValueInst(InsertValueInst &I) {
2805    IRBuilder<> IRB(&I);
2806    DEBUG(dbgs() << "InsertValue:  " << I << "\n");
2807    Value *AggShadow = getShadow(I.getAggregateOperand());
2808    Value *InsShadow = getShadow(I.getInsertedValueOperand());
2809    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
2810    DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
2811    Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2812    DEBUG(dbgs() << "   Res:        " << *Res << "\n");
2813    setShadow(&I, Res);
2814    setOriginForNaryOp(I);
2815  }
2816
2817  void dumpInst(Instruction &I) {
2818    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2819      errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2820    } else {
2821      errs() << "ZZZ " << I.getOpcodeName() << "\n";
2822    }
2823    errs() << "QQQ " << I << "\n";
2824  }
2825
2826  void visitResumeInst(ResumeInst &I) {
2827    DEBUG(dbgs() << "Resume: " << I << "\n");
2828    // Nothing to do here.
2829  }
2830
2831  void visitCleanupReturnInst(CleanupReturnInst &CRI) {
2832    DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
2833    // Nothing to do here.
2834  }
2835
2836  void visitCatchReturnInst(CatchReturnInst &CRI) {
2837    DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
2838    // Nothing to do here.
2839  }
2840
2841  void visitInstruction(Instruction &I) {
2842    // Everything else: stop propagating and check for poisoned shadow.
2843    if (ClDumpStrictInstructions)
2844      dumpInst(I);
2845    DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2846    for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
2847      insertShadowCheck(I.getOperand(i), &I);
2848    setShadow(&I, getCleanShadow(&I));
2849    setOrigin(&I, getCleanOrigin());
2850  }
2851};
2852
2853/// \brief AMD64-specific implementation of VarArgHelper.
2854struct VarArgAMD64Helper : public VarArgHelper {
2855  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2856  // See a comment in visitCallSite for more details.
2857  static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
2858  static const unsigned AMD64FpEndOffset = 176;
2859
2860  Function &F;
2861  MemorySanitizer &MS;
2862  MemorySanitizerVisitor &MSV;
2863  Value *VAArgTLSCopy;
2864  Value *VAArgOverflowSize;
2865
2866  SmallVector<CallInst*, 16> VAStartInstrumentationList;
2867
2868  VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2869                    MemorySanitizerVisitor &MSV)
2870    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2871      VAArgOverflowSize(nullptr) {}
2872
2873  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2874
2875  ArgKind classifyArgument(Value* arg) {
2876    // A very rough approximation of X86_64 argument classification rules.
2877    Type *T = arg->getType();
2878    if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2879      return AK_FloatingPoint;
2880    if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2881      return AK_GeneralPurpose;
2882    if (T->isPointerTy())
2883      return AK_GeneralPurpose;
2884    return AK_Memory;
2885  }
2886
2887  // For VarArg functions, store the argument shadow in an ABI-specific format
2888  // that corresponds to va_list layout.
2889  // We do this because Clang lowers va_arg in the frontend, and this pass
2890  // only sees the low level code that deals with va_list internals.
2891  // A much easier alternative (provided that Clang emits va_arg instructions)
2892  // would have been to associate each live instance of va_list with a copy of
2893  // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2894  // order.
2895  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2896    unsigned GpOffset = 0;
2897    unsigned FpOffset = AMD64GpEndOffset;
2898    unsigned OverflowOffset = AMD64FpEndOffset;
2899    const DataLayout &DL = F.getParent()->getDataLayout();
2900    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2901         ArgIt != End; ++ArgIt) {
2902      Value *A = *ArgIt;
2903      unsigned ArgNo = CS.getArgumentNo(ArgIt);
2904      bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
2905      bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2906      if (IsByVal) {
2907        // ByVal arguments always go to the overflow area.
2908        // Fixed arguments passed through the overflow area will be stepped
2909        // over by va_start, so don't count them towards the offset.
