1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar/Reassociate.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Analysis/GlobalsModRef.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/ValueHandle.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include <algorithm>
45using namespace llvm;
46using namespace reassociate;
47
48#define DEBUG_TYPE "reassociate"
49
50STATISTIC(NumChanged, "Number of insts reassociated");
51STATISTIC(NumAnnihil, "Number of expr tree annihilated");
52STATISTIC(NumFactor , "Number of multiplies factored");
53
54#ifndef NDEBUG
55/// Print out the expression identified in the Ops list.
56///
57static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
58  Module *M = I->getModule();
59  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
60       << *Ops[0].Op->getType() << '\t';
61  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
62    dbgs() << "[ ";
63    Ops[i].Op->printAsOperand(dbgs(), false, M);
64    dbgs() << ", #" << Ops[i].Rank << "] ";
65  }
66}
67#endif
68
69/// Utility class representing a non-constant Xor-operand. We classify
70/// non-constant Xor-Operands into two categories:
71///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
72///  C2)
73///    C2.1) The operand is in the form of "X | C", where C is a non-zero
74///          constant.
75///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
76///          operand as "E | 0"
77class llvm::reassociate::XorOpnd {
78public:
79  XorOpnd(Value *V);
80
81  bool isInvalid() const { return SymbolicPart == nullptr; }
82  bool isOrExpr() const { return isOr; }
83  Value *getValue() const { return OrigVal; }
84  Value *getSymbolicPart() const { return SymbolicPart; }
85  unsigned getSymbolicRank() const { return SymbolicRank; }
86  const APInt &getConstPart() const { return ConstPart; }
87
88  void Invalidate() { SymbolicPart = OrigVal = nullptr; }
89  void setSymbolicRank(unsigned R) { SymbolicRank = R; }
90
91private:
92  Value *OrigVal;
93  Value *SymbolicPart;
94  APInt ConstPart;
95  unsigned SymbolicRank;
96  bool isOr;
97};
98
99XorOpnd::XorOpnd(Value *V) {
100  assert(!isa<ConstantInt>(V) && "No ConstantInt");
101  OrigVal = V;
102  Instruction *I = dyn_cast<Instruction>(V);
103  SymbolicRank = 0;
104
105  if (I && (I->getOpcode() == Instruction::Or ||
106            I->getOpcode() == Instruction::And)) {
107    Value *V0 = I->getOperand(0);
108    Value *V1 = I->getOperand(1);
109    if (isa<ConstantInt>(V0))
110      std::swap(V0, V1);
111
112    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
113      ConstPart = C->getValue();
114      SymbolicPart = V0;
115      isOr = (I->getOpcode() == Instruction::Or);
116      return;
117    }
118  }
119
120  // view the operand as "V | 0"
121  SymbolicPart = V;
122  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
123  isOr = true;
124}
125
126/// Return true if V is an instruction of the specified opcode and if it
127/// only has one use.
128static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
129  if (V->hasOneUse() && isa<Instruction>(V) &&
130      cast<Instruction>(V)->getOpcode() == Opcode &&
131      (!isa<FPMathOperator>(V) ||
132       cast<Instruction>(V)->hasUnsafeAlgebra()))
133    return cast<BinaryOperator>(V);
134  return nullptr;
135}
136
137static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
138                                        unsigned Opcode2) {
139  if (V->hasOneUse() && isa<Instruction>(V) &&
140      (cast<Instruction>(V)->getOpcode() == Opcode1 ||
141       cast<Instruction>(V)->getOpcode() == Opcode2) &&
142      (!isa<FPMathOperator>(V) ||
143       cast<Instruction>(V)->hasUnsafeAlgebra()))
144    return cast<BinaryOperator>(V);
145  return nullptr;
146}
147
148void ReassociatePass::BuildRankMap(
149    Function &F, ReversePostOrderTraversal<Function *> &RPOT) {
150  unsigned i = 2;
151
152  // Assign distinct ranks to function arguments.
153  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
154    ValueRankMap[&*I] = ++i;
155    DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
156  }
157
158  for (BasicBlock *BB : RPOT) {
159    unsigned BBRank = RankMap[BB] = ++i << 16;
160
161    // Walk the basic block, adding precomputed ranks for any instructions that
162    // we cannot move.  This ensures that the ranks for these instructions are
163    // all different in the block.
164    for (Instruction &I : *BB)
165      if (mayBeMemoryDependent(I))
166        ValueRankMap[&I] = ++BBRank;
167  }
168}
169
170unsigned ReassociatePass::getRank(Value *V) {
171  Instruction *I = dyn_cast<Instruction>(V);
172  if (!I) {
173    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
174    return 0;  // Otherwise it's a global or constant, rank 0.
175  }
176
177  if (unsigned Rank = ValueRankMap[I])
178    return Rank;    // Rank already known?
179
180  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181  // we can reassociate expressions for code motion!  Since we do not recurse
182  // for PHI nodes, we cannot have infinite recursion here, because there
183  // cannot be loops in the value graph that do not go through PHI nodes.
184  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185  for (unsigned i = 0, e = I->getNumOperands();
186       i != e && Rank != MaxRank; ++i)
187    Rank = std::max(Rank, getRank(I->getOperand(i)));
188
189  // If this is a not or neg instruction, do not count it for rank.  This
190  // assures us that X and ~X will have the same rank.
191  if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
192       !BinaryOperator::isFNeg(I))
193    ++Rank;
194
195  DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
196
197  return ValueRankMap[I] = Rank;
198}
199
200// Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
201void ReassociatePass::canonicalizeOperands(Instruction *I) {
202  assert(isa<BinaryOperator>(I) && "Expected binary operator.");
203  assert(I->isCommutative() && "Expected commutative operator.");
204
205  Value *LHS = I->getOperand(0);
206  Value *RHS = I->getOperand(1);
207  unsigned LHSRank = getRank(LHS);
208  unsigned RHSRank = getRank(RHS);
209
210  if (isa<Constant>(RHS))
211    return;
212
213  if (isa<Constant>(LHS) || RHSRank < LHSRank)
214    cast<BinaryOperator>(I)->swapOperands();
215}
216
217static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
218                                 Instruction *InsertBefore, Value *FlagsOp) {
219  if (S1->getType()->isIntOrIntVectorTy())
220    return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
221  else {
222    BinaryOperator *Res =
223        BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
224    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
225    return Res;
226  }
227}
228
229static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
230                                 Instruction *InsertBefore, Value *FlagsOp) {
231  if (S1->getType()->isIntOrIntVectorTy())
232    return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
233  else {
234    BinaryOperator *Res =
235      BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
236    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
237    return Res;
238  }
239}
240
241static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
242                                 Instruction *InsertBefore, Value *FlagsOp) {
243  if (S1->getType()->isIntOrIntVectorTy())
244    return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
245  else {
246    BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
247    Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
248    return Res;
249  }
250}
251
252/// Replace 0-X with X*-1.
253static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
254  Type *Ty = Neg->getType();
255  Constant *NegOne = Ty->isIntOrIntVectorTy() ?
256    ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
257
258  BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
259  Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
260  Res->takeName(Neg);
261  Neg->replaceAllUsesWith(Res);
262  Res->setDebugLoc(Neg->getDebugLoc());
263  return Res;
264}
265
266/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
267/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
268/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
269/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
270/// even x in Bitwidth-bit arithmetic.
271static unsigned CarmichaelShift(unsigned Bitwidth) {
272  if (Bitwidth < 3)
273    return Bitwidth - 1;
274  return Bitwidth - 2;
275}
276
277/// Add the extra weight 'RHS' to the existing weight 'LHS',
278/// reducing the combined weight using any special properties of the operation.
279/// The existing weight LHS represents the computation X op X op ... op X where
280/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
281/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
282/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
283/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
284static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
285  // If we were working with infinite precision arithmetic then the combined
286  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
287  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
288  // for nilpotent operations and addition, but not for idempotent operations
289  // and multiplication), so it is important to correctly reduce the combined
290  // weight back into range if wrapping would be wrong.
291
292  // If RHS is zero then the weight didn't change.
293  if (RHS.isMinValue())
294    return;
295  // If LHS is zero then the combined weight is RHS.
296  if (LHS.isMinValue()) {
297    LHS = RHS;
298    return;
299  }
300  // From this point on we know that neither LHS nor RHS is zero.
301
302  if (Instruction::isIdempotent(Opcode)) {
303    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
304    // weight of 1.  Keeping weights at zero or one also means that wrapping is
305    // not a problem.
306    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
307    return; // Return a weight of 1.
308  }
309  if (Instruction::isNilpotent(Opcode)) {
310    // Nilpotent means X op X === 0, so reduce weights modulo 2.
311    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
312    LHS = 0; // 1 + 1 === 0 modulo 2.
313    return;
314  }
315  if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
316    // TODO: Reduce the weight by exploiting nsw/nuw?
317    LHS += RHS;
318    return;
319  }
320
321  assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
322         "Unknown associative operation!");
323  unsigned Bitwidth = LHS.getBitWidth();
324  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
325  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
326  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
327  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
328  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
329  // which by a happy accident means that they can always be represented using
330  // Bitwidth bits.
331  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
332  // the Carmichael number).
333  if (Bitwidth > 3) {
334    /// CM - The value of Carmichael's lambda function.
335    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
336    // Any weight W >= Threshold can be replaced with W - CM.
