MemorySanitizer.cpp revision f3ef5332fa3f4d5ec72c178a2b19dac363a19383
1//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9/// \file 10/// This file is a part of MemorySanitizer, a detector of uninitialized 11/// reads. 12/// 13/// The algorithm of the tool is similar to Memcheck 14/// (http://goo.gl/QKbem). We associate a few shadow bits with every 15/// byte of the application memory, poison the shadow of the malloc-ed 16/// or alloca-ed memory, load the shadow bits on every memory read, 17/// propagate the shadow bits through some of the arithmetic 18/// instruction (including MOV), store the shadow bits on every memory 19/// write, report a bug on some other instructions (e.g. JMP) if the 20/// associated shadow is poisoned. 21/// 22/// But there are differences too. The first and the major one: 23/// compiler instrumentation instead of binary instrumentation. This 24/// gives us much better register allocation, possible compiler 25/// optimizations and a fast start-up. But this brings the major issue 26/// as well: msan needs to see all program events, including system 27/// calls and reads/writes in system libraries, so we either need to 28/// compile *everything* with msan or use a binary translation 29/// component (e.g. DynamoRIO) to instrument pre-built libraries. 30/// Another difference from Memcheck is that we use 8 shadow bits per 31/// byte of application memory and use a direct shadow mapping. This 32/// greatly simplifies the instrumentation code and avoids races on 33/// shadow updates (Memcheck is single-threaded so races are not a 34/// concern there. Memcheck uses 2 shadow bits per byte with a slow 35/// path storage that uses 8 bits per byte). 36/// 37/// The default value of shadow is 0, which means "clean" (not poisoned). 38/// 39/// Every module initializer should call __msan_init to ensure that the 40/// shadow memory is ready. On error, __msan_warning is called. Since 41/// parameters and return values may be passed via registers, we have a 42/// specialized thread-local shadow for return values 43/// (__msan_retval_tls) and parameters (__msan_param_tls). 44/// 45/// Origin tracking. 46/// 47/// MemorySanitizer can track origins (allocation points) of all uninitialized 48/// values. This behavior is controlled with a flag (msan-track-origins) and is 49/// disabled by default. 50/// 51/// Origins are 4-byte values created and interpreted by the runtime library. 52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes 53/// of application memory. Propagation of origins is basically a bunch of 54/// "select" instructions that pick the origin of a dirty argument, if an 55/// instruction has one. 56/// 57/// Every 4 aligned, consecutive bytes of application memory have one origin 58/// value associated with them. If these bytes contain uninitialized data 59/// coming from 2 different allocations, the last store wins. Because of this, 60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in 61/// practice. 62/// 63/// Origins are meaningless for fully initialized values, so MemorySanitizer 64/// avoids storing origin to memory when a fully initialized value is stored. 65/// This way it avoids needless overwritting origin of the 4-byte region on 66/// a short (i.e. 1 byte) clean store, and it is also good for performance. 67/// 68/// Atomic handling. 69/// 70/// Ideally, every atomic store of application value should update the 71/// corresponding shadow location in an atomic way. Unfortunately, atomic store 72/// of two disjoint locations can not be done without severe slowdown. 73/// 74/// Therefore, we implement an approximation that may err on the safe side. 75/// In this implementation, every atomically accessed location in the program 76/// may only change from (partially) uninitialized to fully initialized, but 77/// not the other way around. We load the shadow _after_ the application load, 78/// and we store the shadow _before_ the app store. Also, we always store clean 79/// shadow (if the application store is atomic). This way, if the store-load 80/// pair constitutes a happens-before arc, shadow store and load are correctly 81/// ordered such that the load will get either the value that was stored, or 82/// some later value (which is always clean). 83/// 84/// This does not work very well with Compare-And-Swap (CAS) and 85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW 86/// must store the new shadow before the app operation, and load the shadow 87/// after the app operation. Computers don't work this way. Current 88/// implementation ignores the load aspect of CAS/RMW, always returning a clean 89/// value. It implements the store part as a simple atomic store by storing a 90/// clean shadow. 91 92//===----------------------------------------------------------------------===// 93 94#include "llvm/Transforms/Instrumentation.h" 95#include "llvm/ADT/DepthFirstIterator.h" 96#include "llvm/ADT/SmallString.h" 97#include "llvm/ADT/SmallVector.h" 98#include "llvm/ADT/StringExtras.h" 99#include "llvm/ADT/Triple.h" 100#include "llvm/IR/DataLayout.h" 101#include "llvm/IR/Function.h" 102#include "llvm/IR/IRBuilder.h" 103#include "llvm/IR/InlineAsm.h" 104#include "llvm/IR/InstVisitor.h" 105#include "llvm/IR/IntrinsicInst.h" 106#include "llvm/IR/LLVMContext.h" 107#include "llvm/IR/MDBuilder.h" 108#include "llvm/IR/Module.h" 109#include "llvm/IR/Type.h" 110#include "llvm/IR/ValueMap.h" 111#include "llvm/Support/CommandLine.h" 112#include "llvm/Support/Compiler.h" 113#include "llvm/Support/Debug.h" 114#include "llvm/Support/raw_ostream.h" 115#include "llvm/Transforms/Utils/BasicBlockUtils.h" 116#include "llvm/Transforms/Utils/Local.h" 117#include "llvm/Transforms/Utils/ModuleUtils.h" 118 119using namespace llvm; 120 121#define DEBUG_TYPE "msan" 122 123static const unsigned kOriginSize = 4; 124static const unsigned kMinOriginAlignment = 4; 125static const unsigned kShadowTLSAlignment = 8; 126 127// These constants must be kept in sync with the ones in msan.h. 128static const unsigned kParamTLSSize = 800; 129static const unsigned kRetvalTLSSize = 800; 130 131// Accesses sizes are powers of two: 1, 2, 4, 8. 132static const size_t kNumberOfAccessSizes = 4; 133 134/// \brief Track origins of uninitialized values. 135/// 136/// Adds a section to MemorySanitizer report that points to the allocation 137/// (stack or heap) the uninitialized bits came from originally. 138static cl::opt<int> ClTrackOrigins("msan-track-origins", 139 cl::desc("Track origins (allocation sites) of poisoned memory"), 140 cl::Hidden, cl::init(0)); 141static cl::opt<bool> ClKeepGoing("msan-keep-going", 142 cl::desc("keep going after reporting a UMR"), 143 cl::Hidden, cl::init(false)); 144static cl::opt<bool> ClPoisonStack("msan-poison-stack", 145 cl::desc("poison uninitialized stack variables"), 146 cl::Hidden, cl::init(true)); 147static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", 148 cl::desc("poison uninitialized stack variables with a call"), 149 cl::Hidden, cl::init(false)); 150static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", 151 cl::desc("poison uninitialized stack variables with the given pattern"), 152 cl::Hidden, cl::init(0xff)); 153static cl::opt<bool> ClPoisonUndef("msan-poison-undef", 154 cl::desc("poison undef temps"), 155 cl::Hidden, cl::init(true)); 156 157static cl::opt<bool> ClHandleICmp("msan-handle-icmp", 158 cl::desc("propagate shadow through ICmpEQ and ICmpNE"), 159 cl::Hidden, cl::init(true)); 160 161static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", 162 cl::desc("exact handling of relational integer ICmp"), 163 cl::Hidden, cl::init(false)); 164 165// This flag controls whether we check the shadow of the address 166// operand of load or store. Such bugs are very rare, since load from 167// a garbage address typically results in SEGV, but still happen 168// (e.g. only lower bits of address are garbage, or the access happens 169// early at program startup where malloc-ed memory is more likely to 170// be zeroed. As of 2012-08-28 this flag adds 20% slowdown. 171static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", 172 cl::desc("report accesses through a pointer which has poisoned shadow"), 173 cl::Hidden, cl::init(true)); 174 175static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", 176 cl::desc("print out instructions with default strict semantics"), 177 cl::Hidden, cl::init(false)); 178 179static cl::opt<int> ClInstrumentationWithCallThreshold( 180 "msan-instrumentation-with-call-threshold", 181 cl::desc( 182 "If the function being instrumented requires more than " 183 "this number of checks and origin stores, use callbacks instead of " 184 "inline checks (-1 means never use callbacks)."), 185 cl::Hidden, cl::init(3500)); 186 187// This is an experiment to enable handling of cases where shadow is a non-zero 188// compile-time constant. For some unexplainable reason they were silently 189// ignored in the instrumentation. 190static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", 191 cl::desc("Insert checks for constant shadow values"), 192 cl::Hidden, cl::init(false)); 193 194static const char *const kMsanModuleCtorName = "msan.module_ctor"; 195static const char *const kMsanInitName = "__msan_init"; 196 197namespace { 198 199// Memory map parameters used in application-to-shadow address calculation. 200// Offset = (Addr & ~AndMask) ^ XorMask 201// Shadow = ShadowBase + Offset 202// Origin = OriginBase + Offset 203struct MemoryMapParams { 204 uint64_t AndMask; 205 uint64_t XorMask; 206 uint64_t ShadowBase; 207 uint64_t OriginBase; 208}; 209 210struct PlatformMemoryMapParams { 211 const MemoryMapParams *bits32; 212 const MemoryMapParams *bits64; 213}; 214 215// i386 Linux 216static const MemoryMapParams Linux_I386_MemoryMapParams = { 217 0x000080000000, // AndMask 218 0, // XorMask (not used) 219 0, // ShadowBase (not used) 220 0x000040000000, // OriginBase 221}; 222 223// x86_64 Linux 224static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 225#ifdef MSAN_LINUX_X86_64_OLD_MAPPING 226 0x400000000000, // AndMask 227 0, // XorMask (not used) 228 0, // ShadowBase (not used) 229 0x200000000000, // OriginBase 230#else 231 0, // AndMask (not used) 232 0x500000000000, // XorMask 233 0, // ShadowBase (not used) 234 0x100000000000, // OriginBase 235#endif 236}; 237 238// mips64 Linux 239static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { 240 0x004000000000, // AndMask 241 0, // XorMask (not used) 242 0, // ShadowBase (not used) 243 0x002000000000, // OriginBase 244}; 245 246// ppc64 Linux 247static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { 248 0x200000000000, // AndMask 249 0x100000000000, // XorMask 250 0x080000000000, // ShadowBase 251 0x1C0000000000, // OriginBase 252}; 253 254// aarch64 Linux 255static const MemoryMapParams Linux_AArch64_MemoryMapParams = { 256 0, // AndMask (not used) 257 0x06000000000, // XorMask 258 0, // ShadowBase (not used) 259 0x01000000000, // OriginBase 260}; 261 262// i386 FreeBSD 263static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { 264 0x000180000000, // AndMask 265 0x000040000000, // XorMask 266 0x000020000000, // ShadowBase 267 0x000700000000, // OriginBase 268}; 269 270// x86_64 FreeBSD 271static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { 272 0xc00000000000, // AndMask 273 0x200000000000, // XorMask 274 0x100000000000, // ShadowBase 275 0x380000000000, // OriginBase 276}; 277 278static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { 279 &Linux_I386_MemoryMapParams, 280 &Linux_X86_64_MemoryMapParams, 281}; 282 283static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { 284 nullptr, 285 &Linux_MIPS64_MemoryMapParams, 286}; 287 288static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { 289 nullptr, 290 &Linux_PowerPC64_MemoryMapParams, 291}; 292 293static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { 294 nullptr, 295 &Linux_AArch64_MemoryMapParams, 296}; 297 298static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { 299 &FreeBSD_I386_MemoryMapParams, 300 &FreeBSD_X86_64_MemoryMapParams, 301}; 302 303/// \brief An instrumentation pass implementing detection of uninitialized 304/// reads. 305/// 306/// MemorySanitizer: instrument the code in module to find 307/// uninitialized reads. 308class MemorySanitizer : public FunctionPass { 309 public: 310 MemorySanitizer(int TrackOrigins = 0) 311 : FunctionPass(ID), 312 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)), 313 WarningFn(nullptr) {} 314 const char *getPassName() const override { return "MemorySanitizer"; } 315 bool runOnFunction(Function &F) override; 316 bool doInitialization(Module &M) override; 317 static char ID; // Pass identification, replacement for typeid. 318 319 private: 320 void initializeCallbacks(Module &M); 321 322 /// \brief Track origins (allocation points) of uninitialized values. 323 int TrackOrigins; 324 325 LLVMContext *C; 326 Type *IntptrTy; 327 Type *OriginTy; 328 /// \brief Thread-local shadow storage for function parameters. 329 GlobalVariable *ParamTLS; 330 /// \brief Thread-local origin storage for function parameters. 331 GlobalVariable *ParamOriginTLS; 332 /// \brief Thread-local shadow storage for function return value. 333 GlobalVariable *RetvalTLS; 334 /// \brief Thread-local origin storage for function return value. 335 GlobalVariable *RetvalOriginTLS; 336 /// \brief Thread-local shadow storage for in-register va_arg function 337 /// parameters (x86_64-specific). 338 GlobalVariable *VAArgTLS; 339 /// \brief Thread-local shadow storage for va_arg overflow area 340 /// (x86_64-specific). 341 GlobalVariable *VAArgOverflowSizeTLS; 342 /// \brief Thread-local space used to pass origin value to the UMR reporting 343 /// function. 344 GlobalVariable *OriginTLS; 345 346 /// \brief The run-time callback to print a warning. 347 Value *WarningFn; 348 // These arrays are indexed by log2(AccessSize). 349 Value *MaybeWarningFn[kNumberOfAccessSizes]; 350 Value *MaybeStoreOriginFn[kNumberOfAccessSizes]; 351 352 /// \brief Run-time helper that generates a new origin value for a stack 353 /// allocation. 354 Value *MsanSetAllocaOrigin4Fn; 355 /// \brief Run-time helper that poisons stack on function entry. 356 Value *MsanPoisonStackFn; 357 /// \brief Run-time helper that records a store (or any event) of an 358 /// uninitialized value and returns an updated origin id encoding this info. 359 Value *MsanChainOriginFn; 360 /// \brief MSan runtime replacements for memmove, memcpy and memset. 361 Value *MemmoveFn, *MemcpyFn, *MemsetFn; 362 363 /// \brief Memory map parameters used in application-to-shadow calculation. 364 const MemoryMapParams *MapParams; 365 366 MDNode *ColdCallWeights; 367 /// \brief Branch weights for origin store. 368 MDNode *OriginStoreWeights; 369 /// \brief An empty volatile inline asm that prevents callback merge. 370 InlineAsm *EmptyAsm; 371 Function *MsanCtorFunction; 372 373 friend struct MemorySanitizerVisitor; 374 friend struct VarArgAMD64Helper; 375 friend struct VarArgMIPS64Helper; 376 friend struct VarArgAArch64Helper; 377}; 378} // anonymous namespace 379 380char MemorySanitizer::ID = 0; 381INITIALIZE_PASS(MemorySanitizer, "msan", 382 "MemorySanitizer: detects uninitialized reads.", 383 false, false) 384 385FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) { 386 return new MemorySanitizer(TrackOrigins); 387} 388 389/// \brief Create a non-const global initialized with the given string. 390/// 391/// Creates a writable global for Str so that we can pass it to the 392/// run-time lib. Runtime uses first 4 bytes of the string to store the 393/// frame ID, so the string needs to be mutable. 