2910        if (IsFixed)
2911          continue;
2912        assert(A->getType()->isPointerTy());
2913        Type *RealTy = A->getType()->getPointerElementType();
2914        uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
2915        Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
2916        OverflowOffset += alignTo(ArgSize, 8);
2917        IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2918                         ArgSize, kShadowTLSAlignment);
2919      } else {
2920        ArgKind AK = classifyArgument(A);
2921        if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2922          AK = AK_Memory;
2923        if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2924          AK = AK_Memory;
2925        Value *Base;
2926        switch (AK) {
2927          case AK_GeneralPurpose:
2928            Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2929            GpOffset += 8;
2930            break;
2931          case AK_FloatingPoint:
2932            Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2933            FpOffset += 16;
2934            break;
2935          case AK_Memory:
2936            if (IsFixed)
2937              continue;
2938            uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
2939            Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2940            OverflowOffset += alignTo(ArgSize, 8);
2941        }
2942        // Take fixed arguments into account for GpOffset and FpOffset,
2943        // but don't actually store shadows for them.
2944        if (IsFixed)
2945          continue;
2946        IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2947      }
2948    }
2949    Constant *OverflowSize =
2950      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2951    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2952  }
2953
2954  /// \brief Compute the shadow address for a given va_arg.
2955  Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2956                                   int ArgOffset) {
2957    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2958    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2959    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2960                              "_msarg");
2961  }
2962
2963  void visitVAStartInst(VAStartInst &I) override {
2964    if (F.getCallingConv() == CallingConv::X86_64_Win64)
2965      return;
2966    IRBuilder<> IRB(&I);
2967    VAStartInstrumentationList.push_back(&I);
2968    Value *VAListTag = I.getArgOperand(0);
2969    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2970
2971    // Unpoison the whole __va_list_tag.
2972    // FIXME: magic ABI constants.
2973    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2974                     /* size */24, /* alignment */8, false);
2975  }
2976
2977  void visitVACopyInst(VACopyInst &I) override {
2978    if (F.getCallingConv() == CallingConv::X86_64_Win64)
2979      return;
2980    IRBuilder<> IRB(&I);
2981    Value *VAListTag = I.getArgOperand(0);
2982    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2983
2984    // Unpoison the whole __va_list_tag.
2985    // FIXME: magic ABI constants.
2986    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2987                     /* size */24, /* alignment */8, false);
2988  }
2989
2990  void finalizeInstrumentation() override {
2991    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2992           "finalizeInstrumentation called twice");
2993    if (!VAStartInstrumentationList.empty()) {
2994      // If there is a va_start in this function, make a backup copy of
2995      // va_arg_tls somewhere in the function entry block.
2996      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2997      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2998      Value *CopySize =
2999        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
3000                      VAArgOverflowSize);
3001      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3002      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3003    }
3004
3005    // Instrument va_start.
3006    // Copy va_list shadow from the backup copy of the TLS contents.
3007    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3008      CallInst *OrigInst = VAStartInstrumentationList[i];
3009      IRBuilder<> IRB(OrigInst->getNextNode());
3010      Value *VAListTag = OrigInst->getArgOperand(0);
3011
3012      Value *RegSaveAreaPtrPtr =
3013        IRB.CreateIntToPtr(
3014          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3015                        ConstantInt::get(MS.IntptrTy, 16)),
3016          Type::getInt64PtrTy(*MS.C));
3017      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3018      Value *RegSaveAreaShadowPtr =
3019        MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3020      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
3021                       AMD64FpEndOffset, 16);
3022
3023      Value *OverflowArgAreaPtrPtr =
3024        IRB.CreateIntToPtr(
3025          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3026                        ConstantInt::get(MS.IntptrTy, 8)),
3027          Type::getInt64PtrTy(*MS.C));
3028      Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
3029      Value *OverflowArgAreaShadowPtr =
3030        MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
3031      Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
3032                                             AMD64FpEndOffset);
3033      IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
3034    }
3035  }
3036};
3037
3038/// \brief MIPS64-specific implementation of VarArgHelper.
