1//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Loop Distribution Pass.  Its main focus is to
11// distribute loops that cannot be vectorized due to dependence cycles.  It
12// tries to isolate the offending dependences into a new loop allowing
13// vectorization of the remaining parts.
14//
15// For dependence analysis, the pass uses the LoopVectorizer's
16// LoopAccessAnalysis.  Because this analysis presumes no change in the order of
17// memory operations, special care is taken to preserve the lexical order of
18// these operations.
19//
20// Similarly to the Vectorizer, the pass also supports loop versioning to
21// run-time disambiguate potentially overlapping arrays.
22//
23//===----------------------------------------------------------------------===//
24
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/EquivalenceClasses.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Analysis/LoopAccessAnalysis.h"
30#include "llvm/Analysis/LoopInfo.h"
31#include "llvm/IR/DiagnosticInfo.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/Pass.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/LoopUtils.h"
39#include "llvm/Transforms/Utils/LoopVersioning.h"
40#include <list>
41
42#define LDIST_NAME "loop-distribute"
43#define DEBUG_TYPE LDIST_NAME
44
45using namespace llvm;
46
47static cl::opt<bool>
48    LDistVerify("loop-distribute-verify", cl::Hidden,
49                cl::desc("Turn on DominatorTree and LoopInfo verification "
50                         "after Loop Distribution"),
51                cl::init(false));
52
53static cl::opt<bool> DistributeNonIfConvertible(
54    "loop-distribute-non-if-convertible", cl::Hidden,
55    cl::desc("Whether to distribute into a loop that may not be "
56             "if-convertible by the loop vectorizer"),
57    cl::init(false));
58
59static cl::opt<unsigned> DistributeSCEVCheckThreshold(
60    "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
61    cl::desc("The maximum number of SCEV checks allowed for Loop "
62             "Distribution"));
63
64static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
65    "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
66    cl::Hidden,
67    cl::desc(
68        "The maximum number of SCEV checks allowed for Loop "
69        "Distribution for loop marked with #pragma loop distribute(enable)"));
70
71// Note that the initial value for this depends on whether the pass is invoked
72// directly or from the optimization pipeline.
73static cl::opt<bool> EnableLoopDistribute(
74    "enable-loop-distribute", cl::Hidden,
75    cl::desc("Enable the new, experimental LoopDistribution Pass"));
76
77STATISTIC(NumLoopsDistributed, "Number of loops distributed");
78
79namespace {
80/// \brief Maintains the set of instructions of the loop for a partition before
81/// cloning.  After cloning, it hosts the new loop.
82class InstPartition {
83  typedef SmallPtrSet<Instruction *, 8> InstructionSet;
84
85public:
86  InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
87      : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
88    Set.insert(I);
89  }
90
91  /// \brief Returns whether this partition contains a dependence cycle.
92  bool hasDepCycle() const { return DepCycle; }
93
94  /// \brief Adds an instruction to this partition.
95  void add(Instruction *I) { Set.insert(I); }
96
97  /// \brief Collection accessors.
98  InstructionSet::iterator begin() { return Set.begin(); }
99  InstructionSet::iterator end() { return Set.end(); }
100  InstructionSet::const_iterator begin() const { return Set.begin(); }
101  InstructionSet::const_iterator end() const { return Set.end(); }
102  bool empty() const { return Set.empty(); }
103
104  /// \brief Moves this partition into \p Other.  This partition becomes empty
105  /// after this.
106  void moveTo(InstPartition &Other) {
107    Other.Set.insert(Set.begin(), Set.end());
108    Set.clear();
109    Other.DepCycle |= DepCycle;
110  }
111
112  /// \brief Populates the partition with a transitive closure of all the
113  /// instructions that the seeded instructions dependent on.
114  void populateUsedSet() {
115    // FIXME: We currently don't use control-dependence but simply include all
116    // blocks (possibly empty at the end) and let simplifycfg mostly clean this
117    // up.
118    for (auto *B : OrigLoop->getBlocks())
119      Set.insert(B->getTerminator());
120
121    // Follow the use-def chains to form a transitive closure of all the
122    // instructions that the originally seeded instructions depend on.
