1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/IPO/SCCP.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/PointerIntPair.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/GlobalsModRef.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/InstVisitor.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Transforms/IPO.h"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Transforms/Scalar/SCCP.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include <algorithm>
45using namespace llvm;
46
47#define DEBUG_TYPE "sccp"
48
49STATISTIC(NumInstRemoved, "Number of instructions removed");
50STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
51
52STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
53STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
54STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
55
56namespace {
57/// LatticeVal class - This class represents the different lattice values that
58/// an LLVM value may occupy.  It is a simple class with value semantics.
59///
60class LatticeVal {
61  enum LatticeValueTy {
62    /// unknown - This LLVM Value has no known value yet.
63    unknown,
64
65    /// constant - This LLVM Value has a specific constant value.
66    constant,
67
68    /// forcedconstant - This LLVM Value was thought to be undef until
69    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
70    /// with another (different) constant, it goes to overdefined, instead of
71    /// asserting.
72    forcedconstant,
73
74    /// overdefined - This instruction is not known to be constant, and we know
75    /// it has a value.
76    overdefined
77  };
78
79  /// Val: This stores the current lattice value along with the Constant* for
80  /// the constant if this is a 'constant' or 'forcedconstant' value.
81  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
82
83  LatticeValueTy getLatticeValue() const {
84    return Val.getInt();
85  }
86
87public:
88  LatticeVal() : Val(nullptr, unknown) {}
89
90  bool isUnknown() const { return getLatticeValue() == unknown; }
91  bool isConstant() const {
92    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
93  }
94  bool isOverdefined() const { return getLatticeValue() == overdefined; }
95
96  Constant *getConstant() const {
97    assert(isConstant() && "Cannot get the constant of a non-constant!");
98    return Val.getPointer();
99  }
100
101  /// markOverdefined - Return true if this is a change in status.
102  bool markOverdefined() {
103    if (isOverdefined())
104      return false;
105
106    Val.setInt(overdefined);
107    return true;
108  }
109
110  /// markConstant - Return true if this is a change in status.
111  bool markConstant(Constant *V) {
112    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
113      assert(getConstant() == V && "Marking constant with different value");
114      return false;
115    }
116
117    if (isUnknown()) {
118      Val.setInt(constant);
119      assert(V && "Marking constant with NULL");
120      Val.setPointer(V);
121    } else {
122      assert(getLatticeValue() == forcedconstant &&
123             "Cannot move from overdefined to constant!");
124      // Stay at forcedconstant if the constant is the same.
125      if (V == getConstant()) return false;
126
127      // Otherwise, we go to overdefined.  Assumptions made based on the
128      // forced value are possibly wrong.  Assuming this is another constant
129      // could expose a contradiction.
130      Val.setInt(overdefined);
131    }
132    return true;
133  }
134
135  /// getConstantInt - If this is a constant with a ConstantInt value, return it
136  /// otherwise return null.
137  ConstantInt *getConstantInt() const {
138    if (isConstant())
139      return dyn_cast<ConstantInt>(getConstant());
140    return nullptr;
141  }
142
143  void markForcedConstant(Constant *V) {
144    assert(isUnknown() && "Can't force a defined value!");
145    Val.setInt(forcedconstant);
146    Val.setPointer(V);
147  }
148};
149} // end anonymous namespace.
150
151
152namespace {
153
154//===----------------------------------------------------------------------===//
155//
156/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
157/// Constant Propagation.
158///
159class SCCPSolver : public InstVisitor<SCCPSolver> {
160  const DataLayout &DL;
161  const TargetLibraryInfo *TLI;
162  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
163  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
164
165  /// StructValueState - This maintains ValueState for values that have
166  /// StructType, for example for formal arguments, calls, insertelement, etc.
167  ///
168  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
169
170  /// GlobalValue - If we are tracking any values for the contents of a global
171  /// variable, we keep a mapping from the constant accessor to the element of
172  /// the global, to the currently known value.  If the value becomes
173  /// overdefined, it's entry is simply removed from this map.
174  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
175
176  /// TrackedRetVals - If we are tracking arguments into and the return
177  /// value out of a function, it will have an entry in this map, indicating
178  /// what the known return value for the function is.
179  DenseMap<Function*, LatticeVal> TrackedRetVals;
180
181  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
182  /// that return multiple values.
183  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
184
185  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
186  /// represented here for efficient lookup.
187  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
188
189  /// TrackingIncomingArguments - This is the set of functions for whose
190  /// arguments we make optimistic assumptions about and try to prove as
191  /// constants.
192  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
193
194  /// The reason for two worklists is that overdefined is the lowest state
195  /// on the lattice, and moving things to overdefined as fast as possible
196  /// makes SCCP converge much faster.
197  ///
198  /// By having a separate worklist, we accomplish this because everything
199  /// possibly overdefined will become overdefined at the soonest possible
200  /// point.
201  SmallVector<Value*, 64> OverdefinedInstWorkList;
202  SmallVector<Value*, 64> InstWorkList;
203
204
205  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
206
207  /// KnownFeasibleEdges - Entries in this set are edges which have already had
208  /// PHI nodes retriggered.
209  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
210  DenseSet<Edge> KnownFeasibleEdges;
211public:
212  SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
213      : DL(DL), TLI(tli) {}
214
215  /// MarkBlockExecutable - This method can be used by clients to mark all of
216  /// the blocks that are known to be intrinsically live in the processed unit.
217  ///
218  /// This returns true if the block was not considered live before.
219  bool MarkBlockExecutable(BasicBlock *BB) {
220    if (!BBExecutable.insert(BB).second)
221      return false;
222    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
223    BBWorkList.push_back(BB);  // Add the block to the work list!
224    return true;
225  }
226
227  /// TrackValueOfGlobalVariable - Clients can use this method to
228  /// inform the SCCPSolver that it should track loads and stores to the
229  /// specified global variable if it can.  This is only legal to call if
230  /// performing Interprocedural SCCP.
231  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
232    // We only track the contents of scalar globals.
233    if (GV->getValueType()->isSingleValueType()) {
234      LatticeVal &IV = TrackedGlobals[GV];
235      if (!isa<UndefValue>(GV->getInitializer()))
236        IV.markConstant(GV->getInitializer());
237    }
238  }
239
240  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
241  /// and out of the specified function (which cannot have its address taken),
242  /// this method must be called.
243  void AddTrackedFunction(Function *F) {
244    // Add an entry, F -> undef.
245    if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
246      MRVFunctionsTracked.insert(F);
247      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
248        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
249                                                     LatticeVal()));
250    } else
251      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
252  }
253
254  void AddArgumentTrackedFunction(Function *F) {
255    TrackingIncomingArguments.insert(F);
256  }
257
258  /// Solve - Solve for constants and executable blocks.
259  ///
260  void Solve();
261
262  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
263  /// that branches on undef values cannot reach any of their successors.
264  /// However, this is not a safe assumption.  After we solve dataflow, this
265  /// method should be use to handle this.  If this returns true, the solver
266  /// should be rerun.
267  bool ResolvedUndefsIn(Function &F);
268
269  bool isBlockExecutable(BasicBlock *BB) const {
270    return BBExecutable.count(BB);
271  }
272
273  std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
274    std::vector<LatticeVal> StructValues;
275    StructType *STy = dyn_cast<StructType>(V->getType());
276    assert(STy && "getStructLatticeValueFor() can be called only on structs");
277    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
278      auto I = StructValueState.find(std::make_pair(V, i));
279      assert(I != StructValueState.end() && "Value not in valuemap!");
280      StructValues.push_back(I->second);
281    }
282    return StructValues;
283  }
284
285  LatticeVal getLatticeValueFor(Value *V) const {
286    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
287    assert(I != ValueState.end() && "V is not in valuemap!");
288    return I->second;
289  }
290
291  /// getTrackedRetVals - Get the inferred return value map.
292  ///
293  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
294    return TrackedRetVals;
295  }
296
297  /// getTrackedGlobals - Get and return the set of inferred initializers for
298  /// global variables.