3039struct VarArgMIPS64Helper : public VarArgHelper {
3040  Function &F;
3041  MemorySanitizer &MS;
3042  MemorySanitizerVisitor &MSV;
3043  Value *VAArgTLSCopy;
3044  Value *VAArgSize;
3045
3046  SmallVector<CallInst*, 16> VAStartInstrumentationList;
3047
3048  VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
3049                    MemorySanitizerVisitor &MSV)
3050    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
3051      VAArgSize(nullptr) {}
3052
3053  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3054    unsigned VAArgOffset = 0;
3055    const DataLayout &DL = F.getParent()->getDataLayout();
3056    for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
3057         CS.getFunctionType()->getNumParams(), End = CS.arg_end();
3058         ArgIt != End; ++ArgIt) {
3059      llvm::Triple TargetTriple(F.getParent()->getTargetTriple());
3060      Value *A = *ArgIt;
3061      Value *Base;
3062      uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3063      if (TargetTriple.getArch() == llvm::Triple::mips64) {
3064        // Adjusting the shadow for argument with size < 8 to match the placement
3065        // of bits in big endian system
3066        if (ArgSize < 8)
3067          VAArgOffset += (8 - ArgSize);
3068      }
3069      Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
3070      VAArgOffset += ArgSize;
3071      VAArgOffset = alignTo(VAArgOffset, 8);
3072      IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3073    }
3074
3075    Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
3076    // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
3077    // a new class member i.e. it is the total size of all VarArgs.
3078    IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
3079  }
3080
3081  /// \brief Compute the shadow address for a given va_arg.
3082  Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3083                                   int ArgOffset) {
3084    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3085    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3086    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3087                              "_msarg");
3088  }
3089
3090  void visitVAStartInst(VAStartInst &I) override {
3091    IRBuilder<> IRB(&I);
3092    VAStartInstrumentationList.push_back(&I);
3093    Value *VAListTag = I.getArgOperand(0);
3094    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3095    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3096                     /* size */8, /* alignment */8, false);
3097  }
3098
3099  void visitVACopyInst(VACopyInst &I) override {
3100    IRBuilder<> IRB(&I);
3101    Value *VAListTag = I.getArgOperand(0);
3102    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3103    // Unpoison the whole __va_list_tag.
3104    // FIXME: magic ABI constants.
3105    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3106                     /* size */8, /* alignment */8, false);
3107  }
3108
3109  void finalizeInstrumentation() override {
3110    assert(!VAArgSize && !VAArgTLSCopy &&
3111           "finalizeInstrumentation called twice");
3112    IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
3113    VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3114    Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
3115                                    VAArgSize);
3116
3117    if (!VAStartInstrumentationList.empty()) {
3118      // If there is a va_start in this function, make a backup copy of
3119      // va_arg_tls somewhere in the function entry block.
3120      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3121      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3122    }
3123
3124    // Instrument va_start.
3125    // Copy va_list shadow from the backup copy of the TLS contents.
3126    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3127      CallInst *OrigInst = VAStartInstrumentationList[i];
3128      IRBuilder<> IRB(OrigInst->getNextNode());
3129      Value *VAListTag = OrigInst->getArgOperand(0);
3130      Value *RegSaveAreaPtrPtr =
3131        IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3132                        Type::getInt64PtrTy(*MS.C));
3133      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3134      Value *RegSaveAreaShadowPtr =
3135      MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3136      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
3137    }
3138  }
3139};
3140
3141
3142/// \brief AArch64-specific implementation of VarArgHelper.
3143struct VarArgAArch64Helper : public VarArgHelper {
3144  static const unsigned kAArch64GrArgSize = 64;
3145  static const unsigned kAArch64VrArgSize = 128;
3146
3147  static const unsigned AArch64GrBegOffset = 0;
3148  static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
3149  // Make VR space aligned to 16 bytes.