123    SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
124    while (!Worklist.empty()) {
125      Instruction *I = Worklist.pop_back_val();
126      // Insert instructions from the loop that we depend on.
127      for (Value *V : I->operand_values()) {
128        auto *I = dyn_cast<Instruction>(V);
129        if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
130          Worklist.push_back(I);
131      }
132    }
133  }
134
135  /// \brief Clones the original loop.
136  ///
137  /// Updates LoopInfo and DominatorTree using the information that block \p
138  /// LoopDomBB dominates the loop.
139  Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
140                               unsigned Index, LoopInfo *LI,
141                               DominatorTree *DT) {
142    ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
143                                          VMap, Twine(".ldist") + Twine(Index),
144                                          LI, DT, ClonedLoopBlocks);
145    return ClonedLoop;
146  }
147
148  /// \brief The cloned loop.  If this partition is mapped to the original loop,
149  /// this is null.
150  const Loop *getClonedLoop() const { return ClonedLoop; }
151
152  /// \brief Returns the loop where this partition ends up after distribution.
153  /// If this partition is mapped to the original loop then use the block from
154  /// the loop.
155  const Loop *getDistributedLoop() const {
156    return ClonedLoop ? ClonedLoop : OrigLoop;
157  }
158
159  /// \brief The VMap that is populated by cloning and then used in
160  /// remapinstruction to remap the cloned instructions.
161  ValueToValueMapTy &getVMap() { return VMap; }
162
163  /// \brief Remaps the cloned instructions using VMap.
164  void remapInstructions() {
165    remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
166  }
167
168  /// \brief Based on the set of instructions selected for this partition,
169  /// removes the unnecessary ones.
170  void removeUnusedInsts() {
171    SmallVector<Instruction *, 8> Unused;
172
173    for (auto *Block : OrigLoop->getBlocks())
174      for (auto &Inst : *Block)
175        if (!Set.count(&Inst)) {
176          Instruction *NewInst = &Inst;
177          if (!VMap.empty())
178            NewInst = cast<Instruction>(VMap[NewInst]);
179
180          assert(!isa<BranchInst>(NewInst) &&
181                 "Branches are marked used early on");
182          Unused.push_back(NewInst);
183        }
184
185    // Delete the instructions backwards, as it has a reduced likelihood of
186    // having to update as many def-use and use-def chains.
187    for (auto *Inst : reverse(Unused)) {
188      if (!Inst->use_empty())
189        Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
190      Inst->eraseFromParent();
191    }
192  }
193
194  void print() const {
195    if (DepCycle)
196      dbgs() << "  (cycle)\n";
197    for (auto *I : Set)
198      // Prefix with the block name.
199      dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
200  }
201
202  void printBlocks() const {
203    for (auto *BB : getDistributedLoop()->getBlocks())
204      dbgs() << *BB;
205  }
206
207private:
208  /// \brief Instructions from OrigLoop selected for this partition.
209  InstructionSet Set;
210
211  /// \brief Whether this partition contains a dependence cycle.
212  bool DepCycle;
213
214  /// \brief The original loop.
215  Loop *OrigLoop;
216
217  /// \brief The cloned loop.  If this partition is mapped to the original loop,
218  /// this is null.
219  Loop *ClonedLoop;
220
221  /// \brief The blocks of ClonedLoop including the preheader.  If this
222  /// partition is mapped to the original loop, this is empty.
223  SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
224
225  /// \brief These gets populated once the set of instructions have been
226  /// finalized. If this partition is mapped to the original loop, these are not
227  /// set.
228  ValueToValueMapTy VMap;
229};
230
231/// \brief Holds the set of Partitions.  It populates them, merges them and then
232/// clones the loops.
233class InstPartitionContainer {
234  typedef DenseMap<Instruction *, int> InstToPartitionIdT;
235
236public:
237  InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
238      : L(L), LI(LI), DT(DT) {}
239
240  /// \brief Returns the number of partitions.
241  unsigned getSize() const { return PartitionContainer.size(); }
242
243  /// \brief Adds \p Inst into the current partition if that is marked to
244  /// contain cycles.  Otherwise start a new partition for it.
245  void addToCyclicPartition(Instruction *Inst) {
246    // If the current partition is non-cyclic.  Start a new one.
