1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11// and generates target-independent LLVM-IR. 12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13// of instructions in order to estimate the profitability of vectorization. 14// 15// The loop vectorizer combines consecutive loop iterations into a single 16// 'wide' iteration. After this transformation the index is incremented 17// by the SIMD vector width, and not by one. 18// 19// This pass has three parts: 20// 1. The main loop pass that drives the different parts. 21// 2. LoopVectorizationLegality - A unit that checks for the legality 22// of the vectorization. 23// 3. InnerLoopVectorizer - A unit that performs the actual 24// widening of instructions. 25// 4. LoopVectorizationCostModel - A unit that checks for the profitability 26// of vectorization. It decides on the optimal vector width, which 27// can be one, if vectorization is not profitable. 28// 29//===----------------------------------------------------------------------===// 30// 31// The reduction-variable vectorization is based on the paper: 32// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33// 34// Variable uniformity checks are inspired by: 35// Karrenberg, R. and Hack, S. Whole Function Vectorization. 36// 37// The interleaved access vectorization is based on the paper: 38// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39// Data for SIMD 40// 41// Other ideas/concepts are from: 42// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43// 44// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45// Vectorizing Compilers. 46// 47//===----------------------------------------------------------------------===// 48 49#include "llvm/Transforms/Vectorize/LoopVectorize.h" 50#include "llvm/ADT/DenseMap.h" 51#include "llvm/ADT/Hashing.h" 52#include "llvm/ADT/MapVector.h" 53#include "llvm/ADT/SetVector.h" 54#include "llvm/ADT/SmallPtrSet.h" 55#include "llvm/ADT/SmallSet.h" 56#include "llvm/ADT/SmallVector.h" 57#include "llvm/ADT/Statistic.h" 58#include "llvm/ADT/StringExtras.h" 59#include "llvm/Analysis/CodeMetrics.h" 60#include "llvm/Analysis/GlobalsModRef.h" 61#include "llvm/Analysis/LoopInfo.h" 62#include "llvm/Analysis/LoopIterator.h" 63#include "llvm/Analysis/LoopPass.h" 64#include "llvm/Analysis/ScalarEvolutionExpander.h" 65#include "llvm/Analysis/ScalarEvolutionExpressions.h" 66#include "llvm/Analysis/ValueTracking.h" 67#include "llvm/Analysis/VectorUtils.h" 68#include "llvm/IR/Constants.h" 69#include "llvm/IR/DataLayout.h" 70#include "llvm/IR/DebugInfo.h" 71#include "llvm/IR/DerivedTypes.h" 72#include "llvm/IR/DiagnosticInfo.h" 73#include "llvm/IR/Dominators.h" 74#include "llvm/IR/Function.h" 75#include "llvm/IR/IRBuilder.h" 76#include "llvm/IR/Instructions.h" 77#include "llvm/IR/IntrinsicInst.h" 78#include "llvm/IR/LLVMContext.h" 79#include "llvm/IR/Module.h" 80#include "llvm/IR/PatternMatch.h" 81#include "llvm/IR/Type.h" 82#include "llvm/IR/Value.h" 83#include "llvm/IR/ValueHandle.h" 84#include "llvm/IR/Verifier.h" 85#include "llvm/Pass.h" 86#include "llvm/Support/BranchProbability.h" 87#include "llvm/Support/CommandLine.h" 88#include "llvm/Support/Debug.h" 89#include "llvm/Support/raw_ostream.h" 90#include "llvm/Transforms/Scalar.h" 91#include "llvm/Transforms/Utils/BasicBlockUtils.h" 92#include "llvm/Transforms/Utils/Local.h" 93#include "llvm/Transforms/Utils/LoopUtils.h" 94#include "llvm/Transforms/Utils/LoopVersioning.h" 95#include "llvm/Transforms/Vectorize.h" 96#include <algorithm> 97#include <map> 98#include <tuple> 99 100using namespace llvm; 101using namespace llvm::PatternMatch; 102 103#define LV_NAME "loop-vectorize" 104#define DEBUG_TYPE LV_NAME 105 106STATISTIC(LoopsVectorized, "Number of loops vectorized"); 107STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 108 109static cl::opt<bool> 110 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 111 cl::desc("Enable if-conversion during vectorization.")); 112 113/// We don't vectorize loops with a known constant trip count below this number. 114static cl::opt<unsigned> TinyTripCountVectorThreshold( 115 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 116 cl::desc("Don't vectorize loops with a constant " 117 "trip count that is smaller than this " 118 "value.")); 119 120static cl::opt<bool> MaximizeBandwidth( 121 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 122 cl::desc("Maximize bandwidth when selecting vectorization factor which " 123 "will be determined by the smallest type in loop.")); 124 125static cl::opt<bool> EnableInterleavedMemAccesses( 126 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 127 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 128 129/// Maximum factor for an interleaved memory access. 130static cl::opt<unsigned> MaxInterleaveGroupFactor( 131 "max-interleave-group-factor", cl::Hidden, 132 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 133 cl::init(8)); 134 135/// We don't interleave loops with a known constant trip count below this 136/// number. 137static const unsigned TinyTripCountInterleaveThreshold = 128; 138 139static cl::opt<unsigned> ForceTargetNumScalarRegs( 140 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 141 cl::desc("A flag that overrides the target's number of scalar registers.")); 142 143static cl::opt<unsigned> ForceTargetNumVectorRegs( 144 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of vector registers.")); 146 147/// Maximum vectorization interleave count. 148static const unsigned MaxInterleaveFactor = 16; 149 150static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 151 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's max interleave factor for " 153 "scalar loops.")); 154 155static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 156 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "vectorized loops.")); 159 160static cl::opt<unsigned> ForceTargetInstructionCost( 161 "force-target-instruction-cost", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's expected cost for " 163 "an instruction to a single constant value. Mostly " 164 "useful for getting consistent testing.")); 165 166static cl::opt<unsigned> SmallLoopCost( 167 "small-loop-cost", cl::init(20), cl::Hidden, 168 cl::desc( 169 "The cost of a loop that is considered 'small' by the interleaver.")); 170 171static cl::opt<bool> LoopVectorizeWithBlockFrequency( 172 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 173 cl::desc("Enable the use of the block frequency analysis to access PGO " 174 "heuristics minimizing code growth in cold regions and being more " 175 "aggressive in hot regions.")); 176 177// Runtime interleave loops for load/store throughput. 178static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 179 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 180 cl::desc( 181 "Enable runtime interleaving until load/store ports are saturated")); 182 183/// The number of stores in a loop that are allowed to need predication. 184static cl::opt<unsigned> NumberOfStoresToPredicate( 185 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 186 cl::desc("Max number of stores to be predicated behind an if.")); 187 188static cl::opt<bool> EnableIndVarRegisterHeur( 189 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 190 cl::desc("Count the induction variable only once when interleaving")); 191 192static cl::opt<bool> EnableCondStoresVectorization( 193 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 194 cl::desc("Enable if predication of stores during vectorization.")); 195 196static cl::opt<unsigned> MaxNestedScalarReductionIC( 197 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 198 cl::desc("The maximum interleave count to use when interleaving a scalar " 199 "reduction in a nested loop.")); 200 201static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 207 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 208 cl::desc("The maximum number of SCEV checks allowed.")); 209 210static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 211 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed with a " 213 "vectorize(enable) pragma")); 214 215namespace { 216 217// Forward declarations. 218class LoopVectorizeHints; 219class LoopVectorizationLegality; 220class LoopVectorizationCostModel; 221class LoopVectorizationRequirements; 222 223/// \brief This modifies LoopAccessReport to initialize message with 224/// loop-vectorizer-specific part. 225class VectorizationReport : public LoopAccessReport { 226public: 227 VectorizationReport(Instruction *I = nullptr) 228 : LoopAccessReport("loop not vectorized: ", I) {} 229 230 /// \brief This allows promotion of the loop-access analysis report into the 231 /// loop-vectorizer report. It modifies the message to add the 232 /// loop-vectorizer-specific part of the message. 233 explicit VectorizationReport(const LoopAccessReport &R) 234 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 235 R.getInstr()) {} 236}; 237 238/// A helper function for converting Scalar types to vector types. 239/// If the incoming type is void, we return void. If the VF is 1, we return 240/// the scalar type. 241static Type *ToVectorTy(Type *Scalar, unsigned VF) { 242 if (Scalar->isVoidTy() || VF == 1) 243 return Scalar; 244 return VectorType::get(Scalar, VF); 245} 246 247/// A helper function that returns GEP instruction and knows to skip a 248/// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 249/// pointee types of the 'bitcast' have the same size. 250/// For example: 251/// bitcast double** %var to i64* - can be skipped 252/// bitcast double** %var to i8* - can not 253static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 254 255 if (isa<GetElementPtrInst>(Ptr)) 256 return cast<GetElementPtrInst>(Ptr); 257 258 if (isa<BitCastInst>(Ptr) && 259 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 260 Type *BitcastTy = Ptr->getType(); 261 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 262 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 263 return nullptr; 264 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 265 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 266 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 267 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 268 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 269 } 270 return nullptr; 271} 272 273/// InnerLoopVectorizer vectorizes loops which contain only one basic 274/// block to a specified vectorization factor (VF). 275/// This class performs the widening of scalars into vectors, or multiple 276/// scalars. This class also implements the following features: 277/// * It inserts an epilogue loop for handling loops that don't have iteration 278/// counts that are known to be a multiple of the vectorization factor. 279/// * It handles the code generation for reduction variables. 280/// * Scalarization (implementation using scalars) of un-vectorizable 281/// instructions. 282/// InnerLoopVectorizer does not perform any vectorization-legality 283/// checks, and relies on the caller to check for the different legality 284/// aspects. The InnerLoopVectorizer relies on the 285/// LoopVectorizationLegality class to provide information about the induction 286/// and reduction variables that were found to a given vectorization factor. 287class InnerLoopVectorizer { 288public: 289 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 290 LoopInfo *LI, DominatorTree *DT, 291 const TargetLibraryInfo *TLI, 292 const TargetTransformInfo *TTI, AssumptionCache *AC, 293 unsigned VecWidth, unsigned UnrollFactor) 294 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 295 AC(AC), VF(VecWidth), UF(UnrollFactor), 296 Builder(PSE.getSE()->getContext()), Induction(nullptr), 297 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 298 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 299 300 // Perform the actual loop widening (vectorization). 301 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 302 // can be validly truncated to. The cost model has assumed this truncation 303 // will happen when vectorizing. VecValuesToIgnore contains scalar values 304 // that the cost model has chosen to ignore because they will not be 305 // vectorized. 306 void vectorize(LoopVectorizationLegality *L, 307 const MapVector<Instruction *, uint64_t> &MinimumBitWidths, 308 SmallPtrSetImpl<const Value *> &VecValuesToIgnore) { 309 MinBWs = &MinimumBitWidths; 310 ValuesNotWidened = &VecValuesToIgnore; 311 Legal = L; 312 // Create a new empty loop. Unlink the old loop and connect the new one. 313 createEmptyLoop(); 314 // Widen each instruction in the old loop to a new one in the new loop. 315 // Use the Legality module to find the induction and reduction variables. 316 vectorizeLoop(); 317 } 318 319 // Return true if any runtime check is added. 320 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 321 322 virtual ~InnerLoopVectorizer() {} 323 324protected: 325 /// A small list of PHINodes. 326 typedef SmallVector<PHINode *, 4> PhiVector; 327 /// When we unroll loops we have multiple vector values for each scalar. 328 /// This data structure holds the unrolled and vectorized values that 329 /// originated from one scalar instruction. 330 typedef SmallVector<Value *, 2> VectorParts; 331 332 // When we if-convert we need to create edge masks. We have to cache values 333 // so that we don't end up with exponential recursion/IR. 334 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 335 EdgeMaskCache; 336 337 /// Create an empty loop, based on the loop ranges of the old loop. 338 void createEmptyLoop(); 339 340 /// Set up the values of the IVs correctly when exiting the vector loop. 341 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 342 Value *CountRoundDown, Value *EndValue, 343 BasicBlock *MiddleBlock); 344 345 /// Create a new induction variable inside L. 346 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 347 Value *Step, Instruction *DL); 348 /// Copy and widen the instructions from the old loop. 349 virtual void vectorizeLoop(); 350 351 /// Fix a first-order recurrence. This is the second phase of vectorizing 352 /// this phi node. 353 void fixFirstOrderRecurrence(PHINode *Phi); 354 355 /// \brief The Loop exit block may have single value PHI nodes where the 356 /// incoming value is 'Undef'. While vectorizing we only handled real values 357 /// that were defined inside the loop. Here we fix the 'undef case'. 358 /// See PR14725. 359 void fixLCSSAPHIs(); 360 361 /// Shrinks vector element sizes based on information in "MinBWs". 362 void truncateToMinimalBitwidths(); 363 364 /// A helper function that computes the predicate of the block BB, assuming 365 /// that the header block of the loop is set to True. It returns the *entry* 366 /// mask for the block BB. 367 VectorParts createBlockInMask(BasicBlock *BB); 368 /// A helper function that computes the predicate of the edge between SRC 369 /// and DST. 370 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 371 372 /// A helper function to vectorize a single BB within the innermost loop. 373 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 374 375 /// Vectorize a single PHINode in a block. This method handles the induction 376 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 377 /// arbitrary length vectors. 378 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 379 unsigned VF, PhiVector *PV); 380 381 /// Insert the new loop to the loop hierarchy and pass manager 382 /// and update the analysis passes. 383 void updateAnalysis(); 384 385 /// This instruction is un-vectorizable. Implement it as a sequence 386 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 387 /// scalarized instruction behind an if block predicated on the control 388 /// dependence of the instruction. 389 virtual void scalarizeInstruction(Instruction *Instr, 390 bool IfPredicateStore = false); 391 392 /// Vectorize Load and Store instructions, 393 virtual void vectorizeMemoryInstruction(Instruction *Instr); 394 395 /// Create a broadcast instruction. This method generates a broadcast 396 /// instruction (shuffle) for loop invariant values and for the induction 397 /// value. If this is the induction variable then we extend it to N, N+1, ... 398 /// this is needed because each iteration in the loop corresponds to a SIMD 399 /// element. 400 virtual Value *getBroadcastInstrs(Value *V); 401 402 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 403 /// to each vector element of Val. The sequence starts at StartIndex. 404 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 405 406 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 407 /// variable on which to base the steps, \p Step is the size of the step, and 408 /// \p EntryVal is the value from the original loop that maps to the steps. 409 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 410 /// can be a truncate instruction). 411 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 412 413 /// Create a vector induction phi node based on an existing scalar one. This 414 /// currently only works for integer induction variables with a constant 415 /// step. If \p TruncType is non-null, instead of widening the original IV, 416 /// we widen a version of the IV truncated to \p TruncType. 417 void createVectorIntInductionPHI(const InductionDescriptor &II, 418 VectorParts &Entry, IntegerType *TruncType); 419 420 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 421 /// induction variable will first be truncated to the corresponding type. The 422 /// widened values are placed in \p Entry. 423 void widenIntInduction(PHINode *IV, VectorParts &Entry, 424 TruncInst *Trunc = nullptr); 425 426 /// When we go over instructions in the basic block we rely on previous 427 /// values within the current basic block or on loop invariant values. 428 /// When we widen (vectorize) values we place them in the map. If the values 429 /// are not within the map, they have to be loop invariant, so we simply 430 /// broadcast them into a vector. 431 VectorParts &getVectorValue(Value *V); 432 433 /// Try to vectorize the interleaved access group that \p Instr belongs to. 434 void vectorizeInterleaveGroup(Instruction *Instr); 435 436 /// Generate a shuffle sequence that will reverse the vector Vec. 437 virtual Value *reverseVector(Value *Vec); 438 439 /// Returns (and creates if needed) the original loop trip count. 440 Value *getOrCreateTripCount(Loop *NewLoop); 441 442 /// Returns (and creates if needed) the trip count of the widened loop. 443 Value *getOrCreateVectorTripCount(Loop *NewLoop); 444 445 /// Emit a bypass check to see if the trip count would overflow, or we 446 /// wouldn't have enough iterations to execute one vector loop. 447 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 448 /// Emit a bypass check to see if the vector trip count is nonzero. 449 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 450 /// Emit a bypass check to see if all of the SCEV assumptions we've 451 /// had to make are correct. 452 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 453 /// Emit bypass checks to check any memory assumptions we may have made. 454 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 455 456 /// Add additional metadata to \p To that was not present on \p Orig. 457 /// 458 /// Currently this is used to add the noalias annotations based on the 459 /// inserted memchecks. Use this for instructions that are *cloned* into the 460 /// vector loop. 461 void addNewMetadata(Instruction *To, const Instruction *Orig); 462 463 /// Add metadata from one instruction to another. 464 /// 465 /// This includes both the original MDs from \p From and additional ones (\see 466 /// addNewMetadata). Use this for *newly created* instructions in the vector 467 /// loop. 468 void addMetadata(Instruction *To, Instruction *From); 469 470 /// \brief Similar to the previous function but it adds the metadata to a 471 /// vector of instructions. 472 void addMetadata(ArrayRef<Value *> To, Instruction *From); 473 474 /// This is a helper class that holds the vectorizer state. It maps scalar 475 /// instructions to vector instructions. When the code is 'unrolled' then 476 /// then a single scalar value is mapped to multiple vector parts. The parts 477 /// are stored in the VectorPart type. 478 struct ValueMap { 479 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 480 /// are mapped. 481 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 482 483 /// \return True if 'Key' is saved in the Value Map. 484 bool has(Value *Key) const { return MapStorage.count(Key); } 485 486 /// Initializes a new entry in the map. Sets all of the vector parts to the 487 /// save value in 'Val'. 488 /// \return A reference to a vector with splat values. 489 VectorParts &splat(Value *Key, Value *Val) { 490 VectorParts &Entry = MapStorage[Key]; 491 Entry.assign(UF, Val); 492 return Entry; 493 } 494 495 ///\return A reference to the value that is stored at 'Key'. 496 VectorParts &get(Value *Key) { 497 VectorParts &Entry = MapStorage[Key]; 498 if (Entry.empty()) 499 Entry.resize(UF); 500 assert(Entry.size() == UF); 501 return Entry; 502 } 503 504 private: 505 /// The unroll factor. Each entry in the map stores this number of vector 506 /// elements. 507 unsigned UF; 508 509 /// Map storage. We use std::map and not DenseMap because insertions to a 510 /// dense map invalidates its iterators. 511 std::map<Value *, VectorParts> MapStorage; 512 }; 513 514 /// The original loop. 515 Loop *OrigLoop; 516 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 517 /// dynamic knowledge to simplify SCEV expressions and converts them to a 518 /// more usable form. 519 PredicatedScalarEvolution &PSE; 520 /// Loop Info. 521 LoopInfo *LI; 522 /// Dominator Tree. 523 DominatorTree *DT; 524 /// Alias Analysis. 525 AliasAnalysis *AA; 526 /// Target Library Info. 527 const TargetLibraryInfo *TLI; 528 /// Target Transform Info. 529 const TargetTransformInfo *TTI; 530 /// Assumption Cache. 531 AssumptionCache *AC; 532 533 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 534 /// used. 535 /// 536 /// This is currently only used to add no-alias metadata based on the 537 /// memchecks. The actually versioning is performed manually. 538 std::unique_ptr<LoopVersioning> LVer; 539 540 /// The vectorization SIMD factor to use. Each vector will have this many 541 /// vector elements. 542 unsigned VF; 543 544protected: 545 /// The vectorization unroll factor to use. Each scalar is vectorized to this 546 /// many different vector instructions. 547 unsigned UF; 548 549 /// The builder that we use 550 IRBuilder<> Builder; 551 552 // --- Vectorization state --- 553 554 /// The vector-loop preheader. 555 BasicBlock *LoopVectorPreHeader; 556 /// The scalar-loop preheader. 557 BasicBlock *LoopScalarPreHeader; 558 /// Middle Block between the vector and the scalar. 559 BasicBlock *LoopMiddleBlock; 560 /// The ExitBlock of the scalar loop. 561 BasicBlock *LoopExitBlock; 562 /// The vector loop body. 563 BasicBlock *LoopVectorBody; 564 /// The scalar loop body. 565 BasicBlock *LoopScalarBody; 566 /// A list of all bypass blocks. The first block is the entry of the loop. 567 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 568 569 /// The new Induction variable which was added to the new block. 570 PHINode *Induction; 571 /// The induction variable of the old basic block. 572 PHINode *OldInduction; 573 /// Maps scalars to widened vectors. 