3150  static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
3151  static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
3152                                             + kAArch64VrArgSize;
3153  static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
3154
3155  Function &F;
3156  MemorySanitizer &MS;
3157  MemorySanitizerVisitor &MSV;
3158  Value *VAArgTLSCopy;
3159  Value *VAArgOverflowSize;
3160
3161  SmallVector<CallInst*, 16> VAStartInstrumentationList;
3162
3163  VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
3164                    MemorySanitizerVisitor &MSV)
3165    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
3166      VAArgOverflowSize(nullptr) {}
3167
3168  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
3169
3170  ArgKind classifyArgument(Value* arg) {
3171    Type *T = arg->getType();
3172    if (T->isFPOrFPVectorTy())
3173      return AK_FloatingPoint;
3174    if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
3175        || (T->isPointerTy()))
3176      return AK_GeneralPurpose;
3177    return AK_Memory;
3178  }
3179
3180  // The instrumentation stores the argument shadow in a non ABI-specific
3181  // format because it does not know which argument is named (since Clang,
3182  // like x86_64 case, lowers the va_args in the frontend and this pass only
3183  // sees the low level code that deals with va_list internals).
3184  // The first seven GR registers are saved in the first 56 bytes of the
3185  // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
3186  // the remaining arguments.
3187  // Using constant offset within the va_arg TLS array allows fast copy
3188  // in the finalize instrumentation.
3189  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3190    unsigned GrOffset = AArch64GrBegOffset;
3191    unsigned VrOffset = AArch64VrBegOffset;
3192    unsigned OverflowOffset = AArch64VAEndOffset;
3193
3194    const DataLayout &DL = F.getParent()->getDataLayout();
3195    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3196         ArgIt != End; ++ArgIt) {
3197      Value *A = *ArgIt;
3198      unsigned ArgNo = CS.getArgumentNo(ArgIt);
3199      bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3200      ArgKind AK = classifyArgument(A);
3201      if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
3202        AK = AK_Memory;
3203      if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
3204        AK = AK_Memory;
3205      Value *Base;
3206      switch (AK) {
3207        case AK_GeneralPurpose:
3208          Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset);
3209          GrOffset += 8;
3210          break;
3211        case AK_FloatingPoint:
3212          Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset);
3213          VrOffset += 16;
3214          break;
3215        case AK_Memory:
3216          // Don't count fixed arguments in the overflow area - va_start will
3217          // skip right over them.
3218          if (IsFixed)
3219            continue;
3220          uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3221          Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
3222          OverflowOffset += alignTo(ArgSize, 8);
3223          break;
3224      }
3225      // Count Gp/Vr fixed arguments to their respective offsets, but don't
3226      // bother to actually store a shadow.
3227      if (IsFixed)
3228        continue;
3229      IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3230    }
3231    Constant *OverflowSize =
3232      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
3233    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
3234  }
3235
3236  /// Compute the shadow address for a given va_arg.
3237  Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3238                                   int ArgOffset) {
3239    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3240    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3241    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3242                              "_msarg");
3243  }
3244
3245  void visitVAStartInst(VAStartInst &I) override {
3246    IRBuilder<> IRB(&I);
3247    VAStartInstrumentationList.push_back(&I);
3248    Value *VAListTag = I.getArgOperand(0);
3249    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3250    // Unpoison the whole __va_list_tag.
3251    // FIXME: magic ABI constants (size of va_list).
3252    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3253                     /* size */32, /* alignment */8, false);
3254  }
3255
3256  void visitVACopyInst(VACopyInst &I) override {
3257    IRBuilder<> IRB(&I);
3258    Value *VAListTag = I.getArgOperand(0);
3259    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3260    // Unpoison the whole __va_list_tag.
3261    // FIXME: magic ABI constants (size of va_list).
3262    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3263                     /* size */32, /* alignment */8, false);
3264  }
3265
3266  // Retrieve a va_list field of 'void*' size.
3267  Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
3268    Value *SaveAreaPtrPtr =
3269      IRB.CreateIntToPtr(
3270        IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3271                      ConstantInt::get(MS.IntptrTy, offset)),
3272        Type::getInt64PtrTy(*MS.C));
3273    return IRB.CreateLoad(SaveAreaPtrPtr);
3274  }
3275
3276  // Retrieve a va_list field of 'int' size.