337    APInt Threshold = CM + Bitwidth;
338    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
339    // For Bitwidth 4 or more the following sum does not overflow.
340    LHS += RHS;
341    while (LHS.uge(Threshold))
342      LHS -= CM;
343  } else {
344    // To avoid problems with overflow do everything the same as above but using
345    // a larger type.
346    unsigned CM = 1U << CarmichaelShift(Bitwidth);
347    unsigned Threshold = CM + Bitwidth;
348    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
349           "Weights not reduced!");
350    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
351    while (Total >= Threshold)
352      Total -= CM;
353    LHS = Total;
354  }
355}
356
357typedef std::pair<Value*, APInt> RepeatedValue;
358
359/// Given an associative binary expression, return the leaf
360/// nodes in Ops along with their weights (how many times the leaf occurs).  The
361/// original expression is the same as
362///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
363/// op
364///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
365/// op
366///   ...
367/// op
368///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
369///
370/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
371///
372/// This routine may modify the function, in which case it returns 'true'.  The
373/// changes it makes may well be destructive, changing the value computed by 'I'
374/// to something completely different.  Thus if the routine returns 'true' then
375/// you MUST either replace I with a new expression computed from the Ops array,
376/// or use RewriteExprTree to put the values back in.
377///
378/// A leaf node is either not a binary operation of the same kind as the root
379/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
380/// opcode), or is the same kind of binary operator but has a use which either
381/// does not belong to the expression, or does belong to the expression but is
382/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
383/// of the expression, while for non-leaf nodes (except for the root 'I') every
384/// use is a non-leaf node of the expression.
385///
386/// For example:
387///           expression graph        node names
388///
389///                     +        |        I
390///                    / \       |
391///                   +   +      |      A,  B
392///                  / \ / \     |
393///                 *   +   *    |    C,  D,  E
394///                / \ / \ / \   |
395///                   +   *      |      F,  G
396///
397/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
398/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
399///
400/// The expression is maximal: if some instruction is a binary operator of the
401/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
402/// then the instruction also belongs to the expression, is not a leaf node of
403/// it, and its operands also belong to the expression (but may be leaf nodes).
404///
405/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
406/// order to ensure that every non-root node in the expression has *exactly one*
407/// use by a non-leaf node of the expression.  This destruction means that the
408/// caller MUST either replace 'I' with a new expression or use something like
409/// RewriteExprTree to put the values back in if the routine indicates that it
410/// made a change by returning 'true'.
411///
412/// In the above example either the right operand of A or the left operand of B
413/// will be replaced by undef.  If it is B's operand then this gives:
414///
415///                     +        |        I
416///                    / \       |
417///                   +   +      |      A,  B - operand of B replaced with undef
418///                  / \   \     |
419///                 *   +   *    |    C,  D,  E
420///                / \ / \ / \   |
421///                   +   *      |      F,  G
422///
423/// Note that such undef operands can only be reached by passing through 'I'.
424/// For example, if you visit operands recursively starting from a leaf node
425/// then you will never see such an undef operand unless you get back to 'I',
426/// which requires passing through a phi node.
427///
428/// Note that this routine may also mutate binary operators of the wrong type
429/// that have all uses inside the expression (i.e. only used by non-leaf nodes
430/// of the expression) if it can turn them into binary operators of the right
431/// type and thus make the expression bigger.
432
433static bool LinearizeExprTree(BinaryOperator *I,
434                              SmallVectorImpl<RepeatedValue> &Ops) {
435  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
436  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
437  unsigned Opcode = I->getOpcode();
438  assert(I->isAssociative() && I->isCommutative() &&
439         "Expected an associative and commutative operation!");
440
441  // Visit all operands of the expression, keeping track of their weight (the
442  // number of paths from the expression root to the operand, or if you like
443  // the number of times that operand occurs in the linearized expression).
444  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
445  // while A has weight two.
446
447  // Worklist of non-leaf nodes (their operands are in the expression too) along
448  // with their weights, representing a certain number of paths to the operator.
449  // If an operator occurs in the worklist multiple times then we found multiple
450  // ways to get to it.
451  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
452  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
453  bool Changed = false;
454
455  // Leaves of the expression are values that either aren't the right kind of
456  // operation (eg: a constant, or a multiply in an add tree), or are, but have
457  // some uses that are not inside the expression.  For example, in I = X + X,
458  // X = A + B, the value X has two uses (by I) that are in the expression.  If
459  // X has any other uses, for example in a return instruction, then we consider
460  // X to be a leaf, and won't analyze it further.  When we first visit a value,
461  // if it has more than one use then at first we conservatively consider it to
462  // be a leaf.  Later, as the expression is explored, we may discover some more
463  // uses of the value from inside the expression.  If all uses turn out to be
464  // from within the expression (and the value is a binary operator of the right
465  // kind) then the value is no longer considered to be a leaf, and its operands
466  // are explored.
467
468  // Leaves - Keeps track of the set of putative leaves as well as the number of
469  // paths to each leaf seen so far.
470  typedef DenseMap<Value*, APInt> LeafMap;
471  LeafMap Leaves; // Leaf -> Total weight so far.
472  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
473
474#ifndef NDEBUG
475  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
476#endif
477  while (!Worklist.empty()) {
478    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
479    I = P.first; // We examine the operands of this binary operator.
480
481    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
482      Value *Op = I->getOperand(OpIdx);
483      APInt Weight = P.second; // Number of paths to this operand.
484      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
485      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
486
487      // If this is a binary operation of the right kind with only one use then
488      // add its operands to the expression.
489      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
490        assert(Visited.insert(Op).second && "Not first visit!");
491        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
492        Worklist.push_back(std::make_pair(BO, Weight));
493        continue;
494      }
495
496      // Appears to be a leaf.  Is the operand already in the set of leaves?
497      LeafMap::iterator It = Leaves.find(Op);
498      if (It == Leaves.end()) {
499        // Not in the leaf map.  Must be the first time we saw this operand.
500        assert(Visited.insert(Op).second && "Not first visit!");
501        if (!Op->hasOneUse()) {
502          // This value has uses not accounted for by the expression, so it is
503          // not safe to modify.  Mark it as being a leaf.
504          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
505          LeafOrder.push_back(Op);
506          Leaves[Op] = Weight;
507          continue;
508        }
509        // No uses outside the expression, try morphing it.
510      } else if (It != Leaves.end()) {
511        // Already in the leaf map.
512        assert(Visited.count(Op) && "In leaf map but not visited!");
513
514        // Update the number of paths to the leaf.
515        IncorporateWeight(It->second, Weight, Opcode);
516
517#if 0   // TODO: Re-enable once PR13021 is fixed.
518        // The leaf already has one use from inside the expression.  As we want
519        // exactly one such use, drop this new use of the leaf.
520        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
521        I->setOperand(OpIdx, UndefValue::get(I->getType()));
522        Changed = true;
523
524        // If the leaf is a binary operation of the right kind and we now see
525        // that its multiple original uses were in fact all by nodes belonging
526        // to the expression, then no longer consider it to be a leaf and add
527        // its operands to the expression.
528        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
529          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
530          Worklist.push_back(std::make_pair(BO, It->second));
531          Leaves.erase(It);
532          continue;
533        }
534#endif
535
536        // If we still have uses that are not accounted for by the expression
537        // then it is not safe to modify the value.
538        if (!Op->hasOneUse())
539          continue;
540
541        // No uses outside the expression, try morphing it.
542        Weight = It->second;
543        Leaves.erase(It); // Since the value may be morphed below.
544      }
545
546      // At this point we have a value which, first of all, is not a binary
547      // expression of the right kind, and secondly, is only used inside the
548      // expression.  This means that it can safely be modified.  See if we
549      // can usefully morph it into an expression of the right kind.
550      assert((!isa<Instruction>(Op) ||
551              cast<Instruction>(Op)->getOpcode() != Opcode
552              || (isa<FPMathOperator>(Op) &&
553                  !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
554             "Should have been handled above!");
555      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
556
557      // If this is a multiply expression, turn any internal negations into
558      // multiplies by -1 so they can be reassociated.
559      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
560        if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
561            (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
562          DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
563          BO = LowerNegateToMultiply(BO);
564          DEBUG(dbgs() << *BO << '\n');
565          Worklist.push_back(std::make_pair(BO, Weight));
566          Changed = true;
567          continue;
568        }
569
570      // Failed to morph into an expression of the right type.  This really is
571      // a leaf.
572      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
573      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
574      LeafOrder.push_back(Op);
575      Leaves[Op] = Weight;
576    }
577  }
578
579  // The leaves, repeated according to their weights, represent the linearized
580  // form of the expression.
581  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
582    Value *V = LeafOrder[i];
583    LeafMap::iterator It = Leaves.find(V);
584    if (It == Leaves.end())
585      // Node initially thought to be a leaf wasn't.
586      continue;
587    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
588    APInt Weight = It->second;
589    if (Weight.isMinValue())
590      // Leaf already output or weight reduction eliminated it.
591      continue;
592    // Ensure the leaf is only output once.
593    It->second = 0;
594    Ops.push_back(std::make_pair(V, Weight));
595  }
596
597  // For nilpotent operations or addition there may be no operands, for example
598  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
599  // in both cases the weight reduces to 0 causing the value to be skipped.
600  if (Ops.empty()) {
601    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
602    assert(Identity && "Associative operation without identity!");
603    Ops.emplace_back(Identity, APInt(Bitwidth, 1));
604  }
605
606  return Changed;
607}
608
609/// Now that the operands for this expression tree are
610/// linearized and optimized, emit them in-order.