574 ValueMap WidenMap; 575 576 /// A map of induction variables from the original loop to their 577 /// corresponding VF * UF scalarized values in the vectorized loop. The 578 /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap 579 /// maps original loop values to their vector versions in the new loop, 580 /// ScalarIVMap maps induction variables from the original loop that are not 581 /// vectorized to their scalar equivalents in the vector loop. Maintaining a 582 /// separate map for scalarized induction variables allows us to avoid 583 /// unnecessary scalar-to-vector-to-scalar conversions. 584 DenseMap<Value *, SmallVector<Value *, 8>> ScalarIVMap; 585 586 /// Store instructions that should be predicated, as a pair 587 /// <StoreInst, Predicate> 588 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 589 EdgeMaskCache MaskCache; 590 /// Trip count of the original loop. 591 Value *TripCount; 592 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 593 Value *VectorTripCount; 594 595 /// Map of scalar integer values to the smallest bitwidth they can be legally 596 /// represented as. The vector equivalents of these values should be truncated 597 /// to this type. 598 const MapVector<Instruction *, uint64_t> *MinBWs; 599 600 /// A set of values that should not be widened. This is taken from 601 /// VecValuesToIgnore in the cost model. 602 SmallPtrSetImpl<const Value *> *ValuesNotWidened; 603 604 LoopVectorizationLegality *Legal; 605 606 // Record whether runtime checks are added. 607 bool AddedSafetyChecks; 608}; 609 610class InnerLoopUnroller : public InnerLoopVectorizer { 611public: 612 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 613 LoopInfo *LI, DominatorTree *DT, 614 const TargetLibraryInfo *TLI, 615 const TargetTransformInfo *TTI, AssumptionCache *AC, 616 unsigned UnrollFactor) 617 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 618 UnrollFactor) {} 619 620private: 621 void scalarizeInstruction(Instruction *Instr, 622 bool IfPredicateStore = false) override; 623 void vectorizeMemoryInstruction(Instruction *Instr) override; 624 Value *getBroadcastInstrs(Value *V) override; 625 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 626 Value *reverseVector(Value *Vec) override; 627}; 628 629/// \brief Look for a meaningful debug location on the instruction or it's 630/// operands. 631static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 632 if (!I) 633 return I; 634 635 DebugLoc Empty; 636 if (I->getDebugLoc() != Empty) 637 return I; 638 639 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 640 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 641 if (OpInst->getDebugLoc() != Empty) 642 return OpInst; 643 } 644 645 return I; 646} 647 648/// \brief Set the debug location in the builder using the debug location in the 649/// instruction. 650static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 651 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 652 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 653 else 654 B.SetCurrentDebugLocation(DebugLoc()); 655} 656 657#ifndef NDEBUG 658/// \return string containing a file name and a line # for the given loop. 659static std::string getDebugLocString(const Loop *L) { 660 std::string Result; 661 if (L) { 662 raw_string_ostream OS(Result); 663 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 664 LoopDbgLoc.print(OS); 665 else 666 // Just print the module name. 667 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 668 OS.flush(); 669 } 670 return Result; 671} 672#endif 673 674void InnerLoopVectorizer::addNewMetadata(Instruction *To, 675 const Instruction *Orig) { 676 // If the loop was versioned with memchecks, add the corresponding no-alias 677 // metadata. 678 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 679 LVer->annotateInstWithNoAlias(To, Orig); 680} 681 682void InnerLoopVectorizer::addMetadata(Instruction *To, 683 Instruction *From) { 684 propagateMetadata(To, From); 685 addNewMetadata(To, From); 686} 687 688void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 689 Instruction *From) { 690 for (Value *V : To) { 691 if (Instruction *I = dyn_cast<Instruction>(V)) 692 addMetadata(I, From); 693 } 694} 695 696/// \brief The group of interleaved loads/stores sharing the same stride and 697/// close to each other. 698/// 699/// Each member in this group has an index starting from 0, and the largest 700/// index should be less than interleaved factor, which is equal to the absolute 701/// value of the access's stride. 702/// 703/// E.g. An interleaved load group of factor 4: 704/// for (unsigned i = 0; i < 1024; i+=4) { 705/// a = A[i]; // Member of index 0 706/// b = A[i+1]; // Member of index 1 707/// d = A[i+3]; // Member of index 3 708/// ... 709/// } 710/// 711/// An interleaved store group of factor 4: 712/// for (unsigned i = 0; i < 1024; i+=4) { 713/// ... 714/// A[i] = a; // Member of index 0 715/// A[i+1] = b; // Member of index 1 716/// A[i+2] = c; // Member of index 2 717/// A[i+3] = d; // Member of index 3 718/// } 719/// 720/// Note: the interleaved load group could have gaps (missing members), but 721/// the interleaved store group doesn't allow gaps. 722class InterleaveGroup { 723public: 724 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 725 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 726 assert(Align && "The alignment should be non-zero"); 727 728 Factor = std::abs(Stride); 729 assert(Factor > 1 && "Invalid interleave factor"); 730 731 Reverse = Stride < 0; 732 Members[0] = Instr; 733 } 734 735 bool isReverse() const { return Reverse; } 736 unsigned getFactor() const { return Factor; } 737 unsigned getAlignment() const { return Align; } 738 unsigned getNumMembers() const { return Members.size(); } 739 740 /// \brief Try to insert a new member \p Instr with index \p Index and 741 /// alignment \p NewAlign. The index is related to the leader and it could be 742 /// negative if it is the new leader. 743 /// 744 /// \returns false if the instruction doesn't belong to the group. 745 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 746 assert(NewAlign && "The new member's alignment should be non-zero"); 747 748 int Key = Index + SmallestKey; 749 750 // Skip if there is already a member with the same index. 751 if (Members.count(Key)) 752 return false; 753 754 if (Key > LargestKey) { 755 // The largest index is always less than the interleave factor. 756 if (Index >= static_cast<int>(Factor)) 757 return false; 758 759 LargestKey = Key; 760 } else if (Key < SmallestKey) { 761 // The largest index is always less than the interleave factor. 762 if (LargestKey - Key >= static_cast<int>(Factor)) 763 return false; 764 765 SmallestKey = Key; 766 } 767 768 // It's always safe to select the minimum alignment. 769 Align = std::min(Align, NewAlign); 770 Members[Key] = Instr; 771 return true; 772 } 773 774 /// \brief Get the member with the given index \p Index 775 /// 776 /// \returns nullptr if contains no such member. 777 Instruction *getMember(unsigned Index) const { 778 int Key = SmallestKey + Index; 779 if (!Members.count(Key)) 780 return nullptr; 781 782 return Members.find(Key)->second; 783 } 784 785 /// \brief Get the index for the given member. Unlike the key in the member 786 /// map, the index starts from 0. 787 unsigned getIndex(Instruction *Instr) const { 788 for (auto I : Members) 789 if (I.second == Instr) 790 return I.first - SmallestKey; 791 792 llvm_unreachable("InterleaveGroup contains no such member"); 793 } 794 795 Instruction *getInsertPos() const { return InsertPos; } 796 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 797 798private: 799 unsigned Factor; // Interleave Factor. 800 bool Reverse; 801 unsigned Align; 802 DenseMap<int, Instruction *> Members; 803 int SmallestKey; 804 int LargestKey; 805 806 // To avoid breaking dependences, vectorized instructions of an interleave 807 // group should be inserted at either the first load or the last store in 808 // program order. 809 // 810 // E.g. %even = load i32 // Insert Position 811 // %add = add i32 %even // Use of %even 812 // %odd = load i32 813 // 814 // store i32 %even 815 // %odd = add i32 // Def of %odd 816 // store i32 %odd // Insert Position 817 Instruction *InsertPos; 818}; 819 820/// \brief Drive the analysis of interleaved memory accesses in the loop. 821/// 822/// Use this class to analyze interleaved accesses only when we can vectorize 823/// a loop. Otherwise it's meaningless to do analysis as the vectorization 824/// on interleaved accesses is unsafe. 825/// 826/// The analysis collects interleave groups and records the relationships 827/// between the member and the group in a map. 828class InterleavedAccessInfo { 829public: 830 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 831 DominatorTree *DT, LoopInfo *LI) 832 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 833 RequiresScalarEpilogue(false) {} 834 835 ~InterleavedAccessInfo() { 836 SmallSet<InterleaveGroup *, 4> DelSet; 837 // Avoid releasing a pointer twice. 838 for (auto &I : InterleaveGroupMap) 839 DelSet.insert(I.second); 840 for (auto *Ptr : DelSet) 841 delete Ptr; 842 } 843 844 /// \brief Analyze the interleaved accesses and collect them in interleave 845 /// groups. Substitute symbolic strides using \p Strides. 846 void analyzeInterleaving(const ValueToValueMap &Strides); 847 848 /// \brief Check if \p Instr belongs to any interleave group. 849 bool isInterleaved(Instruction *Instr) const { 850 return InterleaveGroupMap.count(Instr); 851 } 852 853 /// \brief Return the maximum interleave factor of all interleaved groups. 854 unsigned getMaxInterleaveFactor() const { 855 unsigned MaxFactor = 1; 856 for (auto &Entry : InterleaveGroupMap) 857 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 858 return MaxFactor; 859 } 860 861 /// \brief Get the interleave group that \p Instr belongs to. 862 /// 863 /// \returns nullptr if doesn't have such group. 864 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 865 if (InterleaveGroupMap.count(Instr)) 866 return InterleaveGroupMap.find(Instr)->second; 867 return nullptr; 868 } 869 870 /// \brief Returns true if an interleaved group that may access memory 871 /// out-of-bounds requires a scalar epilogue iteration for correctness. 872 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 873 874 /// \brief Initialize the LoopAccessInfo used for dependence checking. 875 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 876 877private: 878 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 879 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 880 /// The interleaved access analysis can also add new predicates (for example 881 /// by versioning strides of pointers). 882 PredicatedScalarEvolution &PSE; 883 Loop *TheLoop; 884 DominatorTree *DT; 885 LoopInfo *LI; 886 const LoopAccessInfo *LAI; 887 888 /// True if the loop may contain non-reversed interleaved groups with 889 /// out-of-bounds accesses. We ensure we don't speculatively access memory 890 /// out-of-bounds by executing at least one scalar epilogue iteration. 891 bool RequiresScalarEpilogue; 892 893 /// Holds the relationships between the members and the interleave group. 894 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 895 896 /// Holds dependences among the memory accesses in the loop. It maps a source 897 /// access to a set of dependent sink accesses. 898 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 899 900 /// \brief The descriptor for a strided memory access. 901 struct StrideDescriptor { 902 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 903 unsigned Align) 904 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 905 906 StrideDescriptor() = default; 907 908 // The access's stride. It is negative for a reverse access. 909 int64_t Stride = 0; 910 const SCEV *Scev = nullptr; // The scalar expression of this access 911 uint64_t Size = 0; // The size of the memory object. 912 unsigned Align = 0; // The alignment of this access. 913 }; 914 915 /// \brief A type for holding instructions and their stride descriptors. 916 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 917 918 /// \brief Create a new interleave group with the given instruction \p Instr, 919 /// stride \p Stride and alignment \p Align. 920 /// 921 /// \returns the newly created interleave group. 922 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 923 unsigned Align) { 924 assert(!InterleaveGroupMap.count(Instr) && 925 "Already in an interleaved access group"); 926 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 927 return InterleaveGroupMap[Instr]; 928 } 929 930 /// \brief Release the group and remove all the relationships. 931 void releaseGroup(InterleaveGroup *Group) { 932 for (unsigned i = 0; i < Group->getFactor(); i++) 933 if (Instruction *Member = Group->getMember(i)) 934 InterleaveGroupMap.erase(Member); 935 936 delete Group; 937 } 938 939 /// \brief Collect all the accesses with a constant stride in program order. 940 void collectConstStrideAccesses( 941 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 942 const ValueToValueMap &Strides); 943 944 /// \brief Returns true if \p Stride is allowed in an interleaved group. 945 static bool isStrided(int Stride) { 946 unsigned Factor = std::abs(Stride); 947 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 948 } 949 950 /// \brief Returns true if \p BB is a predicated block. 951 bool isPredicated(BasicBlock *BB) const { 952 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 953 } 954 955 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 956 bool areDependencesValid() const { 957 return LAI && LAI->getDepChecker().getDependences(); 958 } 959 960 /// \brief Returns true if memory accesses \p B and \p A can be reordered, if 961 /// necessary, when constructing interleaved groups. 962 /// 963 /// \p B must precede \p A in program order. We return false if reordering is 964 /// not necessary or is prevented because \p B and \p A may be dependent. 965 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B, 966 StrideEntry *A) const { 967 968 // Code motion for interleaved accesses can potentially hoist strided loads 969 // and sink strided stores. The code below checks the legality of the 970 // following two conditions: 971 // 972 // 1. Potentially moving a strided load (A) before any store (B) that 973 // precedes A, or 974 // 975 // 2. Potentially moving a strided store (B) after any load or store (A) 976 // that B precedes. 977 // 978 // It's legal to reorder B and A if we know there isn't a dependence from B 979 // to A. Note that this determination is conservative since some 980 // dependences could potentially be reordered safely. 981 982 // B is potentially the source of a dependence. 983 auto *Src = B->first; 984 auto SrcDes = B->second; 985 986 // A is potentially the sink of a dependence. 987 auto *Sink = A->first; 988 auto SinkDes = A->second; 989 990 // Code motion for interleaved accesses can't violate WAR dependences. 991 // Thus, reordering is legal if the source isn't a write. 992 if (!Src->mayWriteToMemory()) 993 return true; 994 995 // At least one of the accesses must be strided. 996 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 997 return true; 998 999 // If dependence information is not available from LoopAccessInfo, 1000 // conservatively assume the instructions can't be reordered. 1001 if (!areDependencesValid()) 1002 return false; 1003 1004 // If we know there is a dependence from source to sink, assume the 1005 // instructions can't be reordered. Otherwise, reordering is legal. 1006 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1007 } 1008 1009 /// \brief Collect the dependences from LoopAccessInfo. 1010 /// 1011 /// We process the dependences once during the interleaved access analysis to 1012 /// enable constant-time dependence queries. 1013 void collectDependences() { 1014 if (!areDependencesValid()) 1015 return; 1016 auto *Deps = LAI->getDepChecker().getDependences(); 1017 for (auto Dep : *Deps) 1018 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1019 } 1020}; 1021 1022/// Utility class for getting and setting loop vectorizer hints in the form 1023/// of loop metadata. 1024/// This class keeps a number of loop annotations locally (as member variables) 1025/// and can, upon request, write them back as metadata on the loop. It will 1026/// initially scan the loop for existing metadata, and will update the local 1027/// values based on information in the loop. 1028/// We cannot write all values to metadata, as the mere presence of some info, 1029/// for example 'force', means a decision has been made. So, we need to be 1030/// careful NOT to add them if the user hasn't specifically asked so. 1031class LoopVectorizeHints { 1032 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1033 1034 /// Hint - associates name and validation with the hint value. 1035 struct Hint { 1036 const char *Name; 1037 unsigned Value; // This may have to change for non-numeric values. 1038 HintKind Kind; 1039 1040 Hint(const char *Name, unsigned Value, HintKind Kind) 1041 : Name(Name), Value(Value), Kind(Kind) {} 1042 1043 bool validate(unsigned Val) { 1044 switch (Kind) { 1045 case HK_WIDTH: 1046 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1047 case HK_UNROLL: 1048 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1049 case HK_FORCE: 1050 return (Val <= 1); 1051 } 1052 return false; 1053 } 1054 }; 1055 1056 /// Vectorization width. 1057 Hint Width; 1058 /// Vectorization interleave factor. 1059 Hint Interleave; 1060 /// Vectorization forced 1061 Hint Force; 1062 1063 /// Return the loop metadata prefix. 1064 static StringRef Prefix() { return "llvm.loop."; } 1065 1066 /// True if there is any unsafe math in the loop. 1067 bool PotentiallyUnsafe; 1068 1069public: 1070 enum ForceKind { 1071 FK_Undefined = -1, ///< Not selected. 1072 FK_Disabled = 0, ///< Forcing disabled. 1073 FK_Enabled = 1, ///< Forcing enabled. 1074 }; 1075 1076 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1077 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1078 HK_WIDTH), 1079 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1080 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1081 PotentiallyUnsafe(false), TheLoop(L) { 1082 // Populate values with existing loop metadata. 1083 getHintsFromMetadata(); 1084 1085 // force-vector-interleave overrides DisableInterleaving. 1086 if (VectorizerParams::isInterleaveForced()) 1087 Interleave.Value = VectorizerParams::VectorizationInterleave; 1088 1089 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1090 << "LV: Interleaving disabled by the pass manager\n"); 1091 } 1092 1093 /// Mark the loop L as already vectorized by setting the width to 1. 1094 void setAlreadyVectorized() { 1095 Width.Value = Interleave.Value = 1; 1096 Hint Hints[] = {Width, Interleave}; 1097 writeHintsToMetadata(Hints); 1098 } 1099 1100 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1101 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1102 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1103 emitOptimizationRemarkAnalysis(F->getContext(), 1104 vectorizeAnalysisPassName(), *F, 1105 L->getStartLoc(), emitRemark()); 1106 return false; 1107 } 1108 1109 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1110 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1111 emitOptimizationRemarkAnalysis(F->getContext(), 1112 vectorizeAnalysisPassName(), *F, 1113 L->getStartLoc(), emitRemark()); 1114 return false; 1115 } 1116 1117 if (getWidth() == 1 && getInterleave() == 1) { 1118 // FIXME: Add a separate metadata to indicate when the loop has already 1119 // been vectorized instead of setting width and count to 1. 1120 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1121 // FIXME: Add interleave.disable metadata. This will allow 1122 // vectorize.disable to be used without disabling the pass and errors 1123 // to differentiate between disabled vectorization and a width of 1. 1124 emitOptimizationRemarkAnalysis( 1125 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1126 "loop not vectorized: vectorization and interleaving are explicitly " 1127 "disabled, or vectorize width and interleave count are both set to " 1128 "1"); 1129 return false; 1130 } 1131 1132 return true; 1133 } 1134 1135 /// Dumps all the hint information. 1136 std::string emitRemark() const { 1137 VectorizationReport R; 1138 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1139 R << "vectorization is explicitly disabled"; 1140 else { 1141 R << "use -Rpass-analysis=loop-vectorize for more info"; 1142 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1143 R << " (Force=true"; 1144 if (Width.Value != 0) 1145 R << ", Vector Width=" << Width.Value; 1146 if (Interleave.Value != 0) 1147 R << ", Interleave Count=" << Interleave.Value; 1148 R << ")"; 1149 } 1150 } 1151 1152 return R.str(); 1153 } 1154 1155 unsigned getWidth() const { return Width.Value; } 1156 unsigned getInterleave() const { return Interleave.Value; } 1157 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1158 1159 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1160 /// pass name to force the frontend to print the diagnostic. 1161 const char *vectorizeAnalysisPassName() const { 1162 if (getWidth() == 1) 1163 return LV_NAME; 1164 if (getForce() == LoopVectorizeHints::FK_Disabled) 1165 return LV_NAME; 1166 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1167 return LV_NAME; 1168 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; 1169 } 1170 1171 bool allowReordering() const { 1172 // When enabling loop hints are provided we allow the vectorizer to change 1173 // the order of operations that is given by the scalar loop. This is not 1174 // enabled by default because can be unsafe or inefficient. For example, 1175 // reordering floating-point operations will change the way round-off 1176 // error accumulates in the loop. 1177 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1178 } 1179 1180 bool isPotentiallyUnsafe() const { 1181 // Avoid FP vectorization if the target is unsure about proper support. 1182 // This may be related to the SIMD unit in the target not handling 1183 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1184 // Otherwise, a sequence of vectorized loops, even without reduction, 1185 // could lead to different end results on the destination vectors. 1186 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1187 } 1188 1189 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1190 1191private: 1192 /// Find hints specified in the loop metadata and update local values. 1193 void getHintsFromMetadata() { 1194 MDNode *LoopID = TheLoop->getLoopID(); 1195 if (!LoopID) 1196 return; 1197 1198 // First operand should refer to the loop id itself. 1199 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1200 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1201 1202 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1203 const MDString *S = nullptr; 1204 SmallVector<Metadata *, 4> Args; 1205 1206 // The expected hint is either a MDString or a MDNode with the first 1207 // operand a MDString. 1208 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1209 if (!MD || MD->getNumOperands() == 0) 1210 continue; 1211 S = dyn_cast<MDString>(MD->getOperand(0)); 1212 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1213 Args.push_back(MD->getOperand(i)); 1214 } else { 1215 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1216 assert(Args.size() == 0 && "too many arguments for MDString"); 1217 } 1218 1219 if (!S) 1220 continue; 1221 1222 // Check if the hint starts with the loop metadata prefix. 