394static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, 395 StringRef Str) { 396 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 397 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, 398 GlobalValue::PrivateLinkage, StrConst, ""); 399} 400 401/// \brief Insert extern declaration of runtime-provided functions and globals. 402void MemorySanitizer::initializeCallbacks(Module &M) { 403 // Only do this once. 404 if (WarningFn) 405 return; 406 407 IRBuilder<> IRB(*C); 408 // Create the callback. 409 // FIXME: this function should have "Cold" calling conv, 410 // which is not yet implemented. 411 StringRef WarningFnName = ClKeepGoing ? "__msan_warning" 412 : "__msan_warning_noreturn"; 413 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr); 414 415 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 416 AccessSizeIndex++) { 417 unsigned AccessSize = 1 << AccessSizeIndex; 418 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); 419 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( 420 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 421 IRB.getInt32Ty(), nullptr); 422 423 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); 424 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( 425 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), 426 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr); 427 } 428 429 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( 430 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, 431 IRB.getInt8PtrTy(), IntptrTy, nullptr); 432 MsanPoisonStackFn = 433 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), 434 IRB.getInt8PtrTy(), IntptrTy, nullptr); 435 MsanChainOriginFn = M.getOrInsertFunction( 436 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr); 437 MemmoveFn = M.getOrInsertFunction( 438 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 439 IRB.getInt8PtrTy(), IntptrTy, nullptr); 440 MemcpyFn = M.getOrInsertFunction( 441 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 442 IntptrTy, nullptr); 443 MemsetFn = M.getOrInsertFunction( 444 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 445 IntptrTy, nullptr); 446 447 // Create globals. 448 RetvalTLS = new GlobalVariable( 449 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false, 450 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr, 451 GlobalVariable::InitialExecTLSModel); 452 RetvalOriginTLS = new GlobalVariable( 453 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr, 454 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 455 456 ParamTLS = new GlobalVariable( 457 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 458 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr, 459 GlobalVariable::InitialExecTLSModel); 460 ParamOriginTLS = new GlobalVariable( 461 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false, 462 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls", 463 nullptr, GlobalVariable::InitialExecTLSModel); 464 465 VAArgTLS = new GlobalVariable( 466 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false, 467 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr, 468 GlobalVariable::InitialExecTLSModel); 469 VAArgOverflowSizeTLS = new GlobalVariable( 470 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 471 "__msan_va_arg_overflow_size_tls", nullptr, 472 GlobalVariable::InitialExecTLSModel); 473 OriginTLS = new GlobalVariable( 474 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr, 475 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel); 476 477 // We insert an empty inline asm after __msan_report* to avoid callback merge. 478 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 479 StringRef(""), StringRef(""), 480 /*hasSideEffects=*/true); 481} 482 483/// \brief Module-level initialization. 484/// 485/// inserts a call to __msan_init to the module's constructor list. 486bool MemorySanitizer::doInitialization(Module &M) { 487 auto &DL = M.getDataLayout(); 488 489 Triple TargetTriple(M.getTargetTriple()); 490 switch (TargetTriple.getOS()) { 491 case Triple::FreeBSD: 492 switch (TargetTriple.getArch()) { 493 case Triple::x86_64: 494 MapParams = FreeBSD_X86_MemoryMapParams.bits64; 495 break; 496 case Triple::x86: 497 MapParams = FreeBSD_X86_MemoryMapParams.bits32; 498 break; 499 default: 500 report_fatal_error("unsupported architecture"); 501 } 502 break; 503 case Triple::Linux: 504 switch (TargetTriple.getArch()) { 505 case Triple::x86_64: 506 MapParams = Linux_X86_MemoryMapParams.bits64; 507 break; 508 case Triple::x86: 509 MapParams = Linux_X86_MemoryMapParams.bits32; 510 break; 511 case Triple::mips64: 512 case Triple::mips64el: 513 MapParams = Linux_MIPS_MemoryMapParams.bits64; 514 break; 515 case Triple::ppc64: 516 case Triple::ppc64le: 517 MapParams = Linux_PowerPC_MemoryMapParams.bits64; 518 break; 519 case Triple::aarch64: 520 case Triple::aarch64_be: 521 MapParams = Linux_ARM_MemoryMapParams.bits64; 522 break; 523 default: 524 report_fatal_error("unsupported architecture"); 525 } 526 break; 527 default: 528 report_fatal_error("unsupported operating system"); 529 } 530 531 C = &(M.getContext()); 532 IRBuilder<> IRB(*C); 533 IntptrTy = IRB.getIntPtrTy(DL); 534 OriginTy = IRB.getInt32Ty(); 535 536 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); 537 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); 538 539 std::tie(MsanCtorFunction, std::ignore) = 540 createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName, 541 /*InitArgTypes=*/{}, 542 /*InitArgs=*/{}); 543 544 appendToGlobalCtors(M, MsanCtorFunction, 0); 545 546 if (TrackOrigins) 547 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 548 IRB.getInt32(TrackOrigins), "__msan_track_origins"); 549 550 if (ClKeepGoing) 551 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, 552 IRB.getInt32(ClKeepGoing), "__msan_keep_going"); 553 554 return true; 555} 556 557namespace { 558 559/// \brief A helper class that handles instrumentation of VarArg 560/// functions on a particular platform. 561/// 562/// Implementations are expected to insert the instrumentation 563/// necessary to propagate argument shadow through VarArg function 564/// calls. Visit* methods are called during an InstVisitor pass over 565/// the function, and should avoid creating new basic blocks. A new 566/// instance of this class is created for each instrumented function. 567struct VarArgHelper { 568 /// \brief Visit a CallSite. 569 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; 570 571 /// \brief Visit a va_start call. 572 virtual void visitVAStartInst(VAStartInst &I) = 0; 573 574 /// \brief Visit a va_copy call. 575 virtual void visitVACopyInst(VACopyInst &I) = 0; 576 577 /// \brief Finalize function instrumentation. 578 /// 579 /// This method is called after visiting all interesting (see above) 580 /// instructions in a function. 581 virtual void finalizeInstrumentation() = 0; 582 583 virtual ~VarArgHelper() {} 584}; 585 586struct MemorySanitizerVisitor; 587 588VarArgHelper* 589CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 590 MemorySanitizerVisitor &Visitor); 591 592unsigned TypeSizeToSizeIndex(unsigned TypeSize) { 593 if (TypeSize <= 8) return 0; 594 return Log2_32_Ceil(TypeSize / 8); 595} 596 597/// This class does all the work for a given function. Store and Load 598/// instructions store and load corresponding shadow and origin 599/// values. Most instructions propagate shadow from arguments to their 600/// return values. Certain instructions (most importantly, BranchInst) 601/// test their argument shadow and print reports (with a runtime call) if it's 602/// non-zero. 603struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { 604 Function &F; 605 MemorySanitizer &MS; 606 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; 607 ValueMap<Value*, Value*> ShadowMap, OriginMap; 608 std::unique_ptr<VarArgHelper> VAHelper; 609 610 // The following flags disable parts of MSan instrumentation based on 611 // blacklist contents and command-line options. 612 bool InsertChecks; 613 bool PropagateShadow; 614 bool PoisonStack; 615 bool PoisonUndef; 616 bool CheckReturnValue; 617 618 struct ShadowOriginAndInsertPoint { 619 Value *Shadow; 620 Value *Origin; 621 Instruction *OrigIns; 622 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) 623 : Shadow(S), Origin(O), OrigIns(I) { } 624 }; 625 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; 626 SmallVector<Instruction*, 16> StoreList; 627 628 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS) 629 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) { 630 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); 631 InsertChecks = SanitizeFunction; 632 PropagateShadow = SanitizeFunction; 633 PoisonStack = SanitizeFunction && ClPoisonStack; 634 PoisonUndef = SanitizeFunction && ClPoisonUndef; 635 // FIXME: Consider using SpecialCaseList to specify a list of functions that 636 // must always return fully initialized values. For now, we hardcode "main". 637 CheckReturnValue = SanitizeFunction && (F.getName() == "main"); 638 639 DEBUG(if (!InsertChecks) 640 dbgs() << "MemorySanitizer is not inserting checks into '" 641 << F.getName() << "'\n"); 642 } 643 644 Value *updateOrigin(Value *V, IRBuilder<> &IRB) { 645 if (MS.TrackOrigins <= 1) return V; 646 return IRB.CreateCall(MS.MsanChainOriginFn, V); 647 } 648 649 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { 650 const DataLayout &DL = F.getParent()->getDataLayout(); 651 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 652 if (IntptrSize == kOriginSize) return Origin; 653 assert(IntptrSize == kOriginSize * 2); 654 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); 655 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); 656 } 657 658 /// \brief Fill memory range with the given origin value. 659 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, 660 unsigned Size, unsigned Alignment) { 661 const DataLayout &DL = F.getParent()->getDataLayout(); 662 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); 663 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); 664 assert(IntptrAlignment >= kMinOriginAlignment); 665 assert(IntptrSize >= kOriginSize); 666 667 unsigned Ofs = 0; 668 unsigned CurrentAlignment = Alignment; 669 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { 670 Value *IntptrOrigin = originToIntptr(IRB, Origin); 671 Value *IntptrOriginPtr = 672 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); 673 for (unsigned i = 0; i < Size / IntptrSize; ++i) { 674 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) 675 : IntptrOriginPtr; 676 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 677 Ofs += IntptrSize / kOriginSize; 678 CurrentAlignment = IntptrAlignment; 679 } 680 } 681 682 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { 683 Value *GEP = 684 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr; 685 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 686 CurrentAlignment = kMinOriginAlignment; 687 } 688 } 689 690 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, 691 unsigned Alignment, bool AsCall) { 692 const DataLayout &DL = F.getParent()->getDataLayout(); 693 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 694 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); 695 if (isa<StructType>(Shadow->getType())) { 696 paintOrigin(IRB, updateOrigin(Origin, IRB), 697 getOriginPtr(Addr, IRB, Alignment), StoreSize, 698 OriginAlignment); 699 } else { 700 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 701 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 702 if (ConstantShadow) { 703 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) 704 paintOrigin(IRB, updateOrigin(Origin, IRB), 705 getOriginPtr(Addr, IRB, Alignment), StoreSize, 706 OriginAlignment); 707 return; 708 } 709 710 unsigned TypeSizeInBits = 711 DL.getTypeSizeInBits(ConvertedShadow->getType()); 712 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 713 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 714 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex]; 715 Value *ConvertedShadow2 = IRB.CreateZExt( 716 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 717 IRB.CreateCall(Fn, {ConvertedShadow2, 718 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 719 Origin}); 720 } else { 721 Value *Cmp = IRB.CreateICmpNE( 722 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); 723 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 724 Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); 725 IRBuilder<> IRBNew(CheckTerm); 726 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), 727 getOriginPtr(Addr, IRBNew, Alignment), StoreSize, 728 OriginAlignment); 729 } 730 } 731 } 732 733 void materializeStores(bool InstrumentWithCalls) { 734 for (auto Inst : StoreList) { 735 StoreInst &SI = *dyn_cast<StoreInst>(Inst); 736 737 IRBuilder<> IRB(&SI); 738 Value *Val = SI.getValueOperand(); 739 Value *Addr = SI.getPointerOperand(); 740 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val); 741 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 742 743 StoreInst *NewSI = 744 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment()); 745 DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); 746 (void)NewSI; 747 748 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI); 749 750 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 751 752 if (MS.TrackOrigins && !SI.isAtomic()) 753 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(), 754 InstrumentWithCalls); 755 } 756 } 757 758 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, 759 bool AsCall) { 760 IRBuilder<> IRB(OrigIns); 761 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); 762 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); 763 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); 764 765 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); 766 if (ConstantShadow) { 767 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { 768 if (MS.TrackOrigins) { 769 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 770 MS.OriginTLS); 771 } 772 IRB.CreateCall(MS.WarningFn, {}); 773 IRB.CreateCall(MS.EmptyAsm, {}); 774 // FIXME: Insert UnreachableInst if !ClKeepGoing? 775 // This may invalidate some of the following checks and needs to be done 776 // at the very end. 777 } 778 return; 779 } 780 781 const DataLayout &DL = OrigIns->getModule()->getDataLayout(); 782 783 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); 784 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); 785 if (AsCall && SizeIndex < kNumberOfAccessSizes) { 786 Value *Fn = MS.MaybeWarningFn[SizeIndex]; 787 Value *ConvertedShadow2 = 788 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); 789 IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin 790 ? Origin 791 : (Value *)IRB.getInt32(0)}); 792 } else { 793 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, 794 getCleanShadow(ConvertedShadow), "_mscmp"); 795 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 796 Cmp, OrigIns, 797 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights); 798 799 IRB.SetInsertPoint(CheckTerm); 800 if (MS.TrackOrigins) { 801 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0), 802 MS.OriginTLS); 803 } 804 IRB.CreateCall(MS.WarningFn, {}); 805 IRB.CreateCall(MS.EmptyAsm, {}); 806 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); 807 } 808 } 809 810 void materializeChecks(bool InstrumentWithCalls) { 811 for (const auto &ShadowData : InstrumentationList) { 812 Instruction *OrigIns = ShadowData.OrigIns; 813 Value *Shadow = ShadowData.Shadow; 814 Value *Origin = ShadowData.Origin; 815 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); 816 } 817 DEBUG(dbgs() << "DONE:\n" << F); 818 } 819 820 /// \brief Add MemorySanitizer instrumentation to a function. 