3277  Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
3278    Value *SaveAreaPtr =
3279      IRB.CreateIntToPtr(
3280        IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3281                      ConstantInt::get(MS.IntptrTy, offset)),
3282        Type::getInt32PtrTy(*MS.C));
3283    Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr);
3284    return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
3285  }
3286
3287  void finalizeInstrumentation() override {
3288    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
3289           "finalizeInstrumentation called twice");
3290    if (!VAStartInstrumentationList.empty()) {
3291      // If there is a va_start in this function, make a backup copy of
3292      // va_arg_tls somewhere in the function entry block.
3293      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
3294      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3295      Value *CopySize =
3296        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
3297                      VAArgOverflowSize);
3298      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3299      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3300    }
3301
3302    Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
3303    Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
3304
3305    // Instrument va_start, copy va_list shadow from the backup copy of
3306    // the TLS contents.
3307    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3308      CallInst *OrigInst = VAStartInstrumentationList[i];
3309      IRBuilder<> IRB(OrigInst->getNextNode());
3310
3311      Value *VAListTag = OrigInst->getArgOperand(0);
3312
3313      // The variadic ABI for AArch64 creates two areas to save the incoming
3314      // argument registers (one for 64-bit general register xn-x7 and another
3315      // for 128-bit FP/SIMD vn-v7).
3316      // We need then to propagate the shadow arguments on both regions
3317      // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
3318      // The remaning arguments are saved on shadow for 'va::stack'.
3319      // One caveat is it requires only to propagate the non-named arguments,
3320      // however on the call site instrumentation 'all' the arguments are
3321      // saved. So to copy the shadow values from the va_arg TLS array
3322      // we need to adjust the offset for both GR and VR fields based on
3323      // the __{gr,vr}_offs value (since they are stores based on incoming
3324      // named arguments).
3325
3326      // Read the stack pointer from the va_list.
3327      Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
3328
3329      // Read both the __gr_top and __gr_off and add them up.
3330      Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
3331      Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
3332
3333      Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
3334
3335      // Read both the __vr_top and __vr_off and add them up.
3336      Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
3337      Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
3338
3339      Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
3340
3341      // It does not know how many named arguments is being used and, on the
3342      // callsite all the arguments were saved.  Since __gr_off is defined as
3343      // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
3344      // argument by ignoring the bytes of shadow from named arguments.
3345      Value *GrRegSaveAreaShadowPtrOff =
3346        IRB.CreateAdd(GrArgSize, GrOffSaveArea);
3347
3348      Value *GrRegSaveAreaShadowPtr =
3349        MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3350
3351      Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3352                                              GrRegSaveAreaShadowPtrOff);
3353      Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
3354
3355      IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8);
3356
3357      // Again, but for FP/SIMD values.
3358      Value *VrRegSaveAreaShadowPtrOff =
3359          IRB.CreateAdd(VrArgSize, VrOffSaveArea);
3360
3361      Value *VrRegSaveAreaShadowPtr =
3362        MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3363
3364      Value *VrSrcPtr = IRB.CreateInBoundsGEP(
3365        IRB.getInt8Ty(),
3366        IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3367                              IRB.getInt32(AArch64VrBegOffset)),
3368        VrRegSaveAreaShadowPtrOff);
3369      Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
3370
3371      IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8);
3372
3373      // And finally for remaining arguments.
3374      Value *StackSaveAreaShadowPtr =
3375        MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB);
3376
3377      Value *StackSrcPtr =
3378        IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
3379                              IRB.getInt32(AArch64VAEndOffset));
3380
3381      IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr,
3382                       VAArgOverflowSize, 16);
3383    }
3384  }
3385};
3386
3387/// \brief PowerPC64-specific implementation of VarArgHelper.