1223 StringRef Name = S->getString(); 1224 if (Args.size() == 1) 1225 setHint(Name, Args[0]); 1226 } 1227 } 1228 1229 /// Checks string hint with one operand and set value if valid. 1230 void setHint(StringRef Name, Metadata *Arg) { 1231 if (!Name.startswith(Prefix())) 1232 return; 1233 Name = Name.substr(Prefix().size(), StringRef::npos); 1234 1235 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1236 if (!C) 1237 return; 1238 unsigned Val = C->getZExtValue(); 1239 1240 Hint *Hints[] = {&Width, &Interleave, &Force}; 1241 for (auto H : Hints) { 1242 if (Name == H->Name) { 1243 if (H->validate(Val)) 1244 H->Value = Val; 1245 else 1246 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1247 break; 1248 } 1249 } 1250 } 1251 1252 /// Create a new hint from name / value pair. 1253 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1254 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1255 Metadata *MDs[] = {MDString::get(Context, Name), 1256 ConstantAsMetadata::get( 1257 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1258 return MDNode::get(Context, MDs); 1259 } 1260 1261 /// Matches metadata with hint name. 1262 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1263 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1264 if (!Name) 1265 return false; 1266 1267 for (auto H : HintTypes) 1268 if (Name->getString().endswith(H.Name)) 1269 return true; 1270 return false; 1271 } 1272 1273 /// Sets current hints into loop metadata, keeping other values intact. 1274 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1275 if (HintTypes.size() == 0) 1276 return; 1277 1278 // Reserve the first element to LoopID (see below). 1279 SmallVector<Metadata *, 4> MDs(1); 1280 // If the loop already has metadata, then ignore the existing operands. 1281 MDNode *LoopID = TheLoop->getLoopID(); 1282 if (LoopID) { 1283 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1284 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1285 // If node in update list, ignore old value. 1286 if (!matchesHintMetadataName(Node, HintTypes)) 1287 MDs.push_back(Node); 1288 } 1289 } 1290 1291 // Now, add the missing hints. 1292 for (auto H : HintTypes) 1293 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1294 1295 // Replace current metadata node with new one. 1296 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1297 MDNode *NewLoopID = MDNode::get(Context, MDs); 1298 // Set operand 0 to refer to the loop id itself. 1299 NewLoopID->replaceOperandWith(0, NewLoopID); 1300 1301 TheLoop->setLoopID(NewLoopID); 1302 } 1303 1304 /// The loop these hints belong to. 1305 const Loop *TheLoop; 1306}; 1307 1308static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1309 const LoopVectorizeHints &Hints, 1310 const LoopAccessReport &Message) { 1311 const char *Name = Hints.vectorizeAnalysisPassName(); 1312 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1313} 1314 1315static void emitMissedWarning(Function *F, Loop *L, 1316 const LoopVectorizeHints &LH) { 1317 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1318 LH.emitRemark()); 1319 1320 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1321 if (LH.getWidth() != 1) 1322 emitLoopVectorizeWarning( 1323 F->getContext(), *F, L->getStartLoc(), 1324 "failed explicitly specified loop vectorization"); 1325 else if (LH.getInterleave() != 1) 1326 emitLoopInterleaveWarning( 1327 F->getContext(), *F, L->getStartLoc(), 1328 "failed explicitly specified loop interleaving"); 1329 } 1330} 1331 1332/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1333/// to what vectorization factor. 1334/// This class does not look at the profitability of vectorization, only the 1335/// legality. This class has two main kinds of checks: 1336/// * Memory checks - The code in canVectorizeMemory checks if vectorization 1337/// will change the order of memory accesses in a way that will change the 1338/// correctness of the program. 1339/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1340/// checks for a number of different conditions, such as the availability of a 1341/// single induction variable, that all types are supported and vectorize-able, 1342/// etc. This code reflects the capabilities of InnerLoopVectorizer. 1343/// This class is also used by InnerLoopVectorizer for identifying 1344/// induction variable and the different reduction variables. 1345class LoopVectorizationLegality { 1346public: 1347 LoopVectorizationLegality( 1348 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1349 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1350 const TargetTransformInfo *TTI, 1351 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1352 LoopVectorizationRequirements *R, LoopVectorizeHints *H) 1353 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1354 TTI(TTI), DT(DT), GetLAA(GetLAA), LAI(nullptr), 1355 InterleaveInfo(PSE, L, DT, LI), Induction(nullptr), 1356 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), 1357 Hints(H) {} 1358 1359 /// ReductionList contains the reduction descriptors for all 1360 /// of the reductions that were found in the loop. 1361 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1362 1363 /// InductionList saves induction variables and maps them to the 1364 /// induction descriptor. 1365 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1366 1367 /// RecurrenceSet contains the phi nodes that are recurrences other than 1368 /// inductions and reductions. 1369 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1370 1371 /// Returns true if it is legal to vectorize this loop. 1372 /// This does not mean that it is profitable to vectorize this 1373 /// loop, only that it is legal to do so. 1374 bool canVectorize(); 1375 1376 /// Returns the Induction variable. 1377 PHINode *getInduction() { return Induction; } 1378 1379 /// Returns the reduction variables found in the loop. 1380 ReductionList *getReductionVars() { return &Reductions; } 1381 1382 /// Returns the induction variables found in the loop. 1383 InductionList *getInductionVars() { return &Inductions; } 1384 1385 /// Return the first-order recurrences found in the loop. 1386 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1387 1388 /// Returns the widest induction type. 1389 Type *getWidestInductionType() { return WidestIndTy; } 1390 1391 /// Returns True if V is an induction variable in this loop. 1392 bool isInductionVariable(const Value *V); 1393 1394 /// Returns True if PN is a reduction variable in this loop. 1395 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1396 1397 /// Returns True if Phi is a first-order recurrence in this loop. 1398 bool isFirstOrderRecurrence(const PHINode *Phi); 1399 1400 /// Return true if the block BB needs to be predicated in order for the loop 1401 /// to be vectorized. 1402 bool blockNeedsPredication(BasicBlock *BB); 1403 1404 /// Check if this pointer is consecutive when vectorizing. This happens 1405 /// when the last index of the GEP is the induction variable, or that the 1406 /// pointer itself is an induction variable. 1407 /// This check allows us to vectorize A[idx] into a wide load/store. 1408 /// Returns: 1409 /// 0 - Stride is unknown or non-consecutive. 1410 /// 1 - Address is consecutive. 1411 /// -1 - Address is consecutive, and decreasing. 1412 int isConsecutivePtr(Value *Ptr); 1413 1414 /// Returns true if the value V is uniform within the loop. 1415 bool isUniform(Value *V); 1416 1417 /// Returns true if this instruction will remain scalar after vectorization. 1418 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1419 1420 /// Returns the information that we collected about runtime memory check. 1421 const RuntimePointerChecking *getRuntimePointerChecking() const { 1422 return LAI->getRuntimePointerChecking(); 1423 } 1424 1425 const LoopAccessInfo *getLAI() const { return LAI; } 1426 1427 /// \brief Check if \p Instr belongs to any interleaved access group. 1428 bool isAccessInterleaved(Instruction *Instr) { 1429 return InterleaveInfo.isInterleaved(Instr); 1430 } 1431 1432 /// \brief Return the maximum interleave factor of all interleaved groups. 1433 unsigned getMaxInterleaveFactor() const { 1434 return InterleaveInfo.getMaxInterleaveFactor(); 1435 } 1436 1437 /// \brief Get the interleaved access group that \p Instr belongs to. 1438 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1439 return InterleaveInfo.getInterleaveGroup(Instr); 1440 } 1441 1442 /// \brief Returns true if an interleaved group requires a scalar iteration 1443 /// to handle accesses with gaps. 1444 bool requiresScalarEpilogue() const { 1445 return InterleaveInfo.requiresScalarEpilogue(); 1446 } 1447 1448 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1449 1450 bool hasStride(Value *V) { return LAI->hasStride(V); } 1451 1452 /// Returns true if the target machine supports masked store operation 1453 /// for the given \p DataType and kind of access to \p Ptr. 1454 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1455 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1456 } 1457 /// Returns true if the target machine supports masked load operation 1458 /// for the given \p DataType and kind of access to \p Ptr. 1459 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1460 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1461 } 1462 /// Returns true if the target machine supports masked scatter operation 1463 /// for the given \p DataType. 1464 bool isLegalMaskedScatter(Type *DataType) { 1465 return TTI->isLegalMaskedScatter(DataType); 1466 } 1467 /// Returns true if the target machine supports masked gather operation 1468 /// for the given \p DataType. 1469 bool isLegalMaskedGather(Type *DataType) { 1470 return TTI->isLegalMaskedGather(DataType); 1471 } 1472 1473 /// Returns true if vector representation of the instruction \p I 1474 /// requires mask. 1475 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1476 unsigned getNumStores() const { return LAI->getNumStores(); } 1477 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1478 unsigned getNumPredStores() const { return NumPredStores; } 1479 1480private: 1481 /// Check if a single basic block loop is vectorizable. 1482 /// At this point we know that this is a loop with a constant trip count 1483 /// and we only need to check individual instructions. 1484 bool canVectorizeInstrs(); 1485 1486 /// When we vectorize loops we may change the order in which 1487 /// we read and write from memory. This method checks if it is 1488 /// legal to vectorize the code, considering only memory constrains. 1489 /// Returns true if the loop is vectorizable 1490 bool canVectorizeMemory(); 1491 1492 /// Return true if we can vectorize this loop using the IF-conversion 1493 /// transformation. 1494 bool canVectorizeWithIfConvert(); 1495 1496 /// Collect the variables that need to stay uniform after vectorization. 1497 void collectLoopUniforms(); 1498 1499 /// Return true if all of the instructions in the block can be speculatively 1500 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1501 /// and we know that we can read from them without segfault. 1502 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1503 1504 /// Updates the vectorization state by adding \p Phi to the inductions list. 1505 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1506 /// better choice for the main induction than the existing one. 1507 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1508 SmallPtrSetImpl<Value *> &AllowedExit); 1509 1510 /// Report an analysis message to assist the user in diagnosing loops that are 1511 /// not vectorized. These are handled as LoopAccessReport rather than 1512 /// VectorizationReport because the << operator of VectorizationReport returns 1513 /// LoopAccessReport. 1514 void emitAnalysis(const LoopAccessReport &Message) const { 1515 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1516 } 1517 1518 /// \brief If an access has a symbolic strides, this maps the pointer value to 1519 /// the stride symbol. 1520 const ValueToValueMap *getSymbolicStrides() { 1521 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1522 // it's collected. This happens from canVectorizeWithIfConvert, when the 1523 // pointer is checked to reference consecutive elements suitable for a 1524 // masked access. 1525 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1526 } 1527 1528 unsigned NumPredStores; 1529 1530 /// The loop that we evaluate. 1531 Loop *TheLoop; 1532 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1533 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1534 /// of existing SCEV assumptions. The analysis will also add a minimal set 1535 /// of new predicates if this is required to enable vectorization and 1536 /// unrolling. 1537 PredicatedScalarEvolution &PSE; 1538 /// Target Library Info. 1539 TargetLibraryInfo *TLI; 1540 /// Parent function 1541 Function *TheFunction; 1542 /// Target Transform Info 1543 const TargetTransformInfo *TTI; 1544 /// Dominator Tree. 1545 DominatorTree *DT; 1546 // LoopAccess analysis. 1547 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1548 // And the loop-accesses info corresponding to this loop. This pointer is 1549 // null until canVectorizeMemory sets it up. 1550 const LoopAccessInfo *LAI; 1551 1552 /// The interleave access information contains groups of interleaved accesses 1553 /// with the same stride and close to each other. 1554 InterleavedAccessInfo InterleaveInfo; 1555 1556 // --- vectorization state --- // 1557 1558 /// Holds the integer induction variable. This is the counter of the 1559 /// loop. 1560 PHINode *Induction; 1561 /// Holds the reduction variables. 1562 ReductionList Reductions; 1563 /// Holds all of the induction variables that we found in the loop. 1564 /// Notice that inductions don't need to start at zero and that induction 1565 /// variables can be pointers. 1566 InductionList Inductions; 1567 /// Holds the phi nodes that are first-order recurrences. 1568 RecurrenceSet FirstOrderRecurrences; 1569 /// Holds the widest induction type encountered. 1570 Type *WidestIndTy; 1571 1572 /// Allowed outside users. This holds the induction and reduction 1573 /// vars which can be accessed from outside the loop. 1574 SmallPtrSet<Value *, 4> AllowedExit; 1575 /// This set holds the variables which are known to be uniform after 1576 /// vectorization. 1577 SmallPtrSet<Instruction *, 4> Uniforms; 1578 1579 /// Can we assume the absence of NaNs. 1580 bool HasFunNoNaNAttr; 1581 1582 /// Vectorization requirements that will go through late-evaluation. 1583 LoopVectorizationRequirements *Requirements; 1584 1585 /// Used to emit an analysis of any legality issues. 1586 LoopVectorizeHints *Hints; 1587 1588 /// While vectorizing these instructions we have to generate a 1589 /// call to the appropriate masked intrinsic 1590 SmallPtrSet<const Instruction *, 8> MaskedOp; 1591}; 1592 1593/// LoopVectorizationCostModel - estimates the expected speedups due to 1594/// vectorization. 1595/// In many cases vectorization is not profitable. This can happen because of 1596/// a number of reasons. In this class we mainly attempt to predict the 1597/// expected speedup/slowdowns due to the supported instruction set. We use the 1598/// TargetTransformInfo to query the different backends for the cost of 1599/// different operations. 1600class LoopVectorizationCostModel { 1601public: 1602 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1603 LoopInfo *LI, LoopVectorizationLegality *Legal, 1604 const TargetTransformInfo &TTI, 1605 const TargetLibraryInfo *TLI, DemandedBits *DB, 1606 AssumptionCache *AC, const Function *F, 1607 const LoopVectorizeHints *Hints) 1608 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1609 AC(AC), TheFunction(F), Hints(Hints) {} 1610 1611 /// Information about vectorization costs 1612 struct VectorizationFactor { 1613 unsigned Width; // Vector width with best cost 1614 unsigned Cost; // Cost of the loop with that width 1615 }; 1616 /// \return The most profitable vectorization factor and the cost of that VF. 1617 /// This method checks every power of two up to VF. If UserVF is not ZERO 1618 /// then this vectorization factor will be selected if vectorization is 1619 /// possible. 1620 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1621 1622 /// \return The size (in bits) of the smallest and widest types in the code 1623 /// that needs to be vectorized. We ignore values that remain scalar such as 1624 /// 64 bit loop indices. 1625 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1626 1627 /// \return The desired interleave count. 1628 /// If interleave count has been specified by metadata it will be returned. 1629 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1630 /// are the selected vectorization factor and the cost of the selected VF. 1631 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1632 unsigned LoopCost); 1633 1634 /// \return The most profitable unroll factor. 1635 /// This method finds the best unroll-factor based on register pressure and 1636 /// other parameters. VF and LoopCost are the selected vectorization factor 1637 /// and the cost of the selected VF. 1638 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1639 unsigned LoopCost); 1640 1641 /// \brief A struct that represents some properties of the register usage 1642 /// of a loop. 1643 struct RegisterUsage { 1644 /// Holds the number of loop invariant values that are used in the loop. 1645 unsigned LoopInvariantRegs; 1646 /// Holds the maximum number of concurrent live intervals in the loop. 1647 unsigned MaxLocalUsers; 1648 /// Holds the number of instructions in the loop. 1649 unsigned NumInstructions; 1650 }; 1651 1652 /// \return Returns information about the register usages of the loop for the 1653 /// given vectorization factors. 1654 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1655 1656 /// Collect values we want to ignore in the cost model. 1657 void collectValuesToIgnore(); 1658 1659private: 1660 /// The vectorization cost is a combination of the cost itself and a boolean 1661 /// indicating whether any of the contributing operations will actually 1662 /// operate on 1663 /// vector values after type legalization in the backend. If this latter value 1664 /// is 1665 /// false, then all operations will be scalarized (i.e. no vectorization has 1666 /// actually taken place). 1667 typedef std::pair<unsigned, bool> VectorizationCostTy; 1668 1669 /// Returns the expected execution cost. The unit of the cost does 1670 /// not matter because we use the 'cost' units to compare different 1671 /// vector widths. The cost that is returned is *not* normalized by 1672 /// the factor width. 1673 VectorizationCostTy expectedCost(unsigned VF); 1674 1675 /// Returns the execution time cost of an instruction for a given vector 1676 /// width. Vector width of one means scalar. 1677 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1678 1679 /// The cost-computation logic from getInstructionCost which provides 1680 /// the vector type as an output parameter. 1681 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1682 1683 /// Returns whether the instruction is a load or store and will be a emitted 1684 /// as a vector operation. 1685 bool isConsecutiveLoadOrStore(Instruction *I); 1686 1687 /// Report an analysis message to assist the user in diagnosing loops that are 1688 /// not vectorized. These are handled as LoopAccessReport rather than 1689 /// VectorizationReport because the << operator of VectorizationReport returns 1690 /// LoopAccessReport. 1691 void emitAnalysis(const LoopAccessReport &Message) const { 1692 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1693 } 1694 1695public: 1696 /// Map of scalar integer values to the smallest bitwidth they can be legally 1697 /// represented as. The vector equivalents of these values should be truncated 1698 /// to this type. 1699 MapVector<Instruction *, uint64_t> MinBWs; 1700 1701 /// The loop that we evaluate. 1702 Loop *TheLoop; 1703 /// Predicated scalar evolution analysis. 1704 PredicatedScalarEvolution &PSE; 1705 /// Loop Info analysis. 1706 LoopInfo *LI; 1707 /// Vectorization legality. 1708 LoopVectorizationLegality *Legal; 1709 /// Vector target information. 1710 const TargetTransformInfo &TTI; 1711 /// Target Library Info. 1712 const TargetLibraryInfo *TLI; 1713 /// Demanded bits analysis. 1714 DemandedBits *DB; 1715 /// Assumption cache. 1716 AssumptionCache *AC; 1717 const Function *TheFunction; 1718 /// Loop Vectorize Hint. 1719 const LoopVectorizeHints *Hints; 1720 /// Values to ignore in the cost model. 1721 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1722 /// Values to ignore in the cost model when VF > 1. 1723 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1724}; 1725 1726/// \brief This holds vectorization requirements that must be verified late in 1727/// the process. The requirements are set by legalize and costmodel. Once 1728/// vectorization has been determined to be possible and profitable the 1729/// requirements can be verified by looking for metadata or compiler options. 1730/// For example, some loops require FP commutativity which is only allowed if 1731/// vectorization is explicitly specified or if the fast-math compiler option 1732/// has been provided. 1733/// Late evaluation of these requirements allows helpful diagnostics to be 1734/// composed that tells the user what need to be done to vectorize the loop. For 1735/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1736/// evaluation should be used only when diagnostics can generated that can be 1737/// followed by a non-expert user. 1738class LoopVectorizationRequirements { 1739public: 1740 LoopVectorizationRequirements() 1741 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1742 1743 void addUnsafeAlgebraInst(Instruction *I) { 1744 // First unsafe algebra instruction. 1745 if (!UnsafeAlgebraInst) 1746 UnsafeAlgebraInst = I; 1747 } 1748 1749 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1750 1751 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1752 const char *Name = Hints.vectorizeAnalysisPassName(); 1753 bool Failed = false; 1754 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1755 emitOptimizationRemarkAnalysisFPCommute( 1756 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1757 VectorizationReport() << "cannot prove it is safe to reorder " 1758 "floating-point operations"); 1759 Failed = true; 1760 } 1761 1762 // Test if runtime memcheck thresholds are exceeded. 