247    if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
248      PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
249    else
250      PartitionContainer.back().add(Inst);
251  }
252
253  /// \brief Adds \p Inst into a partition that is not marked to contain
254  /// dependence cycles.
255  ///
256  //  Initially we isolate memory instructions into as many partitions as
257  //  possible, then later we may merge them back together.
258  void addToNewNonCyclicPartition(Instruction *Inst) {
259    PartitionContainer.emplace_back(Inst, L);
260  }
261
262  /// \brief Merges adjacent non-cyclic partitions.
263  ///
264  /// The idea is that we currently only want to isolate the non-vectorizable
265  /// partition.  We could later allow more distribution among these partition
266  /// too.
267  void mergeAdjacentNonCyclic() {
268    mergeAdjacentPartitionsIf(
269        [](const InstPartition *P) { return !P->hasDepCycle(); });
270  }
271
272  /// \brief If a partition contains only conditional stores, we won't vectorize
273  /// it.  Try to merge it with a previous cyclic partition.
274  void mergeNonIfConvertible() {
275    mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
276      if (Partition->hasDepCycle())
277        return true;
278
279      // Now, check if all stores are conditional in this partition.
280      bool seenStore = false;
281
282      for (auto *Inst : *Partition)
283        if (isa<StoreInst>(Inst)) {
284          seenStore = true;
285          if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
286            return false;
287        }
288      return seenStore;
289    });
290  }
291
292  /// \brief Merges the partitions according to various heuristics.
293  void mergeBeforePopulating() {
294    mergeAdjacentNonCyclic();
295    if (!DistributeNonIfConvertible)
296      mergeNonIfConvertible();
297  }
298
299  /// \brief Merges partitions in order to ensure that no loads are duplicated.
300  ///
301  /// We can't duplicate loads because that could potentially reorder them.
302  /// LoopAccessAnalysis provides dependency information with the context that
303  /// the order of memory operation is preserved.
304  ///
305  /// Return if any partitions were merged.
306  bool mergeToAvoidDuplicatedLoads() {
307    typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
308    typedef EquivalenceClasses<InstPartition *> ToBeMergedT;
309
310    LoadToPartitionT LoadToPartition;
311    ToBeMergedT ToBeMerged;
312
313    // Step through the partitions and create equivalence between partitions
314    // that contain the same load.  Also put partitions in between them in the
315    // same equivalence class to avoid reordering of memory operations.
316    for (PartitionContainerT::iterator I = PartitionContainer.begin(),
317                                       E = PartitionContainer.end();
318         I != E; ++I) {
319      auto *PartI = &*I;
320
321      // If a load occurs in two partitions PartI and PartJ, merge all
322      // partitions (PartI, PartJ] into PartI.
323      for (Instruction *Inst : *PartI)
324        if (isa<LoadInst>(Inst)) {
325          bool NewElt;
326          LoadToPartitionT::iterator LoadToPart;
327
328          std::tie(LoadToPart, NewElt) =
329              LoadToPartition.insert(std::make_pair(Inst, PartI));
330          if (!NewElt) {
331            DEBUG(dbgs() << "Merging partitions due to this load in multiple "
332                         << "partitions: " << PartI << ", "
333                         << LoadToPart->second << "\n" << *Inst << "\n");
334
335            auto PartJ = I;
336            do {
337              --PartJ;
338              ToBeMerged.unionSets(PartI, &*PartJ);
339            } while (&*PartJ != LoadToPart->second);
340          }
341        }
342    }
343    if (ToBeMerged.empty())
344      return false;
345
346    // Merge the member of an equivalence class into its class leader.  This
347    // makes the members empty.
348    for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
349         I != E; ++I) {
350      if (!I->isLeader())
351        continue;
352
353      auto PartI = I->getData();
354      for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
355                                   ToBeMerged.member_end())) {
356        PartJ->moveTo(*PartI);
357      }
358    }
359
360    // Remove the empty partitions.
361    PartitionContainer.remove_if(
362        [](const InstPartition &P) { return P.empty(); });
363
364    return true;
365  }
366
367  /// \brief Sets up the mapping between instructions to partitions.  If the
368  /// instruction is duplicated across multiple partitions, set the entry to -1.