3388struct VarArgPowerPC64Helper : public VarArgHelper {
3389  Function &F;
3390  MemorySanitizer &MS;
3391  MemorySanitizerVisitor &MSV;
3392  Value *VAArgTLSCopy;
3393  Value *VAArgSize;
3394
3395  SmallVector<CallInst*, 16> VAStartInstrumentationList;
3396
3397  VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
3398                    MemorySanitizerVisitor &MSV)
3399    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
3400      VAArgSize(nullptr) {}
3401
3402  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
3403    // For PowerPC, we need to deal with alignment of stack arguments -
3404    // they are mostly aligned to 8 bytes, but vectors and i128 arrays
3405    // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
3406    // and QPX vectors are aligned to 32 bytes.  For that reason, we
3407    // compute current offset from stack pointer (which is always properly
3408    // aligned), and offset for the first vararg, then subtract them.
3409    unsigned VAArgBase;
3410    llvm::Triple TargetTriple(F.getParent()->getTargetTriple());
3411    // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
3412    // and 32 bytes for ABIv2.  This is usually determined by target
3413    // endianness, but in theory could be overriden by function attribute.
3414    // For simplicity, we ignore it here (it'd only matter for QPX vectors).
3415    if (TargetTriple.getArch() == llvm::Triple::ppc64)
3416      VAArgBase = 48;
3417    else
3418      VAArgBase = 32;
3419    unsigned VAArgOffset = VAArgBase;
3420    const DataLayout &DL = F.getParent()->getDataLayout();
3421    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
3422         ArgIt != End; ++ArgIt) {
3423      Value *A = *ArgIt;
3424      unsigned ArgNo = CS.getArgumentNo(ArgIt);
3425      bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
3426      bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
3427      if (IsByVal) {
3428        assert(A->getType()->isPointerTy());
3429        Type *RealTy = A->getType()->getPointerElementType();
3430        uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
3431        uint64_t ArgAlign = CS.getParamAlignment(ArgNo + 1);
3432        if (ArgAlign < 8)
3433          ArgAlign = 8;
3434        VAArgOffset = alignTo(VAArgOffset, ArgAlign);
3435        if (!IsFixed) {
3436          Value *Base = getShadowPtrForVAArgument(RealTy, IRB,
3437                                                  VAArgOffset - VAArgBase);
3438          IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
3439                           ArgSize, kShadowTLSAlignment);
3440        }
3441        VAArgOffset += alignTo(ArgSize, 8);
3442      } else {
3443        Value *Base;
3444        uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
3445        uint64_t ArgAlign = 8;
3446        if (A->getType()->isArrayTy()) {
3447          // Arrays are aligned to element size, except for long double
3448          // arrays, which are aligned to 8 bytes.
3449          Type *ElementTy = A->getType()->getArrayElementType();
3450          if (!ElementTy->isPPC_FP128Ty())
3451            ArgAlign = DL.getTypeAllocSize(ElementTy);
3452        } else if (A->getType()->isVectorTy()) {
3453          // Vectors are naturally aligned.
3454          ArgAlign = DL.getTypeAllocSize(A->getType());
3455        }
3456        if (ArgAlign < 8)
3457          ArgAlign = 8;
3458        VAArgOffset = alignTo(VAArgOffset, ArgAlign);
3459        if (DL.isBigEndian()) {
3460          // Adjusting the shadow for argument with size < 8 to match the placement
3461          // of bits in big endian system
3462          if (ArgSize < 8)
3463            VAArgOffset += (8 - ArgSize);
3464        }
3465        if (!IsFixed) {
3466          Base = getShadowPtrForVAArgument(A->getType(), IRB,
3467                                           VAArgOffset - VAArgBase);
3468          IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
3469        }
3470        VAArgOffset += ArgSize;
3471        VAArgOffset = alignTo(VAArgOffset, 8);
3472      }
3473      if (IsFixed)
3474        VAArgBase = VAArgOffset;
3475    }
3476
3477    Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
3478                                                VAArgOffset - VAArgBase);
3479    // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
3480    // a new class member i.e. it is the total size of all VarArgs.
3481    IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
3482  }
3483
3484  /// \brief Compute the shadow address for a given va_arg.