1763 bool PragmaThresholdReached = 1764 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1765 bool ThresholdReached = 1766 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1767 if ((ThresholdReached && !Hints.allowReordering()) || 1768 PragmaThresholdReached) { 1769 emitOptimizationRemarkAnalysisAliasing( 1770 F->getContext(), Name, *F, L->getStartLoc(), 1771 VectorizationReport() 1772 << "cannot prove it is safe to reorder memory operations"); 1773 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1774 Failed = true; 1775 } 1776 1777 return Failed; 1778 } 1779 1780private: 1781 unsigned NumRuntimePointerChecks; 1782 Instruction *UnsafeAlgebraInst; 1783}; 1784 1785static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1786 if (L.empty()) 1787 return V.push_back(&L); 1788 1789 for (Loop *InnerL : L) 1790 addInnerLoop(*InnerL, V); 1791} 1792 1793/// The LoopVectorize Pass. 1794struct LoopVectorize : public FunctionPass { 1795 /// Pass identification, replacement for typeid 1796 static char ID; 1797 1798 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1799 : FunctionPass(ID) { 1800 Impl.DisableUnrolling = NoUnrolling; 1801 Impl.AlwaysVectorize = AlwaysVectorize; 1802 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1803 } 1804 1805 LoopVectorizePass Impl; 1806 1807 bool runOnFunction(Function &F) override { 1808 if (skipFunction(F)) 1809 return false; 1810 1811 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1812 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1813 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1814 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1815 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1816 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1817 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1818 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1819 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1820 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1821 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1822 1823 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1824 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1825 1826 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1827 GetLAA); 1828 } 1829 1830 void getAnalysisUsage(AnalysisUsage &AU) const override { 1831 AU.addRequired<AssumptionCacheTracker>(); 1832 AU.addRequiredID(LoopSimplifyID); 1833 AU.addRequiredID(LCSSAID); 1834 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1835 AU.addRequired<DominatorTreeWrapperPass>(); 1836 AU.addRequired<LoopInfoWrapperPass>(); 1837 AU.addRequired<ScalarEvolutionWrapperPass>(); 1838 AU.addRequired<TargetTransformInfoWrapperPass>(); 1839 AU.addRequired<AAResultsWrapperPass>(); 1840 AU.addRequired<LoopAccessLegacyAnalysis>(); 1841 AU.addRequired<DemandedBitsWrapperPass>(); 1842 AU.addPreserved<LoopInfoWrapperPass>(); 1843 AU.addPreserved<DominatorTreeWrapperPass>(); 1844 AU.addPreserved<BasicAAWrapperPass>(); 1845 AU.addPreserved<GlobalsAAWrapperPass>(); 1846 } 1847}; 1848 1849} // end anonymous namespace 1850 1851//===----------------------------------------------------------------------===// 1852// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1853// LoopVectorizationCostModel. 1854//===----------------------------------------------------------------------===// 1855 1856Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1857 // We need to place the broadcast of invariant variables outside the loop. 1858 Instruction *Instr = dyn_cast<Instruction>(V); 1859 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1860 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1861 1862 // Place the code for broadcasting invariant variables in the new preheader. 1863 IRBuilder<>::InsertPointGuard Guard(Builder); 1864 if (Invariant) 1865 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1866 1867 // Broadcast the scalar into all locations in the vector. 1868 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1869 1870 return Shuf; 1871} 1872 1873void InnerLoopVectorizer::createVectorIntInductionPHI( 1874 const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) { 1875 Value *Start = II.getStartValue(); 1876 ConstantInt *Step = II.getConstIntStepValue(); 1877 assert(Step && "Can not widen an IV with a non-constant step"); 1878 1879 // Construct the initial value of the vector IV in the vector loop preheader 1880 auto CurrIP = Builder.saveIP(); 1881 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1882 if (TruncType) { 1883 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 1884 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1885 } 1886 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1887 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 1888 Builder.restoreIP(CurrIP); 1889 1890 Value *SplatVF = 1891 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 1892 VF * Step->getSExtValue())); 1893 // We may need to add the step a number of times, depending on the unroll 1894 // factor. The last of those goes into the PHI. 1895 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1896 &*LoopVectorBody->getFirstInsertionPt()); 1897 Value *LastInduction = VecInd; 1898 for (unsigned Part = 0; Part < UF; ++Part) { 1899 Entry[Part] = LastInduction; 1900 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 1901 } 1902 1903 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1904 VecInd->addIncoming(LastInduction, LoopVectorBody); 1905} 1906 1907void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry, 1908 TruncInst *Trunc) { 1909 1910 auto II = Legal->getInductionVars()->find(IV); 1911 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1912 1913 auto ID = II->second; 1914 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1915 1916 // If a truncate instruction was provided, get the smaller type. 1917 auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr; 1918 1919 // The step of the induction. 1920 Value *Step = nullptr; 1921 1922 // If the induction variable has a constant integer step value, go ahead and 1923 // get it now. 1924 if (ID.getConstIntStepValue()) 1925 Step = ID.getConstIntStepValue(); 1926 1927 // Try to create a new independent vector induction variable. If we can't 1928 // create the phi node, we will splat the scalar induction variable in each 1929 // loop iteration. 1930 if (VF > 1 && IV->getType() == Induction->getType() && Step && 1931 !ValuesNotWidened->count(IV)) 1932 return createVectorIntInductionPHI(ID, Entry, TruncType); 1933 1934 // The scalar value to broadcast. This will be derived from the canonical 1935 // induction variable. 1936 Value *ScalarIV = nullptr; 1937 1938 // Define the scalar induction variable and step values. If we were given a 1939 // truncation type, truncate the canonical induction variable and constant 1940 // step. Otherwise, derive these values from the induction descriptor. 1941 if (TruncType) { 1942 assert(Step && "Truncation requires constant integer step"); 1943 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 1944 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 1945 Step = ConstantInt::getSigned(TruncType, StepInt); 1946 } else { 1947 ScalarIV = Induction; 1948 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1949 if (IV != OldInduction) { 1950 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 1951 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1952 ScalarIV->setName("offset.idx"); 1953 } 1954 if (!Step) { 1955 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1956 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1957 &*Builder.GetInsertPoint()); 1958 } 1959 } 1960 1961 // Splat the scalar induction variable, and build the necessary step vectors. 1962 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1963 for (unsigned Part = 0; Part < UF; ++Part) 1964 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 1965 1966 // If an induction variable is only used for counting loop iterations or 1967 // calculating addresses, it doesn't need to be widened. Create scalar steps 1968 // that can be used by instructions we will later scalarize. Note that the 1969 // addition of the scalar steps will not increase the number of instructions 1970 // in the loop in the common case prior to InstCombine. We will be trading 1971 // one vector extract for each scalar step. 1972 if (VF > 1 && ValuesNotWidened->count(IV)) { 1973 auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV; 1974 buildScalarSteps(ScalarIV, Step, EntryVal); 1975 } 1976} 1977 1978Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1979 Value *Step) { 1980 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1981 assert(Val->getType()->getScalarType()->isIntegerTy() && 1982 "Elem must be an integer"); 1983 assert(Step->getType() == Val->getType()->getScalarType() && 1984 "Step has wrong type"); 1985 // Create the types. 1986 Type *ITy = Val->getType()->getScalarType(); 1987 VectorType *Ty = cast<VectorType>(Val->getType()); 1988 int VLen = Ty->getNumElements(); 1989 SmallVector<Constant *, 8> Indices; 1990 1991 // Create a vector of consecutive numbers from zero to VF. 1992 for (int i = 0; i < VLen; ++i) 1993 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1994 1995 // Add the consecutive indices to the vector value. 1996 Constant *Cv = ConstantVector::get(Indices); 1997 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1998 Step = Builder.CreateVectorSplat(VLen, Step); 1999 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2000 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2001 // which can be found from the original scalar operations. 2002 Step = Builder.CreateMul(Cv, Step); 2003 return Builder.CreateAdd(Val, Step, "induction"); 2004} 2005 2006void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2007 Value *EntryVal) { 2008 2009 // We shouldn't have to build scalar steps if we aren't vectorizing. 2010 assert(VF > 1 && "VF should be greater than one"); 2011 2012 // Get the value type and ensure it and the step have the same integer type. 2013 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2014 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2015 "Val and Step should have the same integer type"); 2016 2017 // Compute the scalar steps and save the results in ScalarIVMap. 2018 for (unsigned Part = 0; Part < UF; ++Part) 2019 for (unsigned I = 0; I < VF; ++I) { 2020 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I); 2021 auto *Mul = Builder.CreateMul(StartIdx, Step); 2022 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2023 ScalarIVMap[EntryVal].push_back(Add); 2024 } 2025} 2026 2027int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2028 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2029 auto *SE = PSE.getSE(); 2030 // Make sure that the pointer does not point to structs. 2031 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2032 return 0; 2033 2034 // If this value is a pointer induction variable, we know it is consecutive. 2035 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2036 if (Phi && Inductions.count(Phi)) { 2037 InductionDescriptor II = Inductions[Phi]; 2038 return II.getConsecutiveDirection(); 2039 } 2040 2041 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2042 if (!Gep) 2043 return 0; 2044 2045 unsigned NumOperands = Gep->getNumOperands(); 2046 Value *GpPtr = Gep->getPointerOperand(); 2047 // If this GEP value is a consecutive pointer induction variable and all of 2048 // the indices are constant, then we know it is consecutive. 2049 Phi = dyn_cast<PHINode>(GpPtr); 2050 if (Phi && Inductions.count(Phi)) { 2051 2052 // Make sure that the pointer does not point to structs. 2053 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2054 if (GepPtrType->getElementType()->isAggregateType()) 2055 return 0; 2056 2057 // Make sure that all of the index operands are loop invariant. 2058 for (unsigned i = 1; i < NumOperands; ++i) 2059 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2060 return 0; 2061 2062 InductionDescriptor II = Inductions[Phi]; 2063 return II.getConsecutiveDirection(); 2064 } 2065 2066 unsigned InductionOperand = getGEPInductionOperand(Gep); 2067 2068 // Check that all of the gep indices are uniform except for our induction 2069 // operand. 2070 for (unsigned i = 0; i != NumOperands; ++i) 2071 if (i != InductionOperand && 2072 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2073 return 0; 2074 2075 // We can emit wide load/stores only if the last non-zero index is the 2076 // induction variable. 2077 const SCEV *Last = nullptr; 2078 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) 2079 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2080 else { 2081 // Because of the multiplication by a stride we can have a s/zext cast. 2082 // We are going to replace this stride by 1 so the cast is safe to ignore. 2083 // 2084 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2085 // %0 = trunc i64 %indvars.iv to i32 2086 // %mul = mul i32 %0, %Stride1 2087 // %idxprom = zext i32 %mul to i64 << Safe cast. 2088 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2089 // 2090 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), 2091 Gep->getOperand(InductionOperand), Gep); 2092 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2093 Last = 2094 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2095 ? C->getOperand() 2096 : Last; 2097 } 2098 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2099 const SCEV *Step = AR->getStepRecurrence(*SE); 2100 2101 // The memory is consecutive because the last index is consecutive 2102 // and all other indices are loop invariant. 2103 if (Step->isOne()) 2104 return 1; 2105 if (Step->isAllOnesValue()) 2106 return -1; 2107 } 2108 2109 return 0; 2110} 2111 2112bool LoopVectorizationLegality::isUniform(Value *V) { 2113 return LAI->isUniform(V); 2114} 2115 2116InnerLoopVectorizer::VectorParts & 2117InnerLoopVectorizer::getVectorValue(Value *V) { 2118 assert(V != Induction && "The new induction variable should not be used."); 2119 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2120 2121 // If we have a stride that is replaced by one, do it here. 2122 if (Legal->hasStride(V)) 2123 V = ConstantInt::get(V->getType(), 1); 2124 2125 // If we have this scalar in the map, return it. 2126 if (WidenMap.has(V)) 2127 return WidenMap.get(V); 2128 2129 // If this scalar is unknown, assume that it is a constant or that it is 2130 // loop invariant. Broadcast V and save the value for future uses. 2131 Value *B = getBroadcastInstrs(V); 2132 return WidenMap.splat(V, B); 2133} 2134 2135Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2136 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2137 SmallVector<Constant *, 8> ShuffleMask; 2138 for (unsigned i = 0; i < VF; ++i) 2139 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2140 2141 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2142 ConstantVector::get(ShuffleMask), 2143 "reverse"); 2144} 2145 2146// Get a mask to interleave \p NumVec vectors into a wide vector. 2147// I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2148// E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2149// <0, 4, 1, 5, 2, 6, 3, 7> 2150static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2151 unsigned NumVec) { 2152 SmallVector<Constant *, 16> Mask; 2153 for (unsigned i = 0; i < VF; i++) 2154 for (unsigned j = 0; j < NumVec; j++) 2155 Mask.push_back(Builder.getInt32(j * VF + i)); 2156 2157 return ConstantVector::get(Mask); 2158} 2159 2160// Get the strided mask starting from index \p Start. 2161// I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2162static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2163 unsigned Stride, unsigned VF) { 2164 SmallVector<Constant *, 16> Mask; 2165 for (unsigned i = 0; i < VF; i++) 2166 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2167 2168 return ConstantVector::get(Mask); 2169} 2170 2171// Get a mask of two parts: The first part consists of sequential integers 2172// starting from 0, The second part consists of UNDEFs. 2173// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2174static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2175 unsigned NumUndef) { 2176 SmallVector<Constant *, 16> Mask; 2177 for (unsigned i = 0; i < NumInt; i++) 2178 Mask.push_back(Builder.getInt32(i)); 2179 2180 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2181 for (unsigned i = 0; i < NumUndef; i++) 2182 Mask.push_back(Undef); 2183 2184 return ConstantVector::get(Mask); 2185} 2186 2187// Concatenate two vectors with the same element type. The 2nd vector should 2188// not have more elements than the 1st vector. If the 2nd vector has less 2189// elements, extend it with UNDEFs. 2190static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2191 Value *V2) { 2192 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2193 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2194 assert(VecTy1 && VecTy2 && 2195 VecTy1->getScalarType() == VecTy2->getScalarType() && 2196 "Expect two vectors with the same element type"); 2197 2198 unsigned NumElts1 = VecTy1->getNumElements(); 2199 unsigned NumElts2 = VecTy2->getNumElements(); 2200 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2201 2202 if (NumElts1 > NumElts2) { 2203 // Extend with UNDEFs. 2204 Constant *ExtMask = 2205 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2206 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2207 } 2208 2209 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2210 return Builder.CreateShuffleVector(V1, V2, Mask); 2211} 2212 2213// Concatenate vectors in the given list. All vectors have the same type. 2214static Value *ConcatenateVectors(IRBuilder<> &Builder, 2215 ArrayRef<Value *> InputList) { 2216 unsigned NumVec = InputList.size(); 2217 assert(NumVec > 1 && "Should be at least two vectors"); 2218 2219 SmallVector<Value *, 8> ResList; 2220 ResList.append(InputList.begin(), InputList.end()); 2221 do { 2222 SmallVector<Value *, 8> TmpList; 2223 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2224 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2225 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2226 "Only the last vector may have a different type"); 2227 2228 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2229 } 2230 2231 // Push the last vector if the total number of vectors is odd. 2232 if (NumVec % 2 != 0) 2233 TmpList.push_back(ResList[NumVec - 1]); 2234 2235 ResList = TmpList; 2236 NumVec = ResList.size(); 2237 } while (NumVec > 1); 2238 2239 return ResList[0]; 2240} 2241 2242// Try to vectorize the interleave group that \p Instr belongs to. 2243// 2244// E.g. Translate following interleaved load group (factor = 3): 2245// for (i = 0; i < N; i+=3) { 2246// R = Pic[i]; // Member of index 0 2247// G = Pic[i+1]; // Member of index 1 2248// B = Pic[i+2]; // Member of index 2 2249// ... // do something to R, G, B 2250// } 2251// To: 2252// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2253// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2254// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2255// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2256// 2257// Or translate following interleaved store group (factor = 3): 2258// for (i = 0; i < N; i+=3) { 2259// ... do something to R, G, B 2260// Pic[i] = R; // Member of index 0 2261// Pic[i+1] = G; // Member of index 1 2262// Pic[i+2] = B; // Member of index 2 2263// } 2264// To: 2265// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2266// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2267// %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2268// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2269// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2270void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2271 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2272 assert(Group && "Fail to get an interleaved access group."); 2273 2274 // Skip if current instruction is not the insert position. 2275 if (Instr != Group->getInsertPos()) 2276 return; 2277 2278 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2279 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2280 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2281 2282 // Prepare for the vector type of the interleaved load/store. 2283 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2284 unsigned InterleaveFactor = Group->getFactor(); 2285 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2286 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2287 2288 // Prepare for the new pointers. 2289 setDebugLocFromInst(Builder, Ptr); 2290 VectorParts &PtrParts = getVectorValue(Ptr); 2291 SmallVector<Value *, 2> NewPtrs; 2292 unsigned Index = Group->getIndex(Instr); 2293 for (unsigned Part = 0; Part < UF; Part++) { 2294 // Extract the pointer for current instruction from the pointer vector. A 2295 // reverse access uses the pointer in the last lane. 2296 Value *NewPtr = Builder.CreateExtractElement( 2297 PtrParts[Part], 2298 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2299 2300 // Notice current instruction could be any index. Need to adjust the address 2301 // to the member of index 0. 2302 // 2303 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2304 // b = A[i]; // Member of index 0 2305 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2306 // 2307 // E.g. A[i+1] = a; // Member of index 1 2308 // A[i] = b; // Member of index 0 2309 // A[i+2] = c; // Member of index 2 (Current instruction) 2310 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2311 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2312 2313 // Cast to the vector pointer type. 2314 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2315 } 2316 2317 setDebugLocFromInst(Builder, Instr); 2318 Value *UndefVec = UndefValue::get(VecTy); 2319 2320 // Vectorize the interleaved load group. 2321 if (LI) { 2322 for (unsigned Part = 0; Part < UF; Part++) { 2323 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2324 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2325 2326 for (unsigned i = 0; i < InterleaveFactor; i++) { 2327 Instruction *Member = Group->getMember(i); 2328 2329 // Skip the gaps in the group. 2330 if (!Member) 2331 continue; 2332 2333 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2334 Value *StridedVec = Builder.CreateShuffleVector( 2335 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2336 2337 // If this member has different type, cast the result type. 2338 if (Member->getType() != ScalarTy) { 2339 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2340 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2341 } 2342 2343 VectorParts &Entry = WidenMap.get(Member); 2344 Entry[Part] = 2345 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2346 } 2347 2348 addMetadata(NewLoadInstr, Instr); 2349 } 2350 return; 2351 } 2352 2353 // The sub vector type for current instruction. 2354 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2355 2356 // Vectorize the interleaved store group. 2357 for (unsigned Part = 0; Part < UF; Part++) { 2358 // Collect the stored vector from each member. 2359 SmallVector<Value *, 4> StoredVecs; 2360 for (unsigned i = 0; i < InterleaveFactor; i++) { 2361 // Interleaved store group doesn't allow a gap, so each index has a member 2362 Instruction *Member = Group->getMember(i); 2363 assert(Member && "Fail to get a member from an interleaved store group"); 2364 2365 Value *StoredVec = 2366 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2367 if (Group->isReverse()) 2368 StoredVec = reverseVector(StoredVec); 2369 2370 // If this member has different type, cast it to an unified type. 2371 if (StoredVec->getType() != SubVT) 2372 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2373 2374 StoredVecs.push_back(StoredVec); 2375 } 2376 2377 // Concatenate all vectors into a wide vector. 2378 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2379 2380 // Interleave the elements in the wide vector. 