369  void setupPartitionIdOnInstructions() {
370    int PartitionID = 0;
371    for (const auto &Partition : PartitionContainer) {
372      for (Instruction *Inst : Partition) {
373        bool NewElt;
374        InstToPartitionIdT::iterator Iter;
375
376        std::tie(Iter, NewElt) =
377            InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
378        if (!NewElt)
379          Iter->second = -1;
380      }
381      ++PartitionID;
382    }
383  }
384
385  /// \brief Populates the partition with everything that the seeding
386  /// instructions require.
387  void populateUsedSet() {
388    for (auto &P : PartitionContainer)
389      P.populateUsedSet();
390  }
391
392  /// \brief This performs the main chunk of the work of cloning the loops for
393  /// the partitions.
394  void cloneLoops() {
395    BasicBlock *OrigPH = L->getLoopPreheader();
396    // At this point the predecessor of the preheader is either the memcheck
397    // block or the top part of the original preheader.
398    BasicBlock *Pred = OrigPH->getSinglePredecessor();
399    assert(Pred && "Preheader does not have a single predecessor");
400    BasicBlock *ExitBlock = L->getExitBlock();
401    assert(ExitBlock && "No single exit block");
402    Loop *NewLoop;
403
404    assert(!PartitionContainer.empty() && "at least two partitions expected");
405    // We're cloning the preheader along with the loop so we already made sure
406    // it was empty.
407    assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
408           "preheader not empty");
409
410    // Create a loop for each partition except the last.  Clone the original
411    // loop before PH along with adding a preheader for the cloned loop.  Then
412    // update PH to point to the newly added preheader.
413    BasicBlock *TopPH = OrigPH;
414    unsigned Index = getSize() - 1;
415    for (auto I = std::next(PartitionContainer.rbegin()),
416              E = PartitionContainer.rend();
417         I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
418      auto *Part = &*I;
419
420      NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
421
422      Part->getVMap()[ExitBlock] = TopPH;
423      Part->remapInstructions();
424    }
425    Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
426
427    // Now go in forward order and update the immediate dominator for the
428    // preheaders with the exiting block of the previous loop.  Dominance
429    // within the loop is updated in cloneLoopWithPreheader.
430    for (auto Curr = PartitionContainer.cbegin(),
431              Next = std::next(PartitionContainer.cbegin()),
432              E = PartitionContainer.cend();
433         Next != E; ++Curr, ++Next)
434      DT->changeImmediateDominator(
435          Next->getDistributedLoop()->getLoopPreheader(),
436          Curr->getDistributedLoop()->getExitingBlock());
437  }
438
439  /// \brief Removes the dead instructions from the cloned loops.
440  void removeUnusedInsts() {
441    for (auto &Partition : PartitionContainer)
442      Partition.removeUnusedInsts();
443  }
444
445  /// \brief For each memory pointer, it computes the partitionId the pointer is
446  /// used in.
447  ///
448  /// This returns an array of int where the I-th entry corresponds to I-th
449  /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
450  /// partitions its entry is set to -1.
451  SmallVector<int, 8>
452  computePartitionSetForPointers(const LoopAccessInfo &LAI) {
453    const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
454
455    unsigned N = RtPtrCheck->Pointers.size();
456    SmallVector<int, 8> PtrToPartitions(N);
457    for (unsigned I = 0; I < N; ++I) {
458      Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
459      auto Instructions =
460          LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
461
462      int &Partition = PtrToPartitions[I];
463      // First set it to uninitialized.
464      Partition = -2;
465      for (Instruction *Inst : Instructions) {
466        // Note that this could be -1 if Inst is duplicated across multiple
467        // partitions.
468        int ThisPartition = this->InstToPartitionId[Inst];
469        if (Partition == -2)
470          Partition = ThisPartition;
471        // -1 means belonging to multiple partitions.