611void ReassociatePass::RewriteExprTree(BinaryOperator *I,
612                                      SmallVectorImpl<ValueEntry> &Ops) {
613  assert(Ops.size() > 1 && "Single values should be used directly!");
614
615  // Since our optimizations should never increase the number of operations, the
616  // new expression can usually be written reusing the existing binary operators
617  // from the original expression tree, without creating any new instructions,
618  // though the rewritten expression may have a completely different topology.
619  // We take care to not change anything if the new expression will be the same
620  // as the original.  If more than trivial changes (like commuting operands)
621  // were made then we are obliged to clear out any optional subclass data like
622  // nsw flags.
623
624  /// NodesToRewrite - Nodes from the original expression available for writing
625  /// the new expression into.
626  SmallVector<BinaryOperator*, 8> NodesToRewrite;
627  unsigned Opcode = I->getOpcode();
628  BinaryOperator *Op = I;
629
630  /// NotRewritable - The operands being written will be the leaves of the new
631  /// expression and must not be used as inner nodes (via NodesToRewrite) by
632  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
633  /// (if they were they would have been incorporated into the expression and so
634  /// would not be leaves), so most of the time there is no danger of this.  But
635  /// in rare cases a leaf may become reassociable if an optimization kills uses
636  /// of it, or it may momentarily become reassociable during rewriting (below)
637  /// due it being removed as an operand of one of its uses.  Ensure that misuse
638  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
639  /// leaves and refusing to reuse any of them as inner nodes.
640  SmallPtrSet<Value*, 8> NotRewritable;
641  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
642    NotRewritable.insert(Ops[i].Op);
643
644  // ExpressionChanged - Non-null if the rewritten expression differs from the
645  // original in some non-trivial way, requiring the clearing of optional flags.
646  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
647  BinaryOperator *ExpressionChanged = nullptr;
648  for (unsigned i = 0; ; ++i) {
649    // The last operation (which comes earliest in the IR) is special as both
650    // operands will come from Ops, rather than just one with the other being
651    // a subexpression.
652    if (i+2 == Ops.size()) {
653      Value *NewLHS = Ops[i].Op;
654      Value *NewRHS = Ops[i+1].Op;
655      Value *OldLHS = Op->getOperand(0);
656      Value *OldRHS = Op->getOperand(1);
657
658      if (NewLHS == OldLHS && NewRHS == OldRHS)
659        // Nothing changed, leave it alone.
660        break;
661
662      if (NewLHS == OldRHS && NewRHS == OldLHS) {
663        // The order of the operands was reversed.  Swap them.
664        DEBUG(dbgs() << "RA: " << *Op << '\n');
665        Op->swapOperands();
666        DEBUG(dbgs() << "TO: " << *Op << '\n');
667        MadeChange = true;
668        ++NumChanged;
669        break;
670      }
671
672      // The new operation differs non-trivially from the original. Overwrite
673      // the old operands with the new ones.
674      DEBUG(dbgs() << "RA: " << *Op << '\n');
675      if (NewLHS != OldLHS) {
676        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
677        if (BO && !NotRewritable.count(BO))
678          NodesToRewrite.push_back(BO);
679        Op->setOperand(0, NewLHS);
680      }
681      if (NewRHS != OldRHS) {
682        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
683        if (BO && !NotRewritable.count(BO))
684          NodesToRewrite.push_back(BO);
685        Op->setOperand(1, NewRHS);
686      }
687      DEBUG(dbgs() << "TO: " << *Op << '\n');
688
689      ExpressionChanged = Op;
690      MadeChange = true;
691      ++NumChanged;
692
693      break;
694    }
695
696    // Not the last operation.  The left-hand side will be a sub-expression
697    // while the right-hand side will be the current element of Ops.
698    Value *NewRHS = Ops[i].Op;
699    if (NewRHS != Op->getOperand(1)) {
700      DEBUG(dbgs() << "RA: " << *Op << '\n');
701      if (NewRHS == Op->getOperand(0)) {
702        // The new right-hand side was already present as the left operand.  If
703        // we are lucky then swapping the operands will sort out both of them.
704        Op->swapOperands();
705      } else {
706        // Overwrite with the new right-hand side.
707        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
708        if (BO && !NotRewritable.count(BO))
709          NodesToRewrite.push_back(BO);
710        Op->setOperand(1, NewRHS);
711        ExpressionChanged = Op;
712      }
713      DEBUG(dbgs() << "TO: " << *Op << '\n');
714      MadeChange = true;
715      ++NumChanged;
716    }
717
718    // Now deal with the left-hand side.  If this is already an operation node
719    // from the original expression then just rewrite the rest of the expression
720    // into it.
721    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
722    if (BO && !NotRewritable.count(BO)) {
723      Op = BO;
724      continue;
725    }
726
727    // Otherwise, grab a spare node from the original expression and use that as
728    // the left-hand side.  If there are no nodes left then the optimizers made
729    // an expression with more nodes than the original!  This usually means that
730    // they did something stupid but it might mean that the problem was just too
731    // hard (finding the mimimal number of multiplications needed to realize a
732    // multiplication expression is NP-complete).  Whatever the reason, smart or
733    // stupid, create a new node if there are none left.
734    BinaryOperator *NewOp;
735    if (NodesToRewrite.empty()) {
736      Constant *Undef = UndefValue::get(I->getType());
737      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
738                                     Undef, Undef, "", I);
739      if (NewOp->getType()->isFPOrFPVectorTy())
740        NewOp->setFastMathFlags(I->getFastMathFlags());
741    } else {
742      NewOp = NodesToRewrite.pop_back_val();
743    }
744
745    DEBUG(dbgs() << "RA: " << *Op << '\n');
746    Op->setOperand(0, NewOp);
747    DEBUG(dbgs() << "TO: " << *Op << '\n');
748    ExpressionChanged = Op;
749    MadeChange = true;
750    ++NumChanged;
751    Op = NewOp;
752  }
753
754  // If the expression changed non-trivially then clear out all subclass data
755  // starting from the operator specified in ExpressionChanged, and compactify
756  // the operators to just before the expression root to guarantee that the
757  // expression tree is dominated by all of Ops.
758  if (ExpressionChanged)
759    do {
760      // Preserve FastMathFlags.
761      if (isa<FPMathOperator>(I)) {
762        FastMathFlags Flags = I->getFastMathFlags();
763        ExpressionChanged->clearSubclassOptionalData();
764        ExpressionChanged->setFastMathFlags(Flags);
765      } else
766        ExpressionChanged->clearSubclassOptionalData();
767
768      if (ExpressionChanged == I)
769        break;
770      ExpressionChanged->moveBefore(I);
771      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
772    } while (1);
773
774  // Throw away any left over nodes from the original expression.
775  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
776    RedoInsts.insert(NodesToRewrite[i]);
777}
778
779/// Insert instructions before the instruction pointed to by BI,
780/// that computes the negative version of the value specified.  The negative
781/// version of the value is returned, and BI is left pointing at the instruction
782/// that should be processed next by the reassociation pass.
783/// Also add intermediate instructions to the redo list that are modified while
784/// pushing the negates through adds.  These will be revisited to see if
785/// additional opportunities have been exposed.
786static Value *NegateValue(Value *V, Instruction *BI,
787                          SetVector<AssertingVH<Instruction>> &ToRedo) {
788  if (Constant *C = dyn_cast<Constant>(V)) {
789    if (C->getType()->isFPOrFPVectorTy()) {
790      return ConstantExpr::getFNeg(C);
791    }
792    return ConstantExpr::getNeg(C);
793  }
794
795
796  // We are trying to expose opportunity for reassociation.  One of the things
797  // that we want to do to achieve this is to push a negation as deep into an
798  // expression chain as possible, to expose the add instructions.  In practice,
799  // this means that we turn this:
800  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
801  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
802  // the constants.  We assume that instcombine will clean up the mess later if
803  // we introduce tons of unnecessary negation instructions.
804  //
805  if (BinaryOperator *I =
806          isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
807    // Push the negates through the add.
808    I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
809    I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
810    if (I->getOpcode() == Instruction::Add) {
811      I->setHasNoUnsignedWrap(false);
812      I->setHasNoSignedWrap(false);
813    }
814
815    // We must move the add instruction here, because the neg instructions do
816    // not dominate the old add instruction in general.  By moving it, we are
817    // assured that the neg instructions we just inserted dominate the
818    // instruction we are about to insert after them.
819    //
820    I->moveBefore(BI);
821    I->setName(I->getName()+".neg");
822
823    // Add the intermediate negates to the redo list as processing them later
824    // could expose more reassociating opportunities.
825    ToRedo.insert(I);
826    return I;
827  }
828
829  // Okay, we need to materialize a negated version of V with an instruction.
830  // Scan the use lists of V to see if we have one already.
831  for (User *U : V->users()) {
832    if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
833      continue;
834
835    // We found one!  Now we have to make sure that the definition dominates
836    // this use.  We do this by moving it to the entry block (if it is a
837    // non-instruction value) or right after the definition.  These negates will
838    // be zapped by reassociate later, so we don't need much finesse here.
839    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
840
841    // Verify that the negate is in this function, V might be a constant expr.