2381 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2382 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2383 "interleaved.vec"); 2384 2385 Instruction *NewStoreInstr = 2386 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2387 addMetadata(NewStoreInstr, Instr); 2388 } 2389} 2390 2391void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2392 // Attempt to issue a wide load. 2393 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2394 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2395 2396 assert((LI || SI) && "Invalid Load/Store instruction"); 2397 2398 // Try to vectorize the interleave group if this access is interleaved. 2399 if (Legal->isAccessInterleaved(Instr)) 2400 return vectorizeInterleaveGroup(Instr); 2401 2402 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2403 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2404 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2405 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2406 // An alignment of 0 means target abi alignment. We need to use the scalar's 2407 // target abi alignment in such a case. 2408 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2409 if (!Alignment) 2410 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2411 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2412 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2413 uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2414 2415 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2416 !Legal->isMaskRequired(SI)) 2417 return scalarizeInstruction(Instr, true); 2418 2419 if (ScalarAllocatedSize != VectorElementSize) 2420 return scalarizeInstruction(Instr); 2421 2422 // If the pointer is loop invariant scalarize the load. 2423 if (LI && Legal->isUniform(Ptr)) 2424 return scalarizeInstruction(Instr); 2425 2426 // If the pointer is non-consecutive and gather/scatter is not supported 2427 // scalarize the instruction. 2428 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2429 bool Reverse = ConsecutiveStride < 0; 2430 bool CreateGatherScatter = 2431 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2432 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2433 2434 if (!ConsecutiveStride && !CreateGatherScatter) 2435 return scalarizeInstruction(Instr); 2436 2437 Constant *Zero = Builder.getInt32(0); 2438 VectorParts &Entry = WidenMap.get(Instr); 2439 VectorParts VectorGep; 2440 2441 // Handle consecutive loads/stores. 2442 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2443 if (ConsecutiveStride) { 2444 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2445 setDebugLocFromInst(Builder, Gep); 2446 Value *PtrOperand = Gep->getPointerOperand(); 2447 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2448 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2449 2450 // Create the new GEP with the new induction variable. 2451 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2452 Gep2->setOperand(0, FirstBasePtr); 2453 Gep2->setName("gep.indvar.base"); 2454 Ptr = Builder.Insert(Gep2); 2455 } else if (Gep) { 2456 setDebugLocFromInst(Builder, Gep); 2457 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2458 OrigLoop) && 2459 "Base ptr must be invariant"); 2460 // The last index does not have to be the induction. It can be 2461 // consecutive and be a function of the index. For example A[I+1]; 2462 unsigned NumOperands = Gep->getNumOperands(); 2463 unsigned InductionOperand = getGEPInductionOperand(Gep); 2464 // Create the new GEP with the new induction variable. 2465 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2466 2467 for (unsigned i = 0; i < NumOperands; ++i) { 2468 Value *GepOperand = Gep->getOperand(i); 2469 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2470 2471 // Update last index or loop invariant instruction anchored in loop. 2472 if (i == InductionOperand || 2473 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2474 assert((i == InductionOperand || 2475 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2476 OrigLoop)) && 2477 "Must be last index or loop invariant"); 2478 2479 VectorParts &GEPParts = getVectorValue(GepOperand); 2480 2481 // If GepOperand is an induction variable, and there's a scalarized 2482 // version of it available, use it. Otherwise, we will need to create 2483 // an extractelement instruction. 2484 Value *Index = ScalarIVMap.count(GepOperand) 2485 ? ScalarIVMap[GepOperand][0] 2486 : Builder.CreateExtractElement(GEPParts[0], Zero); 2487 2488 Gep2->setOperand(i, Index); 2489 Gep2->setName("gep.indvar.idx"); 2490 } 2491 } 2492 Ptr = Builder.Insert(Gep2); 2493 } else { // No GEP 2494 // Use the induction element ptr. 2495 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2496 setDebugLocFromInst(Builder, Ptr); 2497 VectorParts &PtrVal = getVectorValue(Ptr); 2498 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2499 } 2500 } else { 2501 // At this point we should vector version of GEP for Gather or Scatter 2502 assert(CreateGatherScatter && "The instruction should be scalarized"); 2503 if (Gep) { 2504 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2505 // and each index that's defined inside the loop, even if it is 2506 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2507 // scalar. 2508 SmallVector<VectorParts, 4> OpsV; 2509 for (Value *Op : Gep->operands()) { 2510 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2511 if (SrcInst && OrigLoop->contains(SrcInst)) 2512 OpsV.push_back(getVectorValue(Op)); 2513 else 2514 OpsV.push_back(VectorParts(UF, Op)); 2515 } 2516 for (unsigned Part = 0; Part < UF; ++Part) { 2517 SmallVector<Value *, 4> Ops; 2518 Value *GEPBasePtr = OpsV[0][Part]; 2519 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2520 Ops.push_back(OpsV[i][Part]); 2521 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2522 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2523 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2524 2525 NewGep = 2526 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2527 VectorGep.push_back(NewGep); 2528 } 2529 } else 2530 VectorGep = getVectorValue(Ptr); 2531 } 2532 2533 VectorParts Mask = createBlockInMask(Instr->getParent()); 2534 // Handle Stores: 2535 if (SI) { 2536 assert(!Legal->isUniform(SI->getPointerOperand()) && 2537 "We do not allow storing to uniform addresses"); 2538 setDebugLocFromInst(Builder, SI); 2539 // We don't want to update the value in the map as it might be used in 2540 // another expression. So don't use a reference type for "StoredVal". 2541 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2542 2543 for (unsigned Part = 0; Part < UF; ++Part) { 2544 Instruction *NewSI = nullptr; 2545 if (CreateGatherScatter) { 2546 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2547 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2548 Alignment, MaskPart); 2549 } else { 2550 // Calculate the pointer for the specific unroll-part. 2551 Value *PartPtr = 2552 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2553 2554 if (Reverse) { 2555 // If we store to reverse consecutive memory locations, then we need 2556 // to reverse the order of elements in the stored value. 2557 StoredVal[Part] = reverseVector(StoredVal[Part]); 2558 // If the address is consecutive but reversed, then the 2559 // wide store needs to start at the last vector element. 2560 PartPtr = 2561 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2562 PartPtr = 2563 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2564 Mask[Part] = reverseVector(Mask[Part]); 2565 } 2566 2567 Value *VecPtr = 2568 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2569 2570 if (Legal->isMaskRequired(SI)) 2571 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2572 Mask[Part]); 2573 else 2574 NewSI = 2575 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2576 } 2577 addMetadata(NewSI, SI); 2578 } 2579 return; 2580 } 2581 2582 // Handle loads. 2583 assert(LI && "Must have a load instruction"); 2584 setDebugLocFromInst(Builder, LI); 2585 for (unsigned Part = 0; Part < UF; ++Part) { 2586 Instruction *NewLI; 2587 if (CreateGatherScatter) { 2588 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2589 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2590 0, "wide.masked.gather"); 2591 Entry[Part] = NewLI; 2592 } else { 2593 // Calculate the pointer for the specific unroll-part. 2594 Value *PartPtr = 2595 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2596 2597 if (Reverse) { 2598 // If the address is consecutive but reversed, then the 2599 // wide load needs to start at the last vector element. 2600 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2601 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2602 Mask[Part] = reverseVector(Mask[Part]); 2603 } 2604 2605 Value *VecPtr = 2606 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2607 if (Legal->isMaskRequired(LI)) 2608 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2609 UndefValue::get(DataTy), 2610 "wide.masked.load"); 2611 else 2612 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2613 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2614 } 2615 addMetadata(NewLI, LI); 2616 } 2617} 2618 2619void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2620 bool IfPredicateStore) { 2621 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2622 // Holds vector parameters or scalars, in case of uniform vals. 2623 SmallVector<VectorParts, 4> Params; 2624 2625 setDebugLocFromInst(Builder, Instr); 2626 2627 // Find all of the vectorized parameters. 2628 for (Value *SrcOp : Instr->operands()) { 2629 // If we are accessing the old induction variable, use the new one. 2630 if (SrcOp == OldInduction) { 2631 Params.push_back(getVectorValue(SrcOp)); 2632 continue; 2633 } 2634 2635 // Try using previously calculated values. 2636 auto *SrcInst = dyn_cast<Instruction>(SrcOp); 2637 2638 // If the src is an instruction that appeared earlier in the basic block, 2639 // then it should already be vectorized. 2640 if (SrcInst && OrigLoop->contains(SrcInst)) { 2641 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2642 // The parameter is a vector value from earlier. 2643 Params.push_back(WidenMap.get(SrcInst)); 2644 } else { 2645 // The parameter is a scalar from outside the loop. Maybe even a constant. 2646 VectorParts Scalars; 2647 Scalars.append(UF, SrcOp); 2648 Params.push_back(Scalars); 2649 } 2650 } 2651 2652 assert(Params.size() == Instr->getNumOperands() && 2653 "Invalid number of operands"); 2654 2655 // Does this instruction return a value ? 2656 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2657 2658 Value *UndefVec = 2659 IsVoidRetTy ? nullptr 2660 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2661 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2662 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2663 2664 VectorParts Cond; 2665 if (IfPredicateStore) { 2666 assert(Instr->getParent()->getSinglePredecessor() && 2667 "Only support single predecessor blocks"); 2668 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2669 Instr->getParent()); 2670 } 2671 2672 // For each vector unroll 'part': 2673 for (unsigned Part = 0; Part < UF; ++Part) { 2674 // For each scalar that we create: 2675 for (unsigned Width = 0; Width < VF; ++Width) { 2676 2677 // Start if-block. 2678 Value *Cmp = nullptr; 2679 if (IfPredicateStore) { 2680 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2681 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2682 ConstantInt::get(Cmp->getType(), 1)); 2683 } 2684 2685 Instruction *Cloned = Instr->clone(); 2686 if (!IsVoidRetTy) 2687 Cloned->setName(Instr->getName() + ".cloned"); 2688 // Replace the operands of the cloned instructions with extracted scalars. 2689 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2690 2691 // If the operand is an induction variable, and there's a scalarized 2692 // version of it available, use it. Otherwise, we will need to create 2693 // an extractelement instruction if vectorizing. 2694 auto *NewOp = Params[op][Part]; 2695 auto *ScalarOp = Instr->getOperand(op); 2696 if (ScalarIVMap.count(ScalarOp)) 2697 NewOp = ScalarIVMap[ScalarOp][VF * Part + Width]; 2698 else if (NewOp->getType()->isVectorTy()) 2699 NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width)); 2700 Cloned->setOperand(op, NewOp); 2701 } 2702 addNewMetadata(Cloned, Instr); 2703 2704 // Place the cloned scalar in the new loop. 2705 Builder.Insert(Cloned); 2706 2707 // If we just cloned a new assumption, add it the assumption cache. 2708 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2709 if (II->getIntrinsicID() == Intrinsic::assume) 2710 AC->registerAssumption(II); 2711 2712 // If the original scalar returns a value we need to place it in a vector 2713 // so that future users will be able to use it. 2714 if (!IsVoidRetTy) 2715 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2716 Builder.getInt32(Width)); 2717 // End if-block. 2718 if (IfPredicateStore) 2719 PredicatedStores.push_back( 2720 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2721 } 2722 } 2723} 2724 2725PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2726 Value *End, Value *Step, 2727 Instruction *DL) { 2728 BasicBlock *Header = L->getHeader(); 2729 BasicBlock *Latch = L->getLoopLatch(); 2730 // As we're just creating this loop, it's possible no latch exists 2731 // yet. If so, use the header as this will be a single block loop. 2732 if (!Latch) 2733 Latch = Header; 2734 2735 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2736 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2737 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2738 2739 Builder.SetInsertPoint(Latch->getTerminator()); 2740 2741 // Create i+1 and fill the PHINode. 2742 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2743 Induction->addIncoming(Start, L->getLoopPreheader()); 2744 Induction->addIncoming(Next, Latch); 2745 // Create the compare. 2746 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2747 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2748 2749 // Now we have two terminators. Remove the old one from the block. 2750 Latch->getTerminator()->eraseFromParent(); 2751 2752 return Induction; 2753} 2754 2755Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2756 if (TripCount) 2757 return TripCount; 2758 2759 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2760 // Find the loop boundaries. 2761 ScalarEvolution *SE = PSE.getSE(); 2762 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2763 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2764 "Invalid loop count"); 2765 2766 Type *IdxTy = Legal->getWidestInductionType(); 2767 2768 // The exit count might have the type of i64 while the phi is i32. This can 2769 // happen if we have an induction variable that is sign extended before the 2770 // compare. The only way that we get a backedge taken count is that the 2771 // induction variable was signed and as such will not overflow. In such a case 2772 // truncation is legal. 2773 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2774 IdxTy->getPrimitiveSizeInBits()) 2775 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2776 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2777 2778 // Get the total trip count from the count by adding 1. 2779 const SCEV *ExitCount = SE->getAddExpr( 2780 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2781 2782 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2783 2784 // Expand the trip count and place the new instructions in the preheader. 2785 // Notice that the pre-header does not change, only the loop body. 2786 SCEVExpander Exp(*SE, DL, "induction"); 2787 2788 // Count holds the overall loop count (N). 2789 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2790 L->getLoopPreheader()->getTerminator()); 2791 2792 if (TripCount->getType()->isPointerTy()) 2793 TripCount = 2794 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2795 L->getLoopPreheader()->getTerminator()); 2796 2797 return TripCount; 2798} 2799 2800Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2801 if (VectorTripCount) 2802 return VectorTripCount; 2803 2804 Value *TC = getOrCreateTripCount(L); 2805 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2806 2807 // Now we need to generate the expression for the part of the loop that the 2808 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2809 // iterations are not required for correctness, or N - Step, otherwise. Step 2810 // is equal to the vectorization factor (number of SIMD elements) times the 2811 // unroll factor (number of SIMD instructions). 2812 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2813 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2814 2815 // If there is a non-reversed interleaved group that may speculatively access 2816 // memory out-of-bounds, we need to ensure that there will be at least one 2817 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2818 // the trip count, we set the remainder to be equal to the step. If the step 2819 // does not evenly divide the trip count, no adjustment is necessary since 2820 // there will already be scalar iterations. Note that the minimum iterations 2821 // check ensures that N >= Step. 2822 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2823 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2824 R = Builder.CreateSelect(IsZero, Step, R); 2825 } 2826 2827 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2828 2829 return VectorTripCount; 2830} 2831 2832void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2833 BasicBlock *Bypass) { 2834 Value *Count = getOrCreateTripCount(L); 2835 BasicBlock *BB = L->getLoopPreheader(); 2836 IRBuilder<> Builder(BB->getTerminator()); 2837 2838 // Generate code to check that the loop's trip count that we computed by 2839 // adding one to the backedge-taken count will not overflow. 2840 Value *CheckMinIters = Builder.CreateICmpULT( 2841 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2842 2843 BasicBlock *NewBB = 2844 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2845 // Update dominator tree immediately if the generated block is a 2846 // LoopBypassBlock because SCEV expansions to generate loop bypass 2847 // checks may query it before the current function is finished. 2848 DT->addNewBlock(NewBB, BB); 2849 if (L->getParentLoop()) 2850 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2851 ReplaceInstWithInst(BB->getTerminator(), 2852 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2853 LoopBypassBlocks.push_back(BB); 2854} 2855 2856void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2857 BasicBlock *Bypass) { 2858 Value *TC = getOrCreateVectorTripCount(L); 2859 BasicBlock *BB = L->getLoopPreheader(); 2860 IRBuilder<> Builder(BB->getTerminator()); 2861 2862 // Now, compare the new count to zero. If it is zero skip the vector loop and 2863 // jump to the scalar loop. 2864 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2865 "cmp.zero"); 2866 2867 // Generate code to check that the loop's trip count that we computed by 2868 // adding one to the backedge-taken count will not overflow. 2869 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2870 // Update dominator tree immediately if the generated block is a 2871 // LoopBypassBlock because SCEV expansions to generate loop bypass 2872 // checks may query it before the current function is finished. 2873 DT->addNewBlock(NewBB, BB); 2874 if (L->getParentLoop()) 2875 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2876 ReplaceInstWithInst(BB->getTerminator(), 2877 BranchInst::Create(Bypass, NewBB, Cmp)); 2878 LoopBypassBlocks.push_back(BB); 2879} 2880 2881void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2882 BasicBlock *BB = L->getLoopPreheader(); 2883 2884 // Generate the code to check that the SCEV assumptions that we made. 2885 // We want the new basic block to start at the first instruction in a 2886 // sequence of instructions that form a check. 2887 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2888 "scev.check"); 2889 Value *SCEVCheck = 2890 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2891 2892 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2893 if (C->isZero()) 2894 return; 2895 2896 // Create a new block containing the stride check. 2897 BB->setName("vector.scevcheck"); 2898 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2899 // Update dominator tree immediately if the generated block is a 2900 // LoopBypassBlock because SCEV expansions to generate loop bypass 2901 // checks may query it before the current function is finished. 2902 DT->addNewBlock(NewBB, BB); 2903 if (L->getParentLoop()) 2904 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2905 ReplaceInstWithInst(BB->getTerminator(), 2906 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2907 LoopBypassBlocks.push_back(BB); 2908 AddedSafetyChecks = true; 2909} 2910 2911void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2912 BasicBlock *BB = L->getLoopPreheader(); 2913 2914 // Generate the code that checks in runtime if arrays overlap. We put the 2915 // checks into a separate block to make the more common case of few elements 2916 // faster. 2917 Instruction *FirstCheckInst; 2918 Instruction *MemRuntimeCheck; 2919 std::tie(FirstCheckInst, MemRuntimeCheck) = 2920 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2921 if (!MemRuntimeCheck) 2922 return; 2923 2924 // Create a new block containing the memory check. 2925 BB->setName("vector.memcheck"); 2926 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2927 // Update dominator tree immediately if the generated block is a 2928 // LoopBypassBlock because SCEV expansions to generate loop bypass 2929 // checks may query it before the current function is finished. 2930 DT->addNewBlock(NewBB, BB); 2931 if (L->getParentLoop()) 2932 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2933 ReplaceInstWithInst(BB->getTerminator(), 2934 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2935 LoopBypassBlocks.push_back(BB); 2936 AddedSafetyChecks = true; 2937 2938 // We currently don't use LoopVersioning for the actual loop cloning but we 2939 // still use it to add the noalias metadata. 2940 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2941 PSE.getSE()); 2942 LVer->prepareNoAliasMetadata(); 2943} 2944 2945void InnerLoopVectorizer::createEmptyLoop() { 2946 /* 2947 In this function we generate a new loop. The new loop will contain 2948 the vectorized instructions while the old loop will continue to run the 2949 scalar remainder. 2950 2951 [ ] <-- loop iteration number check. 2952 / | 2953 / v 2954 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2955 | / | 2956 | / v 2957 || [ ] <-- vector pre header. 2958 |/ | 2959 | v 2960 | [ ] \ 2961 | [ ]_| <-- vector loop. 2962 | | 2963 | v 2964 | -[ ] <--- middle-block. 2965 | / | 2966 | / v 2967 -|- >[ ] <--- new preheader. 2968 | | 2969 | v 2970 | [ ] \ 2971 | [ ]_| <-- old scalar loop to handle remainder. 2972 \ | 2973 \ v 2974 >[ ] <-- exit block. 2975 ... 2976 */ 2977 2978 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2979 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2980 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2981 assert(VectorPH && "Invalid loop structure"); 2982 assert(ExitBlock && "Must have an exit block"); 2983 2984 // Some loops have a single integer induction variable, while other loops 2985 // don't. One example is c++ iterators that often have multiple pointer 2986 // induction variables. In the code below we also support a case where we 2987 // don't have a single induction variable. 