821 bool runOnFunction() { 822 MS.initializeCallbacks(*F.getParent()); 823 824 // In the presence of unreachable blocks, we may see Phi nodes with 825 // incoming nodes from such blocks. Since InstVisitor skips unreachable 826 // blocks, such nodes will not have any shadow value associated with them. 827 // It's easier to remove unreachable blocks than deal with missing shadow. 828 removeUnreachableBlocks(F); 829 830 // Iterate all BBs in depth-first order and create shadow instructions 831 // for all instructions (where applicable). 832 // For PHI nodes we create dummy shadow PHIs which will be finalized later. 833 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) 834 visit(*BB); 835 836 837 // Finalize PHI nodes. 838 for (PHINode *PN : ShadowPHINodes) { 839 PHINode *PNS = cast<PHINode>(getShadow(PN)); 840 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; 841 size_t NumValues = PN->getNumIncomingValues(); 842 for (size_t v = 0; v < NumValues; v++) { 843 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); 844 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); 845 } 846 } 847 848 VAHelper->finalizeInstrumentation(); 849 850 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && 851 InstrumentationList.size() + StoreList.size() > 852 (unsigned)ClInstrumentationWithCallThreshold; 853 854 // Delayed instrumentation of StoreInst. 855 // This may add new checks to be inserted later. 856 materializeStores(InstrumentWithCalls); 857 858 // Insert shadow value checks. 859 materializeChecks(InstrumentWithCalls); 860 861 return true; 862 } 863 864 /// \brief Compute the shadow type that corresponds to a given Value. 865 Type *getShadowTy(Value *V) { 866 return getShadowTy(V->getType()); 867 } 868 869 /// \brief Compute the shadow type that corresponds to a given Type. 870 Type *getShadowTy(Type *OrigTy) { 871 if (!OrigTy->isSized()) { 872 return nullptr; 873 } 874 // For integer type, shadow is the same as the original type. 875 // This may return weird-sized types like i1. 876 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) 877 return IT; 878 const DataLayout &DL = F.getParent()->getDataLayout(); 879 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { 880 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); 881 return VectorType::get(IntegerType::get(*MS.C, EltSize), 882 VT->getNumElements()); 883 } 884 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { 885 return ArrayType::get(getShadowTy(AT->getElementType()), 886 AT->getNumElements()); 887 } 888 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 889 SmallVector<Type*, 4> Elements; 890 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 891 Elements.push_back(getShadowTy(ST->getElementType(i))); 892 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); 893 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); 894 return Res; 895 } 896 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); 897 return IntegerType::get(*MS.C, TypeSize); 898 } 899 900 /// \brief Flatten a vector type. 901 Type *getShadowTyNoVec(Type *ty) { 902 if (VectorType *vt = dyn_cast<VectorType>(ty)) 903 return IntegerType::get(*MS.C, vt->getBitWidth()); 904 return ty; 905 } 906 907 /// \brief Convert a shadow value to it's flattened variant. 908 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { 909 Type *Ty = V->getType(); 910 Type *NoVecTy = getShadowTyNoVec(Ty); 911 if (Ty == NoVecTy) return V; 912 return IRB.CreateBitCast(V, NoVecTy); 913 } 914 915 /// \brief Compute the integer shadow offset that corresponds to a given 916 /// application address. 917 /// 918 /// Offset = (Addr & ~AndMask) ^ XorMask 919 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { 920 Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); 921 922 uint64_t AndMask = MS.MapParams->AndMask; 923 if (AndMask) 924 OffsetLong = 925 IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); 926 927 uint64_t XorMask = MS.MapParams->XorMask; 928 if (XorMask) 929 OffsetLong = 930 IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); 931 return OffsetLong; 932 } 933 934 /// \brief Compute the shadow address that corresponds to a given application 935 /// address. 936 /// 937 /// Shadow = ShadowBase + Offset 938 Value *getShadowPtr(Value *Addr, Type *ShadowTy, 939 IRBuilder<> &IRB) { 940 Value *ShadowLong = getShadowPtrOffset(Addr, IRB); 941 uint64_t ShadowBase = MS.MapParams->ShadowBase; 942 if (ShadowBase != 0) 943 ShadowLong = 944 IRB.CreateAdd(ShadowLong, 945 ConstantInt::get(MS.IntptrTy, ShadowBase)); 946 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 947 } 948 949 /// \brief Compute the origin address that corresponds to a given application 950 /// address. 951 /// 952 /// OriginAddr = (OriginBase + Offset) & ~3ULL 953 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) { 954 Value *OriginLong = getShadowPtrOffset(Addr, IRB); 955 uint64_t OriginBase = MS.MapParams->OriginBase; 956 if (OriginBase != 0) 957 OriginLong = 958 IRB.CreateAdd(OriginLong, 959 ConstantInt::get(MS.IntptrTy, OriginBase)); 960 if (Alignment < kMinOriginAlignment) { 961 uint64_t Mask = kMinOriginAlignment - 1; 962 OriginLong = IRB.CreateAnd(OriginLong, 963 ConstantInt::get(MS.IntptrTy, ~Mask)); 964 } 965 return IRB.CreateIntToPtr(OriginLong, 966 PointerType::get(IRB.getInt32Ty(), 0)); 967 } 968 969 /// \brief Compute the shadow address for a given function argument. 970 /// 971 /// Shadow = ParamTLS+ArgOffset. 972 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, 973 int ArgOffset) { 974 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); 975 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 976 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 977 "_msarg"); 978 } 979 980 /// \brief Compute the origin address for a given function argument. 981 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, 982 int ArgOffset) { 983 if (!MS.TrackOrigins) return nullptr; 984 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); 985 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 986 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), 987 "_msarg_o"); 988 } 989 990 /// \brief Compute the shadow address for a retval. 991 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { 992 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy); 993 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), 994 "_msret"); 995 } 996 997 /// \brief Compute the origin address for a retval. 998 Value *getOriginPtrForRetval(IRBuilder<> &IRB) { 999 // We keep a single origin for the entire retval. Might be too optimistic. 1000 return MS.RetvalOriginTLS; 1001 } 1002 1003 /// \brief Set SV to be the shadow value for V. 1004 void setShadow(Value *V, Value *SV) { 1005 assert(!ShadowMap.count(V) && "Values may only have one shadow"); 1006 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); 1007 } 1008 1009 /// \brief Set Origin to be the origin value for V. 1010 void setOrigin(Value *V, Value *Origin) { 1011 if (!MS.TrackOrigins) return; 1012 assert(!OriginMap.count(V) && "Values may only have one origin"); 1013 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); 1014 OriginMap[V] = Origin; 1015 } 1016 1017 /// \brief Create a clean shadow value for a given value. 1018 /// 1019 /// Clean shadow (all zeroes) means all bits of the value are defined 1020 /// (initialized). 1021 Constant *getCleanShadow(Value *V) { 1022 Type *ShadowTy = getShadowTy(V); 1023 if (!ShadowTy) 1024 return nullptr; 1025 return Constant::getNullValue(ShadowTy); 1026 } 1027 1028 /// \brief Create a dirty shadow of a given shadow type. 1029 Constant *getPoisonedShadow(Type *ShadowTy) { 1030 assert(ShadowTy); 1031 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) 1032 return Constant::getAllOnesValue(ShadowTy); 1033 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { 1034 SmallVector<Constant *, 4> Vals(AT->getNumElements(), 1035 getPoisonedShadow(AT->getElementType())); 1036 return ConstantArray::get(AT, Vals); 1037 } 1038 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { 1039 SmallVector<Constant *, 4> Vals; 1040 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) 1041 Vals.push_back(getPoisonedShadow(ST->getElementType(i))); 1042 return ConstantStruct::get(ST, Vals); 1043 } 1044 llvm_unreachable("Unexpected shadow type"); 1045 } 1046 1047 /// \brief Create a dirty shadow for a given value. 1048 Constant *getPoisonedShadow(Value *V) { 1049 Type *ShadowTy = getShadowTy(V); 1050 if (!ShadowTy) 1051 return nullptr; 1052 return getPoisonedShadow(ShadowTy); 1053 } 1054 1055 /// \brief Create a clean (zero) origin. 1056 Value *getCleanOrigin() { 1057 return Constant::getNullValue(MS.OriginTy); 1058 } 1059 1060 /// \brief Get the shadow value for a given Value. 1061 /// 1062 /// This function either returns the value set earlier with setShadow, 1063 /// or extracts if from ParamTLS (for function arguments). 1064 Value *getShadow(Value *V) { 1065 if (!PropagateShadow) return getCleanShadow(V); 1066 if (Instruction *I = dyn_cast<Instruction>(V)) { 1067 // For instructions the shadow is already stored in the map. 1068 Value *Shadow = ShadowMap[V]; 1069 if (!Shadow) { 1070 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); 1071 (void)I; 1072 assert(Shadow && "No shadow for a value"); 1073 } 1074 return Shadow; 1075 } 1076 if (UndefValue *U = dyn_cast<UndefValue>(V)) { 1077 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); 1078 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); 1079 (void)U; 1080 return AllOnes; 1081 } 1082 if (Argument *A = dyn_cast<Argument>(V)) { 1083 // For arguments we compute the shadow on demand and store it in the map. 1084 Value **ShadowPtr = &ShadowMap[V]; 1085 if (*ShadowPtr) 1086 return *ShadowPtr; 1087 Function *F = A->getParent(); 1088 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI()); 1089 unsigned ArgOffset = 0; 1090 const DataLayout &DL = F->getParent()->getDataLayout(); 1091 for (auto &FArg : F->args()) { 1092 if (!FArg.getType()->isSized()) { 1093 DEBUG(dbgs() << "Arg is not sized\n"); 1094 continue; 1095 } 1096 unsigned Size = 1097 FArg.hasByValAttr() 1098 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) 1099 : DL.getTypeAllocSize(FArg.getType()); 1100 if (A == &FArg) { 1101 bool Overflow = ArgOffset + Size > kParamTLSSize; 1102 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); 1103 if (FArg.hasByValAttr()) { 1104 // ByVal pointer itself has clean shadow. We copy the actual 1105 // argument shadow to the underlying memory. 1106 // Figure out maximal valid memcpy alignment. 1107 unsigned ArgAlign = FArg.getParamAlignment(); 1108 if (ArgAlign == 0) { 1109 Type *EltType = A->getType()->getPointerElementType(); 1110 ArgAlign = DL.getABITypeAlignment(EltType); 1111 } 1112 if (Overflow) { 1113 // ParamTLS overflow. 1114 EntryIRB.CreateMemSet( 1115 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), 1116 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign); 1117 } else { 1118 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); 1119 Value *Cpy = EntryIRB.CreateMemCpy( 1120 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size, 1121 CopyAlign); 1122 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); 1123 (void)Cpy; 1124 } 1125 *ShadowPtr = getCleanShadow(V); 1126 } else { 1127 if (Overflow) { 1128 // ParamTLS overflow. 1129 *ShadowPtr = getCleanShadow(V); 1130 } else { 1131 *ShadowPtr = 1132 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment); 1133 } 1134 } 1135 DEBUG(dbgs() << " ARG: " << FArg << " ==> " << 1136 **ShadowPtr << "\n"); 1137 if (MS.TrackOrigins && !Overflow) { 1138 Value *OriginPtr = 1139 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); 1140 setOrigin(A, EntryIRB.CreateLoad(OriginPtr)); 1141 } else { 1142 setOrigin(A, getCleanOrigin()); 1143 } 1144 } 1145 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment); 1146 } 1147 assert(*ShadowPtr && "Could not find shadow for an argument"); 1148 return *ShadowPtr; 1149 } 1150 // For everything else the shadow is zero. 1151 return getCleanShadow(V); 1152 } 1153 1154 /// \brief Get the shadow for i-th argument of the instruction I. 1155 Value *getShadow(Instruction *I, int i) { 1156 return getShadow(I->getOperand(i)); 1157 } 1158 1159 /// \brief Get the origin for a value. 1160 Value *getOrigin(Value *V) { 1161 if (!MS.TrackOrigins) return nullptr; 1162 if (!PropagateShadow) return getCleanOrigin(); 1163 if (isa<Constant>(V)) return getCleanOrigin(); 1164 assert((isa<Instruction>(V) || isa<Argument>(V)) && 1165 "Unexpected value type in getOrigin()"); 1166 Value *Origin = OriginMap[V]; 1167 assert(Origin && "Missing origin"); 1168 return Origin; 1169 } 1170 1171 /// \brief Get the origin for i-th argument of the instruction I. 1172 Value *getOrigin(Instruction *I, int i) { 1173 return getOrigin(I->getOperand(i)); 1174 } 1175 1176 /// \brief Remember the place where a shadow check should be inserted. 1177 /// 1178 /// This location will be later instrumented with a check that will print a 1179 /// UMR warning in runtime if the shadow value is not 0. 1180 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { 1181 assert(Shadow); 1182 if (!InsertChecks) return; 1183#ifndef NDEBUG 1184 Type *ShadowTy = Shadow->getType(); 1185 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && 1186 "Can only insert checks for integer and vector shadow types"); 1187#endif 1188 InstrumentationList.push_back( 1189 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); 1190 } 1191 1192 /// \brief Remember the place where a shadow check should be inserted. 1193 /// 1194 /// This location will be later instrumented with a check that will print a 1195 /// UMR warning in runtime if the value is not fully defined. 1196 void insertShadowCheck(Value *Val, Instruction *OrigIns) { 1197 assert(Val); 1198 Value *Shadow, *Origin; 1199 if (ClCheckConstantShadow) { 1200 Shadow = getShadow(Val); 1201 if (!Shadow) return; 1202 Origin = getOrigin(Val); 1203 } else { 1204 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); 1205 if (!Shadow) return; 1206 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); 1207 } 1208 insertShadowCheck(Shadow, Origin, OrigIns); 1209 } 1210 1211 AtomicOrdering addReleaseOrdering(AtomicOrdering a) { 1212 switch (a) { 1213 case NotAtomic: 1214 return NotAtomic; 1215 case Unordered: 1216 case Monotonic: 1217 case Release: 1218 return Release; 1219 case Acquire: 1220 case AcquireRelease: 1221 return AcquireRelease; 1222 case SequentiallyConsistent: 1223 return SequentiallyConsistent; 1224 } 1225 llvm_unreachable("Unknown ordering"); 1226 } 1227 1228 AtomicOrdering addAcquireOrdering(AtomicOrdering a) { 1229 switch (a) { 1230 case NotAtomic: 1231 return NotAtomic; 1232 case Unordered: 1233 case Monotonic: 1234 case Acquire: 1235 return Acquire; 1236 case Release: 1237 case AcquireRelease: 1238 return AcquireRelease; 1239 case SequentiallyConsistent: 1240 return SequentiallyConsistent; 1241 } 1242 llvm_unreachable("Unknown ordering"); 1243 } 1244 1245 // ------------------- Visitors. 1246 1247 /// \brief Instrument LoadInst 1248 /// 1249 /// Loads the corresponding shadow and (optionally) origin. 1250 /// Optionally, checks that the load address is fully defined. 