1//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implement a loop-aware load elimination pass. 11// 12// It uses LoopAccessAnalysis to identify loop-carried dependences with a 13// distance of one between stores and loads. These form the candidates for the 14// transformation. The source value of each store then propagated to the user 15// of the corresponding load. This makes the load dead. 16// 17// The pass can also version the loop and add memchecks in order to prove that 18// may-aliasing stores can't change the value in memory before it's read by the 19// load. 20// 21//===----------------------------------------------------------------------===// 22 23#include "llvm/ADT/Statistic.h" 24#include "llvm/Analysis/LoopAccessAnalysis.h" 25#include "llvm/Analysis/LoopInfo.h" 26#include "llvm/Analysis/ScalarEvolutionExpander.h" 27#include "llvm/IR/Dominators.h" 28#include "llvm/IR/Module.h" 29#include "llvm/Pass.h" 30#include "llvm/Support/Debug.h" 31#include "llvm/Transforms/Scalar.h" 32#include "llvm/Transforms/Utils/LoopVersioning.h" 33#include <forward_list> 34 35#define LLE_OPTION "loop-load-elim" 36#define DEBUG_TYPE LLE_OPTION 37 38using namespace llvm; 39 40static cl::opt<unsigned> CheckPerElim( 41 "runtime-check-per-loop-load-elim", cl::Hidden, 42 cl::desc("Max number of memchecks allowed per eliminated load on average"), 43 cl::init(1)); 44 45static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 46 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 47 cl::desc("The maximum number of SCEV checks allowed for Loop " 48 "Load Elimination")); 49 50 51STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 52 53namespace { 54 55/// \brief Represent a store-to-forwarding candidate. 56struct StoreToLoadForwardingCandidate { 57 LoadInst *Load; 58 StoreInst *Store; 59 60 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 61 : Load(Load), Store(Store) {} 62 63 /// \brief Return true if the dependence from the store to the load has a 64 /// distance of one. E.g. A[i+1] = A[i] 65 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 66 Loop *L) const { 67 Value *LoadPtr = Load->getPointerOperand(); 68 Value *StorePtr = Store->getPointerOperand(); 69 Type *LoadPtrType = LoadPtr->getType(); 70 Type *LoadType = LoadPtrType->getPointerElementType(); 71 72 assert(LoadPtrType->getPointerAddressSpace() == 73 StorePtr->getType()->getPointerAddressSpace() && 74 LoadType == StorePtr->getType()->getPointerElementType() && 75 "Should be a known dependence"); 76 77 // Currently we only support accesses with unit stride. FIXME: we should be 78 // able to handle non unit stirde as well as long as the stride is equal to 79 // the dependence distance. 80 if (getPtrStride(PSE, LoadPtr, L) != 1 || 81 getPtrStride(PSE, StorePtr, L) != 1) 82 return false; 83 84 auto &DL = Load->getParent()->getModule()->getDataLayout(); 85 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 86 87 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 88 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 89 90 // We don't need to check non-wrapping here because forward/backward 91 // dependence wouldn't be valid if these weren't monotonic accesses. 92 auto *Dist = cast<SCEVConstant>( 93 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 94 const APInt &Val = Dist->getAPInt(); 95 return Val == TypeByteSize; 96 } 97 98 Value *getLoadPtr() const { return Load->getPointerOperand(); } 99 100#ifndef NDEBUG 101 friend raw_ostream &operator<<(raw_ostream &OS, 102 const StoreToLoadForwardingCandidate &Cand) { 103 OS << *Cand.Store << " -->\n"; 104 OS.indent(2) << *Cand.Load << "\n"; 105 return OS; 106 } 107#endif 108}; 109 110/// \brief Check if the store dominates all latches, so as long as there is no 111/// intervening store this value will be loaded in the next iteration. 112bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 113 DominatorTree *DT) { 114 SmallVector<BasicBlock *, 8> Latches; 115 L->getLoopLatches(Latches); 116 return std::all_of(Latches.begin(), Latches.end(), 117 [&](const BasicBlock *Latch) { 118 return DT->dominates(StoreBlock, Latch); 119 }); 120} 121 122/// \brief Return true if the load is not executed on all paths in the loop. 123static bool isLoadConditional(LoadInst *Load, Loop *L) { 124 return Load->getParent() != L->getHeader(); 125} 126 127/// \brief The per-loop class that does most of the work. 128class LoadEliminationForLoop { 129public: 130 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 131 DominatorTree *DT) 132 : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.getPSE()) {} 133 134 /// \brief Look through the loop-carried and loop-independent dependences in 135 /// this loop and find store->load dependences. 136 /// 137 /// Note that no candidate is returned if LAA has failed to analyze the loop 138 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 139 std::forward_list<StoreToLoadForwardingCandidate> 140 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 141 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 142 143 const auto *Deps = LAI.getDepChecker().getDependences(); 144 if (!Deps) 145 return Candidates; 146 147 // Find store->load dependences (consequently true dep). Both lexically 148 // forward and backward dependences qualify. Disqualify loads that have 149 // other unknown dependences. 150 151 SmallSet<Instruction *, 4> LoadsWithUnknownDepedence; 152 153 for (const auto &Dep : *Deps) { 154 Instruction *Source = Dep.getSource(LAI); 155 Instruction *Destination = Dep.getDestination(LAI); 156 157 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 158 if (isa<LoadInst>(Source)) 159 LoadsWithUnknownDepedence.insert(Source); 160 if (isa<LoadInst>(Destination)) 161 LoadsWithUnknownDepedence.insert(Destination); 162 continue; 163 } 164 165 if (Dep.isBackward()) 166 // Note that the designations source and destination follow the program 167 // order, i.e. source is always first. (The direction is given by the 168 // DepType.) 169 std::swap(Source, Destination); 170 else 171 assert(Dep.isForward() && "Needs to be a forward dependence"); 172 173 auto *Store = dyn_cast<StoreInst>(Source); 174 if (!Store) 175 continue; 176 auto *Load = dyn_cast<LoadInst>(Destination); 177 if (!Load) 178 continue; 179 180 // Only progagate the value if they are of the same type. 181 if (Store->getPointerOperand()->getType() != 182 Load->getPointerOperand()->getType()) 183 continue; 184 185 Candidates.emplace_front(Load, Store); 186 } 187 188 if (!LoadsWithUnknownDepedence.empty()) 189 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 190 return LoadsWithUnknownDepedence.count(C.Load); 191 }); 192 193 return Candidates; 194 } 195 196 /// \brief Return the index of the instruction according to program order. 197 unsigned getInstrIndex(Instruction *Inst) { 198 auto I = InstOrder.find(Inst); 199 assert(I != InstOrder.end() && "No index for instruction"); 200 return I->second; 201 } 202 203 /// \brief If a load has multiple candidates associated (i.e. different 204 /// stores), it means that it could be forwarding from multiple stores 205 /// depending on control flow. Remove these candidates. 206 /// 207 /// Here, we rely on LAA to include the relevant loop-independent dependences. 208 /// LAA is known to omit these in the very simple case when the read and the 209 /// write within an alias set always takes place using the *same* pointer. 210 /// 211 /// However, we know that this is not the case here, i.e. we can rely on LAA 212 /// to provide us with loop-independent dependences for the cases we're 213 /// interested. Consider the case for example where a loop-independent 214 /// dependece S1->S2 invalidates the forwarding S3->S2. 215 /// 216 /// A[i] = ... (S1) 217 /// ... = A[i] (S2) 218 /// A[i+1] = ... (S3) 219 /// 220 /// LAA will perform dependence analysis here because there are two 221 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 222 void removeDependencesFromMultipleStores( 223 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 224 // If Store is nullptr it means that we have multiple stores forwarding to 225 // this store. 