842    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
843      continue;
844
845    BasicBlock::iterator InsertPt;
846    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
847      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
848        InsertPt = II->getNormalDest()->begin();
849      } else {
850        InsertPt = ++InstInput->getIterator();
851      }
852      while (isa<PHINode>(InsertPt)) ++InsertPt;
853    } else {
854      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
855    }
856    TheNeg->moveBefore(&*InsertPt);
857    if (TheNeg->getOpcode() == Instruction::Sub) {
858      TheNeg->setHasNoUnsignedWrap(false);
859      TheNeg->setHasNoSignedWrap(false);
860    } else {
861      TheNeg->andIRFlags(BI);
862    }
863    ToRedo.insert(TheNeg);
864    return TheNeg;
865  }
866
867  // Insert a 'neg' instruction that subtracts the value from zero to get the
868  // negation.
869  BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
870  ToRedo.insert(NewNeg);
871  return NewNeg;
872}
873
874/// Return true if we should break up this subtract of X-Y into (X + -Y).
875static bool ShouldBreakUpSubtract(Instruction *Sub) {
876  // If this is a negation, we can't split it up!
877  if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
878    return false;
879
880  // Don't breakup X - undef.
881  if (isa<UndefValue>(Sub->getOperand(1)))
882    return false;
883
884  // Don't bother to break this up unless either the LHS is an associable add or
885  // subtract or if this is only used by one.
886  Value *V0 = Sub->getOperand(0);
887  if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
888      isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
889    return true;
890  Value *V1 = Sub->getOperand(1);
891  if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
892      isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
893    return true;
894  Value *VB = Sub->user_back();
895  if (Sub->hasOneUse() &&
896      (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
897       isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
898    return true;
899
900  return false;
901}
902
903/// If we have (X-Y), and if either X is an add, or if this is only used by an
904/// add, transform this into (X+(0-Y)) to promote better reassociation.
905static BinaryOperator *
906BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
907  // Convert a subtract into an add and a neg instruction. This allows sub
908  // instructions to be commuted with other add instructions.
909  //
910  // Calculate the negative value of Operand 1 of the sub instruction,
911  // and set it as the RHS of the add instruction we just made.
912  //
913  Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
914  BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
915  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
916  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
917  New->takeName(Sub);
918
919  // Everyone now refers to the add instruction.
920  Sub->replaceAllUsesWith(New);
921  New->setDebugLoc(Sub->getDebugLoc());
922
923  DEBUG(dbgs() << "Negated: " << *New << '\n');
924  return New;
925}
926
927/// If this is a shift of a reassociable multiply or is used by one, change
928/// this into a multiply by a constant to assist with further reassociation.
929static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
930  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
931  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
932
933  BinaryOperator *Mul =
934    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
935  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
936  Mul->takeName(Shl);
937
938  // Everyone now refers to the mul instruction.
939  Shl->replaceAllUsesWith(Mul);
940  Mul->setDebugLoc(Shl->getDebugLoc());
941
942  // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
943  // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
944  // handling.
945  bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
946  bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
947  if (NSW && NUW)
948    Mul->setHasNoSignedWrap(true);
949  Mul->setHasNoUnsignedWrap(NUW);
950  return Mul;
951}
952
953/// Scan backwards and forwards among values with the same rank as element i
954/// to see if X exists.  If X does not exist, return i.  This is useful when
955/// scanning for 'x' when we see '-x' because they both get the same rank.
956static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
957                                  Value *X) {
958  unsigned XRank = Ops[i].Rank;
959  unsigned e = Ops.size();
960  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
961    if (Ops[j].Op == X)
962      return j;
963    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
964      if (Instruction *I2 = dyn_cast<Instruction>(X))
965        if (I1->isIdenticalTo(I2))
966          return j;
967  }
968  // Scan backwards.
969  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
970    if (Ops[j].Op == X)
971      return j;
972    if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
973      if (Instruction *I2 = dyn_cast<Instruction>(X))
974        if (I1->isIdenticalTo(I2))
975          return j;
976  }
977  return i;
978}
979
980/// Emit a tree of add instructions, summing Ops together
981/// and returning the result.  Insert the tree before I.
982static Value *EmitAddTreeOfValues(Instruction *I,
983                                  SmallVectorImpl<WeakVH> &Ops){
984  if (Ops.size() == 1) return Ops.back();
985
986  Value *V1 = Ops.back();
987  Ops.pop_back();
988  Value *V2 = EmitAddTreeOfValues(I, Ops);
989  return CreateAdd(V2, V1, "tmp", I, I);
990}
991
992/// If V is an expression tree that is a multiplication sequence,
993/// and if this sequence contains a multiply by Factor,
994/// remove Factor from the tree and return the new tree.
995Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
996  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
997  if (!BO)
998    return nullptr;
999
1000  SmallVector<RepeatedValue, 8> Tree;
1001  MadeChange |= LinearizeExprTree(BO, Tree);
1002  SmallVector<ValueEntry, 8> Factors;
1003  Factors.reserve(Tree.size());
1004  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1005    RepeatedValue E = Tree[i];
1006    Factors.append(E.second.getZExtValue(),
1007                   ValueEntry(getRank(E.first), E.first));
1008  }
1009
1010  bool FoundFactor = false;
1011  bool NeedsNegate = false;
1012  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1013    if (Factors[i].Op == Factor) {
1014      FoundFactor = true;
1015      Factors.erase(Factors.begin()+i);
1016      break;
1017    }
1018
1019    // If this is a negative version of this factor, remove it.
1020    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1021      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1022        if (FC1->getValue() == -FC2->getValue()) {
1023          FoundFactor = NeedsNegate = true;
1024          Factors.erase(Factors.begin()+i);
1025          break;
1026        }
1027    } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1028      if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1029        const APFloat &F1 = FC1->getValueAPF();
1030        APFloat F2(FC2->getValueAPF());
1031        F2.changeSign();
1032        if (F1.compare(F2) == APFloat::cmpEqual) {
1033          FoundFactor = NeedsNegate = true;
1034          Factors.erase(Factors.begin() + i);
1035          break;
1036        }
1037      }
1038    }
1039  }
1040
1041  if (!FoundFactor) {
1042    // Make sure to restore the operands to the expression tree.
1043    RewriteExprTree(BO, Factors);
1044    return nullptr;
1045  }
1046
1047  BasicBlock::iterator InsertPt = ++BO->getIterator();
1048
1049  // If this was just a single multiply, remove the multiply and return the only
1050  // remaining operand.
1051  if (Factors.size() == 1) {
1052    RedoInsts.insert(BO);
1053    V = Factors[0].Op;
1054  } else {
1055    RewriteExprTree(BO, Factors);
1056    V = BO;
1057  }
1058
1059  if (NeedsNegate)
1060    V = CreateNeg(V, "neg", &*InsertPt, BO);
1061
1062  return V;
1063}
1064
1065/// If V is a single-use multiply, recursively add its operands as factors,
1066/// otherwise add V to the list of factors.
1067///
1068/// Ops is the top-level list of add operands we're trying to factor.
1069static void FindSingleUseMultiplyFactors(Value *V,
1070                                         SmallVectorImpl<Value*> &Factors,
1071                                       const SmallVectorImpl<ValueEntry> &Ops) {
1072  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1073  if (!BO) {
1074    Factors.push_back(V);
1075    return;
1076  }
1077
1078  // Otherwise, add the LHS and RHS to the list of factors.
1079  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1080  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1081}
1082
1083/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1084/// This optimizes based on identities.  If it can be reduced to a single Value,
1085/// it is returned, otherwise the Ops list is mutated as necessary.
1086static Value *OptimizeAndOrXor(unsigned Opcode,
1087                               SmallVectorImpl<ValueEntry> &Ops) {
1088  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1089  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1090  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1091    // First, check for X and ~X in the operand list.
1092    assert(i < Ops.size());
1093    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1094      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1095      unsigned FoundX = FindInOperandList(Ops, i, X);
1096      if (FoundX != i) {
1097        if (Opcode == Instruction::And)   // ...&X&~X = 0
1098          return Constant::getNullValue(X->getType());
1099
1100        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1101          return Constant::getAllOnesValue(X->getType());
1102      }
1103    }
1104
1105    // Next, check for duplicate pairs of values, which we assume are next to
1106    // each other, due to our sorting criteria.
1107    assert(i < Ops.size());
1108    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1109      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1110        // Drop duplicate values for And and Or.
1111        Ops.erase(Ops.begin()+i);
1112        --i; --e;
1113        ++NumAnnihil;
1114        continue;
1115      }
1116
1117      // Drop pairs of values for Xor.
1118      assert(Opcode == Instruction::Xor);
1119      if (e == 2)
1120        return Constant::getNullValue(Ops[0].Op->getType());
1121
1122      // Y ^ X^X -> Y
1123      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1124      i -= 1; e -= 2;
1125      ++NumAnnihil;
1126    }
1127  }
1128  return nullptr;
1129}
1130
1131/// Helper function of CombineXorOpnd(). It creates a bitwise-and
1132/// instruction with the given two operands, and return the resulting
1133/// instruction. There are two special cases: 1) if the constant operand is 0,
1134/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1135/// be returned.
1136static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1137                             const APInt &ConstOpnd) {
1138  if (ConstOpnd != 0) {
1139    if (!ConstOpnd.isAllOnesValue()) {
1140      LLVMContext &Ctx = Opnd->getType()->getContext();
1141      Instruction *I;
1142      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1143                                    "and.ra", InsertBefore);
1144      I->setDebugLoc(InsertBefore->getDebugLoc());
1145      return I;
1146    }
1147    return Opnd;
1148  }
1149  return nullptr;
1150}
1151
1152// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1153// into "R ^ C", where C would be 0, and R is a symbolic value.