1251 void visitLoadInst(LoadInst &I) { 1252 assert(I.getType()->isSized() && "Load type must have size"); 1253 IRBuilder<> IRB(I.getNextNode()); 1254 Type *ShadowTy = getShadowTy(&I); 1255 Value *Addr = I.getPointerOperand(); 1256 if (PropagateShadow && !I.getMetadata("nosanitize")) { 1257 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1258 setShadow(&I, 1259 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld")); 1260 } else { 1261 setShadow(&I, getCleanShadow(&I)); 1262 } 1263 1264 if (ClCheckAccessAddress) 1265 insertShadowCheck(I.getPointerOperand(), &I); 1266 1267 if (I.isAtomic()) 1268 I.setOrdering(addAcquireOrdering(I.getOrdering())); 1269 1270 if (MS.TrackOrigins) { 1271 if (PropagateShadow) { 1272 unsigned Alignment = I.getAlignment(); 1273 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); 1274 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment), 1275 OriginAlignment)); 1276 } else { 1277 setOrigin(&I, getCleanOrigin()); 1278 } 1279 } 1280 } 1281 1282 /// \brief Instrument StoreInst 1283 /// 1284 /// Stores the corresponding shadow and (optionally) origin. 1285 /// Optionally, checks that the store address is fully defined. 1286 void visitStoreInst(StoreInst &I) { 1287 StoreList.push_back(&I); 1288 } 1289 1290 void handleCASOrRMW(Instruction &I) { 1291 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 1292 1293 IRBuilder<> IRB(&I); 1294 Value *Addr = I.getOperand(0); 1295 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB); 1296 1297 if (ClCheckAccessAddress) 1298 insertShadowCheck(Addr, &I); 1299 1300 // Only test the conditional argument of cmpxchg instruction. 1301 // The other argument can potentially be uninitialized, but we can not 1302 // detect this situation reliably without possible false positives. 1303 if (isa<AtomicCmpXchgInst>(I)) 1304 insertShadowCheck(I.getOperand(1), &I); 1305 1306 IRB.CreateStore(getCleanShadow(&I), ShadowPtr); 1307 1308 setShadow(&I, getCleanShadow(&I)); 1309 setOrigin(&I, getCleanOrigin()); 1310 } 1311 1312 void visitAtomicRMWInst(AtomicRMWInst &I) { 1313 handleCASOrRMW(I); 1314 I.setOrdering(addReleaseOrdering(I.getOrdering())); 1315 } 1316 1317 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 1318 handleCASOrRMW(I); 1319 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 1320 } 1321 1322 // Vector manipulation. 1323 void visitExtractElementInst(ExtractElementInst &I) { 1324 insertShadowCheck(I.getOperand(1), &I); 1325 IRBuilder<> IRB(&I); 1326 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), 1327 "_msprop")); 1328 setOrigin(&I, getOrigin(&I, 0)); 1329 } 1330 1331 void visitInsertElementInst(InsertElementInst &I) { 1332 insertShadowCheck(I.getOperand(2), &I); 1333 IRBuilder<> IRB(&I); 1334 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), 1335 I.getOperand(2), "_msprop")); 1336 setOriginForNaryOp(I); 1337 } 1338 1339 void visitShuffleVectorInst(ShuffleVectorInst &I) { 1340 insertShadowCheck(I.getOperand(2), &I); 1341 IRBuilder<> IRB(&I); 1342 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), 1343 I.getOperand(2), "_msprop")); 1344 setOriginForNaryOp(I); 1345 } 1346 1347 // Casts. 1348 void visitSExtInst(SExtInst &I) { 1349 IRBuilder<> IRB(&I); 1350 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); 1351 setOrigin(&I, getOrigin(&I, 0)); 1352 } 1353 1354 void visitZExtInst(ZExtInst &I) { 1355 IRBuilder<> IRB(&I); 1356 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); 1357 setOrigin(&I, getOrigin(&I, 0)); 1358 } 1359 1360 void visitTruncInst(TruncInst &I) { 1361 IRBuilder<> IRB(&I); 1362 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); 1363 setOrigin(&I, getOrigin(&I, 0)); 1364 } 1365 1366 void visitBitCastInst(BitCastInst &I) { 1367 // Special case: if this is the bitcast (there is exactly 1 allowed) between 1368 // a musttail call and a ret, don't instrument. New instructions are not 1369 // allowed after a musttail call. 1370 if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) 1371 if (CI->isMustTailCall()) 1372 return; 1373 IRBuilder<> IRB(&I); 1374 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); 1375 setOrigin(&I, getOrigin(&I, 0)); 1376 } 1377 1378 void visitPtrToIntInst(PtrToIntInst &I) { 1379 IRBuilder<> IRB(&I); 1380 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1381 "_msprop_ptrtoint")); 1382 setOrigin(&I, getOrigin(&I, 0)); 1383 } 1384 1385 void visitIntToPtrInst(IntToPtrInst &I) { 1386 IRBuilder<> IRB(&I); 1387 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, 1388 "_msprop_inttoptr")); 1389 setOrigin(&I, getOrigin(&I, 0)); 1390 } 1391 1392 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } 1393 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } 1394 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } 1395 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } 1396 void visitFPExtInst(CastInst& I) { handleShadowOr(I); } 1397 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } 1398 1399 /// \brief Propagate shadow for bitwise AND. 1400 /// 1401 /// This code is exact, i.e. if, for example, a bit in the left argument 1402 /// is defined and 0, then neither the value not definedness of the 1403 /// corresponding bit in B don't affect the resulting shadow. 1404 void visitAnd(BinaryOperator &I) { 1405 IRBuilder<> IRB(&I); 1406 // "And" of 0 and a poisoned value results in unpoisoned value. 1407 // 1&1 => 1; 0&1 => 0; p&1 => p; 1408 // 1&0 => 0; 0&0 => 0; p&0 => 0; 1409 // 1&p => p; 0&p => 0; p&p => p; 1410 // S = (S1 & S2) | (V1 & S2) | (S1 & V2) 1411 Value *S1 = getShadow(&I, 0); 1412 Value *S2 = getShadow(&I, 1); 1413 Value *V1 = I.getOperand(0); 1414 Value *V2 = I.getOperand(1); 1415 if (V1->getType() != S1->getType()) { 1416 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1417 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1418 } 1419 Value *S1S2 = IRB.CreateAnd(S1, S2); 1420 Value *V1S2 = IRB.CreateAnd(V1, S2); 1421 Value *S1V2 = IRB.CreateAnd(S1, V2); 1422 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1423 setOriginForNaryOp(I); 1424 } 1425 1426 void visitOr(BinaryOperator &I) { 1427 IRBuilder<> IRB(&I); 1428 // "Or" of 1 and a poisoned value results in unpoisoned value. 1429 // 1|1 => 1; 0|1 => 1; p|1 => 1; 1430 // 1|0 => 1; 0|0 => 0; p|0 => p; 1431 // 1|p => 1; 0|p => p; p|p => p; 1432 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) 1433 Value *S1 = getShadow(&I, 0); 1434 Value *S2 = getShadow(&I, 1); 1435 Value *V1 = IRB.CreateNot(I.getOperand(0)); 1436 Value *V2 = IRB.CreateNot(I.getOperand(1)); 1437 if (V1->getType() != S1->getType()) { 1438 V1 = IRB.CreateIntCast(V1, S1->getType(), false); 1439 V2 = IRB.CreateIntCast(V2, S2->getType(), false); 1440 } 1441 Value *S1S2 = IRB.CreateAnd(S1, S2); 1442 Value *V1S2 = IRB.CreateAnd(V1, S2); 1443 Value *S1V2 = IRB.CreateAnd(S1, V2); 1444 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2))); 1445 setOriginForNaryOp(I); 1446 } 1447 1448 /// \brief Default propagation of shadow and/or origin. 1449 /// 1450 /// This class implements the general case of shadow propagation, used in all 1451 /// cases where we don't know and/or don't care about what the operation 1452 /// actually does. It converts all input shadow values to a common type 1453 /// (extending or truncating as necessary), and bitwise OR's them. 1454 /// 1455 /// This is much cheaper than inserting checks (i.e. requiring inputs to be 1456 /// fully initialized), and less prone to false positives. 1457 /// 1458 /// This class also implements the general case of origin propagation. For a 1459 /// Nary operation, result origin is set to the origin of an argument that is 1460 /// not entirely initialized. If there is more than one such arguments, the 1461 /// rightmost of them is picked. It does not matter which one is picked if all 1462 /// arguments are initialized. 1463 template <bool CombineShadow> 1464 class Combiner { 1465 Value *Shadow; 1466 Value *Origin; 1467 IRBuilder<> &IRB; 1468 MemorySanitizerVisitor *MSV; 1469 1470 public: 1471 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) : 1472 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {} 1473 1474 /// \brief Add a pair of shadow and origin values to the mix. 1475 Combiner &Add(Value *OpShadow, Value *OpOrigin) { 1476 if (CombineShadow) { 1477 assert(OpShadow); 1478 if (!Shadow) 1479 Shadow = OpShadow; 1480 else { 1481 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); 1482 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); 1483 } 1484 } 1485 1486 if (MSV->MS.TrackOrigins) { 1487 assert(OpOrigin); 1488 if (!Origin) { 1489 Origin = OpOrigin; 1490 } else { 1491 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); 1492 // No point in adding something that might result in 0 origin value. 1493 if (!ConstOrigin || !ConstOrigin->isNullValue()) { 1494 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); 1495 Value *Cond = 1496 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); 1497 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1498 } 1499 } 1500 } 1501 return *this; 1502 } 1503 1504 /// \brief Add an application value to the mix. 1505 Combiner &Add(Value *V) { 1506 Value *OpShadow = MSV->getShadow(V); 1507 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; 1508 return Add(OpShadow, OpOrigin); 1509 } 1510 1511 /// \brief Set the current combined values as the given instruction's shadow 1512 /// and origin. 1513 void Done(Instruction *I) { 1514 if (CombineShadow) { 1515 assert(Shadow); 1516 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); 1517 MSV->setShadow(I, Shadow); 1518 } 1519 if (MSV->MS.TrackOrigins) { 1520 assert(Origin); 1521 MSV->setOrigin(I, Origin); 1522 } 1523 } 1524 }; 1525 1526 typedef Combiner<true> ShadowAndOriginCombiner; 1527 typedef Combiner<false> OriginCombiner; 1528 1529 /// \brief Propagate origin for arbitrary operation. 1530 void setOriginForNaryOp(Instruction &I) { 1531 if (!MS.TrackOrigins) return; 1532 IRBuilder<> IRB(&I); 1533 OriginCombiner OC(this, IRB); 1534 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1535 OC.Add(OI->get()); 1536 OC.Done(&I); 1537 } 1538 1539 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { 1540 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && 1541 "Vector of pointers is not a valid shadow type"); 1542 return Ty->isVectorTy() ? 1543 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : 1544 Ty->getPrimitiveSizeInBits(); 1545 } 1546 1547 /// \brief Cast between two shadow types, extending or truncating as 1548 /// necessary. 1549 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, 1550 bool Signed = false) { 1551 Type *srcTy = V->getType(); 1552 if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) 1553 return IRB.CreateIntCast(V, dstTy, Signed); 1554 if (dstTy->isVectorTy() && srcTy->isVectorTy() && 1555 dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) 1556 return IRB.CreateIntCast(V, dstTy, Signed); 1557 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); 1558 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); 1559 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); 1560 Value *V2 = 1561 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); 1562 return IRB.CreateBitCast(V2, dstTy); 1563 // TODO: handle struct types. 1564 } 1565 1566 /// \brief Cast an application value to the type of its own shadow. 1567 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { 1568 Type *ShadowTy = getShadowTy(V); 1569 if (V->getType() == ShadowTy) 1570 return V; 1571 if (V->getType()->isPtrOrPtrVectorTy()) 1572 return IRB.CreatePtrToInt(V, ShadowTy); 1573 else 1574 return IRB.CreateBitCast(V, ShadowTy); 1575 } 1576 1577 /// \brief Propagate shadow for arbitrary operation. 1578 void handleShadowOr(Instruction &I) { 1579 IRBuilder<> IRB(&I); 1580 ShadowAndOriginCombiner SC(this, IRB); 1581 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) 1582 SC.Add(OI->get()); 1583 SC.Done(&I); 1584 } 1585 1586 // \brief Handle multiplication by constant. 1587 // 1588 // Handle a special case of multiplication by constant that may have one or 1589 // more zeros in the lower bits. This makes corresponding number of lower bits 1590 // of the result zero as well. We model it by shifting the other operand 1591 // shadow left by the required number of bits. Effectively, we transform 1592 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). 1593 // We use multiplication by 2**N instead of shift to cover the case of 1594 // multiplication by 0, which may occur in some elements of a vector operand. 1595 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, 1596 Value *OtherArg) { 1597 Constant *ShadowMul; 1598 Type *Ty = ConstArg->getType(); 1599 if (Ty->isVectorTy()) { 1600 unsigned NumElements = Ty->getVectorNumElements(); 1601 Type *EltTy = Ty->getSequentialElementType(); 1602 SmallVector<Constant *, 16> Elements; 1603 for (unsigned Idx = 0; Idx < NumElements; ++Idx) { 1604 if (ConstantInt *Elt = 1605 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { 1606 APInt V = Elt->getValue(); 1607 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1608 Elements.push_back(ConstantInt::get(EltTy, V2)); 1609 } else { 1610 Elements.push_back(ConstantInt::get(EltTy, 1)); 1611 } 1612 } 1613 ShadowMul = ConstantVector::get(Elements); 1614 } else { 1615 if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { 1616 APInt V = Elt->getValue(); 1617 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); 1618 ShadowMul = ConstantInt::get(Ty, V2); 1619 } else { 1620 ShadowMul = ConstantInt::get(Ty, 1); 1621 } 1622 } 1623 1624 IRBuilder<> IRB(&I); 1625 setShadow(&I, 1626 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); 1627 setOrigin(&I, getOrigin(OtherArg)); 1628 } 1629 1630 void visitMul(BinaryOperator &I) { 1631 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); 1632 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); 1633 if (constOp0 && !constOp1) 1634 handleMulByConstant(I, constOp0, I.getOperand(1)); 1635 else if (constOp1 && !constOp0) 1636 handleMulByConstant(I, constOp1, I.getOperand(0)); 1637 else 1638 handleShadowOr(I); 1639 } 1640 1641 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } 1642 void visitFSub(BinaryOperator &I) { handleShadowOr(I); } 1643 void visitFMul(BinaryOperator &I) { handleShadowOr(I); } 1644 void visitAdd(BinaryOperator &I) { handleShadowOr(I); } 1645 void visitSub(BinaryOperator &I) { handleShadowOr(I); } 1646 void visitXor(BinaryOperator &I) { handleShadowOr(I); } 1647 1648 void handleDiv(Instruction &I) { 1649 IRBuilder<> IRB(&I); 1650 // Strict on the second argument. 1651 insertShadowCheck(I.getOperand(1), &I); 1652 setShadow(&I, getShadow(&I, 0)); 1653 setOrigin(&I, getOrigin(&I, 0)); 1654 } 1655 1656 void visitUDiv(BinaryOperator &I) { handleDiv(I); } 1657 void visitSDiv(BinaryOperator &I) { handleDiv(I); } 1658 void visitFDiv(BinaryOperator &I) { handleDiv(I); } 1659 void visitURem(BinaryOperator &I) { handleDiv(I); } 1660 void visitSRem(BinaryOperator &I) { handleDiv(I); } 1661 void visitFRem(BinaryOperator &I) { handleDiv(I); } 1662 1663 /// \brief Instrument == and != comparisons. 1664 /// 1665 /// Sometimes the comparison result is known even if some of the bits of the 1666 /// arguments are not. 1667 void handleEqualityComparison(ICmpInst &I) { 1668 IRBuilder<> IRB(&I); 1669 Value *A = I.getOperand(0); 1670 Value *B = I.getOperand(1); 1671 Value *Sa = getShadow(A); 1672 Value *Sb = getShadow(B); 1673 1674 // Get rid of pointers and vectors of pointers. 1675 // For ints (and vectors of ints), types of A and Sa match, 1676 // and this is a no-op. 1677 A = IRB.CreatePointerCast(A, Sa->getType()); 1678 B = IRB.CreatePointerCast(B, Sb->getType()); 1679 1680 // A == B <==> (C = A^B) == 0 1681 // A != B <==> (C = A^B) != 0 1682 // Sc = Sa | Sb 1683 Value *C = IRB.CreateXor(A, B); 1684 Value *Sc = IRB.CreateOr(Sa, Sb); 1685 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) 1686 // Result is defined if one of the following is true 1687 // * there is a defined 1 bit in C 1688 // * C is fully defined 1689 // Si = !