226 typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *> 227 LoadToSingleCandT; 228 LoadToSingleCandT LoadToSingleCand; 229 230 for (const auto &Cand : Candidates) { 231 bool NewElt; 232 LoadToSingleCandT::iterator Iter; 233 234 std::tie(Iter, NewElt) = 235 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 236 if (!NewElt) { 237 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 238 // Already multiple stores forward to this load. 239 if (OtherCand == nullptr) 240 continue; 241 242 // Handle the very basic case when the two stores are in the same block 243 // so deciding which one forwards is easy. The later one forwards as 244 // long as they both have a dependence distance of one to the load. 245 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 246 Cand.isDependenceDistanceOfOne(PSE, L) && 247 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 248 // They are in the same block, the later one will forward to the load. 249 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 250 OtherCand = &Cand; 251 } else 252 OtherCand = nullptr; 253 } 254 } 255 256 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 257 if (LoadToSingleCand[Cand.Load] != &Cand) { 258 DEBUG(dbgs() << "Removing from candidates: \n" << Cand 259 << " The load may have multiple stores forwarding to " 260 << "it\n"); 261 return true; 262 } 263 return false; 264 }); 265 } 266 267 /// \brief Given two pointers operations by their RuntimePointerChecking 268 /// indices, return true if they require an alias check. 269 /// 270 /// We need a check if one is a pointer for a candidate load and the other is 271 /// a pointer for a possibly intervening store. 272 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 273 const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath, 274 const std::set<Value *> &CandLoadPtrs) { 275 Value *Ptr1 = 276 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 277 Value *Ptr2 = 278 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 279 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 280 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 281 } 282 283 /// \brief Return pointers that are possibly written to on the path from a 284 /// forwarding store to a load. 285 /// 286 /// These pointers need to be alias-checked against the forwarding candidates. 287 SmallSet<Value *, 4> findPointersWrittenOnForwardingPath( 288 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 289 // From FirstStore to LastLoad neither of the elimination candidate loads 290 // should overlap with any of the stores. 291 // 292 // E.g.: 293 // 294 // st1 C[i] 295 // ld1 B[i] <-------, 296 // ld0 A[i] <----, | * LastLoad 297 // ... | | 298 // st2 E[i] | | 299 // st3 B[i+1] -- | -' * FirstStore 300 // st0 A[i+1] ---' 301 // st4 D[i] 302 // 303 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 304 // ld0. 305 306 LoadInst *LastLoad = 307 std::max_element(Candidates.begin(), Candidates.end(), 308 [&](const StoreToLoadForwardingCandidate &A, 309 const StoreToLoadForwardingCandidate &B) { 310 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 311 }) 312 ->Load; 313 StoreInst *FirstStore = 314 std::min_element(Candidates.begin(), Candidates.end(), 315 [&](const StoreToLoadForwardingCandidate &A, 316 const StoreToLoadForwardingCandidate &B) { 317 return getInstrIndex(A.Store) < 318 getInstrIndex(B.Store); 319 }) 320 ->Store; 321 322 // We're looking for stores after the first forwarding store until the end 323 // of the loop, then from the beginning of the loop until the last 324 // forwarded-to load. Collect the pointer for the stores. 325 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath; 326 327 auto InsertStorePtr = [&](Instruction *I) { 328 if (auto *S = dyn_cast<StoreInst>(I)) 329 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 330 }; 331 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 332 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 333 MemInstrs.end(), InsertStorePtr); 334 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 335 InsertStorePtr); 336 337 return PtrsWrittenOnFwdingPath; 338 } 339 340 /// \brief Determine the pointer alias checks to prove that there are no 341 /// intervening stores. 342 SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks( 343 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 344 345 SmallSet<Value *, 4> PtrsWrittenOnFwdingPath = 346 findPointersWrittenOnForwardingPath(Candidates); 347 348 // Collect the pointers of the candidate loads. 349 // FIXME: SmallSet does not work with std::inserter. 