472        else if (Partition == -1)
473          break;
474        else if (Partition != (int)ThisPartition)
475          Partition = -1;
476      }
477      assert(Partition != -2 && "Pointer not belonging to any partition");
478    }
479
480    return PtrToPartitions;
481  }
482
483  void print(raw_ostream &OS) const {
484    unsigned Index = 0;
485    for (const auto &P : PartitionContainer) {
486      OS << "Partition " << Index++ << " (" << &P << "):\n";
487      P.print();
488    }
489  }
490
491  void dump() const { print(dbgs()); }
492
493#ifndef NDEBUG
494  friend raw_ostream &operator<<(raw_ostream &OS,
495                                 const InstPartitionContainer &Partitions) {
496    Partitions.print(OS);
497    return OS;
498  }
499#endif
500
501  void printBlocks() const {
502    unsigned Index = 0;
503    for (const auto &P : PartitionContainer) {
504      dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
505      P.printBlocks();
506    }
507  }
508
509private:
510  typedef std::list<InstPartition> PartitionContainerT;
511
512  /// \brief List of partitions.
513  PartitionContainerT PartitionContainer;
514
515  /// \brief Mapping from Instruction to partition Id.  If the instruction
516  /// belongs to multiple partitions the entry contains -1.
517  InstToPartitionIdT InstToPartitionId;
518
519  Loop *L;
520  LoopInfo *LI;
521  DominatorTree *DT;
522
523  /// \brief The control structure to merge adjacent partitions if both satisfy
524  /// the \p Predicate.
525  template <class UnaryPredicate>
526  void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
527    InstPartition *PrevMatch = nullptr;
528    for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
529      auto DoesMatch = Predicate(&*I);
530      if (PrevMatch == nullptr && DoesMatch) {
531        PrevMatch = &*I;
532        ++I;
533      } else if (PrevMatch != nullptr && DoesMatch) {
534        I->moveTo(*PrevMatch);
535        I = PartitionContainer.erase(I);
536      } else {
537        PrevMatch = nullptr;
538        ++I;
539      }
540    }
541  }
542};
543
544/// \brief For each memory instruction, this class maintains difference of the
545/// number of unsafe dependences that start out from this instruction minus
546/// those that end here.
547///
548/// By traversing the memory instructions in program order and accumulating this
549/// number, we know whether any unsafe dependence crosses over a program point.
550class MemoryInstructionDependences {
551  typedef MemoryDepChecker::Dependence Dependence;
552
553public:
554  struct Entry {
555    Instruction *Inst;
556    unsigned NumUnsafeDependencesStartOrEnd;
557
558    Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
559  };
560
561  typedef SmallVector<Entry, 8> AccessesType;
562
563  AccessesType::const_iterator begin() const { return Accesses.begin(); }
564  AccessesType::const_iterator end() const { return Accesses.end(); }
565
566  MemoryInstructionDependences(
567      const SmallVectorImpl<Instruction *> &Instructions,
568      const SmallVectorImpl<Dependence> &Dependences) {
569    Accesses.append(Instructions.begin(), Instructions.end());
570
571    DEBUG(dbgs() << "Backward dependences:\n");
572    for (auto &Dep : Dependences)
573      if (Dep.isPossiblyBackward()) {
574        // Note that the designations source and destination follow the program
575        // order, i.e. source is always first.  (The direction is given by the
576        // DepType.)
577        ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
578        --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
579
580        DEBUG(Dep.print(dbgs(), 2, Instructions));
581      }
582  }
583
584private:
585  AccessesType Accesses;
586};
587
588/// \brief The actual class performing the per-loop work.
589class LoopDistributeForLoop {
590public:
591  LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
592                        ScalarEvolution *SE)
593      : L(L), F(F), LI(LI), LAI(nullptr), DT(DT), SE(SE) {
594    setForced();
595  }
596
597  /// \brief Try to distribute an inner-most loop.
598  bool processLoop(LoopAccessLegacyAnalysis *LAA) {
599    assert(L->empty() && "Only process inner loops.");
600
601    DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
602                 << "\" checking " << *L << "\n");
603
604    BasicBlock *PH = L->getLoopPreheader();
605    if (!PH)
606      return fail("no preheader");
607    if (!L->getExitBlock())
608      return fail("multiple exit blocks");
609
610    // LAA will check that we only have a single exiting block.
611    LAI = &LAA->getInfo(L);
612
613    // Currently, we only distribute to isolate the part of the loop with
614    // dependence cycles to enable partial vectorization.