1154//
1155// If it was successful, true is returned, and the "R" and "C" is returned
1156// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1157// and both "Res" and "ConstOpnd" remain unchanged.
1158//
1159bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1160                                     APInt &ConstOpnd, Value *&Res) {
1161  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1162  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1163  //                       = (x & ~c1) ^ (c1 ^ c2)
1164  // It is useful only when c1 == c2.
1165  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1166    if (!Opnd1->getValue()->hasOneUse())
1167      return false;
1168
1169    const APInt &C1 = Opnd1->getConstPart();
1170    if (C1 != ConstOpnd)
1171      return false;
1172
1173    Value *X = Opnd1->getSymbolicPart();
1174    Res = createAndInstr(I, X, ~C1);
1175    // ConstOpnd was C2, now C1 ^ C2.
1176    ConstOpnd ^= C1;
1177
1178    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1179      RedoInsts.insert(T);
1180    return true;
1181  }
1182  return false;
1183}
1184
1185
1186// Helper function of OptimizeXor(). It tries to simplify
1187// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1188// symbolic value.
1189//
1190// If it was successful, true is returned, and the "R" and "C" is returned
1191// via "Res" and "ConstOpnd", respectively (If the entire expression is
1192// evaluated to a constant, the Res is set to NULL); otherwise, false is
1193// returned, and both "Res" and "ConstOpnd" remain unchanged.
1194bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1195                                     XorOpnd *Opnd2, APInt &ConstOpnd,
1196                                     Value *&Res) {
1197  Value *X = Opnd1->getSymbolicPart();
1198  if (X != Opnd2->getSymbolicPart())
1199    return false;
1200
1201  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1202  int DeadInstNum = 1;
1203  if (Opnd1->getValue()->hasOneUse())
1204    DeadInstNum++;
1205  if (Opnd2->getValue()->hasOneUse())
1206    DeadInstNum++;
1207
1208  // Xor-Rule 2:
1209  //  (x | c1) ^ (x & c2)
1210  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1211  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1212  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1213  //
1214  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1215    if (Opnd2->isOrExpr())
1216      std::swap(Opnd1, Opnd2);
1217
1218    const APInt &C1 = Opnd1->getConstPart();
1219    const APInt &C2 = Opnd2->getConstPart();
1220    APInt C3((~C1) ^ C2);
1221
1222    // Do not increase code size!
1223    if (C3 != 0 && !C3.isAllOnesValue()) {
1224      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1225      if (NewInstNum > DeadInstNum)
1226        return false;
1227    }
1228
1229    Res = createAndInstr(I, X, C3);
1230    ConstOpnd ^= C1;
1231
1232  } else if (Opnd1->isOrExpr()) {
1233    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1234    //
1235    const APInt &C1 = Opnd1->getConstPart();
1236    const APInt &C2 = Opnd2->getConstPart();
1237    APInt C3 = C1 ^ C2;
1238
1239    // Do not increase code size
1240    if (C3 != 0 && !C3.isAllOnesValue()) {
1241      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1242      if (NewInstNum > DeadInstNum)
1243        return false;
1244    }
1245
1246    Res = createAndInstr(I, X, C3);
1247    ConstOpnd ^= C3;
1248  } else {
1249    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1250    //
1251    const APInt &C1 = Opnd1->getConstPart();
1252    const APInt &C2 = Opnd2->getConstPart();
1253    APInt C3 = C1 ^ C2;
1254    Res = createAndInstr(I, X, C3);
1255  }
1256
1257  // Put the original operands in the Redo list; hope they will be deleted
1258  // as dead code.
1259  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1260    RedoInsts.insert(T);
1261  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1262    RedoInsts.insert(T);
1263
1264  return true;
1265}
1266
1267/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1268/// to a single Value, it is returned, otherwise the Ops list is mutated as
1269/// necessary.
1270Value *ReassociatePass::OptimizeXor(Instruction *I,
1271                                    SmallVectorImpl<ValueEntry> &Ops) {
1272  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1273    return V;
1274
1275  if (Ops.size() == 1)
1276    return nullptr;
1277
1278  SmallVector<XorOpnd, 8> Opnds;
1279  SmallVector<XorOpnd*, 8> OpndPtrs;
1280  Type *Ty = Ops[0].Op->getType();
1281  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1282
1283  // Step 1: Convert ValueEntry to XorOpnd
1284  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1285    Value *V = Ops[i].Op;
1286    if (!isa<ConstantInt>(V)) {
1287      XorOpnd O(V);
1288      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1289      Opnds.push_back(O);
1290    } else
1291      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1292  }
1293
1294  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1295  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1296  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1297  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1298  //  when new elements are added to the vector.
1299  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1300    OpndPtrs.push_back(&Opnds[i]);
1301
1302  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1303  //  the same symbolic value cluster together. For instance, the input operand
1304  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1305  //  ("x | 123", "x & 789", "y & 456").
1306  //
1307  //  The purpose is twofold:
1308  //  1) Cluster together the operands sharing the same symbolic-value.
1309  //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1310  //     could potentially shorten crital path, and expose more loop-invariants.
1311  //     Note that values' rank are basically defined in RPO order (FIXME).
1312  //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1313  //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1314  //     "z" in the order of X-Y-Z is better than any other orders.
1315  std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1316                   [](XorOpnd *LHS, XorOpnd *RHS) {
1317    return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1318  });
1319
1320  // Step 3: Combine adjacent operands
1321  XorOpnd *PrevOpnd = nullptr;
1322  bool Changed = false;
1323  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1324    XorOpnd *CurrOpnd = OpndPtrs[i];
1325    // The combined value
1326    Value *CV;
1327
1328    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1329    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1330      Changed = true;
1331      if (CV)
1332        *CurrOpnd = XorOpnd(CV);
1333      else {
1334        CurrOpnd->Invalidate();
1335        continue;
1336      }
1337    }
1338
1339    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1340      PrevOpnd = CurrOpnd;
1341      continue;
1342    }
1343
1344    // step 3.2: When previous and current operands share the same symbolic
1345    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1346    //
1347    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1348      // Remove previous operand
1349      PrevOpnd->Invalidate();
1350      if (CV) {
1351        *CurrOpnd = XorOpnd(CV);
1352        PrevOpnd = CurrOpnd;
1353      } else {
1354        CurrOpnd->Invalidate();
1355        PrevOpnd = nullptr;
1356      }
1357      Changed = true;
1358    }
1359  }
1360
1361  // Step 4: Reassemble the Ops
1362  if (Changed) {
1363    Ops.clear();
1364    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1365      XorOpnd &O = Opnds[i];
1366      if (O.isInvalid())
1367        continue;
1368      ValueEntry VE(getRank(O.getValue()), O.getValue());
1369      Ops.push_back(VE);
1370    }
1371    if (ConstOpnd != 0) {
1372      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1373      ValueEntry VE(getRank(C), C);
1374      Ops.push_back(VE);
1375    }
1376    int Sz = Ops.size();
1377    if (Sz == 1)
1378      return Ops.back().Op;
1379    else if (Sz == 0) {
1380      assert(ConstOpnd == 0);
1381      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1382    }
1383  }
1384
1385  return nullptr;
1386}
1387
1388/// Optimize a series of operands to an 'add' instruction.  This
1389/// optimizes based on identities.  If it can be reduced to a single Value, it
1390/// is returned, otherwise the Ops list is mutated as necessary.
1391Value *ReassociatePass::OptimizeAdd(Instruction *I,
1392                                    SmallVectorImpl<ValueEntry> &Ops) {
1393  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1394  // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1395  // scan for any
1396  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1397
1398  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1399    Value *TheOp = Ops[i].Op;
1400    // Check to see if we've seen this operand before.  If so, we factor all
1401    // instances of the operand together.  Due to our sorting criteria, we know
1402    // that these need to be next to each other in the vector.
1403    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1404      // Rescan the list, remove all instances of this operand from the expr.
1405      unsigned NumFound = 0;
1406      do {
1407        Ops.erase(Ops.begin()+i);
1408        ++NumFound;
1409      } while (i != Ops.size() && Ops[i].Op == TheOp);
1410
1411      DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1412      ++NumFactor;
1413
1414      // Insert a new multiply.
1415      Type *Ty = TheOp->getType();
1416      Constant *C = Ty->isIntOrIntVectorTy() ?
1417        ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1418      Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1419
1420      // Now that we have inserted a multiply, optimize it. This allows us to
1421      // handle cases that require multiple factoring steps, such as this:
1422      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1423      RedoInsts.insert(Mul);
1424
1425      // If every add operand was a duplicate, return the multiply.
1426      if (Ops.empty())
1427        return Mul;
1428
1429      // Otherwise, we had some input that didn't have the dupe, such as
1430      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1431      // things being added by this operation.
1432      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1433
1434      --i;
1435      e = Ops.size();
1436      continue;
1437    }
1438
1439    // Check for X and -X or X and ~X in the operand list.
1440    if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1441        !BinaryOperator::isNot(TheOp))
1442      continue;
1443
1444    Value *X = nullptr;
1445    if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1446      X = BinaryOperator::getNegArgument(TheOp);
1447    else if (BinaryOperator::isNot(TheOp))
1448      X = BinaryOperator::getNotArgument(TheOp);
1449
1450    unsigned FoundX = FindInOperandList(Ops, i, X);
1451    if (FoundX == i)
1452      continue;
1453
1454    // Remove X and -X from the operand list.