(C & ~Sc) && Sc 1690 Value *Zero = Constant::getNullValue(Sc->getType()); 1691 Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); 1692 Value *Si = 1693 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), 1694 IRB.CreateICmpEQ( 1695 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); 1696 Si->setName("_msprop_icmp"); 1697 setShadow(&I, Si); 1698 setOriginForNaryOp(I); 1699 } 1700 1701 /// \brief Build the lowest possible value of V, taking into account V's 1702 /// uninitialized bits. 1703 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1704 bool isSigned) { 1705 if (isSigned) { 1706 // Split shadow into sign bit and other bits. 1707 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1708 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1709 // Maximise the undefined shadow bit, minimize other undefined bits. 1710 return 1711 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); 1712 } else { 1713 // Minimize undefined bits. 1714 return IRB.CreateAnd(A, IRB.CreateNot(Sa)); 1715 } 1716 } 1717 1718 /// \brief Build the highest possible value of V, taking into account V's 1719 /// uninitialized bits. 1720 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, 1721 bool isSigned) { 1722 if (isSigned) { 1723 // Split shadow into sign bit and other bits. 1724 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); 1725 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); 1726 // Minimise the undefined shadow bit, maximise other undefined bits. 1727 return 1728 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); 1729 } else { 1730 // Maximize undefined bits. 1731 return IRB.CreateOr(A, Sa); 1732 } 1733 } 1734 1735 /// \brief Instrument relational comparisons. 1736 /// 1737 /// This function does exact shadow propagation for all relational 1738 /// comparisons of integers, pointers and vectors of those. 1739 /// FIXME: output seems suboptimal when one of the operands is a constant 1740 void handleRelationalComparisonExact(ICmpInst &I) { 1741 IRBuilder<> IRB(&I); 1742 Value *A = I.getOperand(0); 1743 Value *B = I.getOperand(1); 1744 Value *Sa = getShadow(A); 1745 Value *Sb = getShadow(B); 1746 1747 // Get rid of pointers and vectors of pointers. 1748 // For ints (and vectors of ints), types of A and Sa match, 1749 // and this is a no-op. 1750 A = IRB.CreatePointerCast(A, Sa->getType()); 1751 B = IRB.CreatePointerCast(B, Sb->getType()); 1752 1753 // Let [a0, a1] be the interval of possible values of A, taking into account 1754 // its undefined bits. Let [b0, b1] be the interval of possible values of B. 1755 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). 1756 bool IsSigned = I.isSigned(); 1757 Value *S1 = IRB.CreateICmp(I.getPredicate(), 1758 getLowestPossibleValue(IRB, A, Sa, IsSigned), 1759 getHighestPossibleValue(IRB, B, Sb, IsSigned)); 1760 Value *S2 = IRB.CreateICmp(I.getPredicate(), 1761 getHighestPossibleValue(IRB, A, Sa, IsSigned), 1762 getLowestPossibleValue(IRB, B, Sb, IsSigned)); 1763 Value *Si = IRB.CreateXor(S1, S2); 1764 setShadow(&I, Si); 1765 setOriginForNaryOp(I); 1766 } 1767 1768 /// \brief Instrument signed relational comparisons. 1769 /// 1770 /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest 1771 /// bit of the shadow. Everything else is delegated to handleShadowOr(). 1772 void handleSignedRelationalComparison(ICmpInst &I) { 1773 Constant *constOp; 1774 Value *op = nullptr; 1775 CmpInst::Predicate pre; 1776 if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { 1777 op = I.getOperand(0); 1778 pre = I.getPredicate(); 1779 } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { 1780 op = I.getOperand(1); 1781 pre = I.getSwappedPredicate(); 1782 } else { 1783 handleShadowOr(I); 1784 return; 1785 } 1786 1787 if ((constOp->isNullValue() && 1788 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || 1789 (constOp->isAllOnesValue() && 1790 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { 1791 IRBuilder<> IRB(&I); 1792 Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), 1793 "_msprop_icmp_s"); 1794 setShadow(&I, Shadow); 1795 setOrigin(&I, getOrigin(op)); 1796 } else { 1797 handleShadowOr(I); 1798 } 1799 } 1800 1801 void visitICmpInst(ICmpInst &I) { 1802 if (!ClHandleICmp) { 1803 handleShadowOr(I); 1804 return; 1805 } 1806 if (I.isEquality()) { 1807 handleEqualityComparison(I); 1808 return; 1809 } 1810 1811 assert(I.isRelational()); 1812 if (ClHandleICmpExact) { 1813 handleRelationalComparisonExact(I); 1814 return; 1815 } 1816 if (I.isSigned()) { 1817 handleSignedRelationalComparison(I); 1818 return; 1819 } 1820 1821 assert(I.isUnsigned()); 1822 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { 1823 handleRelationalComparisonExact(I); 1824 return; 1825 } 1826 1827 handleShadowOr(I); 1828 } 1829 1830 void visitFCmpInst(FCmpInst &I) { 1831 handleShadowOr(I); 1832 } 1833 1834 void handleShift(BinaryOperator &I) { 1835 IRBuilder<> IRB(&I); 1836 // If any of the S2 bits are poisoned, the whole thing is poisoned. 1837 // Otherwise perform the same shift on S1. 1838 Value *S1 = getShadow(&I, 0); 1839 Value *S2 = getShadow(&I, 1); 1840 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), 1841 S2->getType()); 1842 Value *V2 = I.getOperand(1); 1843 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); 1844 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 1845 setOriginForNaryOp(I); 1846 } 1847 1848 void visitShl(BinaryOperator &I) { handleShift(I); } 1849 void visitAShr(BinaryOperator &I) { handleShift(I); } 1850 void visitLShr(BinaryOperator &I) { handleShift(I); } 1851 1852 /// \brief Instrument llvm.memmove 1853 /// 1854 /// At this point we don't know if llvm.memmove will be inlined or not. 1855 /// If we don't instrument it and it gets inlined, 1856 /// our interceptor will not kick in and we will lose the memmove. 1857 /// If we instrument the call here, but it does not get inlined, 1858 /// we will memove the shadow twice: which is bad in case 1859 /// of overlapping regions. So, we simply lower the intrinsic to a call. 1860 /// 1861 /// Similar situation exists for memcpy and memset. 1862 void visitMemMoveInst(MemMoveInst &I) { 1863 IRBuilder<> IRB(&I); 1864 IRB.CreateCall( 1865 MS.MemmoveFn, 1866 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1867 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1868 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1869 I.eraseFromParent(); 1870 } 1871 1872 // Similar to memmove: avoid copying shadow twice. 1873 // This is somewhat unfortunate as it may slowdown small constant memcpys. 1874 // FIXME: consider doing manual inline for small constant sizes and proper 1875 // alignment. 1876 void visitMemCpyInst(MemCpyInst &I) { 1877 IRBuilder<> IRB(&I); 1878 IRB.CreateCall( 1879 MS.MemcpyFn, 1880 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1881 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 1882 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1883 I.eraseFromParent(); 1884 } 1885 1886 // Same as memcpy. 1887 void visitMemSetInst(MemSetInst &I) { 1888 IRBuilder<> IRB(&I); 1889 IRB.CreateCall( 1890 MS.MemsetFn, 1891 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 1892 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), 1893 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); 1894 I.eraseFromParent(); 1895 } 1896 1897 void visitVAStartInst(VAStartInst &I) { 1898 VAHelper->visitVAStartInst(I); 1899 } 1900 1901 void visitVACopyInst(VACopyInst &I) { 1902 VAHelper->visitVACopyInst(I); 1903 } 1904 1905 /// \brief Handle vector store-like intrinsics. 1906 /// 1907 /// Instrument intrinsics that look like a simple SIMD store: writes memory, 1908 /// has 1 pointer argument and 1 vector argument, returns void. 1909 bool handleVectorStoreIntrinsic(IntrinsicInst &I) { 1910 IRBuilder<> IRB(&I); 1911 Value* Addr = I.getArgOperand(0); 1912 Value *Shadow = getShadow(&I, 1); 1913 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB); 1914 1915 // We don't know the pointer alignment (could be unaligned SSE store!). 1916 // Have to assume to worst case. 1917 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); 1918 1919 if (ClCheckAccessAddress) 1920 insertShadowCheck(Addr, &I); 1921 1922 // FIXME: use ClStoreCleanOrigin 1923 // FIXME: factor out common code from materializeStores 1924 if (MS.TrackOrigins) 1925 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1)); 1926 return true; 1927 } 1928 1929 /// \brief Handle vector load-like intrinsics. 1930 /// 1931 /// Instrument intrinsics that look like a simple SIMD load: reads memory, 1932 /// has 1 pointer argument, returns a vector. 1933 bool handleVectorLoadIntrinsic(IntrinsicInst &I) { 1934 IRBuilder<> IRB(&I); 1935 Value *Addr = I.getArgOperand(0); 1936 1937 Type *ShadowTy = getShadowTy(&I); 1938 if (PropagateShadow) { 1939 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB); 1940 // We don't know the pointer alignment (could be unaligned SSE load!). 1941 // Have to assume to worst case. 1942 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld")); 1943 } else { 1944 setShadow(&I, getCleanShadow(&I)); 1945 } 1946 1947 if (ClCheckAccessAddress) 1948 insertShadowCheck(Addr, &I); 1949 1950 if (MS.TrackOrigins) { 1951 if (PropagateShadow) 1952 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1))); 1953 else 1954 setOrigin(&I, getCleanOrigin()); 1955 } 1956 return true; 1957 } 1958 1959 /// \brief Handle (SIMD arithmetic)-like intrinsics. 1960 /// 1961 /// Instrument intrinsics with any number of arguments of the same type, 1962 /// equal to the return type. The type should be simple (no aggregates or 1963 /// pointers; vectors are fine). 1964 /// Caller guarantees that this intrinsic does not access memory. 1965 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { 1966 Type *RetTy = I.getType(); 1967 if (!(RetTy->isIntOrIntVectorTy() || 1968 RetTy->isFPOrFPVectorTy() || 1969 RetTy->isX86_MMXTy())) 1970 return false; 1971 1972 unsigned NumArgOperands = I.getNumArgOperands(); 1973 1974 for (unsigned i = 0; i < NumArgOperands; ++i) { 1975 Type *Ty = I.getArgOperand(i)->getType(); 1976 if (Ty != RetTy) 1977 return false; 1978 } 1979 1980 IRBuilder<> IRB(&I); 1981 ShadowAndOriginCombiner SC(this, IRB); 1982 for (unsigned i = 0; i < NumArgOperands; ++i) 1983 SC.Add(I.getArgOperand(i)); 1984 SC.Done(&I); 1985 1986 return true; 1987 } 1988 1989 /// \brief Heuristically instrument unknown intrinsics. 1990 /// 1991 /// The main purpose of this code is to do something reasonable with all 1992 /// random intrinsics we might encounter, most importantly - SIMD intrinsics. 1993 /// We recognize several classes of intrinsics by their argument types and 1994 /// ModRefBehaviour and apply special intrumentation when we are reasonably 1995 /// sure that we know what the intrinsic does. 1996 /// 1997 /// We special-case intrinsics where this approach fails. See llvm.bswap 1998 /// handling as an example of that. 1999 bool handleUnknownIntrinsic(IntrinsicInst &I) { 2000 unsigned NumArgOperands = I.getNumArgOperands(); 2001 if (NumArgOperands == 0) 2002 return false; 2003 2004 if (NumArgOperands == 2 && 2005 I.getArgOperand(0)->getType()->isPointerTy() && 2006 I.getArgOperand(1)->getType()->isVectorTy() && 2007 I.getType()->isVoidTy() && 2008 !I.onlyReadsMemory()) { 2009 // This looks like a vector store. 2010 return handleVectorStoreIntrinsic(I); 2011 } 2012 2013 if (NumArgOperands == 1 && 2014 I.getArgOperand(0)->getType()->isPointerTy() && 2015 I.getType()->isVectorTy() && 2016 I.onlyReadsMemory()) { 2017 // This looks like a vector load. 2018 return handleVectorLoadIntrinsic(I); 2019 } 2020 2021 if (I.doesNotAccessMemory()) 2022 if (maybeHandleSimpleNomemIntrinsic(I)) 2023 return true; 2024 2025 // FIXME: detect and handle SSE maskstore/maskload 2026 return false; 2027 } 2028 2029 void handleBswap(IntrinsicInst &I) { 2030 IRBuilder<> IRB(&I); 2031 Value *Op = I.getArgOperand(0); 2032 Type *OpType = Op->getType(); 2033 Function *BswapFunc = Intrinsic::getDeclaration( 2034 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); 2035 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); 2036 setOrigin(&I, getOrigin(Op)); 2037 } 2038 2039 // \brief Instrument vector convert instrinsic. 2040 // 2041 // This function instruments intrinsics like cvtsi2ss: 2042 // %Out = int_xxx_cvtyyy(%ConvertOp) 2043 // or 2044 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) 2045 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same 2046 // number \p Out elements, and (if has 2 arguments) copies the rest of the 2047 // elements from \p CopyOp. 2048 // In most cases conversion involves floating-point value which may trigger a 2049 // hardware exception when not fully initialized. For this reason we require 2050 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. 2051 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p 2052 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always 2053 // return a fully initialized value. 2054 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { 2055 IRBuilder<> IRB(&I); 2056 Value *CopyOp, *ConvertOp; 2057 2058 switch (I.getNumArgOperands()) { 2059 case 3: 2060 assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); 2061 case 2: 2062 CopyOp = I.getArgOperand(0); 2063 ConvertOp = I.getArgOperand(1); 2064 break; 2065 case 1: 2066 ConvertOp = I.getArgOperand(0); 2067 CopyOp = nullptr; 2068 break; 2069 default: 2070 llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); 2071 } 2072 2073 // The first *NumUsedElements* elements of ConvertOp are converted to the 2074 // same number of output elements. The rest of the output is copied from 2075 // CopyOp, or (if not available) filled with zeroes. 2076 // Combine shadow for elements of ConvertOp that are used in this operation, 2077 // and insert a check. 2078 // FIXME: consider propagating shadow of ConvertOp, at least in the case of 2079 // int->any conversion. 2080 Value *ConvertShadow = getShadow(ConvertOp); 2081 Value *AggShadow = nullptr; 2082 if (ConvertOp->getType()->isVectorTy()) { 2083 AggShadow = IRB.CreateExtractElement( 2084 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); 2085 for (int i = 1; i < NumUsedElements; ++i) { 2086 Value *MoreShadow = IRB.CreateExtractElement( 2087 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); 2088 AggShadow = IRB.CreateOr(AggShadow, MoreShadow); 2089 } 2090 } else { 2091 AggShadow = ConvertShadow; 2092 } 2093 assert(AggShadow->getType()->isIntegerTy()); 2094 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); 2095 2096 // Build result shadow by zero-filling parts of CopyOp shadow that come from 2097 // ConvertOp. 2098 if (CopyOp) { 2099 assert(CopyOp->getType() == I.getType()); 2100 assert(CopyOp->getType()->isVectorTy()); 2101 Value *ResultShadow = getShadow(CopyOp); 2102 Type *EltTy = ResultShadow->getType()->getVectorElementType(); 2103 for (int i = 0; i < NumUsedElements; ++i) { 2104 ResultShadow = IRB.CreateInsertElement( 2105 ResultShadow, ConstantInt::getNullValue(EltTy), 2106 ConstantInt::get(IRB.getInt32Ty(), i)); 2107 } 2108 setShadow(&I, ResultShadow); 2109 setOrigin(&I, getOrigin(CopyOp)); 2110 } else { 2111 setShadow(&I, getCleanShadow(&I)); 2112 setOrigin(&I, getCleanOrigin()); 2113 } 2114 } 2115 2116 // Given a scalar or vector, extract lower 64 bits (or less), and return all 2117 // zeroes if it is zero, and all ones otherwise. 