615    if (LAI->canVectorizeMemory())
616      return fail("memory operations are safe for vectorization");
617
618    auto *Dependences = LAI->getDepChecker().getDependences();
619    if (!Dependences || Dependences->empty())
620      return fail("no unsafe dependences to isolate");
621
622    InstPartitionContainer Partitions(L, LI, DT);
623
624    // First, go through each memory operation and assign them to consecutive
625    // partitions (the order of partitions follows program order).  Put those
626    // with unsafe dependences into "cyclic" partition otherwise put each store
627    // in its own "non-cyclic" partition (we'll merge these later).
628    //
629    // Note that a memory operation (e.g. Load2 below) at a program point that
630    // has an unsafe dependence (Store3->Load1) spanning over it must be
631    // included in the same cyclic partition as the dependent operations.  This
632    // is to preserve the original program order after distribution.  E.g.:
633    //
634    //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
635    //  Load1   -.                     1                       0->1
636    //  Load2    | /Unsafe/            0                       1
637    //  Store3  -'                    -1                       1->0
638    //  Load4                          0                       0
639    //
640    // NumUnsafeDependencesActive > 0 indicates this situation and in this case
641    // we just keep assigning to the same cyclic partition until
642    // NumUnsafeDependencesActive reaches 0.
643    const MemoryDepChecker &DepChecker = LAI->getDepChecker();
644    MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
645                                     *Dependences);
646
647    int NumUnsafeDependencesActive = 0;
648    for (auto &InstDep : MID) {
649      Instruction *I = InstDep.Inst;
650      // We update NumUnsafeDependencesActive post-instruction, catch the
651      // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
652      if (NumUnsafeDependencesActive ||
653          InstDep.NumUnsafeDependencesStartOrEnd > 0)
654        Partitions.addToCyclicPartition(I);
655      else
656        Partitions.addToNewNonCyclicPartition(I);
657      NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
658      assert(NumUnsafeDependencesActive >= 0 &&
659             "Negative number of dependences active");
660    }
661
662    // Add partitions for values used outside.  These partitions can be out of
663    // order from the original program order.  This is OK because if the
664    // partition uses a load we will merge this partition with the original
665    // partition of the load that we set up in the previous loop (see
666    // mergeToAvoidDuplicatedLoads).
667    auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
668    for (auto *Inst : DefsUsedOutside)
669      Partitions.addToNewNonCyclicPartition(Inst);
670
671    DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
672    if (Partitions.getSize() < 2)
673      return fail("cannot isolate unsafe dependencies");
674
675    // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
676    // should be able to vectorize these together.
677    Partitions.mergeBeforePopulating();
678    DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
679    if (Partitions.getSize() < 2)
680      return fail("cannot isolate unsafe dependencies");
681
682    // Now, populate the partitions with non-memory operations.
683    Partitions.populateUsedSet();
684    DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
685
686    // In order to preserve original lexical order for loads, keep them in the
687    // partition that we set up in the MemoryInstructionDependences loop.
688    if (Partitions.mergeToAvoidDuplicatedLoads()) {
689      DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
690                   << Partitions);
691      if (Partitions.getSize() < 2)
692        return fail("cannot isolate unsafe dependencies");
693    }
694
695    // Don't distribute the loop if we need too many SCEV run-time checks.
696    const SCEVUnionPredicate &Pred = LAI->getPSE().getUnionPredicate();
697    if (Pred.getComplexity() > (IsForced.getValueOr(false)
698                                    ? PragmaDistributeSCEVCheckThreshold
699                                    : DistributeSCEVCheckThreshold))
700      return fail("too many SCEV run-time checks needed.\n");
701
702    DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
703    // We're done forming the partitions set up the reverse mapping from
704    // instructions to partitions.
705    Partitions.setupPartitionIdOnInstructions();
706
707    // To keep things simple have an empty preheader before we version or clone
708    // the loop.  (Also split if this has no predecessor, i.e. entry, because we
709    // rely on PH having a predecessor.)
710    if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
711      SplitBlock(PH, PH->getTerminator(), DT, LI);
712
713    // If we need run-time checks, version the loop now.