299  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
300    return TrackedGlobals;
301  }
302
303  void markOverdefined(Value *V) {
304    assert(!V->getType()->isStructTy() && "Should use other method");
305    markOverdefined(ValueState[V], V);
306  }
307
308  /// markAnythingOverdefined - Mark the specified value overdefined.  This
309  /// works with both scalars and structs.
310  void markAnythingOverdefined(Value *V) {
311    if (StructType *STy = dyn_cast<StructType>(V->getType()))
312      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
313        markOverdefined(getStructValueState(V, i), V);
314    else
315      markOverdefined(V);
316  }
317
318private:
319  // pushToWorkList - Helper for markConstant/markForcedConstant
320  void pushToWorkList(LatticeVal &IV, Value *V) {
321    if (IV.isOverdefined())
322      return OverdefinedInstWorkList.push_back(V);
323    InstWorkList.push_back(V);
324  }
325
326  // markConstant - Make a value be marked as "constant".  If the value
327  // is not already a constant, add it to the instruction work list so that
328  // the users of the instruction are updated later.
329  //
330  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
331    if (!IV.markConstant(C)) return;
332    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
333    pushToWorkList(IV, V);
334  }
335
336  void markConstant(Value *V, Constant *C) {
337    assert(!V->getType()->isStructTy() && "Should use other method");
338    markConstant(ValueState[V], V, C);
339  }
340
341  void markForcedConstant(Value *V, Constant *C) {
342    assert(!V->getType()->isStructTy() && "Should use other method");
343    LatticeVal &IV = ValueState[V];
344    IV.markForcedConstant(C);
345    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
346    pushToWorkList(IV, V);
347  }
348
349
350  // markOverdefined - Make a value be marked as "overdefined". If the
351  // value is not already overdefined, add it to the overdefined instruction
352  // work list so that the users of the instruction are updated later.
353  void markOverdefined(LatticeVal &IV, Value *V) {
354    if (!IV.markOverdefined()) return;
355
356    DEBUG(dbgs() << "markOverdefined: ";
357          if (Function *F = dyn_cast<Function>(V))
358            dbgs() << "Function '" << F->getName() << "'\n";
359          else
360            dbgs() << *V << '\n');
361    // Only instructions go on the work list
362    OverdefinedInstWorkList.push_back(V);
363  }
364
365  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
366    if (IV.isOverdefined() || MergeWithV.isUnknown())
367      return;  // Noop.
368    if (MergeWithV.isOverdefined())
369      return markOverdefined(IV, V);
370    if (IV.isUnknown())
371      return markConstant(IV, V, MergeWithV.getConstant());
372    if (IV.getConstant() != MergeWithV.getConstant())
373      return markOverdefined(IV, V);
374  }
375
376  void mergeInValue(Value *V, LatticeVal MergeWithV) {
377    assert(!V->getType()->isStructTy() && "Should use other method");
378    mergeInValue(ValueState[V], V, MergeWithV);
379  }
380
381
382  /// getValueState - Return the LatticeVal object that corresponds to the
383  /// value.  This function handles the case when the value hasn't been seen yet
384  /// by properly seeding constants etc.
385  LatticeVal &getValueState(Value *V) {
386    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
387
388    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
389      ValueState.insert(std::make_pair(V, LatticeVal()));
390    LatticeVal &LV = I.first->second;
391
392    if (!I.second)
393      return LV;  // Common case, already in the map.
394
395    if (Constant *C = dyn_cast<Constant>(V)) {
396      // Undef values remain unknown.
397      if (!isa<UndefValue>(V))
398        LV.markConstant(C);          // Constants are constant
399    }
400
401    // All others are underdefined by default.
402    return LV;
403  }
404
405  /// getStructValueState - Return the LatticeVal object that corresponds to the
406  /// value/field pair.  This function handles the case when the value hasn't
407  /// been seen yet by properly seeding constants etc.
408  LatticeVal &getStructValueState(Value *V, unsigned i) {
409    assert(V->getType()->isStructTy() && "Should use getValueState");
410    assert(i < cast<StructType>(V->getType())->getNumElements() &&
411           "Invalid element #");
412
413    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
414              bool> I = StructValueState.insert(
415                        std::make_pair(std::make_pair(V, i), LatticeVal()));
416    LatticeVal &LV = I.first->second;
417
418    if (!I.second)
419      return LV;  // Common case, already in the map.
420
421    if (Constant *C = dyn_cast<Constant>(V)) {
422      Constant *Elt = C->getAggregateElement(i);
423
424      if (!Elt)
425        LV.markOverdefined();      // Unknown sort of constant.
426      else if (isa<UndefValue>(Elt))
427        ; // Undef values remain unknown.
428      else
429        LV.markConstant(Elt);      // Constants are constant.
430    }
431
432    // All others are underdefined by default.
433    return LV;
434  }
435
436
437  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
438  /// work list if it is not already executable.
439  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
440    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
441      return;  // This edge is already known to be executable!
442
443    if (!MarkBlockExecutable(Dest)) {
444      // If the destination is already executable, we just made an *edge*
445      // feasible that wasn't before.  Revisit the PHI nodes in the block
446      // because they have potentially new operands.
447      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
448            << " -> " << Dest->getName() << '\n');
449
450      PHINode *PN;
451      for (BasicBlock::iterator I = Dest->begin();
452           (PN = dyn_cast<PHINode>(I)); ++I)
453        visitPHINode(*PN);
454    }
455  }
456
457  // getFeasibleSuccessors - Return a vector of booleans to indicate which
458  // successors are reachable from a given terminator instruction.
459  //
460  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
461
462  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
463  // block to the 'To' basic block is currently feasible.
464  //
465  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
466
467  // OperandChangedState - This method is invoked on all of the users of an
468  // instruction that was just changed state somehow.  Based on this
469  // information, we need to update the specified user of this instruction.
470  //
471  void OperandChangedState(Instruction *I) {
472    if (BBExecutable.count(I->getParent()))   // Inst is executable?
473      visit(*I);
474  }
475
476private:
477  friend class InstVisitor<SCCPSolver>;
478
479  // visit implementations - Something changed in this instruction.  Either an
480  // operand made a transition, or the instruction is newly executable.  Change
481  // the value type of I to reflect these changes if appropriate.
482  void visitPHINode(PHINode &I);
483
484  // Terminators
485  void visitReturnInst(ReturnInst &I);
486  void visitTerminatorInst(TerminatorInst &TI);
487
488  void visitCastInst(CastInst &I);
489  void visitSelectInst(SelectInst &I);
490  void visitBinaryOperator(Instruction &I);
491  void visitCmpInst(CmpInst &I);
492  void visitExtractElementInst(ExtractElementInst &I);
493  void visitInsertElementInst(InsertElementInst &I);
494  void visitShuffleVectorInst(ShuffleVectorInst &I);
495  void visitExtractValueInst(ExtractValueInst &EVI);
496  void visitInsertValueInst(InsertValueInst &IVI);
497  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
498  void visitFuncletPadInst(FuncletPadInst &FPI) {
499    markAnythingOverdefined(&FPI);
500  }
501  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
502    markAnythingOverdefined(&CPI);
503    visitTerminatorInst(CPI);
504  }
505
506  // Instructions that cannot be folded away.
507  void visitStoreInst     (StoreInst &I);
508  void visitLoadInst      (LoadInst &I);
509  void visitGetElementPtrInst(GetElementPtrInst &I);
510  void visitCallInst      (CallInst &I) {
511    visitCallSite(&I);
512  }
513  void visitInvokeInst    (InvokeInst &II) {
514    visitCallSite(&II);
515    visitTerminatorInst(II);
516  }
517  void visitCallSite      (CallSite CS);
518  void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
519  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
520  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
521  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
522    markAnythingOverdefined(&I);
523  }
524  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
525  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
526  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
527
528  void visitInstruction(Instruction &I) {
529    // If a new instruction is added to LLVM that we don't handle.