2118 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { 2119 if (S->getType()->isVectorTy()) 2120 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); 2121 assert(S->getType()->getPrimitiveSizeInBits() <= 64); 2122 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2123 return CreateShadowCast(IRB, S2, T, /* Signed */ true); 2124 } 2125 2126 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { 2127 Type *T = S->getType(); 2128 assert(T->isVectorTy()); 2129 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); 2130 return IRB.CreateSExt(S2, T); 2131 } 2132 2133 // \brief Instrument vector shift instrinsic. 2134 // 2135 // This function instruments intrinsics like int_x86_avx2_psll_w. 2136 // Intrinsic shifts %In by %ShiftSize bits. 2137 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift 2138 // size, and the rest is ignored. Behavior is defined even if shift size is 2139 // greater than register (or field) width. 2140 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { 2141 assert(I.getNumArgOperands() == 2); 2142 IRBuilder<> IRB(&I); 2143 // If any of the S2 bits are poisoned, the whole thing is poisoned. 2144 // Otherwise perform the same shift on S1. 2145 Value *S1 = getShadow(&I, 0); 2146 Value *S2 = getShadow(&I, 1); 2147 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) 2148 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); 2149 Value *V1 = I.getOperand(0); 2150 Value *V2 = I.getOperand(1); 2151 Value *Shift = IRB.CreateCall(I.getCalledValue(), 2152 {IRB.CreateBitCast(S1, V1->getType()), V2}); 2153 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); 2154 setShadow(&I, IRB.CreateOr(Shift, S2Conv)); 2155 setOriginForNaryOp(I); 2156 } 2157 2158 // \brief Get an X86_MMX-sized vector type. 2159 Type *getMMXVectorTy(unsigned EltSizeInBits) { 2160 const unsigned X86_MMXSizeInBits = 64; 2161 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), 2162 X86_MMXSizeInBits / EltSizeInBits); 2163 } 2164 2165 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack 2166 // intrinsic. 2167 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { 2168 switch (id) { 2169 case llvm::Intrinsic::x86_sse2_packsswb_128: 2170 case llvm::Intrinsic::x86_sse2_packuswb_128: 2171 return llvm::Intrinsic::x86_sse2_packsswb_128; 2172 2173 case llvm::Intrinsic::x86_sse2_packssdw_128: 2174 case llvm::Intrinsic::x86_sse41_packusdw: 2175 return llvm::Intrinsic::x86_sse2_packssdw_128; 2176 2177 case llvm::Intrinsic::x86_avx2_packsswb: 2178 case llvm::Intrinsic::x86_avx2_packuswb: 2179 return llvm::Intrinsic::x86_avx2_packsswb; 2180 2181 case llvm::Intrinsic::x86_avx2_packssdw: 2182 case llvm::Intrinsic::x86_avx2_packusdw: 2183 return llvm::Intrinsic::x86_avx2_packssdw; 2184 2185 case llvm::Intrinsic::x86_mmx_packsswb: 2186 case llvm::Intrinsic::x86_mmx_packuswb: 2187 return llvm::Intrinsic::x86_mmx_packsswb; 2188 2189 case llvm::Intrinsic::x86_mmx_packssdw: 2190 return llvm::Intrinsic::x86_mmx_packssdw; 2191 default: 2192 llvm_unreachable("unexpected intrinsic id"); 2193 } 2194 } 2195 2196 // \brief Instrument vector pack instrinsic. 2197 // 2198 // This function instruments intrinsics like x86_mmx_packsswb, that 2199 // packs elements of 2 input vectors into half as many bits with saturation. 2200 // Shadow is propagated with the signed variant of the same intrinsic applied 2201 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). 2202 // EltSizeInBits is used only for x86mmx arguments. 2203 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { 2204 assert(I.getNumArgOperands() == 2); 2205 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2206 IRBuilder<> IRB(&I); 2207 Value *S1 = getShadow(&I, 0); 2208 Value *S2 = getShadow(&I, 1); 2209 assert(isX86_MMX || S1->getType()->isVectorTy()); 2210 2211 // SExt and ICmpNE below must apply to individual elements of input vectors. 2212 // In case of x86mmx arguments, cast them to appropriate vector types and 2213 // back. 2214 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); 2215 if (isX86_MMX) { 2216 S1 = IRB.CreateBitCast(S1, T); 2217 S2 = IRB.CreateBitCast(S2, T); 2218 } 2219 Value *S1_ext = IRB.CreateSExt( 2220 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T); 2221 Value *S2_ext = IRB.CreateSExt( 2222 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T); 2223 if (isX86_MMX) { 2224 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); 2225 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); 2226 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); 2227 } 2228 2229 Function *ShadowFn = Intrinsic::getDeclaration( 2230 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); 2231 2232 Value *S = 2233 IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); 2234 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); 2235 setShadow(&I, S); 2236 setOriginForNaryOp(I); 2237 } 2238 2239 // \brief Instrument sum-of-absolute-differencies intrinsic. 2240 void handleVectorSadIntrinsic(IntrinsicInst &I) { 2241 const unsigned SignificantBitsPerResultElement = 16; 2242 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2243 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); 2244 unsigned ZeroBitsPerResultElement = 2245 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; 2246 2247 IRBuilder<> IRB(&I); 2248 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2249 S = IRB.CreateBitCast(S, ResTy); 2250 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2251 ResTy); 2252 S = IRB.CreateLShr(S, ZeroBitsPerResultElement); 2253 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2254 setShadow(&I, S); 2255 setOriginForNaryOp(I); 2256 } 2257 2258 // \brief Instrument multiply-add intrinsic. 2259 void handleVectorPmaddIntrinsic(IntrinsicInst &I, 2260 unsigned EltSizeInBits = 0) { 2261 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); 2262 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); 2263 IRBuilder<> IRB(&I); 2264 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); 2265 S = IRB.CreateBitCast(S, ResTy); 2266 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), 2267 ResTy); 2268 S = IRB.CreateBitCast(S, getShadowTy(&I)); 2269 setShadow(&I, S); 2270 setOriginForNaryOp(I); 2271 } 2272 2273 void visitIntrinsicInst(IntrinsicInst &I) { 2274 switch (I.getIntrinsicID()) { 2275 case llvm::Intrinsic::bswap: 2276 handleBswap(I); 2277 break; 2278 case llvm::Intrinsic::x86_avx512_cvtsd2usi64: 2279 case llvm::Intrinsic::x86_avx512_cvtsd2usi: 2280 case llvm::Intrinsic::x86_avx512_cvtss2usi64: 2281 case llvm::Intrinsic::x86_avx512_cvtss2usi: 2282 case llvm::Intrinsic::x86_avx512_cvttss2usi64: 2283 case llvm::Intrinsic::x86_avx512_cvttss2usi: 2284 case llvm::Intrinsic::x86_avx512_cvttsd2usi64: 2285 case llvm::Intrinsic::x86_avx512_cvttsd2usi: 2286 case llvm::Intrinsic::x86_avx512_cvtusi2sd: 2287 case llvm::Intrinsic::x86_avx512_cvtusi2ss: 2288 case llvm::Intrinsic::x86_avx512_cvtusi642sd: 2289 case llvm::Intrinsic::x86_avx512_cvtusi642ss: 2290 case llvm::Intrinsic::x86_sse2_cvtsd2si64: 2291 case llvm::Intrinsic::x86_sse2_cvtsd2si: 2292 case llvm::Intrinsic::x86_sse2_cvtsd2ss: 2293 case llvm::Intrinsic::x86_sse2_cvtsi2sd: 2294 case llvm::Intrinsic::x86_sse2_cvtsi642sd: 2295 case llvm::Intrinsic::x86_sse2_cvtss2sd: 2296 case llvm::Intrinsic::x86_sse2_cvttsd2si64: 2297 case llvm::Intrinsic::x86_sse2_cvttsd2si: 2298 case llvm::Intrinsic::x86_sse_cvtsi2ss: 2299 case llvm::Intrinsic::x86_sse_cvtsi642ss: 2300 case llvm::Intrinsic::x86_sse_cvtss2si64: 2301 case llvm::Intrinsic::x86_sse_cvtss2si: 2302 case llvm::Intrinsic::x86_sse_cvttss2si64: 2303 case llvm::Intrinsic::x86_sse_cvttss2si: 2304 handleVectorConvertIntrinsic(I, 1); 2305 break; 2306 case llvm::Intrinsic::x86_sse2_cvtdq2pd: 2307 case llvm::Intrinsic::x86_sse2_cvtps2pd: 2308 case llvm::Intrinsic::x86_sse_cvtps2pi: 2309 case llvm::Intrinsic::x86_sse_cvttps2pi: 2310 handleVectorConvertIntrinsic(I, 2); 2311 break; 2312 case llvm::Intrinsic::x86_avx2_psll_w: 2313 case llvm::Intrinsic::x86_avx2_psll_d: 2314 case llvm::Intrinsic::x86_avx2_psll_q: 2315 case llvm::Intrinsic::x86_avx2_pslli_w: 2316 case llvm::Intrinsic::x86_avx2_pslli_d: 2317 case llvm::Intrinsic::x86_avx2_pslli_q: 2318 case llvm::Intrinsic::x86_avx2_psrl_w: 2319 case llvm::Intrinsic::x86_avx2_psrl_d: 2320 case llvm::Intrinsic::x86_avx2_psrl_q: 2321 case llvm::Intrinsic::x86_avx2_psra_w: 2322 case llvm::Intrinsic::x86_avx2_psra_d: 2323 case llvm::Intrinsic::x86_avx2_psrli_w: 2324 case llvm::Intrinsic::x86_avx2_psrli_d: 2325 case llvm::Intrinsic::x86_avx2_psrli_q: 2326 case llvm::Intrinsic::x86_avx2_psrai_w: 2327 case llvm::Intrinsic::x86_avx2_psrai_d: 2328 case llvm::Intrinsic::x86_sse2_psll_w: 2329 case llvm::Intrinsic::x86_sse2_psll_d: 2330 case llvm::Intrinsic::x86_sse2_psll_q: 2331 case llvm::Intrinsic::x86_sse2_pslli_w: 2332 case llvm::Intrinsic::x86_sse2_pslli_d: 2333 case llvm::Intrinsic::x86_sse2_pslli_q: 2334 case llvm::Intrinsic::x86_sse2_psrl_w: 2335 case llvm::Intrinsic::x86_sse2_psrl_d: 2336 case llvm::Intrinsic::x86_sse2_psrl_q: 2337 case llvm::Intrinsic::x86_sse2_psra_w: 2338 case llvm::Intrinsic::x86_sse2_psra_d: 2339 case llvm::Intrinsic::x86_sse2_psrli_w: 2340 case llvm::Intrinsic::x86_sse2_psrli_d: 2341 case llvm::Intrinsic::x86_sse2_psrli_q: 2342 case llvm::Intrinsic::x86_sse2_psrai_w: 2343 case llvm::Intrinsic::x86_sse2_psrai_d: 2344 case llvm::Intrinsic::x86_mmx_psll_w: 2345 case llvm::Intrinsic::x86_mmx_psll_d: 2346 case llvm::Intrinsic::x86_mmx_psll_q: 2347 case llvm::Intrinsic::x86_mmx_pslli_w: 2348 case llvm::Intrinsic::x86_mmx_pslli_d: 2349 case llvm::Intrinsic::x86_mmx_pslli_q: 2350 case llvm::Intrinsic::x86_mmx_psrl_w: 2351 case llvm::Intrinsic::x86_mmx_psrl_d: 2352 case llvm::Intrinsic::x86_mmx_psrl_q: 2353 case llvm::Intrinsic::x86_mmx_psra_w: 2354 case llvm::Intrinsic::x86_mmx_psra_d: 2355 case llvm::Intrinsic::x86_mmx_psrli_w: 2356 case llvm::Intrinsic::x86_mmx_psrli_d: 2357 case llvm::Intrinsic::x86_mmx_psrli_q: 2358 case llvm::Intrinsic::x86_mmx_psrai_w: 2359 case llvm::Intrinsic::x86_mmx_psrai_d: 2360 handleVectorShiftIntrinsic(I, /* Variable */ false); 2361 break; 2362 case llvm::Intrinsic::x86_avx2_psllv_d: 2363 case llvm::Intrinsic::x86_avx2_psllv_d_256: 2364 case llvm::Intrinsic::x86_avx2_psllv_q: 2365 case llvm::Intrinsic::x86_avx2_psllv_q_256: 2366 case llvm::Intrinsic::x86_avx2_psrlv_d: 2367 case llvm::Intrinsic::x86_avx2_psrlv_d_256: 2368 case llvm::Intrinsic::x86_avx2_psrlv_q: 2369 case llvm::Intrinsic::x86_avx2_psrlv_q_256: 2370 case llvm::Intrinsic::x86_avx2_psrav_d: 2371 case llvm::Intrinsic::x86_avx2_psrav_d_256: 2372 handleVectorShiftIntrinsic(I, /* Variable */ true); 2373 break; 2374 2375 case llvm::Intrinsic::x86_sse2_packsswb_128: 2376 case llvm::Intrinsic::x86_sse2_packssdw_128: 2377 case llvm::Intrinsic::x86_sse2_packuswb_128: 2378 case llvm::Intrinsic::x86_sse41_packusdw: 2379 case llvm::Intrinsic::x86_avx2_packsswb: 2380 case llvm::Intrinsic::x86_avx2_packssdw: 2381 case llvm::Intrinsic::x86_avx2_packuswb: 2382 case llvm::Intrinsic::x86_avx2_packusdw: 2383 handleVectorPackIntrinsic(I); 2384 break; 2385 2386 case llvm::Intrinsic::x86_mmx_packsswb: 2387 case llvm::Intrinsic::x86_mmx_packuswb: 2388 handleVectorPackIntrinsic(I, 16); 2389 break; 2390 2391 case llvm::Intrinsic::x86_mmx_packssdw: 2392 handleVectorPackIntrinsic(I, 32); 2393 break; 2394 2395 case llvm::Intrinsic::x86_mmx_psad_bw: 2396 case llvm::Intrinsic::x86_sse2_psad_bw: 2397 case llvm::Intrinsic::x86_avx2_psad_bw: 2398 handleVectorSadIntrinsic(I); 2399 break; 2400 2401 case llvm::Intrinsic::x86_sse2_pmadd_wd: 2402 case llvm::Intrinsic::x86_avx2_pmadd_wd: 2403 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128: 2404 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw: 2405 handleVectorPmaddIntrinsic(I); 2406 break; 2407 2408 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw: 2409 handleVectorPmaddIntrinsic(I, 8); 2410 break; 2411 2412 case llvm::Intrinsic::x86_mmx_pmadd_wd: 2413 handleVectorPmaddIntrinsic(I, 16); 2414 break; 2415 2416 default: 2417 if (!handleUnknownIntrinsic(I)) 2418 visitInstruction(I); 2419 break; 2420 } 2421 } 2422 2423 void visitCallSite(CallSite CS) { 2424 Instruction &I = *CS.getInstruction(); 2425 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite"); 2426 if (CS.isCall()) { 2427 CallInst *Call = cast<CallInst>(&I); 2428 2429 // For inline asm, do the usual thing: check argument shadow and mark all 2430 // outputs as clean. Note that any side effects of the inline asm that are 2431 // not immediately visible in its constraints are not handled. 2432 if (Call->isInlineAsm()) { 2433 visitInstruction(I); 2434 return; 2435 } 2436 2437 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); 2438 2439 // We are going to insert code that relies on the fact that the callee 2440 // will become a non-readonly function after it is instrumented by us. To 2441 // prevent this code from being optimized out, mark that function 2442 // non-readonly in advance. 2443 if (Function *Func = Call->getCalledFunction()) { 2444 // Clear out readonly/readnone attributes. 2445 AttrBuilder B; 2446 B.addAttribute(Attribute::ReadOnly) 2447 .addAttribute(Attribute::ReadNone); 2448 Func->removeAttributes(AttributeSet::FunctionIndex, 2449 AttributeSet::get(Func->getContext(), 2450 AttributeSet::FunctionIndex, 2451 B)); 2452 } 2453 } 2454 IRBuilder<> IRB(&I); 2455 2456 unsigned ArgOffset = 0; 2457 DEBUG(dbgs() << " CallSite: " << I << "\n"); 2458 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2459 ArgIt != End; ++ArgIt) { 2460 Value *A = *ArgIt; 2461 unsigned i = ArgIt - CS.arg_begin(); 2462 if (!A->getType()->isSized()) { 2463 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); 2464 continue; 2465 } 2466 unsigned Size = 0; 2467 Value *Store = nullptr; 2468 // Compute the Shadow for arg even if it is ByVal, because 2469 // in that case getShadow() will copy the actual arg shadow to 2470 // __msan_param_tls. 2471 Value *ArgShadow = getShadow(A); 2472 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); 2473 DEBUG(dbgs() << " Arg#" << i << ": " << *A << 2474 " Shadow: " << *ArgShadow << "\n"); 2475 bool ArgIsInitialized = false; 2476 const DataLayout &DL = F.getParent()->getDataLayout(); 2477 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) { 2478 assert(A->getType()->isPointerTy() && 2479 "ByVal argument is not a pointer!"); 2480 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); 2481 if (ArgOffset + Size > kParamTLSSize) break; 2482 unsigned ParamAlignment = CS.getParamAlignment(i + 1); 2483 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); 2484 Store = IRB.CreateMemCpy(ArgShadowBase, 2485 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB), 2486 Size, Alignment); 2487 } else { 2488 Size = DL.getTypeAllocSize(A->getType()); 2489 if (ArgOffset + Size > kParamTLSSize) break; 2490 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, 2491 kShadowTLSAlignment); 2492 Constant *Cst = dyn_cast<Constant>(ArgShadow); 2493 if (Cst && Cst->isNullValue()) ArgIsInitialized = true; 2494 } 2495 if (MS.TrackOrigins && !ArgIsInitialized) 2496 IRB.CreateStore(getOrigin(A), 2497 getOriginPtrForArgument(A, IRB, ArgOffset)); 2498 (void)Store; 2499 assert(Size != 0 && Store != nullptr); 2500 DEBUG(dbgs() << " Param:" << *Store << "\n"); 2501 ArgOffset += RoundUpToAlignment(Size, 8); 2502 } 2503 DEBUG(dbgs() << " done with call args\n"); 2504 2505 FunctionType *FT = 2506 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0)); 2507 if (FT->isVarArg()) { 2508 VAHelper->visitCallSite(CS, IRB); 2509 } 2510 2511 // Now, get the shadow for the RetVal. 2512 if (!I.getType()->isSized()) return; 2513 // Don't emit the epilogue for musttail call returns. 