350 std::set<Value *> CandLoadPtrs; 351 std::transform(Candidates.begin(), Candidates.end(), 352 std::inserter(CandLoadPtrs, CandLoadPtrs.begin()), 353 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr)); 354 355 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 356 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks; 357 358 std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks), 359 [&](const RuntimePointerChecking::PointerCheck &Check) { 360 for (auto PtrIdx1 : Check.first->Members) 361 for (auto PtrIdx2 : Check.second->Members) 362 if (needsChecking(PtrIdx1, PtrIdx2, 363 PtrsWrittenOnFwdingPath, CandLoadPtrs)) 364 return true; 365 return false; 366 }); 367 368 DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n"); 369 DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 370 371 return Checks; 372 } 373 374 /// \brief Perform the transformation for a candidate. 375 void 376 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 377 SCEVExpander &SEE) { 378 // 379 // loop: 380 // %x = load %gep_i 381 // = ... %x 382 // store %y, %gep_i_plus_1 383 // 384 // => 385 // 386 // ph: 387 // %x.initial = load %gep_0 388 // loop: 389 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 390 // %x = load %gep_i <---- now dead 391 // = ... %x.storeforward 392 // store %y, %gep_i_plus_1 393 394 Value *Ptr = Cand.Load->getPointerOperand(); 395 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 396 auto *PH = L->getLoopPreheader(); 397 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 398 PH->getTerminator()); 399 Value *Initial = 400 new LoadInst(InitialPtr, "load_initial", PH->getTerminator()); 401 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 402 &L->getHeader()->front()); 403 PHI->addIncoming(Initial, PH); 404 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch()); 405 406 Cand.Load->replaceAllUsesWith(PHI); 407 } 408 409 /// \brief Top-level driver for each loop: find store->load forwarding 410 /// candidates, add run-time checks and perform transformation. 411 bool processLoop() { 412 DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 413 << "\" checking " << *L << "\n"); 414 // Look for store-to-load forwarding cases across the 415 // backedge. E.g.: 416 // 417 // loop: 418 // %x = load %gep_i 419 // = ... %x 420 // store %y, %gep_i_plus_1 421 // 422 // => 423 // 424 // ph: 425 // %x.initial = load %gep_0 426 // loop: 427 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 428 // %x = load %gep_i <---- now dead 429 // = ... %x.storeforward 430 // store %y, %gep_i_plus_1 431 432 // First start with store->load dependences. 433 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 434 if (StoreToLoadDependences.empty()) 435 return false; 436 437 // Generate an index for each load and store according to the original 438 // program order. This will be used later. 439 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 440 441 // To keep things simple for now, remove those where the load is potentially 442 // fed by multiple stores. 443 removeDependencesFromMultipleStores(StoreToLoadDependences); 444 if (StoreToLoadDependences.empty()) 445 return false; 446 447 // Filter the candidates further. 448 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 449 unsigned NumForwarding = 0; 450 for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) { 451 DEBUG(dbgs() << "Candidate " << Cand); 452 453 // Make sure that the stored values is available everywhere in the loop in 454 // the next iteration. 455 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 456 continue; 457 458 // If the load is conditional we can't hoist its 0-iteration instance to 459 // the preheader because that would make it unconditional. Thus we would 460 // access a memory location that the original loop did not access. 461 if (isLoadConditional(Cand.Load, L)) 462 continue; 463 464 // Check whether the SCEV difference is the same as the induction step, 465 // thus we load the value in the next iteration. 466 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 467 continue; 468 469 ++NumForwarding; 470 DEBUG(dbgs() 471 << NumForwarding 472 << ". Valid store-to-load forwarding across the loop backedge\n"); 473 Candidates.push_back(Cand); 474 } 475 if (Candidates.empty()) 476 return false; 477 478 // Check intervening may-alias stores. These need runtime checks for alias 479 // disambiguation. 