530    dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
531    markAnythingOverdefined(&I);   // Just in case
532  }
533};
534
535} // end anonymous namespace
536
537
538// getFeasibleSuccessors - Return a vector of booleans to indicate which
539// successors are reachable from a given terminator instruction.
540//
541void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
542                                       SmallVectorImpl<bool> &Succs) {
543  Succs.resize(TI.getNumSuccessors());
544  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
545    if (BI->isUnconditional()) {
546      Succs[0] = true;
547      return;
548    }
549
550    LatticeVal BCValue = getValueState(BI->getCondition());
551    ConstantInt *CI = BCValue.getConstantInt();
552    if (!CI) {
553      // Overdefined condition variables, and branches on unfoldable constant
554      // conditions, mean the branch could go either way.
555      if (!BCValue.isUnknown())
556        Succs[0] = Succs[1] = true;
557      return;
558    }
559
560    // Constant condition variables mean the branch can only go a single way.
561    Succs[CI->isZero()] = true;
562    return;
563  }
564
565  // Unwinding instructions successors are always executable.
566  if (TI.isExceptional()) {
567    Succs.assign(TI.getNumSuccessors(), true);
568    return;
569  }
570
571  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
572    if (!SI->getNumCases()) {
573      Succs[0] = true;
574      return;
575    }
576    LatticeVal SCValue = getValueState(SI->getCondition());
577    ConstantInt *CI = SCValue.getConstantInt();
578
579    if (!CI) {   // Overdefined or unknown condition?
580      // All destinations are executable!
581      if (!SCValue.isUnknown())
582        Succs.assign(TI.getNumSuccessors(), true);
583      return;
584    }
585
586    Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
587    return;
588  }
589
590  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
591  if (isa<IndirectBrInst>(&TI)) {
592    // Just mark all destinations executable!
593    Succs.assign(TI.getNumSuccessors(), true);
594    return;
595  }
596
597#ifndef NDEBUG
598  dbgs() << "Unknown terminator instruction: " << TI << '\n';
599#endif
600  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
601}
602
603
604// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
605// block to the 'To' basic block is currently feasible.
606//
607bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
608  assert(BBExecutable.count(To) && "Dest should always be alive!");
609
610  // Make sure the source basic block is executable!!
611  if (!BBExecutable.count(From)) return false;
612
613  // Check to make sure this edge itself is actually feasible now.
614  TerminatorInst *TI = From->getTerminator();
615  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
616    if (BI->isUnconditional())
617      return true;
618
619    LatticeVal BCValue = getValueState(BI->getCondition());
620
621    // Overdefined condition variables mean the branch could go either way,
622    // undef conditions mean that neither edge is feasible yet.
623    ConstantInt *CI = BCValue.getConstantInt();
624    if (!CI)
625      return !BCValue.isUnknown();
626
627    // Constant condition variables mean the branch can only go a single way.
628    return BI->getSuccessor(CI->isZero()) == To;
629  }
630
631  // Unwinding instructions successors are always executable.
632  if (TI->isExceptional())
633    return true;
634
635  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
636    if (SI->getNumCases() < 1)
637      return true;
638
639    LatticeVal SCValue = getValueState(SI->getCondition());
640    ConstantInt *CI = SCValue.getConstantInt();
641
642    if (!CI)
643      return !SCValue.isUnknown();
644
645    return SI->findCaseValue(CI).getCaseSuccessor() == To;
646  }
647
648  // Just mark all destinations executable!
649  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
650  if (isa<IndirectBrInst>(TI))
651    return true;
652
653#ifndef NDEBUG
654  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
655#endif
656  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
657}
658
659// visit Implementations - Something changed in this instruction, either an
660// operand made a transition, or the instruction is newly executable.  Change
661// the value type of I to reflect these changes if appropriate.  This method
662// makes sure to do the following actions:
663//
664// 1. If a phi node merges two constants in, and has conflicting value coming
665//    from different branches, or if the PHI node merges in an overdefined
666//    value, then the PHI node becomes overdefined.
667// 2. If a phi node merges only constants in, and they all agree on value, the
668//    PHI node becomes a constant value equal to that.
669// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
670// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
671// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
672// 6. If a conditional branch has a value that is constant, make the selected
673//    destination executable
674// 7. If a conditional branch has a value that is overdefined, make all
675//    successors executable.
676//
677void SCCPSolver::visitPHINode(PHINode &PN) {
678  // If this PN returns a struct, just mark the result overdefined.
679  // TODO: We could do a lot better than this if code actually uses this.
680  if (PN.getType()->isStructTy())
681    return markAnythingOverdefined(&PN);
682
683  if (getValueState(&PN).isOverdefined())
684    return;  // Quick exit
685
686  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
687  // and slow us down a lot.  Just mark them overdefined.
688  if (PN.getNumIncomingValues() > 64)
689    return markOverdefined(&PN);
690
691  // Look at all of the executable operands of the PHI node.  If any of them
692  // are overdefined, the PHI becomes overdefined as well.  If they are all
693  // constant, and they agree with each other, the PHI becomes the identical
694  // constant.  If they are constant and don't agree, the PHI is overdefined.
695  // If there are no executable operands, the PHI remains unknown.
696  //
697  Constant *OperandVal = nullptr;
698  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
699    LatticeVal IV = getValueState(PN.getIncomingValue(i));
700    if (IV.isUnknown()) continue;  // Doesn't influence PHI node.
701
702    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
703      continue;
704
705    if (IV.isOverdefined())    // PHI node becomes overdefined!
706      return markOverdefined(&PN);
707
708    if (!OperandVal) {   // Grab the first value.
709      OperandVal = IV.getConstant();
710      continue;
711    }
712
713    // There is already a reachable operand.  If we conflict with it,
714    // then the PHI node becomes overdefined.  If we agree with it, we
715    // can continue on.
716
717    // Check to see if there are two different constants merging, if so, the PHI
718    // node is overdefined.
719    if (IV.getConstant() != OperandVal)
720      return markOverdefined(&PN);
721  }
722
723  // If we exited the loop, this means that the PHI node only has constant
724  // arguments that agree with each other(and OperandVal is the constant) or
725  // OperandVal is null because there are no defined incoming arguments.  If
726  // this is the case, the PHI remains unknown.
727  //
728  if (OperandVal)
729    markConstant(&PN, OperandVal);      // Acquire operand value
730}
731
732void SCCPSolver::visitReturnInst(ReturnInst &I) {
733  if (I.getNumOperands() == 0) return;  // ret void
734
735  Function *F = I.getParent()->getParent();
736  Value *ResultOp = I.getOperand(0);
737
738  // If we are tracking the return value of this function, merge it in.
739  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
740    DenseMap<Function*, LatticeVal>::iterator TFRVI =
741      TrackedRetVals.find(F);
742    if (TFRVI != TrackedRetVals.end()) {
743      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
744      return;
745    }
746  }
747
748  // Handle functions that return multiple values.
749  if (!TrackedMultipleRetVals.empty()) {
750    if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
751      if (MRVFunctionsTracked.count(F))
752        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
753          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
754                       getStructValueState(ResultOp, i));
755
756  }
757}
758
759void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
760  SmallVector<bool, 16> SuccFeasible;
761  getFeasibleSuccessors(TI, SuccFeasible);
762
763  BasicBlock *BB = TI.getParent();
764
765  // Mark all feasible successors executable.
766  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
767    if (SuccFeasible[i])
768      markEdgeExecutable(BB, TI.getSuccessor(i));
769}
770
771void SCCPSolver::visitCastInst(CastInst &I) {
772  LatticeVal OpSt = getValueState(I.getOperand(0));
773  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
774    markOverdefined(&I);
775  else if (OpSt.isConstant()) {
776    // Fold the constant as we build.
777    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
778                                          I.getType(), DL);
779    if (isa<UndefValue>(C))
780      return;
781    // Propagate constant value
782    markConstant(&I, C);
783  }
784}
785
786
787void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
788  // If this returns a struct, mark all elements over defined, we don't track
789  // structs in structs.