2988 // 2989 // We try to obtain an induction variable from the original loop as hard 2990 // as possible. However if we don't find one that: 2991 // - is an integer 2992 // - counts from zero, stepping by one 2993 // - is the size of the widest induction variable type 2994 // then we create a new one. 2995 OldInduction = Legal->getInduction(); 2996 Type *IdxTy = Legal->getWidestInductionType(); 2997 2998 // Split the single block loop into the two loop structure described above. 2999 BasicBlock *VecBody = 3000 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3001 BasicBlock *MiddleBlock = 3002 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3003 BasicBlock *ScalarPH = 3004 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3005 3006 // Create and register the new vector loop. 3007 Loop *Lp = new Loop(); 3008 Loop *ParentLoop = OrigLoop->getParentLoop(); 3009 3010 // Insert the new loop into the loop nest and register the new basic blocks 3011 // before calling any utilities such as SCEV that require valid LoopInfo. 3012 if (ParentLoop) { 3013 ParentLoop->addChildLoop(Lp); 3014 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3015 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3016 } else { 3017 LI->addTopLevelLoop(Lp); 3018 } 3019 Lp->addBasicBlockToLoop(VecBody, *LI); 3020 3021 // Find the loop boundaries. 3022 Value *Count = getOrCreateTripCount(Lp); 3023 3024 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3025 3026 // We need to test whether the backedge-taken count is uint##_max. Adding one 3027 // to it will cause overflow and an incorrect loop trip count in the vector 3028 // body. In case of overflow we want to directly jump to the scalar remainder 3029 // loop. 3030 emitMinimumIterationCountCheck(Lp, ScalarPH); 3031 // Now, compare the new count to zero. If it is zero skip the vector loop and 3032 // jump to the scalar loop. 3033 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3034 // Generate the code to check any assumptions that we've made for SCEV 3035 // expressions. 3036 emitSCEVChecks(Lp, ScalarPH); 3037 3038 // Generate the code that checks in runtime if arrays overlap. We put the 3039 // checks into a separate block to make the more common case of few elements 3040 // faster. 3041 emitMemRuntimeChecks(Lp, ScalarPH); 3042 3043 // Generate the induction variable. 3044 // The loop step is equal to the vectorization factor (num of SIMD elements) 3045 // times the unroll factor (num of SIMD instructions). 3046 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3047 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3048 Induction = 3049 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3050 getDebugLocFromInstOrOperands(OldInduction)); 3051 3052 // We are going to resume the execution of the scalar loop. 3053 // Go over all of the induction variables that we found and fix the 3054 // PHIs that are left in the scalar version of the loop. 3055 // The starting values of PHI nodes depend on the counter of the last 3056 // iteration in the vectorized loop. 3057 // If we come from a bypass edge then we need to start from the original 3058 // start value. 3059 3060 // This variable saves the new starting index for the scalar loop. It is used 3061 // to test if there are any tail iterations left once the vector loop has 3062 // completed. 3063 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3064 for (auto &InductionEntry : *List) { 3065 PHINode *OrigPhi = InductionEntry.first; 3066 InductionDescriptor II = InductionEntry.second; 3067 3068 // Create phi nodes to merge from the backedge-taken check block. 3069 PHINode *BCResumeVal = PHINode::Create( 3070 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3071 Value *EndValue; 3072 if (OrigPhi == OldInduction) { 3073 // We know what the end value is. 3074 EndValue = CountRoundDown; 3075 } else { 3076 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3077 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3078 II.getStep()->getType(), "cast.crd"); 3079 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3080 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3081 EndValue->setName("ind.end"); 3082 } 3083 3084 // The new PHI merges the original incoming value, in case of a bypass, 3085 // or the value at the end of the vectorized loop. 3086 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3087 3088 // Fix up external users of the induction variable. 3089 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3090 3091 // Fix the scalar body counter (PHI node). 3092 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3093 3094 // The old induction's phi node in the scalar body needs the truncated 3095 // value. 3096 for (BasicBlock *BB : LoopBypassBlocks) 3097 BCResumeVal->addIncoming(II.getStartValue(), BB); 3098 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3099 } 3100 3101 // Add a check in the middle block to see if we have completed 3102 // all of the iterations in the first vector loop. 3103 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3104 Value *CmpN = 3105 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3106 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3107 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3108 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3109 3110 // Get ready to start creating new instructions into the vectorized body. 3111 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3112 3113 // Save the state. 3114 LoopVectorPreHeader = Lp->getLoopPreheader(); 3115 LoopScalarPreHeader = ScalarPH; 3116 LoopMiddleBlock = MiddleBlock; 3117 LoopExitBlock = ExitBlock; 3118 LoopVectorBody = VecBody; 3119 LoopScalarBody = OldBasicBlock; 3120 3121 // Keep all loop hints from the original loop on the vector loop (we'll 3122 // replace the vectorizer-specific hints below). 3123 if (MDNode *LID = OrigLoop->getLoopID()) 3124 Lp->setLoopID(LID); 3125 3126 LoopVectorizeHints Hints(Lp, true); 3127 Hints.setAlreadyVectorized(); 3128} 3129 3130// Fix up external users of the induction variable. At this point, we are 3131// in LCSSA form, with all external PHIs that use the IV having one input value, 3132// coming from the remainder loop. We need those PHIs to also have a correct 3133// value for the IV when arriving directly from the middle block. 3134void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3135 const InductionDescriptor &II, 3136 Value *CountRoundDown, Value *EndValue, 3137 BasicBlock *MiddleBlock) { 3138 // There are two kinds of external IV usages - those that use the value 3139 // computed in the last iteration (the PHI) and those that use the penultimate 3140 // value (the value that feeds into the phi from the loop latch). 3141 // We allow both, but they, obviously, have different values. 3142 3143 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3144 3145 DenseMap<Value *, Value *> MissingVals; 3146 3147 // An external user of the last iteration's value should see the value that 3148 // the remainder loop uses to initialize its own IV. 3149 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3150 for (User *U : PostInc->users()) { 3151 Instruction *UI = cast<Instruction>(U); 3152 if (!OrigLoop->contains(UI)) { 3153 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3154 MissingVals[UI] = EndValue; 3155 } 3156 } 3157 3158 // An external user of the penultimate value need to see EndValue - Step. 3159 // The simplest way to get this is to recompute it from the constituent SCEVs, 3160 // that is Start + (Step * (CRD - 1)). 3161 for (User *U : OrigPhi->users()) { 3162 auto *UI = cast<Instruction>(U); 3163 if (!OrigLoop->contains(UI)) { 3164 const DataLayout &DL = 3165 OrigLoop->getHeader()->getModule()->getDataLayout(); 3166 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3167 3168 IRBuilder<> B(MiddleBlock->getTerminator()); 3169 Value *CountMinusOne = B.CreateSub( 3170 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3171 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3172 "cast.cmo"); 3173 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3174 Escape->setName("ind.escape"); 3175 MissingVals[UI] = Escape; 3176 } 3177 } 3178 3179 for (auto &I : MissingVals) { 3180 PHINode *PHI = cast<PHINode>(I.first); 3181 // One corner case we have to handle is two IVs "chasing" each-other, 3182 // that is %IV2 = phi [...], [ %IV1, %latch ] 3183 // In this case, if IV1 has an external use, we need to avoid adding both 3184 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3185 // don't already have an incoming value for the middle block. 3186 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3187 PHI->addIncoming(I.second, MiddleBlock); 3188 } 3189} 3190 3191namespace { 3192struct CSEDenseMapInfo { 3193 static bool canHandle(Instruction *I) { 3194 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3195 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3196 } 3197 static inline Instruction *getEmptyKey() { 3198 return DenseMapInfo<Instruction *>::getEmptyKey(); 3199 } 3200 static inline Instruction *getTombstoneKey() { 3201 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3202 } 3203 static unsigned getHashValue(Instruction *I) { 3204 assert(canHandle(I) && "Unknown instruction!"); 3205 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3206 I->value_op_end())); 3207 } 3208 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3209 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3210 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3211 return LHS == RHS; 3212 return LHS->isIdenticalTo(RHS); 3213 } 3214}; 3215} 3216 3217///\brief Perform cse of induction variable instructions. 3218static void cse(BasicBlock *BB) { 3219 // Perform simple cse. 3220 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3221 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3222 Instruction *In = &*I++; 3223 3224 if (!CSEDenseMapInfo::canHandle(In)) 3225 continue; 3226 3227 // Check if we can replace this instruction with any of the 3228 // visited instructions. 3229 if (Instruction *V = CSEMap.lookup(In)) { 3230 In->replaceAllUsesWith(V); 3231 In->eraseFromParent(); 3232 continue; 3233 } 3234 3235 CSEMap[In] = In; 3236 } 3237} 3238 3239/// \brief Adds a 'fast' flag to floating point operations. 3240static Value *addFastMathFlag(Value *V) { 3241 if (isa<FPMathOperator>(V)) { 3242 FastMathFlags Flags; 3243 Flags.setUnsafeAlgebra(); 3244 cast<Instruction>(V)->setFastMathFlags(Flags); 3245 } 3246 return V; 3247} 3248 3249/// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3250/// the result needs to be inserted and/or extracted from vectors. 3251static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3252 const TargetTransformInfo &TTI) { 3253 if (Ty->isVoidTy()) 3254 return 0; 3255 3256 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3257 unsigned Cost = 0; 3258 3259 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3260 if (Insert) 3261 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3262 if (Extract) 3263 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3264 } 3265 3266 return Cost; 3267} 3268 3269// Estimate cost of a call instruction CI if it were vectorized with factor VF. 3270// Return the cost of the instruction, including scalarization overhead if it's 3271// needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3272// i.e. either vector version isn't available, or is too expensive. 3273static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3274 const TargetTransformInfo &TTI, 3275 const TargetLibraryInfo *TLI, 3276 bool &NeedToScalarize) { 3277 Function *F = CI->getCalledFunction(); 3278 StringRef FnName = CI->getCalledFunction()->getName(); 3279 Type *ScalarRetTy = CI->getType(); 3280 SmallVector<Type *, 4> Tys, ScalarTys; 3281 for (auto &ArgOp : CI->arg_operands()) 3282 ScalarTys.push_back(ArgOp->getType()); 3283 3284 // Estimate cost of scalarized vector call. The source operands are assumed 3285 // to be vectors, so we need to extract individual elements from there, 3286 // execute VF scalar calls, and then gather the result into the vector return 3287 // value. 3288 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3289 if (VF == 1) 3290 return ScalarCallCost; 3291 3292 // Compute corresponding vector type for return value and arguments. 3293 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3294 for (Type *ScalarTy : ScalarTys) 3295 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3296 3297 // Compute costs of unpacking argument values for the scalar calls and 3298 // packing the return values to a vector. 3299 unsigned ScalarizationCost = 3300 getScalarizationOverhead(RetTy, true, false, TTI); 3301 for (Type *Ty : Tys) 3302 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3303 3304 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3305 3306 // If we can't emit a vector call for this function, then the currently found 3307 // cost is the cost we need to return. 3308 NeedToScalarize = true; 3309 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3310 return Cost; 3311 3312 // If the corresponding vector cost is cheaper, return its cost. 3313 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3314 if (VectorCallCost < Cost) { 3315 NeedToScalarize = false; 3316 return VectorCallCost; 3317 } 3318 return Cost; 3319} 3320 3321// Estimate cost of an intrinsic call instruction CI if it were vectorized with 3322// factor VF. Return the cost of the instruction, including scalarization 3323// overhead if it's needed. 3324static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3325 const TargetTransformInfo &TTI, 3326 const TargetLibraryInfo *TLI) { 3327 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3328 assert(ID && "Expected intrinsic call!"); 3329 3330 Type *RetTy = ToVectorTy(CI->getType(), VF); 3331 SmallVector<Type *, 4> Tys; 3332 for (Value *ArgOperand : CI->arg_operands()) 3333 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3334 3335 FastMathFlags FMF; 3336 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3337 FMF = FPMO->getFastMathFlags(); 3338 3339 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3340} 3341 3342static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3343 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3344 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3345 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3346} 3347static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3348 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3349 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3350 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3351} 3352 3353void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3354 // For every instruction `I` in MinBWs, truncate the operands, create a 3355 // truncated version of `I` and reextend its result. InstCombine runs 3356 // later and will remove any ext/trunc pairs. 3357 // 3358 SmallPtrSet<Value *, 4> Erased; 3359 for (const auto &KV : *MinBWs) { 3360 VectorParts &Parts = WidenMap.get(KV.first); 3361 for (Value *&I : Parts) { 3362 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3363 continue; 3364 Type *OriginalTy = I->getType(); 3365 Type *ScalarTruncatedTy = 3366 IntegerType::get(OriginalTy->getContext(), KV.second); 3367 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3368 OriginalTy->getVectorNumElements()); 3369 if (TruncatedTy == OriginalTy) 3370 continue; 3371 3372 IRBuilder<> B(cast<Instruction>(I)); 3373 auto ShrinkOperand = [&](Value *V) -> Value * { 3374 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3375 if (ZI->getSrcTy() == TruncatedTy) 3376 return ZI->getOperand(0); 3377 return B.CreateZExtOrTrunc(V, TruncatedTy); 3378 }; 3379 3380 // The actual instruction modification depends on the instruction type, 3381 // unfortunately. 3382 Value *NewI = nullptr; 3383 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3384 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3385 ShrinkOperand(BO->getOperand(1))); 3386 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3387 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3388 NewI = 3389 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3390 ShrinkOperand(CI->getOperand(1))); 3391 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3392 NewI = B.CreateSelect(SI->getCondition(), 3393 ShrinkOperand(SI->getTrueValue()), 3394 ShrinkOperand(SI->getFalseValue())); 3395 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3396 switch (CI->getOpcode()) { 3397 default: 3398 llvm_unreachable("Unhandled cast!"); 3399 case Instruction::Trunc: 3400 NewI = ShrinkOperand(CI->getOperand(0)); 3401 break; 3402 case Instruction::SExt: 3403 NewI = B.CreateSExtOrTrunc( 3404 CI->getOperand(0), 3405 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3406 break; 3407 case Instruction::ZExt: 3408 NewI = B.CreateZExtOrTrunc( 3409 CI->getOperand(0), 3410 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3411 break; 3412 } 3413 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3414 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3415 auto *O0 = B.CreateZExtOrTrunc( 3416 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3417 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3418 auto *O1 = B.CreateZExtOrTrunc( 3419 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3420 3421 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3422 } else if (isa<LoadInst>(I)) { 3423 // Don't do anything with the operands, just extend the result. 3424 continue; 3425 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3426 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3427 auto *O0 = B.CreateZExtOrTrunc( 3428 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3429 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3430 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3431 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3432 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3433 auto *O0 = B.CreateZExtOrTrunc( 3434 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3435 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3436 } else { 3437 llvm_unreachable("Unhandled instruction type!"); 3438 } 3439 3440 // Lastly, extend the result. 3441 NewI->takeName(cast<Instruction>(I)); 3442 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3443 I->replaceAllUsesWith(Res); 3444 cast<Instruction>(I)->eraseFromParent(); 3445 Erased.insert(I); 3446 I = Res; 3447 } 3448 } 3449 3450 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3451 for (const auto &KV : *MinBWs) { 3452 VectorParts &Parts = WidenMap.get(KV.first); 3453 for (Value *&I : Parts) { 3454 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3455 if (Inst && Inst->use_empty()) { 3456 Value *NewI = Inst->getOperand(0); 3457 Inst->eraseFromParent(); 3458 I = NewI; 3459 } 3460 } 3461 } 3462} 3463 3464void InnerLoopVectorizer::vectorizeLoop() { 3465 //===------------------------------------------------===// 3466 // 3467 // Notice: any optimization or new instruction that go 3468 // into the code below should be also be implemented in 3469 // the cost-model. 3470 // 3471 //===------------------------------------------------===// 3472 Constant *Zero = Builder.getInt32(0); 3473 3474 // In order to support recurrences we need to be able to vectorize Phi nodes. 3475 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3476 // we create a new vector PHI node with no incoming edges. We use this value 3477 // when we vectorize all of the instructions that use the PHI. Next, after 3478 // all of the instructions in the block are complete we add the new incoming 3479 // edges to the PHI. At this point all of the instructions in the basic block 3480 // are vectorized, so we can use them to construct the PHI. 3481 PhiVector PHIsToFix; 3482 3483 // Scan the loop in a topological order to ensure that defs are vectorized 3484 // before users. 3485 LoopBlocksDFS DFS(OrigLoop); 3486 DFS.perform(LI); 3487 3488 // Vectorize all of the blocks in the original loop. 3489 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3490 vectorizeBlockInLoop(BB, &PHIsToFix); 3491 3492 // Insert truncates and extends for any truncated instructions as hints to 3493 // InstCombine. 3494 if (VF > 1) 3495 truncateToMinimalBitwidths(); 3496 3497 // At this point every instruction in the original loop is widened to a 3498 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3499 // nodes are currently empty because we did not want to introduce cycles. 3500 // This is the second stage of vectorizing recurrences. 3501 for (PHINode *Phi : PHIsToFix) { 3502 assert(Phi && "Unable to recover vectorized PHI"); 3503 3504 // Handle first-order recurrences that need to be fixed. 3505 if (Legal->isFirstOrderRecurrence(Phi)) { 3506 fixFirstOrderRecurrence(Phi); 3507 continue; 3508 } 3509 3510 // If the phi node is not a first-order recurrence, it must be a reduction. 3511 // Get it's reduction variable descriptor. 3512 assert(Legal->isReductionVariable(Phi) && 3513 "Unable to find the reduction variable"); 3514 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3515 3516 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3517 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3518 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3519 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3520 RdxDesc.getMinMaxRecurrenceKind(); 3521 setDebugLocFromInst(Builder, ReductionStartValue); 3522 3523 // We need to generate a reduction vector from the incoming scalar. 3524 // To do so, we need to generate the 'identity' vector and override 3525 // one of the elements with the incoming scalar reduction. We need 3526 // to do it in the vector-loop preheader. 3527 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3528 3529 // This is the vector-clone of the value that leaves the loop. 3530 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3531 Type *VecTy = VectorExit[0]->getType(); 3532 3533 // Find the reduction identity variable. Zero for addition, or, xor, 3534 // one for multiplication, -1 for And. 3535 Value *Identity; 3536 Value *VectorStart; 3537 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3538 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3539 // MinMax reduction have the start value as their identify. 3540 if (VF == 1) { 3541 VectorStart = Identity = ReductionStartValue; 3542 } else { 3543 VectorStart = Identity = 3544 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3545 } 3546 } else { 3547 // Handle other reduction kinds: 3548 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3549 RK, VecTy->getScalarType()); 3550 if (VF == 1) { 3551 Identity = Iden; 3552 // This vector is the Identity vector where the first element is the 3553 // incoming scalar reduction. 3554 VectorStart = ReductionStartValue; 3555 } else { 3556 Identity = ConstantVector::getSplat(VF, Iden); 3557 3558 // This vector is the Identity vector where the first element is the 3559 // incoming scalar reduction. 3560 VectorStart = 3561 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3562 } 3563 } 3564 3565 // Fix the vector-loop phi. 3566 3567 // Reductions do not have to start at zero. They can start with 3568 // any loop invariant values. 