714    auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
715    const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
716    const auto &AllChecks = RtPtrChecking->getChecks();
717    auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
718                                                  RtPtrChecking);
719
720    if (!Pred.isAlwaysTrue() || !Checks.empty()) {
721      DEBUG(dbgs() << "\nPointers:\n");
722      DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
723      LoopVersioning LVer(*LAI, L, LI, DT, SE, false);
724      LVer.setAliasChecks(std::move(Checks));
725      LVer.setSCEVChecks(LAI->getPSE().getUnionPredicate());
726      LVer.versionLoop(DefsUsedOutside);
727      LVer.annotateLoopWithNoAlias();
728    }
729
730    // Create identical copies of the original loop for each partition and hook
731    // them up sequentially.
732    Partitions.cloneLoops();
733
734    // Now, we remove the instruction from each loop that don't belong to that
735    // partition.
736    Partitions.removeUnusedInsts();
737    DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
738    DEBUG(Partitions.printBlocks());
739
740    if (LDistVerify) {
741      LI->verify();
742      DT->verifyDomTree();
743    }
744
745    ++NumLoopsDistributed;
746    // Report the success.
747    emitOptimizationRemark(F->getContext(), LDIST_NAME, *F, L->getStartLoc(),
748                           "distributed loop");
749    return true;
750  }
751
752  /// \brief Provide diagnostics then \return with false.
753  bool fail(llvm::StringRef Message) {
754    LLVMContext &Ctx = F->getContext();
755    bool Forced = isForced().getValueOr(false);
756
757    DEBUG(dbgs() << "Skipping; " << Message << "\n");
758
759    // With Rpass-missed report that distribution failed.
760    emitOptimizationRemarkMissed(
761        Ctx, LDIST_NAME, *F, L->getStartLoc(),
762        "loop not distributed: use -Rpass-analysis=loop-distribute for more "
763        "info");
764
765    // With Rpass-analysis report why.  This is on by default if distribution
766    // was requested explicitly.
767    emitOptimizationRemarkAnalysis(
768        Ctx, Forced ? DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint
769                    : LDIST_NAME,
770        *F, L->getStartLoc(), Twine("loop not distributed: ") + Message);
771
772    // Also issue a warning if distribution was requested explicitly but it
773    // failed.
774    if (Forced)
775      Ctx.diagnose(DiagnosticInfoOptimizationFailure(
776          *F, L->getStartLoc(), "loop not disributed: failed "
777                                "explicitly specified loop distribution"));
778
779    return false;
780  }
781
782  /// \brief Return if distribution forced to be enabled/disabled for the loop.
783  ///
784  /// If the optional has a value, it indicates whether distribution was forced
785  /// to be enabled (true) or disabled (false).  If the optional has no value
786  /// distribution was not forced either way.
787  const Optional<bool> &isForced() const { return IsForced; }
788
789private:
790  /// \brief Filter out checks between pointers from the same partition.
791  ///
792  /// \p PtrToPartition contains the partition number for pointers.  Partition
793  /// number -1 means that the pointer is used in multiple partitions.  In this
794  /// case we can't safely omit the check.
795  SmallVector<RuntimePointerChecking::PointerCheck, 4>
796  includeOnlyCrossPartitionChecks(
797      const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &AllChecks,
798      const SmallVectorImpl<int> &PtrToPartition,
799      const RuntimePointerChecking *RtPtrChecking) {
800    SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
801
802    std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
803                 [&](const RuntimePointerChecking::PointerCheck &Check) {
804                   for (unsigned PtrIdx1 : Check.first->Members)
805                     for (unsigned PtrIdx2 : Check.second->Members)
806                       // Only include this check if there is a pair of pointers
807                       // that require checking and the pointers fall into
808                       // separate partitions.
809                       //
810                       // (Note that we already know at this point that the two
811                       // pointer groups need checking but it doesn't follow
812                       // that each pair of pointers within the two groups need
813                       // checking as well.
814                       //
815                       // In other words we don't want to include a check just
816                       // because there is a pair of pointers between the two
817                       // pointer groups that require checks and a different
818                       // pair whose pointers fall into different partitions.)