790  if (EVI.getType()->isStructTy())
791    return markAnythingOverdefined(&EVI);
792
793  // If this is extracting from more than one level of struct, we don't know.
794  if (EVI.getNumIndices() != 1)
795    return markOverdefined(&EVI);
796
797  Value *AggVal = EVI.getAggregateOperand();
798  if (AggVal->getType()->isStructTy()) {
799    unsigned i = *EVI.idx_begin();
800    LatticeVal EltVal = getStructValueState(AggVal, i);
801    mergeInValue(getValueState(&EVI), &EVI, EltVal);
802  } else {
803    // Otherwise, must be extracting from an array.
804    return markOverdefined(&EVI);
805  }
806}
807
808void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
809  StructType *STy = dyn_cast<StructType>(IVI.getType());
810  if (!STy)
811    return markOverdefined(&IVI);
812
813  // If this has more than one index, we can't handle it, drive all results to
814  // undef.
815  if (IVI.getNumIndices() != 1)
816    return markAnythingOverdefined(&IVI);
817
818  Value *Aggr = IVI.getAggregateOperand();
819  unsigned Idx = *IVI.idx_begin();
820
821  // Compute the result based on what we're inserting.
822  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
823    // This passes through all values that aren't the inserted element.
824    if (i != Idx) {
825      LatticeVal EltVal = getStructValueState(Aggr, i);
826      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
827      continue;
828    }
829
830    Value *Val = IVI.getInsertedValueOperand();
831    if (Val->getType()->isStructTy())
832      // We don't track structs in structs.
833      markOverdefined(getStructValueState(&IVI, i), &IVI);
834    else {
835      LatticeVal InVal = getValueState(Val);
836      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
837    }
838  }
839}
840
841void SCCPSolver::visitSelectInst(SelectInst &I) {
842  // If this select returns a struct, just mark the result overdefined.
843  // TODO: We could do a lot better than this if code actually uses this.
844  if (I.getType()->isStructTy())
845    return markAnythingOverdefined(&I);
846
847  LatticeVal CondValue = getValueState(I.getCondition());
848  if (CondValue.isUnknown())
849    return;
850
851  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
852    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
853    mergeInValue(&I, getValueState(OpVal));
854    return;
855  }
856
857  // Otherwise, the condition is overdefined or a constant we can't evaluate.
858  // See if we can produce something better than overdefined based on the T/F
859  // value.
860  LatticeVal TVal = getValueState(I.getTrueValue());
861  LatticeVal FVal = getValueState(I.getFalseValue());
862
863  // select ?, C, C -> C.
864  if (TVal.isConstant() && FVal.isConstant() &&
865      TVal.getConstant() == FVal.getConstant())
866    return markConstant(&I, FVal.getConstant());
867
868  if (TVal.isUnknown())   // select ?, undef, X -> X.
869    return mergeInValue(&I, FVal);
870  if (FVal.isUnknown())   // select ?, X, undef -> X.
871    return mergeInValue(&I, TVal);
872  markOverdefined(&I);
873}
874
875// Handle Binary Operators.
876void SCCPSolver::visitBinaryOperator(Instruction &I) {
877  LatticeVal V1State = getValueState(I.getOperand(0));
878  LatticeVal V2State = getValueState(I.getOperand(1));
879
880  LatticeVal &IV = ValueState[&I];
881  if (IV.isOverdefined()) return;
882
883  if (V1State.isConstant() && V2State.isConstant()) {
884    Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
885                                    V2State.getConstant());
886    // X op Y -> undef.
887    if (isa<UndefValue>(C))
888      return;
889    return markConstant(IV, &I, C);
890  }
891
892  // If something is undef, wait for it to resolve.
893  if (!V1State.isOverdefined() && !V2State.isOverdefined())
894    return;
895
896  // Otherwise, one of our operands is overdefined.  Try to produce something
897  // better than overdefined with some tricks.
898
899  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
900  // operand is overdefined.
901  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
902    LatticeVal *NonOverdefVal = nullptr;
903    if (!V1State.isOverdefined())
904      NonOverdefVal = &V1State;
905    else if (!V2State.isOverdefined())
906      NonOverdefVal = &V2State;
907
908    if (NonOverdefVal) {
909      if (NonOverdefVal->isUnknown()) {
910        // Could annihilate value.
911        if (I.getOpcode() == Instruction::And)
912          markConstant(IV, &I, Constant::getNullValue(I.getType()));
913        else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
914          markConstant(IV, &I, Constant::getAllOnesValue(PT));
915        else
916          markConstant(IV, &I,
917                       Constant::getAllOnesValue(I.getType()));
918        return;
919      }
920
921      if (I.getOpcode() == Instruction::And) {
922        // X and 0 = 0
923        if (NonOverdefVal->getConstant()->isNullValue())
924          return markConstant(IV, &I, NonOverdefVal->getConstant());
925      } else {
926        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
927          if (CI->isAllOnesValue())     // X or -1 = -1
928            return markConstant(IV, &I, NonOverdefVal->getConstant());
929      }
930    }
931  }
932
933
934  markOverdefined(&I);
935}
936
937// Handle ICmpInst instruction.
938void SCCPSolver::visitCmpInst(CmpInst &I) {
939  LatticeVal V1State = getValueState(I.getOperand(0));
940  LatticeVal V2State = getValueState(I.getOperand(1));
941
942  LatticeVal &IV = ValueState[&I];
943  if (IV.isOverdefined()) return;
944
945  if (V1State.isConstant() && V2State.isConstant()) {
946    Constant *C = ConstantExpr::getCompare(
947        I.getPredicate(), V1State.getConstant(), V2State.getConstant());
948    if (isa<UndefValue>(C))
949      return;
950    return markConstant(IV, &I, C);
951  }
952
953  // If operands are still unknown, wait for it to resolve.
954  if (!V1State.isOverdefined() && !V2State.isOverdefined())
955    return;
956
957  markOverdefined(&I);
958}
959
960void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
961  // TODO : SCCP does not handle vectors properly.
962  return markOverdefined(&I);
963}
964
965void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
966  // TODO : SCCP does not handle vectors properly.
967  return markOverdefined(&I);
968}
969
970void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
971  // TODO : SCCP does not handle vectors properly.
972  return markOverdefined(&I);
973}
974
975// Handle getelementptr instructions.  If all operands are constants then we
976// can turn this into a getelementptr ConstantExpr.
977//
978void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
979  if (ValueState[&I].isOverdefined()) return;
980
981  SmallVector<Constant*, 8> Operands;
982  Operands.reserve(I.getNumOperands());
983
984  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
985    LatticeVal State = getValueState(I.getOperand(i));
986    if (State.isUnknown())
987      return;  // Operands are not resolved yet.
988
989    if (State.isOverdefined())
990      return markOverdefined(&I);
991
992    assert(State.isConstant() && "Unknown state!");
993    Operands.push_back(State.getConstant());
994  }
995
996  Constant *Ptr = Operands[0];
997  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
998  Constant *C =
999      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1000  if (isa<UndefValue>(C))
1001      return;
1002  markConstant(&I, C);
1003}
1004
1005void SCCPSolver::visitStoreInst(StoreInst &SI) {
1006  // If this store is of a struct, ignore it.
1007  if (SI.getOperand(0)->getType()->isStructTy())
1008    return;
1009
1010  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1011    return;
1012
1013  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1014  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1015  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1016
1017  // Get the value we are storing into the global, then merge it.
1018  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1019  if (I->second.isOverdefined())
1020    TrackedGlobals.erase(I);      // No need to keep tracking this!
1021}
1022
1023
1024// Handle load instructions.  If the operand is a constant pointer to a constant
1025// global, we can replace the load with the loaded constant value!
1026void SCCPSolver::visitLoadInst(LoadInst &I) {
1027  // If this load is of a struct, just mark the result overdefined.