480 SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks = 481 collectMemchecks(Candidates); 482 483 // Too many checks are likely to outweigh the benefits of forwarding. 484 if (Checks.size() > Candidates.size() * CheckPerElim) { 485 DEBUG(dbgs() << "Too many run-time checks needed.\n"); 486 return false; 487 } 488 489 if (LAI.getPSE().getUnionPredicate().getComplexity() > 490 LoadElimSCEVCheckThreshold) { 491 DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 492 return false; 493 } 494 495 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) { 496 if (L->getHeader()->getParent()->optForSize()) { 497 DEBUG(dbgs() << "Versioning is needed but not allowed when optimizing " 498 "for size.\n"); 499 return false; 500 } 501 502 // Point of no-return, start the transformation. First, version the loop 503 // if necessary. 504 505 LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false); 506 LV.setAliasChecks(std::move(Checks)); 507 LV.setSCEVChecks(LAI.getPSE().getUnionPredicate()); 508 LV.versionLoop(); 509 } 510 511 // Next, propagate the value stored by the store to the users of the load. 512 // Also for the first iteration, generate the initial value of the load. 513 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 514 "storeforward"); 515 for (const auto &Cand : Candidates) 516 propagateStoredValueToLoadUsers(Cand, SEE); 517 NumLoopLoadEliminted += NumForwarding; 518 519 return true; 520 } 521 522private: 523 Loop *L; 524 525 /// \brief Maps the load/store instructions to their index according to 526 /// program order. 527 DenseMap<Instruction *, unsigned> InstOrder; 528 529 // Analyses used. 530 LoopInfo *LI; 531 const LoopAccessInfo &LAI; 532 DominatorTree *DT; 533 PredicatedScalarEvolution PSE; 534}; 535 536/// \brief The pass. Most of the work is delegated to the per-loop 537/// LoadEliminationForLoop class. 538class LoopLoadElimination : public FunctionPass { 539public: 540 LoopLoadElimination() : FunctionPass(ID) { 541 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 542 } 543 544 bool runOnFunction(Function &F) override { 545 if (skipFunction(F)) 546 return false; 547 548 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 549 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 550 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 551 552 // Build up a worklist of inner-loops to vectorize. This is necessary as the 553 // act of distributing a loop creates new loops and can invalidate iterators 554 // across the loops. 555 SmallVector<Loop *, 8> Worklist; 556 557 for (Loop *TopLevelLoop : *LI) 558 for (Loop *L : depth_first(TopLevelLoop)) 559 // We only handle inner-most loops. 560 if (L->empty()) 561 Worklist.push_back(L); 562 563 // Now walk the identified inner loops. 564 bool Changed = false; 565 for (Loop *L : Worklist) { 566 const LoopAccessInfo &LAI = LAA->getInfo(L); 567 // The actual work is performed by LoadEliminationForLoop. 568 LoadEliminationForLoop LEL(L, LI, LAI, DT); 569 Changed |= LEL.processLoop(); 570 } 571 572 // Process each loop nest in the function. 573 return Changed; 574 } 575 576 void getAnalysisUsage(AnalysisUsage &AU) const override { 577 AU.addRequiredID(LoopSimplifyID); 578 AU.addRequired<LoopInfoWrapperPass>(); 579 AU.addPreserved<LoopInfoWrapperPass>(); 580 AU.addRequired<LoopAccessLegacyAnalysis>(); 581 AU.addRequired<ScalarEvolutionWrapperPass>(); 582 AU.addRequired<DominatorTreeWrapperPass>(); 583 AU.addPreserved<DominatorTreeWrapperPass>(); 584 } 585 586 static char ID; 587}; 588} 589 590char LoopLoadElimination::ID; 591static const char LLE_name[] = "Loop Load Elimination"; 592 593INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 594INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 595INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 596INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 597INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 598INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 599INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 600 601namespace llvm { 602FunctionPass *createLoopLoadEliminationPass() { 603 return new LoopLoadElimination(); 604} 605} 606