819                       if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
820                           !RuntimePointerChecking::arePointersInSamePartition(
821                               PtrToPartition, PtrIdx1, PtrIdx2))
822                         return true;
823                   return false;
824                 });
825
826    return Checks;
827  }
828
829  /// \brief Check whether the loop metadata is forcing distribution to be
830  /// enabled/disabled.
831  void setForced() {
832    Optional<const MDOperand *> Value =
833        findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
834    if (!Value)
835      return;
836
837    const MDOperand *Op = *Value;
838    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
839    IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
840  }
841
842  Loop *L;
843  Function *F;
844
845  // Analyses used.
846  LoopInfo *LI;
847  const LoopAccessInfo *LAI;
848  DominatorTree *DT;
849  ScalarEvolution *SE;
850
851  /// \brief Indicates whether distribution is forced to be enabled/disabled for
852  /// the loop.
853  ///
854  /// If the optional has a value, it indicates whether distribution was forced
855  /// to be enabled (true) or disabled (false).  If the optional has no value
856  /// distribution was not forced either way.
857  Optional<bool> IsForced;
858};
859
860/// \brief The pass class.
861class LoopDistribute : public FunctionPass {
862public:
863  /// \p ProcessAllLoopsByDefault specifies whether loop distribution should be
864  /// performed by default.  Pass -enable-loop-distribute={0,1} overrides this
865  /// default.  We use this to keep LoopDistribution off by default when invoked
866  /// from the optimization pipeline but on when invoked explicitly from opt.
867  LoopDistribute(bool ProcessAllLoopsByDefault = true)
868      : FunctionPass(ID), ProcessAllLoops(ProcessAllLoopsByDefault) {
869    // The default is set by the caller.
870    if (EnableLoopDistribute.getNumOccurrences() > 0)
871      ProcessAllLoops = EnableLoopDistribute;
872    initializeLoopDistributePass(*PassRegistry::getPassRegistry());
873  }
874
875  bool runOnFunction(Function &F) override {
876    if (skipFunction(F))
877      return false;
878
879    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
880    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
881    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
882    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
883
884    // Build up a worklist of inner-loops to vectorize. This is necessary as the
885    // act of distributing a loop creates new loops and can invalidate iterators
886    // across the loops.
887    SmallVector<Loop *, 8> Worklist;
888
889    for (Loop *TopLevelLoop : *LI)
890      for (Loop *L : depth_first(TopLevelLoop))
891        // We only handle inner-most loops.
892        if (L->empty())
893          Worklist.push_back(L);
894
895    // Now walk the identified inner loops.
896    bool Changed = false;
897    for (Loop *L : Worklist) {
898      LoopDistributeForLoop LDL(L, &F, LI, DT, SE);
899
900      // If distribution was forced for the specific loop to be
901      // enabled/disabled, follow that.  Otherwise use the global flag.
902      if (LDL.isForced().getValueOr(ProcessAllLoops))
903        Changed |= LDL.processLoop(LAA);
904    }
905
906    // Process each loop nest in the function.
907    return Changed;
908  }
909
910  void getAnalysisUsage(AnalysisUsage &AU) const override {
911    AU.addRequired<ScalarEvolutionWrapperPass>();
912    AU.addRequired<LoopInfoWrapperPass>();
913    AU.addPreserved<LoopInfoWrapperPass>();
914    AU.addRequired<LoopAccessLegacyAnalysis>();
915    AU.addRequired<DominatorTreeWrapperPass>();
916    AU.addPreserved<DominatorTreeWrapperPass>();
917  }
918
919  static char ID;
920
921private:
922  /// \brief Whether distribution should be on in this function.  The per-loop
923  /// pragma can override this.
924  bool ProcessAllLoops;
925};
926} // anonymous namespace
927
928char LoopDistribute::ID;
929static const char ldist_name[] = "Loop Distribition";
930
931INITIALIZE_PASS_BEGIN(LoopDistribute, LDIST_NAME, ldist_name, false, false)
932INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
933INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
934INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
935INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
936INITIALIZE_PASS_END(LoopDistribute, LDIST_NAME, ldist_name, false, false)
937
938namespace llvm {
939FunctionPass *createLoopDistributePass(bool ProcessAllLoopsByDefault) {
940  return new LoopDistribute(ProcessAllLoopsByDefault);
941}
942}
943