1028  if (I.getType()->isStructTy())
1029    return markAnythingOverdefined(&I);
1030
1031  LatticeVal PtrVal = getValueState(I.getOperand(0));
1032  if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet!
1033
1034  LatticeVal &IV = ValueState[&I];
1035  if (IV.isOverdefined()) return;
1036
1037  if (!PtrVal.isConstant() || I.isVolatile())
1038    return markOverdefined(IV, &I);
1039
1040  Constant *Ptr = PtrVal.getConstant();
1041
1042  // load null is undefined.
1043  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1044    return;
1045
1046  // Transform load (constant global) into the value loaded.
1047  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1048    if (!TrackedGlobals.empty()) {
1049      // If we are tracking this global, merge in the known value for it.
1050      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1051        TrackedGlobals.find(GV);
1052      if (It != TrackedGlobals.end()) {
1053        mergeInValue(IV, &I, It->second);
1054        return;
1055      }
1056    }
1057  }
1058
1059  // Transform load from a constant into a constant if possible.
1060  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1061    if (isa<UndefValue>(C))
1062      return;
1063    return markConstant(IV, &I, C);
1064  }
1065
1066  // Otherwise we cannot say for certain what value this load will produce.
1067  // Bail out.
1068  markOverdefined(IV, &I);
1069}
1070
1071void SCCPSolver::visitCallSite(CallSite CS) {
1072  Function *F = CS.getCalledFunction();
1073  Instruction *I = CS.getInstruction();
1074
1075  // The common case is that we aren't tracking the callee, either because we
1076  // are not doing interprocedural analysis or the callee is indirect, or is
1077  // external.  Handle these cases first.
1078  if (!F || F->isDeclaration()) {
1079CallOverdefined:
1080    // Void return and not tracking callee, just bail.
1081    if (I->getType()->isVoidTy()) return;
1082
1083    // Otherwise, if we have a single return value case, and if the function is
1084    // a declaration, maybe we can constant fold it.
1085    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1086        canConstantFoldCallTo(F)) {
1087
1088      SmallVector<Constant*, 8> Operands;
1089      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1090           AI != E; ++AI) {
1091        LatticeVal State = getValueState(*AI);
1092
1093        if (State.isUnknown())
1094          return;  // Operands are not resolved yet.
1095        if (State.isOverdefined())
1096          return markOverdefined(I);
1097        assert(State.isConstant() && "Unknown state!");
1098        Operands.push_back(State.getConstant());
1099      }
1100
1101      if (getValueState(I).isOverdefined())
1102        return;
1103
1104      // If we can constant fold this, mark the result of the call as a
1105      // constant.
1106      if (Constant *C = ConstantFoldCall(F, Operands, TLI)) {
1107        // call -> undef.
1108        if (isa<UndefValue>(C))
1109          return;
1110        return markConstant(I, C);
1111      }
1112    }
1113
1114    // Otherwise, we don't know anything about this call, mark it overdefined.
1115    return markAnythingOverdefined(I);
1116  }
1117
1118  // If this is a local function that doesn't have its address taken, mark its
1119  // entry block executable and merge in the actual arguments to the call into
1120  // the formal arguments of the function.
1121  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1122    MarkBlockExecutable(&F->front());
1123
1124    // Propagate information from this call site into the callee.
1125    CallSite::arg_iterator CAI = CS.arg_begin();
1126    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1127         AI != E; ++AI, ++CAI) {
1128      // If this argument is byval, and if the function is not readonly, there
1129      // will be an implicit copy formed of the input aggregate.
1130      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1131        markOverdefined(&*AI);
1132        continue;
1133      }
1134
1135      if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1136        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1137          LatticeVal CallArg = getStructValueState(*CAI, i);
1138          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1139        }
1140      } else {
1141        mergeInValue(&*AI, getValueState(*CAI));
1142      }
1143    }
1144  }
1145
1146  // If this is a single/zero retval case, see if we're tracking the function.
1147  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1148    if (!MRVFunctionsTracked.count(F))
1149      goto CallOverdefined;  // Not tracking this callee.
1150
1151    // If we are tracking this callee, propagate the result of the function
1152    // into this call site.
1153    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1154      mergeInValue(getStructValueState(I, i), I,
1155                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1156  } else {
1157    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1158    if (TFRVI == TrackedRetVals.end())
1159      goto CallOverdefined;  // Not tracking this callee.
1160
1161    // If so, propagate the return value of the callee into this call result.
1162    mergeInValue(I, TFRVI->second);
1163  }
1164}
1165
1166void SCCPSolver::Solve() {
1167  // Process the work lists until they are empty!
1168  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1169         !OverdefinedInstWorkList.empty()) {
1170    // Process the overdefined instruction's work list first, which drives other
1171    // things to overdefined more quickly.
1172    while (!OverdefinedInstWorkList.empty()) {
1173      Value *I = OverdefinedInstWorkList.pop_back_val();
1174
1175      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1176
1177      // "I" got into the work list because it either made the transition from
1178      // bottom to constant, or to overdefined.
1179      //
1180      // Anything on this worklist that is overdefined need not be visited
1181      // since all of its users will have already been marked as overdefined
1182      // Update all of the users of this instruction's value.
1183      //
1184      for (User *U : I->users())
1185        if (Instruction *UI = dyn_cast<Instruction>(U))
1186          OperandChangedState(UI);
1187    }
1188
1189    // Process the instruction work list.
1190    while (!InstWorkList.empty()) {
1191      Value *I = InstWorkList.pop_back_val();
1192
1193      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1194
1195      // "I" got into the work list because it made the transition from undef to
1196      // constant.
1197      //
1198      // Anything on this worklist that is overdefined need not be visited
1199      // since all of its users will have already been marked as overdefined.
1200      // Update all of the users of this instruction's value.
1201      //
1202      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1203        for (User *U : I->users())
1204          if (Instruction *UI = dyn_cast<Instruction>(U))
1205            OperandChangedState(UI);
1206    }
1207
1208    // Process the basic block work list.
1209    while (!BBWorkList.empty()) {
1210      BasicBlock *BB = BBWorkList.back();
1211      BBWorkList.pop_back();
1212
1213      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1214
1215      // Notify all instructions in this basic block that they are newly
1216      // executable.
1217      visit(BB);
1218    }
1219  }
1220}
1221
1222/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1223/// that branches on undef values cannot reach any of their successors.
1224/// However, this is not a safe assumption.  After we solve dataflow, this
1225/// method should be use to handle this.  If this returns true, the solver
1226/// should be rerun.
1227///
1228/// This method handles this by finding an unresolved branch and marking it one
1229/// of the edges from the block as being feasible, even though the condition
1230/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1231/// CFG and only slightly pessimizes the analysis results (by marking one,
1232/// potentially infeasible, edge feasible).  This cannot usefully modify the
1233/// constraints on the condition of the branch, as that would impact other users
1234/// of the value.
1235///
1236/// This scan also checks for values that use undefs, whose results are actually
1237/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1238/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1239/// even if X isn't defined.
1240bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1241  for (BasicBlock &BB : F) {
1242    if (!BBExecutable.count(&BB))
1243      continue;
1244
1245    for (Instruction &I : BB) {
1246      // Look for instructions which produce undef values.
1247      if (I.getType()->isVoidTy()) continue;
1248
1249      if (StructType *STy = dyn_cast<StructType>(I.getType())) {
1250        // Only a few things that can be structs matter for undef.
1251
1252        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1253        if (CallSite CS = CallSite(&I))
1254          if (Function *F = CS.getCalledFunction())
1255            if (MRVFunctionsTracked.count(F))
1256              continue;
1257
1258        // extractvalue and insertvalue don't need to be marked; they are
1259        // tracked as precisely as their operands.
1260        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1261          continue;
1262
1263        // Send the results of everything else to overdefined.  We could be
1264        // more precise than this but it isn't worth bothering.