1455    if (Ops.size() == 2 &&
1456        (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1457      return Constant::getNullValue(X->getType());
1458
1459    // Remove X and ~X from the operand list.
1460    if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1461      return Constant::getAllOnesValue(X->getType());
1462
1463    Ops.erase(Ops.begin()+i);
1464    if (i < FoundX)
1465      --FoundX;
1466    else
1467      --i;   // Need to back up an extra one.
1468    Ops.erase(Ops.begin()+FoundX);
1469    ++NumAnnihil;
1470    --i;     // Revisit element.
1471    e -= 2;  // Removed two elements.
1472
1473    // if X and ~X we append -1 to the operand list.
1474    if (BinaryOperator::isNot(TheOp)) {
1475      Value *V = Constant::getAllOnesValue(X->getType());
1476      Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1477      e += 1;
1478    }
1479  }
1480
1481  // Scan the operand list, checking to see if there are any common factors
1482  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1483  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1484  // To efficiently find this, we count the number of times a factor occurs
1485  // for any ADD operands that are MULs.
1486  DenseMap<Value*, unsigned> FactorOccurrences;
1487
1488  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1489  // where they are actually the same multiply.
1490  unsigned MaxOcc = 0;
1491  Value *MaxOccVal = nullptr;
1492  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1493    BinaryOperator *BOp =
1494        isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1495    if (!BOp)
1496      continue;
1497
1498    // Compute all of the factors of this added value.
1499    SmallVector<Value*, 8> Factors;
1500    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1501    assert(Factors.size() > 1 && "Bad linearize!");
1502
1503    // Add one to FactorOccurrences for each unique factor in this op.
1504    SmallPtrSet<Value*, 8> Duplicates;
1505    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1506      Value *Factor = Factors[i];
1507      if (!Duplicates.insert(Factor).second)
1508        continue;
1509
1510      unsigned Occ = ++FactorOccurrences[Factor];
1511      if (Occ > MaxOcc) {
1512        MaxOcc = Occ;
1513        MaxOccVal = Factor;
1514      }
1515
1516      // If Factor is a negative constant, add the negated value as a factor
1517      // because we can percolate the negate out.  Watch for minint, which
1518      // cannot be positivified.
1519      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1520        if (CI->isNegative() && !CI->isMinValue(true)) {
1521          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1522          assert(!Duplicates.count(Factor) &&
1523                 "Shouldn't have two constant factors, missed a canonicalize");
1524          unsigned Occ = ++FactorOccurrences[Factor];
1525          if (Occ > MaxOcc) {
1526            MaxOcc = Occ;
1527            MaxOccVal = Factor;
1528          }
1529        }
1530      } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1531        if (CF->isNegative()) {
1532          APFloat F(CF->getValueAPF());
1533          F.changeSign();
1534          Factor = ConstantFP::get(CF->getContext(), F);
1535          assert(!Duplicates.count(Factor) &&
1536                 "Shouldn't have two constant factors, missed a canonicalize");
1537          unsigned Occ = ++FactorOccurrences[Factor];
1538          if (Occ > MaxOcc) {
1539            MaxOcc = Occ;
1540            MaxOccVal = Factor;
1541          }
1542        }
1543      }
1544    }
1545  }
1546
1547  // If any factor occurred more than one time, we can pull it out.
1548  if (MaxOcc > 1) {
1549    DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1550    ++NumFactor;
1551
1552    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1553    // this, we could otherwise run into situations where removing a factor
1554    // from an expression will drop a use of maxocc, and this can cause
1555    // RemoveFactorFromExpression on successive values to behave differently.
1556    Instruction *DummyInst =
1557        I->getType()->isIntOrIntVectorTy()
1558            ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1559            : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1560
1561    SmallVector<WeakVH, 4> NewMulOps;
1562    for (unsigned i = 0; i != Ops.size(); ++i) {
1563      // Only try to remove factors from expressions we're allowed to.
1564      BinaryOperator *BOp =
1565          isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1566      if (!BOp)
1567        continue;
1568
1569      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1570        // The factorized operand may occur several times.  Convert them all in
1571        // one fell swoop.
1572        for (unsigned j = Ops.size(); j != i;) {
1573          --j;
1574          if (Ops[j].Op == Ops[i].Op) {
1575            NewMulOps.push_back(V);
1576            Ops.erase(Ops.begin()+j);
1577          }
1578        }
1579        --i;
1580      }
1581    }
1582
1583    // No need for extra uses anymore.
1584    delete DummyInst;
1585
1586    unsigned NumAddedValues = NewMulOps.size();
1587    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1588
1589    // Now that we have inserted the add tree, optimize it. This allows us to
1590    // handle cases that require multiple factoring steps, such as this:
1591    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1592    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1593    (void)NumAddedValues;
1594    if (Instruction *VI = dyn_cast<Instruction>(V))
1595      RedoInsts.insert(VI);
1596
1597    // Create the multiply.
1598    Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1599
1600    // Rerun associate on the multiply in case the inner expression turned into
1601    // a multiply.  We want to make sure that we keep things in canonical form.
1602    RedoInsts.insert(V2);
1603
1604    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1605    // entire result expression is just the multiply "A*(B+C)".
1606    if (Ops.empty())
1607      return V2;
1608
1609    // Otherwise, we had some input that didn't have the factor, such as
1610    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1611    // things being added by this operation.
1612    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1613  }
1614
1615  return nullptr;
1616}
1617
1618/// \brief Build up a vector of value/power pairs factoring a product.
1619///
1620/// Given a series of multiplication operands, build a vector of factors and
1621/// the powers each is raised to when forming the final product. Sort them in
1622/// the order of descending power.
1623///
1624///      (x*x)          -> [(x, 2)]
1625///     ((x*x)*x)       -> [(x, 3)]
1626///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1627///
1628/// \returns Whether any factors have a power greater than one.
1629bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1630                                             SmallVectorImpl<Factor> &Factors) {
1631  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1632  // Compute the sum of powers of simplifiable factors.
1633  unsigned FactorPowerSum = 0;
1634  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1635    Value *Op = Ops[Idx-1].Op;
1636
1637    // Count the number of occurrences of this value.
1638    unsigned Count = 1;
1639    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1640      ++Count;
1641    // Track for simplification all factors which occur 2 or more times.
1642    if (Count > 1)
1643      FactorPowerSum += Count;
1644  }
1645
1646  // We can only simplify factors if the sum of the powers of our simplifiable
1647  // factors is 4 or higher. When that is the case, we will *always* have
1648  // a simplification. This is an important invariant to prevent cyclicly
1649  // trying to simplify already minimal formations.
1650  if (FactorPowerSum < 4)
1651    return false;
1652
1653  // Now gather the simplifiable factors, removing them from Ops.
1654  FactorPowerSum = 0;
1655  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1656    Value *Op = Ops[Idx-1].Op;
1657
1658    // Count the number of occurrences of this value.
1659    unsigned Count = 1;
1660    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1661      ++Count;
1662    if (Count == 1)
1663      continue;
1664    // Move an even number of occurrences to Factors.
1665    Count &= ~1U;
1666    Idx -= Count;
1667    FactorPowerSum += Count;
1668    Factors.push_back(Factor(Op, Count));
1669    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1670  }
1671
1672  // None of the adjustments above should have reduced the sum of factor powers
1673  // below our mininum of '4'.
1674  assert(FactorPowerSum >= 4);
1675
1676  std::stable_sort(Factors.begin(), Factors.end(),
1677                   [](const Factor &LHS, const Factor &RHS) {
1678    return LHS.Power > RHS.Power;
1679  });
1680  return true;
1681}
1682
1683/// \brief Build a tree of multiplies, computing the product of Ops.
1684static Value *buildMultiplyTree(IRBuilder<> &Builder,
1685                                SmallVectorImpl<Value*> &Ops) {
1686  if (Ops.size() == 1)
1687    return Ops.back();
1688
1689  Value *LHS = Ops.pop_back_val();
1690  do {
1691    if (LHS->getType()->isIntOrIntVectorTy())
1692      LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1693    else
1694      LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1695  } while (!Ops.empty());
1696
1697  return LHS;
1698}
1699
1700/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1701///
1702/// Given a vector of values raised to various powers, where no two values are
1703/// equal and the powers are sorted in decreasing order, compute the minimal
1704/// DAG of multiplies to compute the final product, and return that product
1705/// value.
1706Value *
1707ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1708                                         SmallVectorImpl<Factor> &Factors) {
1709  assert(Factors[0].Power);
1710  SmallVector<Value *, 4> OuterProduct;
1711  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1712       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1713    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1714      LastIdx = Idx;
1715      continue;
1716    }
1717
1718    // We want to multiply across all the factors with the same power so that
1719    // we can raise them to that power as a single entity. Build a mini tree
1720    // for that.
1721    SmallVector<Value *, 4> InnerProduct;
1722    InnerProduct.push_back(Factors[LastIdx].Base);
1723    do {
1724      InnerProduct.push_back(Factors[Idx].Base);
1725      ++Idx;
1726    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1727
1728    // Reset the base value of the first factor to the new expression tree.
1729    // We'll remove all the factors with the same power in a second pass.