3569 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3570 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3571 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3572 VectorParts &Val = getVectorValue(LoopVal); 3573 for (unsigned part = 0; part < UF; ++part) { 3574 // Make sure to add the reduction stat value only to the 3575 // first unroll part. 3576 Value *StartVal = (part == 0) ? VectorStart : Identity; 3577 cast<PHINode>(VecRdxPhi[part]) 3578 ->addIncoming(StartVal, LoopVectorPreHeader); 3579 cast<PHINode>(VecRdxPhi[part]) 3580 ->addIncoming(Val[part], LoopVectorBody); 3581 } 3582 3583 // Before each round, move the insertion point right between 3584 // the PHIs and the values we are going to write. 3585 // This allows us to write both PHINodes and the extractelement 3586 // instructions. 3587 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3588 3589 VectorParts RdxParts = getVectorValue(LoopExitInst); 3590 setDebugLocFromInst(Builder, LoopExitInst); 3591 3592 // If the vector reduction can be performed in a smaller type, we truncate 3593 // then extend the loop exit value to enable InstCombine to evaluate the 3594 // entire expression in the smaller type. 3595 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3596 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3597 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3598 for (unsigned part = 0; part < UF; ++part) { 3599 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3600 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3601 : Builder.CreateZExt(Trunc, VecTy); 3602 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3603 UI != RdxParts[part]->user_end();) 3604 if (*UI != Trunc) { 3605 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3606 RdxParts[part] = Extnd; 3607 } else { 3608 ++UI; 3609 } 3610 } 3611 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3612 for (unsigned part = 0; part < UF; ++part) 3613 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3614 } 3615 3616 // Reduce all of the unrolled parts into a single vector. 3617 Value *ReducedPartRdx = RdxParts[0]; 3618 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3619 setDebugLocFromInst(Builder, ReducedPartRdx); 3620 for (unsigned part = 1; part < UF; ++part) { 3621 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3622 // Floating point operations had to be 'fast' to enable the reduction. 3623 ReducedPartRdx = addFastMathFlag( 3624 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3625 ReducedPartRdx, "bin.rdx")); 3626 else 3627 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3628 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3629 } 3630 3631 if (VF > 1) { 3632 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3633 // and vector ops, reducing the set of values being computed by half each 3634 // round. 3635 assert(isPowerOf2_32(VF) && 3636 "Reduction emission only supported for pow2 vectors!"); 3637 Value *TmpVec = ReducedPartRdx; 3638 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3639 for (unsigned i = VF; i != 1; i >>= 1) { 3640 // Move the upper half of the vector to the lower half. 3641 for (unsigned j = 0; j != i / 2; ++j) 3642 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3643 3644 // Fill the rest of the mask with undef. 3645 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3646 UndefValue::get(Builder.getInt32Ty())); 3647 3648 Value *Shuf = Builder.CreateShuffleVector( 3649 TmpVec, UndefValue::get(TmpVec->getType()), 3650 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3651 3652 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3653 // Floating point operations had to be 'fast' to enable the reduction. 3654 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3655 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3656 else 3657 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3658 TmpVec, Shuf); 3659 } 3660 3661 // The result is in the first element of the vector. 3662 ReducedPartRdx = 3663 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3664 3665 // If the reduction can be performed in a smaller type, we need to extend 3666 // the reduction to the wider type before we branch to the original loop. 3667 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3668 ReducedPartRdx = 3669 RdxDesc.isSigned() 3670 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3671 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3672 } 3673 3674 // Create a phi node that merges control-flow from the backedge-taken check 3675 // block and the middle block. 3676 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3677 LoopScalarPreHeader->getTerminator()); 3678 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3679 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3680 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3681 3682 // Now, we need to fix the users of the reduction variable 3683 // inside and outside of the scalar remainder loop. 3684 // We know that the loop is in LCSSA form. We need to update the 3685 // PHI nodes in the exit blocks. 3686 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3687 LEE = LoopExitBlock->end(); 3688 LEI != LEE; ++LEI) { 3689 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3690 if (!LCSSAPhi) 3691 break; 3692 3693 // All PHINodes need to have a single entry edge, or two if 3694 // we already fixed them. 3695 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3696 3697 // We found our reduction value exit-PHI. Update it with the 3698 // incoming bypass edge. 3699 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3700 // Add an edge coming from the bypass. 3701 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3702 break; 3703 } 3704 } // end of the LCSSA phi scan. 3705 3706 // Fix the scalar loop reduction variable with the incoming reduction sum 3707 // from the vector body and from the backedge value. 3708 int IncomingEdgeBlockIdx = 3709 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3710 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3711 // Pick the other block. 3712 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3713 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3714 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3715 } // end of for each Phi in PHIsToFix. 3716 3717 fixLCSSAPHIs(); 3718 3719 // Make sure DomTree is updated. 3720 updateAnalysis(); 3721 3722 // Predicate any stores. 3723 for (auto KV : PredicatedStores) { 3724 BasicBlock::iterator I(KV.first); 3725 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3726 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3727 /*BranchWeights=*/nullptr, DT, LI); 3728 I->moveBefore(T); 3729 I->getParent()->setName("pred.store.if"); 3730 BB->setName("pred.store.continue"); 3731 } 3732 DEBUG(DT->verifyDomTree()); 3733 // Remove redundant induction instructions. 3734 cse(LoopVectorBody); 3735} 3736 3737void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3738 3739 // This is the second phase of vectorizing first-order recurrences. An 3740 // overview of the transformation is described below. Suppose we have the 3741 // following loop. 3742 // 3743 // for (int i = 0; i < n; ++i) 3744 // b[i] = a[i] - a[i - 1]; 3745 // 3746 // There is a first-order recurrence on "a". For this loop, the shorthand 3747 // scalar IR looks like: 3748 // 3749 // scalar.ph: 3750 // s_init = a[-1] 3751 // br scalar.body 3752 // 3753 // scalar.body: 3754 // i = phi [0, scalar.ph], [i+1, scalar.body] 3755 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3756 // s2 = a[i] 3757 // b[i] = s2 - s1 3758 // br cond, scalar.body, ... 3759 // 3760 // In this example, s1 is a recurrence because it's value depends on the 3761 // previous iteration. In the first phase of vectorization, we created a 3762 // temporary value for s1. We now complete the vectorization and produce the 3763 // shorthand vector IR shown below (for VF = 4, UF = 1). 3764 // 3765 // vector.ph: 3766 // v_init = vector(..., ..., ..., a[-1]) 3767 // br vector.body 3768 // 3769 // vector.body 3770 // i = phi [0, vector.ph], [i+4, vector.body] 3771 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3772 // v2 = a[i, i+1, i+2, i+3]; 3773 // v3 = vector(v1(3), v2(0, 1, 2)) 3774 // b[i, i+1, i+2, i+3] = v2 - v3 3775 // br cond, vector.body, middle.block 3776 // 3777 // middle.block: 3778 // x = v2(3) 3779 // br scalar.ph 3780 // 3781 // scalar.ph: 3782 // s_init = phi [x, middle.block], [a[-1], otherwise] 3783 // br scalar.body 3784 // 3785 // After execution completes the vector loop, we extract the next value of 3786 // the recurrence (x) to use as the initial value in the scalar loop. 3787 3788 // Get the original loop preheader and single loop latch. 3789 auto *Preheader = OrigLoop->getLoopPreheader(); 3790 auto *Latch = OrigLoop->getLoopLatch(); 3791 3792 // Get the initial and previous values of the scalar recurrence. 3793 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3794 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3795 3796 // Create a vector from the initial value. 3797 auto *VectorInit = ScalarInit; 3798 if (VF > 1) { 3799 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3800 VectorInit = Builder.CreateInsertElement( 3801 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3802 Builder.getInt32(VF - 1), "vector.recur.init"); 3803 } 3804 3805 // We constructed a temporary phi node in the first phase of vectorization. 3806 // This phi node will eventually be deleted. 3807 auto &PhiParts = getVectorValue(Phi); 3808 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3809 3810 // Create a phi node for the new recurrence. The current value will either be 3811 // the initial value inserted into a vector or loop-varying vector value. 3812 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3813 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3814 3815 // Get the vectorized previous value. We ensured the previous values was an 3816 // instruction when detecting the recurrence. 3817 auto &PreviousParts = getVectorValue(Previous); 3818 3819 // Set the insertion point to be after this instruction. We ensured the 3820 // previous value dominated all uses of the phi when detecting the 3821 // recurrence. 3822 Builder.SetInsertPoint( 3823 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3824 3825 // We will construct a vector for the recurrence by combining the values for 3826 // the current and previous iterations. This is the required shuffle mask. 3827 SmallVector<Constant *, 8> ShuffleMask(VF); 3828 ShuffleMask[0] = Builder.getInt32(VF - 1); 3829 for (unsigned I = 1; I < VF; ++I) 3830 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3831 3832 // The vector from which to take the initial value for the current iteration 3833 // (actual or unrolled). Initially, this is the vector phi node. 3834 Value *Incoming = VecPhi; 3835 3836 // Shuffle the current and previous vector and update the vector parts. 3837 for (unsigned Part = 0; Part < UF; ++Part) { 3838 auto *Shuffle = 3839 VF > 1 3840 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3841 ConstantVector::get(ShuffleMask)) 3842 : Incoming; 3843 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3844 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3845 PhiParts[Part] = Shuffle; 3846 Incoming = PreviousParts[Part]; 3847 } 3848 3849 // Fix the latch value of the new recurrence in the vector loop. 3850 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3851 3852 // Extract the last vector element in the middle block. This will be the 3853 // initial value for the recurrence when jumping to the scalar loop. 3854 auto *Extract = Incoming; 3855 if (VF > 1) { 3856 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3857 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3858 "vector.recur.extract"); 3859 } 3860 3861 // Fix the initial value of the original recurrence in the scalar loop. 3862 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3863 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3864 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3865 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3866 Start->addIncoming(Incoming, BB); 3867 } 3868 3869 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3870 Phi->setName("scalar.recur"); 3871 3872 // Finally, fix users of the recurrence outside the loop. The users will need 3873 // either the last value of the scalar recurrence or the last value of the 3874 // vector recurrence we extracted in the middle block. Since the loop is in 3875 // LCSSA form, we just need to find the phi node for the original scalar 3876 // recurrence in the exit block, and then add an edge for the middle block. 3877 for (auto &I : *LoopExitBlock) { 3878 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3879 if (!LCSSAPhi) 3880 break; 3881 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3882 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3883 break; 3884 } 3885 } 3886} 3887 3888void InnerLoopVectorizer::fixLCSSAPHIs() { 3889 for (Instruction &LEI : *LoopExitBlock) { 3890 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 3891 if (!LCSSAPhi) 3892 break; 3893 if (LCSSAPhi->getNumIncomingValues() == 1) 3894 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3895 LoopMiddleBlock); 3896 } 3897} 3898 3899InnerLoopVectorizer::VectorParts 3900InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3901 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3902 "Invalid edge"); 3903 3904 // Look for cached value. 3905 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 3906 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3907 if (ECEntryIt != MaskCache.end()) 3908 return ECEntryIt->second; 3909 3910 VectorParts SrcMask = createBlockInMask(Src); 3911 3912 // The terminator has to be a branch inst! 3913 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3914 assert(BI && "Unexpected terminator found"); 3915 3916 if (BI->isConditional()) { 3917 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3918 3919 if (BI->getSuccessor(0) != Dst) 3920 for (unsigned part = 0; part < UF; ++part) 3921 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3922 3923 for (unsigned part = 0; part < UF; ++part) 3924 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3925 3926 MaskCache[Edge] = EdgeMask; 3927 return EdgeMask; 3928 } 3929 3930 MaskCache[Edge] = SrcMask; 3931 return SrcMask; 3932} 3933 3934InnerLoopVectorizer::VectorParts 3935InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3936 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3937 3938 // Loop incoming mask is all-one. 3939 if (OrigLoop->getHeader() == BB) { 3940 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3941 return getVectorValue(C); 3942 } 3943 3944 // This is the block mask. We OR all incoming edges, and with zero. 3945 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3946 VectorParts BlockMask = getVectorValue(Zero); 3947 3948 // For each pred: 3949 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3950 VectorParts EM = createEdgeMask(*it, BB); 3951 for (unsigned part = 0; part < UF; ++part) 3952 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3953 } 3954 3955 return BlockMask; 3956} 3957 3958void InnerLoopVectorizer::widenPHIInstruction( 3959 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3960 unsigned VF, PhiVector *PV) { 3961 PHINode *P = cast<PHINode>(PN); 3962 // Handle recurrences. 3963 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3964 for (unsigned part = 0; part < UF; ++part) { 3965 // This is phase one of vectorizing PHIs. 3966 Type *VecTy = 3967 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3968 Entry[part] = PHINode::Create( 3969 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3970 } 3971 PV->push_back(P); 3972 return; 3973 } 3974 3975 setDebugLocFromInst(Builder, P); 3976 // Check for PHI nodes that are lowered to vector selects. 3977 if (P->getParent() != OrigLoop->getHeader()) { 3978 // We know that all PHIs in non-header blocks are converted into 3979 // selects, so we don't have to worry about the insertion order and we 3980 // can just use the builder. 3981 // At this point we generate the predication tree. There may be 3982 // duplications since this is a simple recursive scan, but future 3983 // optimizations will clean it up. 3984 3985 unsigned NumIncoming = P->getNumIncomingValues(); 3986 3987 // Generate a sequence of selects of the form: 3988 // SELECT(Mask3, In3, 3989 // SELECT(Mask2, In2, 3990 // ( ...))) 3991 for (unsigned In = 0; In < NumIncoming; In++) { 3992 VectorParts Cond = 3993 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 3994 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3995 3996 for (unsigned part = 0; part < UF; ++part) { 3997 // We might have single edge PHIs (blocks) - use an identity 3998 // 'select' for the first PHI operand. 3999 if (In == 0) 4000 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4001 else 4002 // Select between the current value and the previous incoming edge 4003 // based on the incoming mask. 4004 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4005 "predphi"); 4006 } 4007 } 4008 return; 4009 } 4010 4011 // This PHINode must be an induction variable. 4012 // Make sure that we know about it. 4013 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4014 4015 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4016 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4017 4018 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4019 // which can be found from the original scalar operations. 4020 switch (II.getKind()) { 4021 case InductionDescriptor::IK_NoInduction: 4022 llvm_unreachable("Unknown induction"); 4023 case InductionDescriptor::IK_IntInduction: 4024 return widenIntInduction(P, Entry); 4025 case InductionDescriptor::IK_PtrInduction: 4026 // Handle the pointer induction variable case. 4027 assert(P->getType()->isPointerTy() && "Unexpected type."); 4028 // This is the normalized GEP that starts counting at zero. 4029 Value *PtrInd = Induction; 4030 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4031 // This is the vector of results. Notice that we don't generate 4032 // vector geps because scalar geps result in better code. 4033 for (unsigned part = 0; part < UF; ++part) { 4034 if (VF == 1) { 4035 int EltIndex = part; 4036 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4037 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4038 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4039 SclrGep->setName("next.gep"); 4040 Entry[part] = SclrGep; 4041 continue; 4042 } 4043 4044 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4045 for (unsigned int i = 0; i < VF; ++i) { 4046 int EltIndex = i + part * VF; 4047 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4048 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4049 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4050 SclrGep->setName("next.gep"); 4051 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4052 Builder.getInt32(i), "insert.gep"); 4053 } 4054 Entry[part] = VecVal; 4055 } 4056 return; 4057 } 4058} 4059 4060void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4061 // For each instruction in the old loop. 4062 for (Instruction &I : *BB) { 4063 VectorParts &Entry = WidenMap.get(&I); 4064 4065 switch (I.getOpcode()) { 4066 case Instruction::Br: 4067 // Nothing to do for PHIs and BR, since we already took care of the 4068 // loop control flow instructions. 4069 continue; 4070 case Instruction::PHI: { 4071 // Vectorize PHINodes. 4072 widenPHIInstruction(&I, Entry, UF, VF, PV); 4073 continue; 4074 } // End of PHI. 4075 4076 case Instruction::Add: 4077 case Instruction::FAdd: 4078 case Instruction::Sub: 4079 case Instruction::FSub: 4080 case Instruction::Mul: 4081 case Instruction::FMul: 4082 case Instruction::UDiv: 4083 case Instruction::SDiv: 4084 case Instruction::FDiv: 4085 case Instruction::URem: 4086 case Instruction::SRem: 4087 case Instruction::FRem: 4088 case Instruction::Shl: 4089 case Instruction::LShr: 4090 case Instruction::AShr: 4091 case Instruction::And: 4092 case Instruction::Or: 4093 case Instruction::Xor: { 4094 // Just widen binops. 4095 auto *BinOp = cast<BinaryOperator>(&I); 4096 setDebugLocFromInst(Builder, BinOp); 4097 VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4098 VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4099 4100 // Use this vector value for all users of the original instruction. 4101 for (unsigned Part = 0; Part < UF; ++Part) { 4102 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4103 4104 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4105 VecOp->copyIRFlags(BinOp); 4106 4107 Entry[Part] = V; 4108 } 4109 4110 addMetadata(Entry, BinOp); 4111 break; 4112 } 4113 case Instruction::Select: { 4114 // Widen selects. 4115 // If the selector is loop invariant we can create a select 4116 // instruction with a scalar condition. Otherwise, use vector-select. 4117 auto *SE = PSE.getSE(); 4118 bool InvariantCond = 4119 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4120 setDebugLocFromInst(Builder, &I); 4121 4122 // The condition can be loop invariant but still defined inside the 4123 // loop. This means that we can't just use the original 'cond' value. 4124 // We have to take the 'vectorized' value and pick the first lane. 4125 // Instcombine will make this a no-op. 4126 VectorParts &Cond = getVectorValue(I.getOperand(0)); 4127 VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4128 VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4129 4130 Value *ScalarCond = 4131 (VF == 1) 4132 ? Cond[0] 4133 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4134 4135 for (unsigned Part = 0; Part < UF; ++Part) { 4136 Entry[Part] = Builder.CreateSelect( 4137 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4138 } 4139 4140 addMetadata(Entry, &I); 4141 break; 4142 } 4143 4144 case Instruction::ICmp: 4145 case Instruction::FCmp: { 4146 // Widen compares. Generate vector compares. 4147 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4148 auto *Cmp = dyn_cast<CmpInst>(&I); 4149 setDebugLocFromInst(Builder, Cmp); 4150 VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4151 VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4152 for (unsigned Part = 0; Part < UF; ++Part) { 4153 Value *C = nullptr; 4154 if (FCmp) { 4155 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4156 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4157 } else { 4158 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4159 } 4160 Entry[Part] = C; 4161 } 4162 4163 addMetadata(Entry, &I); 4164 break; 4165 } 4166 4167 case Instruction::Store: 4168 case Instruction::Load: 4169 vectorizeMemoryInstruction(&I); 4170 break; 4171 case Instruction::ZExt: 4172 case Instruction::SExt: 4173 case Instruction::FPToUI: 4174 case Instruction::FPToSI: 4175 case Instruction::FPExt: 4176 case Instruction::PtrToInt: 4177 case Instruction::IntToPtr: 4178 case Instruction::SIToFP: 4179 case Instruction::UIToFP: 4180 case Instruction::Trunc: 4181 case Instruction::FPTrunc: 4182 case Instruction::BitCast: { 4183 auto *CI = dyn_cast<CastInst>(&I); 4184 setDebugLocFromInst(Builder, CI); 4185 4186 // Optimize the special case where the source is a constant integer 4187 // induction variable. Notice that we can only optimize the 'trunc' case 4188 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4189 // (c) other casts depend on pointer size. 4190 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4191 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4192 ID.getConstIntStepValue()) { 4193 widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI)); 4194 addMetadata(Entry, &I); 4195 break; 4196 } 4197 4198 /// Vectorize casts. 