1265        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1266          LatticeVal &LV = getStructValueState(&I, i);
1267          if (LV.isUnknown())
1268            markOverdefined(LV, &I);
1269        }
1270        continue;
1271      }
1272
1273      LatticeVal &LV = getValueState(&I);
1274      if (!LV.isUnknown()) continue;
1275
1276      // extractvalue is safe; check here because the argument is a struct.
1277      if (isa<ExtractValueInst>(I))
1278        continue;
1279
1280      // Compute the operand LatticeVals, for convenience below.
1281      // Anything taking a struct is conservatively assumed to require
1282      // overdefined markings.
1283      if (I.getOperand(0)->getType()->isStructTy()) {
1284        markOverdefined(&I);
1285        return true;
1286      }
1287      LatticeVal Op0LV = getValueState(I.getOperand(0));
1288      LatticeVal Op1LV;
1289      if (I.getNumOperands() == 2) {
1290        if (I.getOperand(1)->getType()->isStructTy()) {
1291          markOverdefined(&I);
1292          return true;
1293        }
1294
1295        Op1LV = getValueState(I.getOperand(1));
1296      }
1297      // If this is an instructions whose result is defined even if the input is
1298      // not fully defined, propagate the information.
1299      Type *ITy = I.getType();
1300      switch (I.getOpcode()) {
1301      case Instruction::Add:
1302      case Instruction::Sub:
1303      case Instruction::Trunc:
1304      case Instruction::FPTrunc:
1305      case Instruction::BitCast:
1306        break; // Any undef -> undef
1307      case Instruction::FSub:
1308      case Instruction::FAdd:
1309      case Instruction::FMul:
1310      case Instruction::FDiv:
1311      case Instruction::FRem:
1312        // Floating-point binary operation: be conservative.
1313        if (Op0LV.isUnknown() && Op1LV.isUnknown())
1314          markForcedConstant(&I, Constant::getNullValue(ITy));
1315        else
1316          markOverdefined(&I);
1317        return true;
1318      case Instruction::ZExt:
1319      case Instruction::SExt:
1320      case Instruction::FPToUI:
1321      case Instruction::FPToSI:
1322      case Instruction::FPExt:
1323      case Instruction::PtrToInt:
1324      case Instruction::IntToPtr:
1325      case Instruction::SIToFP:
1326      case Instruction::UIToFP:
1327        // undef -> 0; some outputs are impossible
1328        markForcedConstant(&I, Constant::getNullValue(ITy));
1329        return true;
1330      case Instruction::Mul:
1331      case Instruction::And:
1332        // Both operands undef -> undef
1333        if (Op0LV.isUnknown() && Op1LV.isUnknown())
1334          break;
1335        // undef * X -> 0.   X could be zero.
1336        // undef & X -> 0.   X could be zero.
1337        markForcedConstant(&I, Constant::getNullValue(ITy));
1338        return true;
1339
1340      case Instruction::Or:
1341        // Both operands undef -> undef
1342        if (Op0LV.isUnknown() && Op1LV.isUnknown())
1343          break;
1344        // undef | X -> -1.   X could be -1.
1345        markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1346        return true;
1347
1348      case Instruction::Xor:
1349        // undef ^ undef -> 0; strictly speaking, this is not strictly
1350        // necessary, but we try to be nice to people who expect this
1351        // behavior in simple cases
1352        if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
1353          markForcedConstant(&I, Constant::getNullValue(ITy));
1354          return true;
1355        }
1356        // undef ^ X -> undef
1357        break;
1358
1359      case Instruction::SDiv:
1360      case Instruction::UDiv:
1361      case Instruction::SRem:
1362      case Instruction::URem:
1363        // X / undef -> undef.  No change.
1364        // X % undef -> undef.  No change.
1365        if (Op1LV.isUnknown()) break;
1366
1367        // X / 0 -> undef.  No change.
1368        // X % 0 -> undef.  No change.
1369        if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
1370          break;
1371
1372        // undef / X -> 0.   X could be maxint.
1373        // undef % X -> 0.   X could be 1.
1374        markForcedConstant(&I, Constant::getNullValue(ITy));
1375        return true;
1376
1377      case Instruction::AShr:
1378        // X >>a undef -> undef.
1379        if (Op1LV.isUnknown()) break;
1380
1381        // Shifting by the bitwidth or more is undefined.
1382        if (Op1LV.isConstant()) {
1383          if (auto *ShiftAmt = Op1LV.getConstantInt())
1384            if (ShiftAmt->getLimitedValue() >=
1385                ShiftAmt->getType()->getScalarSizeInBits())
1386              break;
1387        }
1388
1389        // undef >>a X -> all ones
1390        markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1391        return true;
1392      case Instruction::LShr:
1393      case Instruction::Shl:
1394        // X << undef -> undef.
1395        // X >> undef -> undef.
1396        if (Op1LV.isUnknown()) break;
1397
1398        // Shifting by the bitwidth or more is undefined.
1399        if (Op1LV.isConstant()) {
1400          if (auto *ShiftAmt = Op1LV.getConstantInt())
1401            if (ShiftAmt->getLimitedValue() >=
1402                ShiftAmt->getType()->getScalarSizeInBits())
1403              break;
1404        }
1405
1406        // undef << X -> 0
1407        // undef >> X -> 0
1408        markForcedConstant(&I, Constant::getNullValue(ITy));
1409        return true;
1410      case Instruction::Select:
1411        Op1LV = getValueState(I.getOperand(1));
1412        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1413        if (Op0LV.isUnknown()) {
1414          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1415            Op1LV = getValueState(I.getOperand(2));
1416        } else if (Op1LV.isUnknown()) {
1417          // c ? undef : undef -> undef.  No change.
1418          Op1LV = getValueState(I.getOperand(2));
1419          if (Op1LV.isUnknown())
1420            break;
1421          // Otherwise, c ? undef : x -> x.
1422        } else {
1423          // Leave Op1LV as Operand(1)'s LatticeValue.
1424        }
1425
1426        if (Op1LV.isConstant())
1427          markForcedConstant(&I, Op1LV.getConstant());
1428        else
1429          markOverdefined(&I);
1430        return true;
1431      case Instruction::Load:
1432        // A load here means one of two things: a load of undef from a global,
1433        // a load from an unknown pointer.  Either way, having it return undef
1434        // is okay.
1435        break;
1436      case Instruction::ICmp:
1437        // X == undef -> undef.  Other comparisons get more complicated.
1438        if (cast<ICmpInst>(&I)->isEquality())
1439          break;
1440        markOverdefined(&I);
1441        return true;
1442      case Instruction::Call:
1443      case Instruction::Invoke: {
1444        // There are two reasons a call can have an undef result
1445        // 1. It could be tracked.
1446        // 2. It could be constant-foldable.
1447        // Because of the way we solve return values, tracked calls must
1448        // never be marked overdefined in ResolvedUndefsIn.
1449        if (Function *F = CallSite(&I).getCalledFunction())
1450          if (TrackedRetVals.count(F))
1451            break;
1452
1453        // If the call is constant-foldable, we mark it overdefined because
1454        // we do not know what return values are valid.
1455        markOverdefined(&I);
1456        return true;
1457      }
1458      default:
1459        // If we don't know what should happen here, conservatively mark it
1460        // overdefined.
1461        markOverdefined(&I);
1462        return true;
1463      }
1464    }
1465
1466    // Check to see if we have a branch or switch on an undefined value.  If so
1467    // we force the branch to go one way or the other to make the successor
1468    // values live.  It doesn't really matter which way we force it.
1469    TerminatorInst *TI = BB.getTerminator();
1470    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1471      if (!BI->isConditional()) continue;
1472      if (!getValueState(BI->getCondition()).isUnknown())
1473        continue;
1474
1475      // If the input to SCCP is actually branch on undef, fix the undef to
1476      // false.
1477      if (isa<UndefValue>(BI->getCondition())) {
1478        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1479        markEdgeExecutable(&BB, TI->getSuccessor(1));
1480        return true;
1481      }
1482
1483      // Otherwise, it is a branch on a symbolic value which is currently
1484      // considered to be undef.  Handle this by forcing the input value to the
1485      // branch to false.