3485  Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
3486                                   int ArgOffset) {
3487    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
3488    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
3489    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
3490                              "_msarg");
3491  }
3492
3493  void visitVAStartInst(VAStartInst &I) override {
3494    IRBuilder<> IRB(&I);
3495    VAStartInstrumentationList.push_back(&I);
3496    Value *VAListTag = I.getArgOperand(0);
3497    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3498    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3499                     /* size */8, /* alignment */8, false);
3500  }
3501
3502  void visitVACopyInst(VACopyInst &I) override {
3503    IRBuilder<> IRB(&I);
3504    Value *VAListTag = I.getArgOperand(0);
3505    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
3506    // Unpoison the whole __va_list_tag.
3507    // FIXME: magic ABI constants.
3508    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
3509                     /* size */8, /* alignment */8, false);
3510  }
3511
3512  void finalizeInstrumentation() override {
3513    assert(!VAArgSize && !VAArgTLSCopy &&
3514           "finalizeInstrumentation called twice");
3515    IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
3516    VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
3517    Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
3518                                    VAArgSize);
3519
3520    if (!VAStartInstrumentationList.empty()) {
3521      // If there is a va_start in this function, make a backup copy of
3522      // va_arg_tls somewhere in the function entry block.
3523      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
3524      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
3525    }
3526
3527    // Instrument va_start.
3528    // Copy va_list shadow from the backup copy of the TLS contents.
3529    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
3530      CallInst *OrigInst = VAStartInstrumentationList[i];
3531      IRBuilder<> IRB(OrigInst->getNextNode());
3532      Value *VAListTag = OrigInst->getArgOperand(0);
3533      Value *RegSaveAreaPtrPtr =
3534        IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
3535                        Type::getInt64PtrTy(*MS.C));
3536      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
3537      Value *RegSaveAreaShadowPtr =
3538      MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
3539      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
3540    }
3541  }
3542};
3543
3544/// \brief A no-op implementation of VarArgHelper.
3545struct VarArgNoOpHelper : public VarArgHelper {
3546  VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
3547                   MemorySanitizerVisitor &MSV) {}
3548
3549  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
3550
3551  void visitVAStartInst(VAStartInst &I) override {}
3552
3553  void visitVACopyInst(VACopyInst &I) override {}
3554
3555  void finalizeInstrumentation() override {}
3556};
3557
3558VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
3559                                 MemorySanitizerVisitor &Visitor) {
3560  // VarArg handling is only implemented on AMD64. False positives are possible
3561  // on other platforms.
3562  llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
3563  if (TargetTriple.getArch() == llvm::Triple::x86_64)
3564    return new VarArgAMD64Helper(Func, Msan, Visitor);
3565  else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
3566           TargetTriple.getArch() == llvm::Triple::mips64el)
3567    return new VarArgMIPS64Helper(Func, Msan, Visitor);
3568  else if (TargetTriple.getArch() == llvm::Triple::aarch64)
3569    return new VarArgAArch64Helper(Func, Msan, Visitor);
3570  else if (TargetTriple.getArch() == llvm::Triple::ppc64 ||
3571           TargetTriple.getArch() == llvm::Triple::ppc64le)
3572    return new VarArgPowerPC64Helper(Func, Msan, Visitor);
3573  else
3574    return new VarArgNoOpHelper(Func, Msan, Visitor);
3575}
3576
3577} // anonymous namespace
3578
3579bool MemorySanitizer::runOnFunction(Function &F) {
3580  if (&F == MsanCtorFunction)
3581    return false;
3582  MemorySanitizerVisitor Visitor(F, *this);
3583
3584  // Clear out readonly/readnone attributes.
3585  AttrBuilder B;
3586  B.addAttribute(Attribute::ReadOnly)
3587    .addAttribute(Attribute::ReadNone);
3588  F.removeAttributes(AttributeSet::FunctionIndex,
3589                     AttributeSet::get(F.getContext(),
3590                                       AttributeSet::FunctionIndex, B));
3591
3592  return Visitor.runOnFunction();
3593}
3594