1730    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1731    if (Instruction *MI = dyn_cast<Instruction>(M))
1732      RedoInsts.insert(MI);
1733
1734    LastIdx = Idx;
1735  }
1736  // Unique factors with equal powers -- we've folded them into the first one's
1737  // base.
1738  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1739                            [](const Factor &LHS, const Factor &RHS) {
1740                              return LHS.Power == RHS.Power;
1741                            }),
1742                Factors.end());
1743
1744  // Iteratively collect the base of each factor with an add power into the
1745  // outer product, and halve each power in preparation for squaring the
1746  // expression.
1747  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1748    if (Factors[Idx].Power & 1)
1749      OuterProduct.push_back(Factors[Idx].Base);
1750    Factors[Idx].Power >>= 1;
1751  }
1752  if (Factors[0].Power) {
1753    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1754    OuterProduct.push_back(SquareRoot);
1755    OuterProduct.push_back(SquareRoot);
1756  }
1757  if (OuterProduct.size() == 1)
1758    return OuterProduct.front();
1759
1760  Value *V = buildMultiplyTree(Builder, OuterProduct);
1761  return V;
1762}
1763
1764Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1765                                    SmallVectorImpl<ValueEntry> &Ops) {
1766  // We can only optimize the multiplies when there is a chain of more than
1767  // three, such that a balanced tree might require fewer total multiplies.
1768  if (Ops.size() < 4)
1769    return nullptr;
1770
1771  // Try to turn linear trees of multiplies without other uses of the
1772  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1773  // re-use.
1774  SmallVector<Factor, 4> Factors;
1775  if (!collectMultiplyFactors(Ops, Factors))
1776    return nullptr; // All distinct factors, so nothing left for us to do.
1777
1778  IRBuilder<> Builder(I);
1779  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1780  if (Ops.empty())
1781    return V;
1782
1783  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1784  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1785  return nullptr;
1786}
1787
1788Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1789                                           SmallVectorImpl<ValueEntry> &Ops) {
1790  // Now that we have the linearized expression tree, try to optimize it.
1791  // Start by folding any constants that we found.
1792  Constant *Cst = nullptr;
1793  unsigned Opcode = I->getOpcode();
1794  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1795    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1796    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1797  }
1798  // If there was nothing but constants then we are done.
1799  if (Ops.empty())
1800    return Cst;
1801
1802  // Put the combined constant back at the end of the operand list, except if
1803  // there is no point.  For example, an add of 0 gets dropped here, while a
1804  // multiplication by zero turns the whole expression into zero.
1805  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1806    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1807      return Cst;
1808    Ops.push_back(ValueEntry(0, Cst));
1809  }
1810
1811  if (Ops.size() == 1) return Ops[0].Op;
1812
1813  // Handle destructive annihilation due to identities between elements in the
1814  // argument list here.
1815  unsigned NumOps = Ops.size();
1816  switch (Opcode) {
1817  default: break;
1818  case Instruction::And:
1819  case Instruction::Or:
1820    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1821      return Result;
1822    break;
1823
1824  case Instruction::Xor:
1825    if (Value *Result = OptimizeXor(I, Ops))
1826      return Result;
1827    break;
1828
1829  case Instruction::Add:
1830  case Instruction::FAdd:
1831    if (Value *Result = OptimizeAdd(I, Ops))
1832      return Result;
1833    break;
1834
1835  case Instruction::Mul:
1836  case Instruction::FMul:
1837    if (Value *Result = OptimizeMul(I, Ops))
1838      return Result;
1839    break;
1840  }
1841
1842  if (Ops.size() != NumOps)
1843    return OptimizeExpression(I, Ops);
1844  return nullptr;
1845}
1846
1847// Remove dead instructions and if any operands are trivially dead add them to
1848// Insts so they will be removed as well.
1849void ReassociatePass::RecursivelyEraseDeadInsts(
1850    Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1851  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1852  SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1853  ValueRankMap.erase(I);
1854  Insts.remove(I);
1855  RedoInsts.remove(I);
1856  I->eraseFromParent();
1857  for (auto Op : Ops)
1858    if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1859      if (OpInst->use_empty())
1860        Insts.insert(OpInst);
1861}
1862
1863/// Zap the given instruction, adding interesting operands to the work list.
1864void ReassociatePass::EraseInst(Instruction *I) {
1865  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1866  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1867  // Erase the dead instruction.
1868  ValueRankMap.erase(I);
1869  RedoInsts.remove(I);
1870  I->eraseFromParent();
1871  // Optimize its operands.
1872  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1873  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1874    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1875      // If this is a node in an expression tree, climb to the expression root
1876      // and add that since that's where optimization actually happens.
1877      unsigned Opcode = Op->getOpcode();
1878      while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1879             Visited.insert(Op).second)
1880        Op = Op->user_back();
1881      RedoInsts.insert(Op);
1882    }
1883}
1884
1885// Canonicalize expressions of the following form:
1886//  x + (-Constant * y) -> x - (Constant * y)
1887//  x - (-Constant * y) -> x + (Constant * y)
1888Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1889  if (!I->hasOneUse() || I->getType()->isVectorTy())
1890    return nullptr;
1891
1892  // Must be a fmul or fdiv instruction.
1893  unsigned Opcode = I->getOpcode();
1894  if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1895    return nullptr;
1896
1897  auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1898  auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1899
1900  // Both operands are constant, let it get constant folded away.
1901  if (C0 && C1)
1902    return nullptr;
1903
1904  ConstantFP *CF = C0 ? C0 : C1;
1905
1906  // Must have one constant operand.
1907  if (!CF)
1908    return nullptr;
1909
1910  // Must be a negative ConstantFP.
1911  if (!CF->isNegative())
1912    return nullptr;
1913
1914  // User must be a binary operator with one or more uses.
1915  Instruction *User = I->user_back();
1916  if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
1917    return nullptr;
1918
1919  unsigned UserOpcode = User->getOpcode();
1920  if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1921    return nullptr;
1922
1923  // Subtraction is not commutative. Explicitly, the following transform is
1924  // not valid: (-Constant * y) - x  -> x + (Constant * y)
1925  if (!User->isCommutative() && User->getOperand(1) != I)
1926    return nullptr;
1927
1928  // Change the sign of the constant.
1929  APFloat Val = CF->getValueAPF();
1930  Val.changeSign();
1931  I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1932
1933  // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1934  // ((-Const*y) + x) -> (x + (-Const*y)).
1935  if (User->getOperand(0) == I && User->isCommutative())
1936    cast<BinaryOperator>(User)->swapOperands();
1937
1938  Value *Op0 = User->getOperand(0);
1939  Value *Op1 = User->getOperand(1);
1940  BinaryOperator *NI;
1941  switch (UserOpcode) {
1942  default:
1943    llvm_unreachable("Unexpected Opcode!");
1944  case Instruction::FAdd:
1945    NI = BinaryOperator::CreateFSub(Op0, Op1);
1946    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1947    break;
1948  case Instruction::FSub:
1949    NI = BinaryOperator::CreateFAdd(Op0, Op1);
1950    NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1951    break;
1952  }
1953
1954  NI->insertBefore(User);
1955  NI->setName(User->getName());
1956  User->replaceAllUsesWith(NI);
1957  NI->setDebugLoc(I->getDebugLoc());
1958  RedoInsts.insert(I);
1959  MadeChange = true;
1960  return NI;
1961}
1962
1963/// Inspect and optimize the given instruction. Note that erasing
1964/// instructions is not allowed.
1965void ReassociatePass::OptimizeInst(Instruction *I) {
1966  // Only consider operations that we understand.
1967  if (!isa<BinaryOperator>(I))
1968    return;
1969
1970  if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
1971    // If an operand of this shift is a reassociable multiply, or if the shift
1972    // is used by a reassociable multiply or add, turn into a multiply.
1973    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1974        (I->hasOneUse() &&
1975         (isReassociableOp(I->user_back(), Instruction::Mul) ||
1976          isReassociableOp(I->user_back(), Instruction::Add)))) {
1977      Instruction *NI = ConvertShiftToMul(I);
1978      RedoInsts.insert(I);
1979      MadeChange = true;
1980      I = NI;
1981    }
1982
1983  // Canonicalize negative constants out of expressions.
1984  if (Instruction *Res = canonicalizeNegConstExpr(I))
1985    I = Res;
1986
1987  // Commute binary operators, to canonicalize the order of their operands.
1988  // This can potentially expose more CSE opportunities, and makes writing other
1989  // transformations simpler.
1990  if (I->isCommutative())
1991    canonicalizeOperands(I);
1992
1993  // TODO: We should optimize vector Xor instructions, but they are
1994  // currently unsupported.
1995  if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
1996    return;
1997
1998  // Don't optimize floating point instructions that don't have unsafe algebra.
1999  if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
2000    return;
2001
2002  // Do not reassociate boolean (i1) expressions.  We want to preserve the
2003  // original order of evaluation for short-circuited comparisons that
2004  // SimplifyCFG has folded to AND/OR expressions.  If the expression
2005  // is not further optimized, it is likely to be transformed back to a
2006  // short-circuited form for code gen, and the source order may have been
2007  // optimized for the most likely conditions.
2008  if (I->getType()->isIntegerTy(1))
2009    return;
2010
2011  // If this is a subtract instruction which is not already in negate form,
2012  // see if we can convert it to X+-Y.