1486      markForcedConstant(BI->getCondition(),
1487                         ConstantInt::getFalse(TI->getContext()));
1488      return true;
1489    }
1490
1491    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1492      if (!SI->getNumCases())
1493        continue;
1494      if (!getValueState(SI->getCondition()).isUnknown())
1495        continue;
1496
1497      // If the input to SCCP is actually switch on undef, fix the undef to
1498      // the first constant.
1499      if (isa<UndefValue>(SI->getCondition())) {
1500        SI->setCondition(SI->case_begin().getCaseValue());
1501        markEdgeExecutable(&BB, SI->case_begin().getCaseSuccessor());
1502        return true;
1503      }
1504
1505      markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1506      return true;
1507    }
1508  }
1509
1510  return false;
1511}
1512
1513static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1514  Constant *Const = nullptr;
1515  if (V->getType()->isStructTy()) {
1516    std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
1517    if (std::any_of(IVs.begin(), IVs.end(),
1518                    [](LatticeVal &LV) { return LV.isOverdefined(); }))
1519      return false;
1520    std::vector<Constant *> ConstVals;
1521    StructType *ST = dyn_cast<StructType>(V->getType());
1522    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1523      LatticeVal V = IVs[i];
1524      ConstVals.push_back(V.isConstant()
1525                              ? V.getConstant()
1526                              : UndefValue::get(ST->getElementType(i)));
1527    }
1528    Const = ConstantStruct::get(ST, ConstVals);
1529  } else {
1530    LatticeVal IV = Solver.getLatticeValueFor(V);
1531    if (IV.isOverdefined())
1532      return false;
1533    Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
1534  }
1535  assert(Const && "Constant is nullptr here!");
1536  DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
1537
1538  // Replaces all of the uses of a variable with uses of the constant.
1539  V->replaceAllUsesWith(Const);
1540  return true;
1541}
1542
1543static bool tryToReplaceInstWithConstant(SCCPSolver &Solver, Instruction *Inst,
1544                                         bool shouldEraseFromParent) {
1545  if (!tryToReplaceWithConstant(Solver, Inst))
1546    return false;
1547
1548  // Delete the instruction.
1549  if (shouldEraseFromParent)
1550    Inst->eraseFromParent();
1551  return true;
1552}
1553
1554// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1555// and return true if the function was modified.
1556//
1557static bool runSCCP(Function &F, const DataLayout &DL,
1558                    const TargetLibraryInfo *TLI) {
1559  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1560  SCCPSolver Solver(DL, TLI);
1561
1562  // Mark the first block of the function as being executable.
1563  Solver.MarkBlockExecutable(&F.front());
1564
1565  // Mark all arguments to the function as being overdefined.
1566  for (Argument &AI : F.args())
1567    Solver.markAnythingOverdefined(&AI);
1568
1569  // Solve for constants.
1570  bool ResolvedUndefs = true;
1571  while (ResolvedUndefs) {
1572    Solver.Solve();
1573    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1574    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1575  }
1576
1577  bool MadeChanges = false;
1578
1579  // If we decided that there are basic blocks that are dead in this function,
1580  // delete their contents now.  Note that we cannot actually delete the blocks,
1581  // as we cannot modify the CFG of the function.
1582
1583  for (BasicBlock &BB : F) {
1584    if (!Solver.isBlockExecutable(&BB)) {
1585      DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
1586
1587      ++NumDeadBlocks;
1588      NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
1589
1590      MadeChanges = true;
1591      continue;
1592    }
1593
1594    // Iterate over all of the instructions in a function, replacing them with
1595    // constants if we have found them to be of constant values.
1596    //
1597    for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
1598      Instruction *Inst = &*BI++;
1599      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1600        continue;
1601
1602      if (tryToReplaceInstWithConstant(Solver, Inst,
1603                                       true /* shouldEraseFromParent */)) {
1604        // Hey, we just changed something!
1605        MadeChanges = true;
1606        ++NumInstRemoved;
1607      }
1608    }
1609  }
1610
1611  return MadeChanges;
1612}
1613
1614PreservedAnalyses SCCPPass::run(Function &F, AnalysisManager<Function> &AM) {
1615  const DataLayout &DL = F.getParent()->getDataLayout();
1616  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1617  if (!runSCCP(F, DL, &TLI))
1618    return PreservedAnalyses::all();
1619
1620  auto PA = PreservedAnalyses();
1621  PA.preserve<GlobalsAA>();
1622  return PA;
1623}
1624
1625namespace {
1626//===--------------------------------------------------------------------===//
1627//
1628/// SCCP Class - This class uses the SCCPSolver to implement a per-function
1629/// Sparse Conditional Constant Propagator.
1630///
1631class SCCPLegacyPass : public FunctionPass {
1632public:
1633  void getAnalysisUsage(AnalysisUsage &AU) const override {
1634    AU.addRequired<TargetLibraryInfoWrapperPass>();
1635    AU.addPreserved<GlobalsAAWrapperPass>();
1636  }
1637  static char ID; // Pass identification, replacement for typeid
1638  SCCPLegacyPass() : FunctionPass(ID) {
1639    initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1640  }
1641
1642  // runOnFunction - Run the Sparse Conditional Constant Propagation
1643  // algorithm, and return true if the function was modified.
1644  //
1645  bool runOnFunction(Function &F) override {
1646    if (skipFunction(F))
1647      return false;
1648    const DataLayout &DL = F.getParent()->getDataLayout();
1649    const TargetLibraryInfo *TLI =
1650        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1651    return runSCCP(F, DL, TLI);
1652  }
1653};
1654} // end anonymous namespace
1655
1656char SCCPLegacyPass::ID = 0;
1657INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1658                      "Sparse Conditional Constant Propagation", false, false)
1659INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1660INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1661                    "Sparse Conditional Constant Propagation", false, false)
1662
1663// createSCCPPass - This is the public interface to this file.
1664FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1665
1666static bool AddressIsTaken(const GlobalValue *GV) {
1667  // Delete any dead constantexpr klingons.
1668  GV->removeDeadConstantUsers();
1669
1670  for (const Use &U : GV->uses()) {
1671    const User *UR = U.getUser();
1672    if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1673      if (SI->getOperand(0) == GV || SI->isVolatile())
1674        return true;  // Storing addr of GV.
1675    } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1676      // Make sure we are calling the function, not passing the address.
1677      ImmutableCallSite CS(cast<Instruction>(UR));
1678      if (!CS.isCallee(&U))
1679        return true;
1680    } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1681      if (LI->isVolatile())
1682        return true;
1683    } else if (isa<BlockAddress>(UR)) {
1684      // blockaddress doesn't take the address of the function, it takes addr
1685      // of label.
1686    } else {
1687      return true;
1688    }
1689  }
1690  return false;
1691}
1692
1693static bool runIPSCCP(Module &M, const DataLayout &DL,
1694                      const TargetLibraryInfo *TLI) {
1695  SCCPSolver Solver(DL, TLI);
1696
1697  // AddressTakenFunctions - This set keeps track of the address-taken functions
1698  // that are in the input.  As IPSCCP runs through and simplifies code,
1699  // functions that were address taken can end up losing their
1700  // address-taken-ness.  Because of this, we keep track of their addresses from
1701  // the first pass so we can use them for the later simplification pass.
1702  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1703
1704  // Loop over all functions, marking arguments to those with their addresses
1705  // taken or that are external as overdefined.
1706  //
1707  for (Function &F : M) {
1708    if (F.isDeclaration())
1709      continue;
1710
1711    // If this is an exact definition of this function, then we can propagate
1712    // information about its result into callsites of it.
1713    if (F.hasExactDefinition())
1714      Solver.AddTrackedFunction(&F);
1715
1716    // If this function only has direct calls that we can see, we can track its
1717    // arguments and return value aggressively, and can assume it is not called
1718    // unless we see evidence to the contrary.