2514 if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; 2515 IRBuilder<> IRBBefore(&I); 2516 // Until we have full dynamic coverage, make sure the retval shadow is 0. 2517 Value *Base = getShadowPtrForRetval(&I, IRBBefore); 2518 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); 2519 BasicBlock::iterator NextInsn; 2520 if (CS.isCall()) { 2521 NextInsn = ++I.getIterator(); 2522 assert(NextInsn != I.getParent()->end()); 2523 } else { 2524 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); 2525 if (!NormalDest->getSinglePredecessor()) { 2526 // FIXME: this case is tricky, so we are just conservative here. 2527 // Perhaps we need to split the edge between this BB and NormalDest, 2528 // but a naive attempt to use SplitEdge leads to a crash. 2529 setShadow(&I, getCleanShadow(&I)); 2530 setOrigin(&I, getCleanOrigin()); 2531 return; 2532 } 2533 NextInsn = NormalDest->getFirstInsertionPt(); 2534 assert(NextInsn != NormalDest->end() && 2535 "Could not find insertion point for retval shadow load"); 2536 } 2537 IRBuilder<> IRBAfter(&*NextInsn); 2538 Value *RetvalShadow = 2539 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter), 2540 kShadowTLSAlignment, "_msret"); 2541 setShadow(&I, RetvalShadow); 2542 if (MS.TrackOrigins) 2543 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter))); 2544 } 2545 2546 bool isAMustTailRetVal(Value *RetVal) { 2547 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2548 RetVal = I->getOperand(0); 2549 } 2550 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2551 return I->isMustTailCall(); 2552 } 2553 return false; 2554 } 2555 2556 void visitReturnInst(ReturnInst &I) { 2557 IRBuilder<> IRB(&I); 2558 Value *RetVal = I.getReturnValue(); 2559 if (!RetVal) return; 2560 // Don't emit the epilogue for musttail call returns. 2561 if (isAMustTailRetVal(RetVal)) return; 2562 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); 2563 if (CheckReturnValue) { 2564 insertShadowCheck(RetVal, &I); 2565 Value *Shadow = getCleanShadow(RetVal); 2566 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2567 } else { 2568 Value *Shadow = getShadow(RetVal); 2569 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); 2570 // FIXME: make it conditional if ClStoreCleanOrigin==0 2571 if (MS.TrackOrigins) 2572 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); 2573 } 2574 } 2575 2576 void visitPHINode(PHINode &I) { 2577 IRBuilder<> IRB(&I); 2578 if (!PropagateShadow) { 2579 setShadow(&I, getCleanShadow(&I)); 2580 setOrigin(&I, getCleanOrigin()); 2581 return; 2582 } 2583 2584 ShadowPHINodes.push_back(&I); 2585 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), 2586 "_msphi_s")); 2587 if (MS.TrackOrigins) 2588 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), 2589 "_msphi_o")); 2590 } 2591 2592 void visitAllocaInst(AllocaInst &I) { 2593 setShadow(&I, getCleanShadow(&I)); 2594 setOrigin(&I, getCleanOrigin()); 2595 IRBuilder<> IRB(I.getNextNode()); 2596 const DataLayout &DL = F.getParent()->getDataLayout(); 2597 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType()); 2598 if (PoisonStack && ClPoisonStackWithCall) { 2599 IRB.CreateCall(MS.MsanPoisonStackFn, 2600 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2601 ConstantInt::get(MS.IntptrTy, Size)}); 2602 } else { 2603 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB); 2604 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); 2605 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment()); 2606 } 2607 2608 if (PoisonStack && MS.TrackOrigins) { 2609 SmallString<2048> StackDescriptionStorage; 2610 raw_svector_ostream StackDescription(StackDescriptionStorage); 2611 // We create a string with a description of the stack allocation and 2612 // pass it into __msan_set_alloca_origin. 2613 // It will be printed by the run-time if stack-originated UMR is found. 2614 // The first 4 bytes of the string are set to '----' and will be replaced 2615 // by __msan_va_arg_overflow_size_tls at the first call. 2616 StackDescription << "----" << I.getName() << "@" << F.getName(); 2617 Value *Descr = 2618 createPrivateNonConstGlobalForString(*F.getParent(), 2619 StackDescription.str()); 2620 2621 IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, 2622 {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), 2623 ConstantInt::get(MS.IntptrTy, Size), 2624 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), 2625 IRB.CreatePointerCast(&F, MS.IntptrTy)}); 2626 } 2627 } 2628 2629 void visitSelectInst(SelectInst& I) { 2630 IRBuilder<> IRB(&I); 2631 // a = select b, c, d 2632 Value *B = I.getCondition(); 2633 Value *C = I.getTrueValue(); 2634 Value *D = I.getFalseValue(); 2635 Value *Sb = getShadow(B); 2636 Value *Sc = getShadow(C); 2637 Value *Sd = getShadow(D); 2638 2639 // Result shadow if condition shadow is 0. 2640 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); 2641 Value *Sa1; 2642 if (I.getType()->isAggregateType()) { 2643 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do 2644 // an extra "select". This results in much more compact IR. 2645 // Sa = select Sb, poisoned, (select b, Sc, Sd) 2646 Sa1 = getPoisonedShadow(getShadowTy(I.getType())); 2647 } else { 2648 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] 2649 // If Sb (condition is poisoned), look for bits in c and d that are equal 2650 // and both unpoisoned. 2651 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. 2652 2653 // Cast arguments to shadow-compatible type. 2654 C = CreateAppToShadowCast(IRB, C); 2655 D = CreateAppToShadowCast(IRB, D); 2656 2657 // Result shadow if condition shadow is 1. 2658 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd)); 2659 } 2660 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); 2661 setShadow(&I, Sa); 2662 if (MS.TrackOrigins) { 2663 // Origins are always i32, so any vector conditions must be flattened. 2664 // FIXME: consider tracking vector origins for app vectors? 2665 if (B->getType()->isVectorTy()) { 2666 Type *FlatTy = getShadowTyNoVec(B->getType()); 2667 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), 2668 ConstantInt::getNullValue(FlatTy)); 2669 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), 2670 ConstantInt::getNullValue(FlatTy)); 2671 } 2672 // a = select b, c, d 2673 // Oa = Sb ? Ob : (b ? Oc : Od) 2674 setOrigin( 2675 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), 2676 IRB.CreateSelect(B, getOrigin(I.getTrueValue()), 2677 getOrigin(I.getFalseValue())))); 2678 } 2679 } 2680 2681 void visitLandingPadInst(LandingPadInst &I) { 2682 // Do nothing. 2683 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1 2684 setShadow(&I, getCleanShadow(&I)); 2685 setOrigin(&I, getCleanOrigin()); 2686 } 2687 2688 void visitCatchSwitchInst(CatchSwitchInst &I) { 2689 setShadow(&I, getCleanShadow(&I)); 2690 setOrigin(&I, getCleanOrigin()); 2691 } 2692 2693 void visitFuncletPadInst(FuncletPadInst &I) { 2694 setShadow(&I, getCleanShadow(&I)); 2695 setOrigin(&I, getCleanOrigin()); 2696 } 2697 2698 void visitGetElementPtrInst(GetElementPtrInst &I) { 2699 handleShadowOr(I); 2700 } 2701 2702 void visitExtractValueInst(ExtractValueInst &I) { 2703 IRBuilder<> IRB(&I); 2704 Value *Agg = I.getAggregateOperand(); 2705 DEBUG(dbgs() << "ExtractValue: " << I << "\n"); 2706 Value *AggShadow = getShadow(Agg); 2707 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2708 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2709 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); 2710 setShadow(&I, ResShadow); 2711 setOriginForNaryOp(I); 2712 } 2713 2714 void visitInsertValueInst(InsertValueInst &I) { 2715 IRBuilder<> IRB(&I); 2716 DEBUG(dbgs() << "InsertValue: " << I << "\n"); 2717 Value *AggShadow = getShadow(I.getAggregateOperand()); 2718 Value *InsShadow = getShadow(I.getInsertedValueOperand()); 2719 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); 2720 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); 2721 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2722 DEBUG(dbgs() << " Res: " << *Res << "\n"); 2723 setShadow(&I, Res); 2724 setOriginForNaryOp(I); 2725 } 2726 2727 void dumpInst(Instruction &I) { 2728 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2729 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; 2730 } else { 2731 errs() << "ZZZ " << I.getOpcodeName() << "\n"; 2732 } 2733 errs() << "QQQ " << I << "\n"; 2734 } 2735 2736 void visitResumeInst(ResumeInst &I) { 2737 DEBUG(dbgs() << "Resume: " << I << "\n"); 2738 // Nothing to do here. 2739 } 2740 2741 void visitCleanupReturnInst(CleanupReturnInst &CRI) { 2742 DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); 2743 // Nothing to do here. 2744 } 2745 2746 void visitCatchReturnInst(CatchReturnInst &CRI) { 2747 DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); 2748 // Nothing to do here. 2749 } 2750 2751 void visitInstruction(Instruction &I) { 2752 // Everything else: stop propagating and check for poisoned shadow. 2753 if (ClDumpStrictInstructions) 2754 dumpInst(I); 2755 DEBUG(dbgs() << "DEFAULT: " << I << "\n"); 2756 for (size_t i = 0, n = I.getNumOperands(); i < n; i++) 2757 insertShadowCheck(I.getOperand(i), &I); 2758 setShadow(&I, getCleanShadow(&I)); 2759 setOrigin(&I, getCleanOrigin()); 2760 } 2761}; 2762 2763/// \brief AMD64-specific implementation of VarArgHelper. 2764struct VarArgAMD64Helper : public VarArgHelper { 2765 // An unfortunate workaround for asymmetric lowering of va_arg stuff. 2766 // See a comment in visitCallSite for more details. 2767 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 2768 static const unsigned AMD64FpEndOffset = 176; 2769 2770 Function &F; 2771 MemorySanitizer &MS; 2772 MemorySanitizerVisitor &MSV; 2773 Value *VAArgTLSCopy; 2774 Value *VAArgOverflowSize; 2775 2776 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2777 2778 VarArgAMD64Helper(Function &F, MemorySanitizer &MS, 2779 MemorySanitizerVisitor &MSV) 2780 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2781 VAArgOverflowSize(nullptr) {} 2782 2783 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 2784 2785 ArgKind classifyArgument(Value* arg) { 2786 // A very rough approximation of X86_64 argument classification rules. 2787 Type *T = arg->getType(); 2788 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) 2789 return AK_FloatingPoint; 2790 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 2791 return AK_GeneralPurpose; 2792 if (T->isPointerTy()) 2793 return AK_GeneralPurpose; 2794 return AK_Memory; 2795 } 2796 2797 // For VarArg functions, store the argument shadow in an ABI-specific format 2798 // that corresponds to va_list layout. 2799 // We do this because Clang lowers va_arg in the frontend, and this pass 2800 // only sees the low level code that deals with va_list internals. 2801 // A much easier alternative (provided that Clang emits va_arg instructions) 2802 // would have been to associate each live instance of va_list with a copy of 2803 // MSanParamTLS, and extract shadow on va_arg() call in the argument list 2804 // order. 2805 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2806 unsigned GpOffset = 0; 2807 unsigned FpOffset = AMD64GpEndOffset; 2808 unsigned OverflowOffset = AMD64FpEndOffset; 2809 const DataLayout &DL = F.getParent()->getDataLayout(); 2810 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); 2811 ArgIt != End; ++ArgIt) { 2812 Value *A = *ArgIt; 2813 unsigned ArgNo = CS.getArgumentNo(ArgIt); 2814 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal); 2815 if (IsByVal) { 2816 // ByVal arguments always go to the overflow area. 2817 assert(A->getType()->isPointerTy()); 2818 Type *RealTy = A->getType()->getPointerElementType(); 2819 uint64_t ArgSize = DL.getTypeAllocSize(RealTy); 2820 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset); 2821 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2822 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB), 2823 ArgSize, kShadowTLSAlignment); 2824 } else { 2825 ArgKind AK = classifyArgument(A); 2826 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) 2827 AK = AK_Memory; 2828 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) 2829 AK = AK_Memory; 2830 Value *Base; 2831 switch (AK) { 2832 case AK_GeneralPurpose: 2833 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset); 2834 GpOffset += 8; 2835 break; 2836 case AK_FloatingPoint: 2837 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset); 2838 FpOffset += 16; 2839 break; 2840 case AK_Memory: 2841 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2842 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 2843 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 2844 } 2845 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2846 } 2847 } 2848 Constant *OverflowSize = 2849 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); 2850 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 2851 } 2852 2853 /// \brief Compute the shadow address for a given va_arg. 2854 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2855 int ArgOffset) { 2856 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2857 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2858 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2859 "_msarg"); 2860 } 2861 2862 void visitVAStartInst(VAStartInst &I) override { 2863 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2864 return; 2865 IRBuilder<> IRB(&I); 2866 VAStartInstrumentationList.push_back(&I); 2867 Value *VAListTag = I.getArgOperand(0); 2868 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2869 2870 // Unpoison the whole __va_list_tag. 2871 // FIXME: magic ABI constants. 2872 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2873 /* size */24, /* alignment */8, false); 2874 } 2875 2876 void visitVACopyInst(VACopyInst &I) override { 2877 if (F.getCallingConv() == CallingConv::X86_64_Win64) 2878 return; 2879 IRBuilder<> IRB(&I); 2880 Value *VAListTag = I.getArgOperand(0); 2881 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2882 2883 // Unpoison the whole __va_list_tag. 2884 // FIXME: magic ABI constants. 2885 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2886 /* size */24, /* alignment */8, false); 2887 } 2888 2889 void finalizeInstrumentation() override { 2890 assert(!VAArgOverflowSize && !VAArgTLSCopy && 2891 "finalizeInstrumentation called twice"); 2892 if (!VAStartInstrumentationList.empty()) { 2893 // If there is a va_start in this function, make a backup copy of 2894 // va_arg_tls somewhere in the function entry block. 2895 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 2896 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 2897 Value *CopySize = 2898 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), 2899 VAArgOverflowSize); 2900 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 2901 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 2902 } 2903 2904 // Instrument va_start. 2905 // Copy va_list shadow from the backup copy of the TLS contents. 2906 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 2907 CallInst *OrigInst = VAStartInstrumentationList[i]; 2908 IRBuilder<> IRB(OrigInst->getNextNode()); 2909 Value *VAListTag = OrigInst->getArgOperand(0); 2910 2911 Value *RegSaveAreaPtrPtr = 2912 IRB.CreateIntToPtr( 2913 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2914 ConstantInt::get(MS.IntptrTy, 16)), 2915 Type::getInt64PtrTy(*MS.C)); 2916 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 2917 Value *RegSaveAreaShadowPtr = 2918 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 2919 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, 2920 AMD64FpEndOffset, 16); 2921 2922 Value *OverflowArgAreaPtrPtr = 2923 IRB.CreateIntToPtr( 2924 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 2925 ConstantInt::get(MS.IntptrTy, 8)), 2926 Type::getInt64PtrTy(*MS.C)); 2927 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr); 2928 Value *OverflowArgAreaShadowPtr = 2929 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB); 2930 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, 2931 AMD64FpEndOffset); 2932 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16); 2933 } 2934 } 2935}; 2936 2937/// \brief MIPS64-specific implementation of VarArgHelper. 