2013  if (I->getOpcode() == Instruction::Sub) {
2014    if (ShouldBreakUpSubtract(I)) {
2015      Instruction *NI = BreakUpSubtract(I, RedoInsts);
2016      RedoInsts.insert(I);
2017      MadeChange = true;
2018      I = NI;
2019    } else if (BinaryOperator::isNeg(I)) {
2020      // Otherwise, this is a negation.  See if the operand is a multiply tree
2021      // and if this is not an inner node of a multiply tree.
2022      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2023          (!I->hasOneUse() ||
2024           !isReassociableOp(I->user_back(), Instruction::Mul))) {
2025        Instruction *NI = LowerNegateToMultiply(I);
2026        // If the negate was simplified, revisit the users to see if we can
2027        // reassociate further.
2028        for (User *U : NI->users()) {
2029          if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2030            RedoInsts.insert(Tmp);
2031        }
2032        RedoInsts.insert(I);
2033        MadeChange = true;
2034        I = NI;
2035      }
2036    }
2037  } else if (I->getOpcode() == Instruction::FSub) {
2038    if (ShouldBreakUpSubtract(I)) {
2039      Instruction *NI = BreakUpSubtract(I, RedoInsts);
2040      RedoInsts.insert(I);
2041      MadeChange = true;
2042      I = NI;
2043    } else if (BinaryOperator::isFNeg(I)) {
2044      // Otherwise, this is a negation.  See if the operand is a multiply tree
2045      // and if this is not an inner node of a multiply tree.
2046      if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2047          (!I->hasOneUse() ||
2048           !isReassociableOp(I->user_back(), Instruction::FMul))) {
2049        // If the negate was simplified, revisit the users to see if we can
2050        // reassociate further.
2051        Instruction *NI = LowerNegateToMultiply(I);
2052        for (User *U : NI->users()) {
2053          if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2054            RedoInsts.insert(Tmp);
2055        }
2056        RedoInsts.insert(I);
2057        MadeChange = true;
2058        I = NI;
2059      }
2060    }
2061  }
2062
2063  // If this instruction is an associative binary operator, process it.
2064  if (!I->isAssociative()) return;
2065  BinaryOperator *BO = cast<BinaryOperator>(I);
2066
2067  // If this is an interior node of a reassociable tree, ignore it until we
2068  // get to the root of the tree, to avoid N^2 analysis.
2069  unsigned Opcode = BO->getOpcode();
2070  if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2071    // During the initial run we will get to the root of the tree.
2072    // But if we get here while we are redoing instructions, there is no
2073    // guarantee that the root will be visited. So Redo later
2074    if (BO->user_back() != BO &&
2075        BO->getParent() == BO->user_back()->getParent())
2076      RedoInsts.insert(BO->user_back());
2077    return;
2078  }
2079
2080  // If this is an add tree that is used by a sub instruction, ignore it
2081  // until we process the subtract.
2082  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2083      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2084    return;
2085  if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2086      cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2087    return;
2088
2089  ReassociateExpression(BO);
2090}
2091
2092void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2093  // First, walk the expression tree, linearizing the tree, collecting the
2094  // operand information.
2095  SmallVector<RepeatedValue, 8> Tree;
2096  MadeChange |= LinearizeExprTree(I, Tree);
2097  SmallVector<ValueEntry, 8> Ops;
2098  Ops.reserve(Tree.size());
2099  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2100    RepeatedValue E = Tree[i];
2101    Ops.append(E.second.getZExtValue(),
2102               ValueEntry(getRank(E.first), E.first));
2103  }
2104
2105  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2106
2107  // Now that we have linearized the tree to a list and have gathered all of
2108  // the operands and their ranks, sort the operands by their rank.  Use a
2109  // stable_sort so that values with equal ranks will have their relative
2110  // positions maintained (and so the compiler is deterministic).  Note that
2111  // this sorts so that the highest ranking values end up at the beginning of
2112  // the vector.
2113  std::stable_sort(Ops.begin(), Ops.end());
2114
2115  // Now that we have the expression tree in a convenient
2116  // sorted form, optimize it globally if possible.
2117  if (Value *V = OptimizeExpression(I, Ops)) {
2118    if (V == I)
2119      // Self-referential expression in unreachable code.
2120      return;
2121    // This expression tree simplified to something that isn't a tree,
2122    // eliminate it.
2123    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2124    I->replaceAllUsesWith(V);
2125    if (Instruction *VI = dyn_cast<Instruction>(V))
2126      VI->setDebugLoc(I->getDebugLoc());
2127    RedoInsts.insert(I);
2128    ++NumAnnihil;
2129    return;
2130  }
2131
2132  // We want to sink immediates as deeply as possible except in the case where
2133  // this is a multiply tree used only by an add, and the immediate is a -1.
2134  // In this case we reassociate to put the negation on the outside so that we
2135  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2136  if (I->hasOneUse()) {
2137    if (I->getOpcode() == Instruction::Mul &&
2138        cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2139        isa<ConstantInt>(Ops.back().Op) &&
2140        cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2141      ValueEntry Tmp = Ops.pop_back_val();
2142      Ops.insert(Ops.begin(), Tmp);
2143    } else if (I->getOpcode() == Instruction::FMul &&
2144               cast<Instruction>(I->user_back())->getOpcode() ==
2145                   Instruction::FAdd &&
2146               isa<ConstantFP>(Ops.back().Op) &&
2147               cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2148      ValueEntry Tmp = Ops.pop_back_val();
2149      Ops.insert(Ops.begin(), Tmp);
2150    }
2151  }
2152
2153  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2154
2155  if (Ops.size() == 1) {
2156    if (Ops[0].Op == I)
2157      // Self-referential expression in unreachable code.
2158      return;
2159
2160    // This expression tree simplified to something that isn't a tree,
2161    // eliminate it.
2162    I->replaceAllUsesWith(Ops[0].Op);
2163    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2164      OI->setDebugLoc(I->getDebugLoc());
2165    RedoInsts.insert(I);
2166    return;
2167  }
2168
2169  // Now that we ordered and optimized the expressions, splat them back into
2170  // the expression tree, removing any unneeded nodes.
2171  RewriteExprTree(I, Ops);
2172}
2173
2174PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2175  // Reassociate needs for each instruction to have its operands already
2176  // processed, so we first perform a RPOT of the basic blocks so that
2177  // when we process a basic block, all its dominators have been processed
2178  // before.
2179  ReversePostOrderTraversal<Function *> RPOT(&F);
2180  BuildRankMap(F, RPOT);
2181
2182  MadeChange = false;
2183  for (BasicBlock *BI : RPOT) {
2184    // Use a worklist to keep track of which instructions have been processed
2185    // (and which insts won't be optimized again) so when redoing insts,
2186    // optimize insts rightaway which won't be processed later.
2187    SmallSet<Instruction *, 8> Worklist;
2188
2189    // Insert all instructions in the BB
2190    for (Instruction &I : *BI)
2191      Worklist.insert(&I);
2192
2193    // Optimize every instruction in the basic block.
2194    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) {
2195      // This instruction has been processed.
2196      Worklist.erase(&*II);
2197      if (isInstructionTriviallyDead(&*II)) {
2198        EraseInst(&*II++);
2199      } else {
2200        OptimizeInst(&*II);
2201        assert(II->getParent() == &*BI && "Moved to a different block!");
2202        ++II;
2203      }
2204
2205      // If the above optimizations produced new instructions to optimize or
2206      // made modifications which need to be redone, do them now if they won't
2207      // be handled later.
2208      while (!RedoInsts.empty()) {
2209        Instruction *I = RedoInsts.pop_back_val();
2210        // Process instructions that won't be processed later, either
2211        // inside the block itself or in another basic block (based on rank),
2212        // since these will be processed later.
2213        if ((I->getParent() != BI || !Worklist.count(I)) &&
2214            RankMap[I->getParent()] <= RankMap[BI]) {
2215          if (isInstructionTriviallyDead(I))
2216            EraseInst(I);
2217          else
2218            OptimizeInst(I);
2219        }
2220      }
2221    }
2222  }
2223
2224  // We are done with the rank map.
2225  RankMap.clear();
2226  ValueRankMap.clear();
2227
2228  if (MadeChange) {
2229    // FIXME: This should also 'preserve the CFG'.
2230    auto PA = PreservedAnalyses();
2231    PA.preserve<GlobalsAA>();
2232    return PA;
2233  }
2234
2235  return PreservedAnalyses::all();
2236}
2237
2238namespace {
2239  class ReassociateLegacyPass : public FunctionPass {
2240    ReassociatePass Impl;
2241  public:
2242    static char ID; // Pass identification, replacement for typeid
2243    ReassociateLegacyPass() : FunctionPass(ID) {
2244      initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2245    }
2246
2247    bool runOnFunction(Function &F) override {
2248      if (skipFunction(F))
2249        return false;
2250
2251      FunctionAnalysisManager DummyFAM;
2252      auto PA = Impl.run(F, DummyFAM);
2253      return !PA.areAllPreserved();
2254    }
2255
2256    void getAnalysisUsage(AnalysisUsage &AU) const override {
2257      AU.setPreservesCFG();
2258      AU.addPreserved<GlobalsAAWrapperPass>();
2259    }
2260  };
2261}
2262
2263char ReassociateLegacyPass::ID = 0;
2264INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2265                "Reassociate expressions", false, false)
2266
2267// Public interface to the Reassociate pass
2268FunctionPass *llvm::createReassociatePass() {
2269  return new ReassociateLegacyPass();
2270}
2271