1719    if (F.hasLocalLinkage()) {
1720      if (AddressIsTaken(&F))
1721        AddressTakenFunctions.insert(&F);
1722      else {
1723        Solver.AddArgumentTrackedFunction(&F);
1724        continue;
1725      }
1726    }
1727
1728    // Assume the function is called.
1729    Solver.MarkBlockExecutable(&F.front());
1730
1731    // Assume nothing about the incoming arguments.
1732    for (Argument &AI : F.args())
1733      Solver.markAnythingOverdefined(&AI);
1734  }
1735
1736  // Loop over global variables.  We inform the solver about any internal global
1737  // variables that do not have their 'addresses taken'.  If they don't have
1738  // their addresses taken, we can propagate constants through them.
1739  for (GlobalVariable &G : M.globals())
1740    if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G))
1741      Solver.TrackValueOfGlobalVariable(&G);
1742
1743  // Solve for constants.
1744  bool ResolvedUndefs = true;
1745  while (ResolvedUndefs) {
1746    Solver.Solve();
1747
1748    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1749    ResolvedUndefs = false;
1750    for (Function &F : M)
1751      ResolvedUndefs |= Solver.ResolvedUndefsIn(F);
1752  }
1753
1754  bool MadeChanges = false;
1755
1756  // Iterate over all of the instructions in the module, replacing them with
1757  // constants if we have found them to be of constant values.
1758  //
1759  SmallVector<BasicBlock*, 512> BlocksToErase;
1760
1761  for (Function &F : M) {
1762    if (F.isDeclaration())
1763      continue;
1764
1765    if (Solver.isBlockExecutable(&F.front())) {
1766      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
1767           ++AI) {
1768        if (AI->use_empty())
1769          continue;
1770        if (tryToReplaceWithConstant(Solver, &*AI))
1771          ++IPNumArgsElimed;
1772      }
1773    }
1774
1775    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1776      if (!Solver.isBlockExecutable(&*BB)) {
1777        DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1778
1779        ++NumDeadBlocks;
1780        NumInstRemoved +=
1781            changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false);
1782
1783        MadeChanges = true;
1784
1785        if (&*BB != &F.front())
1786          BlocksToErase.push_back(&*BB);
1787        continue;
1788      }
1789
1790      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1791        Instruction *Inst = &*BI++;
1792        if (Inst->getType()->isVoidTy())
1793          continue;
1794        if (tryToReplaceInstWithConstant(
1795                Solver, Inst,
1796                !isa<CallInst>(Inst) &&
1797                    !isa<TerminatorInst>(Inst) /* shouldEraseFromParent */)) {
1798          // Hey, we just changed something!
1799          MadeChanges = true;
1800          ++IPNumInstRemoved;
1801        }
1802      }
1803    }
1804
1805    // Now that all instructions in the function are constant folded, erase dead
1806    // blocks, because we can now use ConstantFoldTerminator to get rid of
1807    // in-edges.
1808    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1809      // If there are any PHI nodes in this successor, drop entries for BB now.
1810      BasicBlock *DeadBB = BlocksToErase[i];
1811      for (Value::user_iterator UI = DeadBB->user_begin(),
1812                                UE = DeadBB->user_end();
1813           UI != UE;) {
1814        // Grab the user and then increment the iterator early, as the user
1815        // will be deleted. Step past all adjacent uses from the same user.
1816        Instruction *I = dyn_cast<Instruction>(*UI);
1817        do { ++UI; } while (UI != UE && *UI == I);
1818
1819        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1820        if (!I) continue;
1821
1822        bool Folded = ConstantFoldTerminator(I->getParent());
1823        if (!Folded) {
1824          // The constant folder may not have been able to fold the terminator
1825          // if this is a branch or switch on undef.  Fold it manually as a
1826          // branch to the first successor.
1827#ifndef NDEBUG
1828          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1829            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1830                   "Branch should be foldable!");
1831          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1832            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1833          } else {
1834            llvm_unreachable("Didn't fold away reference to block!");
1835          }
1836#endif
1837
1838          // Make this an uncond branch to the first successor.
1839          TerminatorInst *TI = I->getParent()->getTerminator();
1840          BranchInst::Create(TI->getSuccessor(0), TI);
1841
1842          // Remove entries in successor phi nodes to remove edges.
1843          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1844            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1845
1846          // Remove the old terminator.
1847          TI->eraseFromParent();
1848        }
1849      }
1850
1851      // Finally, delete the basic block.
1852      F.getBasicBlockList().erase(DeadBB);
1853    }
1854    BlocksToErase.clear();
1855  }
1856
1857  // If we inferred constant or undef return values for a function, we replaced
1858  // all call uses with the inferred value.  This means we don't need to bother
1859  // actually returning anything from the function.  Replace all return
1860  // instructions with return undef.
1861  //
1862  // Do this in two stages: first identify the functions we should process, then
1863  // actually zap their returns.  This is important because we can only do this
1864  // if the address of the function isn't taken.  In cases where a return is the
1865  // last use of a function, the order of processing functions would affect
1866  // whether other functions are optimizable.
1867  SmallVector<ReturnInst*, 8> ReturnsToZap;
1868
1869  // TODO: Process multiple value ret instructions also.
1870  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1871  for (const auto &I : RV) {
1872    Function *F = I.first;
1873    if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
1874      continue;
1875
1876    // We can only do this if we know that nothing else can call the function.
1877    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1878      continue;
1879
1880    for (BasicBlock &BB : *F)
1881      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1882        if (!isa<UndefValue>(RI->getOperand(0)))
1883          ReturnsToZap.push_back(RI);
1884  }
1885
1886  // Zap all returns which we've identified as zap to change.
1887  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1888    Function *F = ReturnsToZap[i]->getParent()->getParent();
1889    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1890  }
1891
1892  // If we inferred constant or undef values for globals variables, we can
1893  // delete the global and any stores that remain to it.
1894  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1895  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1896         E = TG.end(); I != E; ++I) {
1897    GlobalVariable *GV = I->first;
1898    assert(!I->second.isOverdefined() &&
1899           "Overdefined values should have been taken out of the map!");
1900    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1901    while (!GV->use_empty()) {
1902      StoreInst *SI = cast<StoreInst>(GV->user_back());
1903      SI->eraseFromParent();
1904    }
1905    M.getGlobalList().erase(GV);
1906    ++IPNumGlobalConst;
1907  }
1908
1909  return MadeChanges;
1910}
1911
1912PreservedAnalyses IPSCCPPass::run(Module &M, AnalysisManager<Module> &AM) {
1913  const DataLayout &DL = M.getDataLayout();
1914  auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
1915  if (!runIPSCCP(M, DL, &TLI))
1916    return PreservedAnalyses::all();
1917  return PreservedAnalyses::none();
1918}
1919
1920namespace {
1921//===--------------------------------------------------------------------===//
1922//
1923/// IPSCCP Class - This class implements interprocedural Sparse Conditional
1924/// Constant Propagation.
1925///
1926class IPSCCPLegacyPass : public ModulePass {
1927public:
1928  static char ID;
1929
1930  IPSCCPLegacyPass() : ModulePass(ID) {
1931    initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1932  }
1933
1934  bool runOnModule(Module &M) override {
1935    if (skipModule(M))
1936      return false;
1937    const DataLayout &DL = M.getDataLayout();
1938    const TargetLibraryInfo *TLI =
1939        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1940    return runIPSCCP(M, DL, TLI);
1941  }
1942
1943  void getAnalysisUsage(AnalysisUsage &AU) const override {
1944    AU.addRequired<TargetLibraryInfoWrapperPass>();
1945  }
1946};
1947} // end anonymous namespace
1948
1949char IPSCCPLegacyPass::ID = 0;
1950INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp",
1951                      "Interprocedural Sparse Conditional Constant Propagation",
1952                      false, false)
1953INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1954INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp",
1955                    "Interprocedural Sparse Conditional Constant Propagation",
1956                    false, false)
1957
1958// createIPSCCPPass - This is the public interface to this file.
1959ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); }
1960