2938struct VarArgMIPS64Helper : public VarArgHelper { 2939 Function &F; 2940 MemorySanitizer &MS; 2941 MemorySanitizerVisitor &MSV; 2942 Value *VAArgTLSCopy; 2943 Value *VAArgSize; 2944 2945 SmallVector<CallInst*, 16> VAStartInstrumentationList; 2946 2947 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, 2948 MemorySanitizerVisitor &MSV) 2949 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 2950 VAArgSize(nullptr) {} 2951 2952 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 2953 unsigned VAArgOffset = 0; 2954 const DataLayout &DL = F.getParent()->getDataLayout(); 2955 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 2956 ArgIt != End; ++ArgIt) { 2957 Value *A = *ArgIt; 2958 Value *Base; 2959 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 2960#if defined(__MIPSEB__) || defined(MIPSEB) 2961 // Adjusting the shadow for argument with size < 8 to match the placement 2962 // of bits in big endian system 2963 if (ArgSize < 8) 2964 VAArgOffset += (8 - ArgSize); 2965#endif 2966 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset); 2967 VAArgOffset += ArgSize; 2968 VAArgOffset = RoundUpToAlignment(VAArgOffset, 8); 2969 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 2970 } 2971 2972 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); 2973 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of 2974 // a new class member i.e. it is the total size of all VarArgs. 2975 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); 2976 } 2977 2978 /// \brief Compute the shadow address for a given va_arg. 2979 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 2980 int ArgOffset) { 2981 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 2982 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 2983 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 2984 "_msarg"); 2985 } 2986 2987 void visitVAStartInst(VAStartInst &I) override { 2988 IRBuilder<> IRB(&I); 2989 VAStartInstrumentationList.push_back(&I); 2990 Value *VAListTag = I.getArgOperand(0); 2991 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 2992 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 2993 /* size */8, /* alignment */8, false); 2994 } 2995 2996 void visitVACopyInst(VACopyInst &I) override { 2997 IRBuilder<> IRB(&I); 2998 Value *VAListTag = I.getArgOperand(0); 2999 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3000 // Unpoison the whole __va_list_tag. 3001 // FIXME: magic ABI constants. 3002 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3003 /* size */8, /* alignment */8, false); 3004 } 3005 3006 void finalizeInstrumentation() override { 3007 assert(!VAArgSize && !VAArgTLSCopy && 3008 "finalizeInstrumentation called twice"); 3009 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3010 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3011 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), 3012 VAArgSize); 3013 3014 if (!VAStartInstrumentationList.empty()) { 3015 // If there is a va_start in this function, make a backup copy of 3016 // va_arg_tls somewhere in the function entry block. 3017 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3018 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3019 } 3020 3021 // Instrument va_start. 3022 // Copy va_list shadow from the backup copy of the TLS contents. 3023 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3024 CallInst *OrigInst = VAStartInstrumentationList[i]; 3025 IRBuilder<> IRB(OrigInst->getNextNode()); 3026 Value *VAListTag = OrigInst->getArgOperand(0); 3027 Value *RegSaveAreaPtrPtr = 3028 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3029 Type::getInt64PtrTy(*MS.C)); 3030 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr); 3031 Value *RegSaveAreaShadowPtr = 3032 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3033 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8); 3034 } 3035 } 3036}; 3037 3038 3039/// \brief AArch64-specific implementation of VarArgHelper. 3040struct VarArgAArch64Helper : public VarArgHelper { 3041 static const unsigned kAArch64GrArgSize = 56; 3042 static const unsigned kAArch64VrArgSize = 128; 3043 3044 static const unsigned AArch64GrBegOffset = 0; 3045 static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; 3046 // Make VR space aligned to 16 bytes. 3047 static const unsigned AArch64VrBegOffset = AArch64GrEndOffset + 8; 3048 static const unsigned AArch64VrEndOffset = AArch64VrBegOffset 3049 + kAArch64VrArgSize; 3050 static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; 3051 3052 Function &F; 3053 MemorySanitizer &MS; 3054 MemorySanitizerVisitor &MSV; 3055 Value *VAArgTLSCopy; 3056 Value *VAArgOverflowSize; 3057 3058 SmallVector<CallInst*, 16> VAStartInstrumentationList; 3059 3060 VarArgAArch64Helper(Function &F, MemorySanitizer &MS, 3061 MemorySanitizerVisitor &MSV) 3062 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr), 3063 VAArgOverflowSize(nullptr) {} 3064 3065 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; 3066 3067 ArgKind classifyArgument(Value* arg) { 3068 Type *T = arg->getType(); 3069 if (T->isFPOrFPVectorTy()) 3070 return AK_FloatingPoint; 3071 if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) 3072 || (T->isPointerTy())) 3073 return AK_GeneralPurpose; 3074 return AK_Memory; 3075 } 3076 3077 // The instrumentation stores the argument shadow in a non ABI-specific 3078 // format because it does not know which argument is named (since Clang, 3079 // like x86_64 case, lowers the va_args in the frontend and this pass only 3080 // sees the low level code that deals with va_list internals). 3081 // The first seven GR registers are saved in the first 56 bytes of the 3082 // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then 3083 // the remaining arguments. 3084 // Using constant offset within the va_arg TLS array allows fast copy 3085 // in the finalize instrumentation. 3086 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { 3087 unsigned GrOffset = AArch64GrBegOffset; 3088 unsigned VrOffset = AArch64VrBegOffset; 3089 unsigned OverflowOffset = AArch64VAEndOffset; 3090 3091 const DataLayout &DL = F.getParent()->getDataLayout(); 3092 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end(); 3093 ArgIt != End; ++ArgIt) { 3094 Value *A = *ArgIt; 3095 ArgKind AK = classifyArgument(A); 3096 if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) 3097 AK = AK_Memory; 3098 if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) 3099 AK = AK_Memory; 3100 Value *Base; 3101 switch (AK) { 3102 case AK_GeneralPurpose: 3103 Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset); 3104 GrOffset += 8; 3105 break; 3106 case AK_FloatingPoint: 3107 Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset); 3108 VrOffset += 16; 3109 break; 3110 case AK_Memory: 3111 uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); 3112 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset); 3113 OverflowOffset += RoundUpToAlignment(ArgSize, 8); 3114 break; 3115 } 3116 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); 3117 } 3118 Constant *OverflowSize = 3119 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); 3120 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); 3121 } 3122 3123 /// Compute the shadow address for a given va_arg. 3124 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, 3125 int ArgOffset) { 3126 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); 3127 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); 3128 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), 3129 "_msarg"); 3130 } 3131 3132 void visitVAStartInst(VAStartInst &I) override { 3133 IRBuilder<> IRB(&I); 3134 VAStartInstrumentationList.push_back(&I); 3135 Value *VAListTag = I.getArgOperand(0); 3136 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3137 // Unpoison the whole __va_list_tag. 3138 // FIXME: magic ABI constants (size of va_list). 3139 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3140 /* size */32, /* alignment */8, false); 3141 } 3142 3143 void visitVACopyInst(VACopyInst &I) override { 3144 IRBuilder<> IRB(&I); 3145 Value *VAListTag = I.getArgOperand(0); 3146 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB); 3147 // Unpoison the whole __va_list_tag. 3148 // FIXME: magic ABI constants (size of va_list). 3149 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), 3150 /* size */32, /* alignment */8, false); 3151 } 3152 3153 // Retrieve a va_list field of 'void*' size. 3154 Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3155 Value *SaveAreaPtrPtr = 3156 IRB.CreateIntToPtr( 3157 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3158 ConstantInt::get(MS.IntptrTy, offset)), 3159 Type::getInt64PtrTy(*MS.C)); 3160 return IRB.CreateLoad(SaveAreaPtrPtr); 3161 } 3162 3163 // Retrieve a va_list field of 'int' size. 3164 Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { 3165 Value *SaveAreaPtr = 3166 IRB.CreateIntToPtr( 3167 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), 3168 ConstantInt::get(MS.IntptrTy, offset)), 3169 Type::getInt32PtrTy(*MS.C)); 3170 Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr); 3171 return IRB.CreateSExt(SaveArea32, MS.IntptrTy); 3172 } 3173 3174 void finalizeInstrumentation() override { 3175 assert(!VAArgOverflowSize && !VAArgTLSCopy && 3176 "finalizeInstrumentation called twice"); 3177 if (!VAStartInstrumentationList.empty()) { 3178 // If there is a va_start in this function, make a backup copy of 3179 // va_arg_tls somewhere in the function entry block. 3180 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 3181 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS); 3182 Value *CopySize = 3183 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), 3184 VAArgOverflowSize); 3185 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); 3186 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8); 3187 } 3188 3189 Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); 3190 Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); 3191 3192 // Instrument va_start, copy va_list shadow from the backup copy of 3193 // the TLS contents. 3194 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { 3195 CallInst *OrigInst = VAStartInstrumentationList[i]; 3196 IRBuilder<> IRB(OrigInst->getNextNode()); 3197 3198 Value *VAListTag = OrigInst->getArgOperand(0); 3199 3200 // The variadic ABI for AArch64 creates two areas to save the incoming 3201 // argument registers (one for 64-bit general register xn-x7 and another 3202 // for 128-bit FP/SIMD vn-v7). 3203 // We need then to propagate the shadow arguments on both regions 3204 // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. 3205 // The remaning arguments are saved on shadow for 'va::stack'. 3206 // One caveat is it requires only to propagate the non-named arguments, 3207 // however on the call site instrumentation 'all' the arguments are 3208 // saved. So to copy the shadow values from the va_arg TLS array 3209 // we need to adjust the offset for both GR and VR fields based on 3210 // the __{gr,vr}_offs value (since they are stores based on incoming 3211 // named arguments). 3212 3213 // Read the stack pointer from the va_list. 3214 Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); 3215 3216 // Read both the __gr_top and __gr_off and add them up. 3217 Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); 3218 Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); 3219 3220 Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); 3221 3222 // Read both the __vr_top and __vr_off and add them up. 3223 Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); 3224 Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); 3225 3226 Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); 3227 3228 // It does not know how many named arguments is being used and, on the 3229 // callsite all the arguments were saved. Since __gr_off is defined as 3230 // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic 3231 // argument by ignoring the bytes of shadow from named arguments. 3232 Value *GrRegSaveAreaShadowPtrOff = 3233 IRB.CreateAdd(GrArgSize, GrOffSaveArea); 3234 3235 Value *GrRegSaveAreaShadowPtr = 3236 MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3237 3238 Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3239 GrRegSaveAreaShadowPtrOff); 3240 Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); 3241 3242 IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8); 3243 3244 // Again, but for FP/SIMD values. 3245 Value *VrRegSaveAreaShadowPtrOff = 3246 IRB.CreateAdd(VrArgSize, VrOffSaveArea); 3247 3248 Value *VrRegSaveAreaShadowPtr = 3249 MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB); 3250 3251 Value *VrSrcPtr = IRB.CreateInBoundsGEP( 3252 IRB.getInt8Ty(), 3253 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3254 IRB.getInt32(AArch64VrBegOffset)), 3255 VrRegSaveAreaShadowPtrOff); 3256 Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); 3257 3258 IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8); 3259 3260 // And finally for remaining arguments. 3261 Value *StackSaveAreaShadowPtr = 3262 MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB); 3263 3264 Value *StackSrcPtr = 3265 IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, 3266 IRB.getInt32(AArch64VAEndOffset)); 3267 3268 IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr, 3269 VAArgOverflowSize, 16); 3270 } 3271 } 3272}; 3273 3274/// \brief A no-op implementation of VarArgHelper. 3275struct VarArgNoOpHelper : public VarArgHelper { 3276 VarArgNoOpHelper(Function &F, MemorySanitizer &MS, 3277 MemorySanitizerVisitor &MSV) {} 3278 3279 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} 3280 3281 void visitVAStartInst(VAStartInst &I) override {} 3282 3283 void visitVACopyInst(VACopyInst &I) override {} 3284 3285 void finalizeInstrumentation() override {} 3286}; 3287 3288VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, 3289 MemorySanitizerVisitor &Visitor) { 3290 // VarArg handling is only implemented on AMD64. False positives are possible 3291 // on other platforms. 3292 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple()); 3293 if (TargetTriple.getArch() == llvm::Triple::x86_64) 3294 return new VarArgAMD64Helper(Func, Msan, Visitor); 3295 else if (TargetTriple.getArch() == llvm::Triple::mips64 || 3296 TargetTriple.getArch() == llvm::Triple::mips64el) 3297 return new VarArgMIPS64Helper(Func, Msan, Visitor); 3298 else if (TargetTriple.getArch() == llvm::Triple::aarch64) 3299 return new VarArgAArch64Helper(Func, Msan, Visitor); 3300 else 3301 return new VarArgNoOpHelper(Func, Msan, Visitor); 3302} 3303 3304} // anonymous namespace 3305 3306bool MemorySanitizer::runOnFunction(Function &F) { 3307 if (&F == MsanCtorFunction) 3308 return false; 3309 MemorySanitizerVisitor Visitor(F, *this); 3310 3311 // Clear out readonly/readnone attributes. 3312 AttrBuilder B; 3313 B.addAttribute(Attribute::ReadOnly) 3314 .addAttribute(Attribute::ReadNone); 3315 F.removeAttributes(AttributeSet::FunctionIndex, 3316 AttributeSet::get(F.getContext(), 3317 AttributeSet::FunctionIndex, B)); 3318 3319 return Visitor.runOnFunction(); 3320} 3321