4199 Type *DestTy = 4200 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4201 4202 VectorParts &A = getVectorValue(CI->getOperand(0)); 4203 for (unsigned Part = 0; Part < UF; ++Part) 4204 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4205 addMetadata(Entry, &I); 4206 break; 4207 } 4208 4209 case Instruction::Call: { 4210 // Ignore dbg intrinsics. 4211 if (isa<DbgInfoIntrinsic>(I)) 4212 break; 4213 setDebugLocFromInst(Builder, &I); 4214 4215 Module *M = BB->getParent()->getParent(); 4216 auto *CI = cast<CallInst>(&I); 4217 4218 StringRef FnName = CI->getCalledFunction()->getName(); 4219 Function *F = CI->getCalledFunction(); 4220 Type *RetTy = ToVectorTy(CI->getType(), VF); 4221 SmallVector<Type *, 4> Tys; 4222 for (Value *ArgOperand : CI->arg_operands()) 4223 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4224 4225 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4226 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4227 ID == Intrinsic::lifetime_start)) { 4228 scalarizeInstruction(&I); 4229 break; 4230 } 4231 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4232 // version of the instruction. 4233 // Is it beneficial to perform intrinsic call compared to lib call? 4234 bool NeedToScalarize; 4235 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4236 bool UseVectorIntrinsic = 4237 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4238 if (!UseVectorIntrinsic && NeedToScalarize) { 4239 scalarizeInstruction(&I); 4240 break; 4241 } 4242 4243 for (unsigned Part = 0; Part < UF; ++Part) { 4244 SmallVector<Value *, 4> Args; 4245 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4246 Value *Arg = CI->getArgOperand(i); 4247 // Some intrinsics have a scalar argument - don't replace it with a 4248 // vector. 4249 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4250 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4251 Arg = VectorArg[Part]; 4252 } 4253 Args.push_back(Arg); 4254 } 4255 4256 Function *VectorF; 4257 if (UseVectorIntrinsic) { 4258 // Use vector version of the intrinsic. 4259 Type *TysForDecl[] = {CI->getType()}; 4260 if (VF > 1) 4261 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4262 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4263 } else { 4264 // Use vector version of the library call. 4265 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4266 assert(!VFnName.empty() && "Vector function name is empty."); 4267 VectorF = M->getFunction(VFnName); 4268 if (!VectorF) { 4269 // Generate a declaration 4270 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4271 VectorF = 4272 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4273 VectorF->copyAttributesFrom(F); 4274 } 4275 } 4276 assert(VectorF && "Can't create vector function."); 4277 4278 SmallVector<OperandBundleDef, 1> OpBundles; 4279 CI->getOperandBundlesAsDefs(OpBundles); 4280 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4281 4282 if (isa<FPMathOperator>(V)) 4283 V->copyFastMathFlags(CI); 4284 4285 Entry[Part] = V; 4286 } 4287 4288 addMetadata(Entry, &I); 4289 break; 4290 } 4291 4292 default: 4293 // All other instructions are unsupported. Scalarize them. 4294 scalarizeInstruction(&I); 4295 break; 4296 } // end of switch. 4297 } // end of for_each instr. 4298} 4299 4300void InnerLoopVectorizer::updateAnalysis() { 4301 // Forget the original basic block. 4302 PSE.getSE()->forgetLoop(OrigLoop); 4303 4304 // Update the dominator tree information. 4305 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4306 "Entry does not dominate exit."); 4307 4308 // We don't predicate stores by this point, so the vector body should be a 4309 // single loop. 4310 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4311 4312 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4313 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4314 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4315 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4316 4317 DEBUG(DT->verifyDomTree()); 4318} 4319 4320/// \brief Check whether it is safe to if-convert this phi node. 4321/// 4322/// Phi nodes with constant expressions that can trap are not safe to if 4323/// convert. 4324static bool canIfConvertPHINodes(BasicBlock *BB) { 4325 for (Instruction &I : *BB) { 4326 auto *Phi = dyn_cast<PHINode>(&I); 4327 if (!Phi) 4328 return true; 4329 for (Value *V : Phi->incoming_values()) 4330 if (auto *C = dyn_cast<Constant>(V)) 4331 if (C->canTrap()) 4332 return false; 4333 } 4334 return true; 4335} 4336 4337bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4338 if (!EnableIfConversion) { 4339 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4340 return false; 4341 } 4342 4343 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4344 4345 // A list of pointers that we can safely read and write to. 4346 SmallPtrSet<Value *, 8> SafePointes; 4347 4348 // Collect safe addresses. 4349 for (BasicBlock *BB : TheLoop->blocks()) { 4350 if (blockNeedsPredication(BB)) 4351 continue; 4352 4353 for (Instruction &I : *BB) { 4354 if (auto *LI = dyn_cast<LoadInst>(&I)) 4355 SafePointes.insert(LI->getPointerOperand()); 4356 else if (auto *SI = dyn_cast<StoreInst>(&I)) 4357 SafePointes.insert(SI->getPointerOperand()); 4358 } 4359 } 4360 4361 // Collect the blocks that need predication. 4362 BasicBlock *Header = TheLoop->getHeader(); 4363 for (BasicBlock *BB : TheLoop->blocks()) { 4364 // We don't support switch statements inside loops. 4365 if (!isa<BranchInst>(BB->getTerminator())) { 4366 emitAnalysis(VectorizationReport(BB->getTerminator()) 4367 << "loop contains a switch statement"); 4368 return false; 4369 } 4370 4371 // We must be able to predicate all blocks that need to be predicated. 4372 if (blockNeedsPredication(BB)) { 4373 if (!blockCanBePredicated(BB, SafePointes)) { 4374 emitAnalysis(VectorizationReport(BB->getTerminator()) 4375 << "control flow cannot be substituted for a select"); 4376 return false; 4377 } 4378 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4379 emitAnalysis(VectorizationReport(BB->getTerminator()) 4380 << "control flow cannot be substituted for a select"); 4381 return false; 4382 } 4383 } 4384 4385 // We can if-convert this loop. 4386 return true; 4387} 4388 4389bool LoopVectorizationLegality::canVectorize() { 4390 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4391 // be canonicalized. 4392 if (!TheLoop->getLoopPreheader()) { 4393 emitAnalysis(VectorizationReport() 4394 << "loop control flow is not understood by vectorizer"); 4395 return false; 4396 } 4397 4398 // We can only vectorize innermost loops. 4399 if (!TheLoop->empty()) { 4400 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4401 return false; 4402 } 4403 4404 // We must have a single backedge. 4405 if (TheLoop->getNumBackEdges() != 1) { 4406 emitAnalysis(VectorizationReport() 4407 << "loop control flow is not understood by vectorizer"); 4408 return false; 4409 } 4410 4411 // We must have a single exiting block. 4412 if (!TheLoop->getExitingBlock()) { 4413 emitAnalysis(VectorizationReport() 4414 << "loop control flow is not understood by vectorizer"); 4415 return false; 4416 } 4417 4418 // We only handle bottom-tested loops, i.e. loop in which the condition is 4419 // checked at the end of each iteration. With that we can assume that all 4420 // instructions in the loop are executed the same number of times. 4421 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4422 emitAnalysis(VectorizationReport() 4423 << "loop control flow is not understood by vectorizer"); 4424 return false; 4425 } 4426 4427 // We need to have a loop header. 4428 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4429 << '\n'); 4430 4431 // Check if we can if-convert non-single-bb loops. 4432 unsigned NumBlocks = TheLoop->getNumBlocks(); 4433 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4434 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4435 return false; 4436 } 4437 4438 // ScalarEvolution needs to be able to find the exit count. 4439 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4440 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4441 emitAnalysis(VectorizationReport() 4442 << "could not determine number of loop iterations"); 4443 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4444 return false; 4445 } 4446 4447 // Check if we can vectorize the instructions and CFG in this loop. 4448 if (!canVectorizeInstrs()) { 4449 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4450 return false; 4451 } 4452 4453 // Go over each instruction and look at memory deps. 4454 if (!canVectorizeMemory()) { 4455 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4456 return false; 4457 } 4458 4459 // Collect all of the variables that remain uniform after vectorization. 4460 collectLoopUniforms(); 4461 4462 DEBUG(dbgs() << "LV: We can vectorize this loop" 4463 << (LAI->getRuntimePointerChecking()->Need 4464 ? " (with a runtime bound check)" 4465 : "") 4466 << "!\n"); 4467 4468 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4469 4470 // If an override option has been passed in for interleaved accesses, use it. 4471 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4472 UseInterleaved = EnableInterleavedMemAccesses; 4473 4474 // Analyze interleaved memory accesses. 4475 if (UseInterleaved) 4476 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4477 4478 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4479 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4480 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4481 4482 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4483 emitAnalysis(VectorizationReport() 4484 << "Too many SCEV assumptions need to be made and checked " 4485 << "at runtime"); 4486 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4487 return false; 4488 } 4489 4490 // Okay! We can vectorize. At this point we don't have any other mem analysis 4491 // which may limit our maximum vectorization factor, so just return true with 4492 // no restrictions. 4493 return true; 4494} 4495 4496static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4497 if (Ty->isPointerTy()) 4498 return DL.getIntPtrType(Ty); 4499 4500 // It is possible that char's or short's overflow when we ask for the loop's 4501 // trip count, work around this by changing the type size. 4502 if (Ty->getScalarSizeInBits() < 32) 4503 return Type::getInt32Ty(Ty->getContext()); 4504 4505 return Ty; 4506} 4507 4508static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4509 Ty0 = convertPointerToIntegerType(DL, Ty0); 4510 Ty1 = convertPointerToIntegerType(DL, Ty1); 4511 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4512 return Ty0; 4513 return Ty1; 4514} 4515 4516/// \brief Check that the instruction has outside loop users and is not an 4517/// identified reduction variable. 4518static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4519 SmallPtrSetImpl<Value *> &AllowedExit) { 4520 // Reduction and Induction instructions are allowed to have exit users. All 4521 // other instructions must not have external users. 4522 if (!AllowedExit.count(Inst)) 4523 // Check that all of the users of the loop are inside the BB. 4524 for (User *U : Inst->users()) { 4525 Instruction *UI = cast<Instruction>(U); 4526 // This user may be a reduction exit value. 4527 if (!TheLoop->contains(UI)) { 4528 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4529 return true; 4530 } 4531 } 4532 return false; 4533} 4534 4535void LoopVectorizationLegality::addInductionPhi( 4536 PHINode *Phi, const InductionDescriptor &ID, 4537 SmallPtrSetImpl<Value *> &AllowedExit) { 4538 Inductions[Phi] = ID; 4539 Type *PhiTy = Phi->getType(); 4540 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4541 4542 // Get the widest type. 4543 if (!WidestIndTy) 4544 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4545 else 4546 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4547 4548 // Int inductions are special because we only allow one IV. 4549 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4550 ID.getConstIntStepValue() && 4551 ID.getConstIntStepValue()->isOne() && 4552 isa<Constant>(ID.getStartValue()) && 4553 cast<Constant>(ID.getStartValue())->isNullValue()) { 4554 4555 // Use the phi node with the widest type as induction. Use the last 4556 // one if there are multiple (no good reason for doing this other 4557 // than it is expedient). We've checked that it begins at zero and 4558 // steps by one, so this is a canonical induction variable. 4559 if (!Induction || PhiTy == WidestIndTy) 4560 Induction = Phi; 4561 } 4562 4563 // Both the PHI node itself, and the "post-increment" value feeding 4564 // back into the PHI node may have external users. 4565 AllowedExit.insert(Phi); 4566 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4567 4568 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4569 return; 4570} 4571 4572bool LoopVectorizationLegality::canVectorizeInstrs() { 4573 BasicBlock *Header = TheLoop->getHeader(); 4574 4575 // Look for the attribute signaling the absence of NaNs. 4576 Function &F = *Header->getParent(); 4577 HasFunNoNaNAttr = 4578 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4579 4580 // For each block in the loop. 4581 for (BasicBlock *BB : TheLoop->blocks()) { 4582 // Scan the instructions in the block and look for hazards. 4583 for (Instruction &I : *BB) { 4584 if (auto *Phi = dyn_cast<PHINode>(&I)) { 4585 Type *PhiTy = Phi->getType(); 4586 // Check that this PHI type is allowed. 4587 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4588 !PhiTy->isPointerTy()) { 4589 emitAnalysis(VectorizationReport(Phi) 4590 << "loop control flow is not understood by vectorizer"); 4591 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4592 return false; 4593 } 4594 4595 // If this PHINode is not in the header block, then we know that we 4596 // can convert it to select during if-conversion. No need to check if 4597 // the PHIs in this block are induction or reduction variables. 4598 if (BB != Header) { 4599 // Check that this instruction has no outside users or is an 4600 // identified reduction value with an outside user. 4601 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 4602 continue; 4603 emitAnalysis(VectorizationReport(Phi) 4604 << "value could not be identified as " 4605 "an induction or reduction variable"); 4606 return false; 4607 } 4608 4609 // We only allow if-converted PHIs with exactly two incoming values. 4610 if (Phi->getNumIncomingValues() != 2) { 4611 emitAnalysis(VectorizationReport(Phi) 4612 << "control flow not understood by vectorizer"); 4613 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4614 return false; 4615 } 4616 4617 RecurrenceDescriptor RedDes; 4618 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4619 if (RedDes.hasUnsafeAlgebra()) 4620 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4621 AllowedExit.insert(RedDes.getLoopExitInstr()); 4622 Reductions[Phi] = RedDes; 4623 continue; 4624 } 4625 4626 InductionDescriptor ID; 4627 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4628 addInductionPhi(Phi, ID, AllowedExit); 4629 continue; 4630 } 4631 4632 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4633 FirstOrderRecurrences.insert(Phi); 4634 continue; 4635 } 4636 4637 // As a last resort, coerce the PHI to a AddRec expression 4638 // and re-try classifying it a an induction PHI. 4639 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4640 addInductionPhi(Phi, ID, AllowedExit); 4641 continue; 4642 } 4643 4644 emitAnalysis(VectorizationReport(Phi) 4645 << "value that could not be identified as " 4646 "reduction is used outside the loop"); 4647 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4648 return false; 4649 } // end of PHI handling 4650 4651 // We handle calls that: 4652 // * Are debug info intrinsics. 4653 // * Have a mapping to an IR intrinsic. 4654 // * Have a vector version available. 4655 auto *CI = dyn_cast<CallInst>(&I); 4656 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4657 !isa<DbgInfoIntrinsic>(CI) && 4658 !(CI->getCalledFunction() && TLI && 4659 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4660 emitAnalysis(VectorizationReport(CI) 4661 << "call instruction cannot be vectorized"); 4662 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4663 return false; 4664 } 4665 4666 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4667 // second argument is the same (i.e. loop invariant) 4668 if (CI && hasVectorInstrinsicScalarOpd( 4669 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4670 auto *SE = PSE.getSE(); 4671 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4672 emitAnalysis(VectorizationReport(CI) 4673 << "intrinsic instruction cannot be vectorized"); 4674 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4675 return false; 4676 } 4677 } 4678 4679 // Check that the instruction return type is vectorizable. 4680 // Also, we can't vectorize extractelement instructions. 4681 if ((!VectorType::isValidElementType(I.getType()) && 4682 !I.getType()->isVoidTy()) || 4683 isa<ExtractElementInst>(I)) { 4684 emitAnalysis(VectorizationReport(&I) 4685 << "instruction return type cannot be vectorized"); 4686 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4687 return false; 4688 } 4689 4690 // Check that the stored type is vectorizable. 4691 if (auto *ST = dyn_cast<StoreInst>(&I)) { 4692 Type *T = ST->getValueOperand()->getType(); 4693 if (!VectorType::isValidElementType(T)) { 4694 emitAnalysis(VectorizationReport(ST) 4695 << "store instruction cannot be vectorized"); 4696 return false; 4697 } 4698 4699 // FP instructions can allow unsafe algebra, thus vectorizable by 4700 // non-IEEE-754 compliant SIMD units. 4701 // This applies to floating-point math operations and calls, not memory 4702 // operations, shuffles, or casts, as they don't change precision or 4703 // semantics. 4704 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 4705 !I.hasUnsafeAlgebra()) { 4706 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4707 Hints->setPotentiallyUnsafe(); 4708 } 4709 4710 // Reduction instructions are allowed to have exit users. 4711 // All other instructions must not have external users. 4712 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 4713 emitAnalysis(VectorizationReport(&I) 4714 << "value cannot be used outside the loop"); 4715 return false; 4716 } 4717 4718 } // next instr. 4719 } 4720 4721 if (!Induction) { 4722 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4723 if (Inductions.empty()) { 4724 emitAnalysis(VectorizationReport() 4725 << "loop induction variable could not be identified"); 4726 return false; 4727 } 4728 } 4729 4730 // Now we know the widest induction type, check if our found induction 4731 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4732 // will create another. 4733 if (Induction && WidestIndTy != Induction->getType()) 4734 Induction = nullptr; 4735 4736 return true; 4737} 4738 4739void LoopVectorizationLegality::collectLoopUniforms() { 4740 // We now know that the loop is vectorizable! 4741 // Collect variables that will remain uniform after vectorization. 4742 4743 // If V is not an instruction inside the current loop, it is a Value 4744 // outside of the scope which we are interesting in. 4745 auto isOutOfScope = [&](Value *V) -> bool { 4746 Instruction *I = dyn_cast<Instruction>(V); 4747 return (!I || !TheLoop->contains(I)); 4748 }; 4749 4750 SetVector<Instruction *> Worklist; 4751 BasicBlock *Latch = TheLoop->getLoopLatch(); 4752 // Start with the conditional branch. 4753 if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) { 4754 Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4755 Worklist.insert(Cmp); 4756 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4757 } 4758 4759 // Also add all consecutive pointer values; these values will be uniform 4760 // after vectorization (and subsequent cleanup). 4761 for (auto *BB : TheLoop->blocks()) { 4762 for (auto &I : *BB) { 4763 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) { 4764 Worklist.insert(&I); 4765 DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n"); 4766 } 4767 } 4768 } 4769 4770 // Expand Worklist in topological order: whenever a new instruction 4771 // is added , its users should be either already inside Worklist, or 4772 // out of scope. It ensures a uniform instruction will only be used 4773 // by uniform instructions or out of scope instructions. 4774 unsigned idx = 0; 4775 do { 4776 Instruction *I = Worklist[idx++]; 4777 4778 for (auto OV : I->operand_values()) { 4779 if (isOutOfScope(OV)) 4780 continue; 4781 auto *OI = cast<Instruction>(OV); 4782 if (all_of(OI->users(), [&](User *U) -> bool { 4783 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 4784 })) { 4785 Worklist.insert(OI); 4786 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4787 } 4788 } 4789 } while (idx != Worklist.size()); 4790 4791 // For an instruction to be added into Worklist above, all its users inside 4792 // the current loop should be already added into Worklist. This condition 4793 // cannot be true for phi instructions which is always in a dependence loop. 4794 // Because any instruction in the dependence cycle always depends on others 4795 // in the cycle to be added into Worklist first, the result is no ones in 4796 // the cycle will be added into Worklist in the end. 4797 // That is why we process PHI separately. 4798 for (auto &Induction : *getInductionVars()) { 4799 auto *PN = Induction.first; 4800 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 4801 if (all_of(PN->users(), 4802 [&](User *U) -> bool { 4803 return U == UpdateV || isOutOfScope(U) || 4804 Worklist.count(cast<Instruction>(U)); 4805 }) && 4806 all_of(UpdateV->users(), [&](User *U) -> bool { 4807 return U == PN || isOutOfScope(U) || 4808 Worklist.count(cast<Instruction>(U)); 4809 })) { 4810 Worklist.insert(cast<Instruction>(PN)); 4811 Worklist.insert(cast<Instruction>(UpdateV)); 4812 DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n"); 4813 DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n"); 4814 } 4815 } 4816 4817 Uniforms.insert(Worklist.begin(), Worklist.end()); 4818} 4819 4820bool LoopVectorizationLegality::canVectorizeMemory() { 4821 LAI = &(*GetLAA)(*TheLoop); 4822 InterleaveInfo.setLAI(LAI); 4823 auto &OptionalReport = LAI->getReport(); 4824 if (OptionalReport) 4825 emitAnalysis(VectorizationReport(*OptionalReport)); 4826 if (!LAI->canVectorizeMemory()) 4827 return false; 4828 4829 if (LAI->hasStoreToLoopInvariantAddress()) { 4830 emitAnalysis( 4831 VectorizationReport() 4832 << "write to a loop invariant address could not be vectorized"); 4833 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4834 return false; 4835 } 4836 4837 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4838 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 4839 4840 return true; 4841} 4842 4843bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4844 Value *In0 = const_cast<Value *>(V); 4845 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4846 if (!PN) 4847 return false; 4848 4849 return Inductions.count(PN); 4850} 4851 4852bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4853 return FirstOrderRecurrences.count(Phi); 4854} 4855 4856bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4857 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4858} 4859 4860bool LoopVectorizationLegality::blockCanBePredicated( 4861 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 4862 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4863 4864 for (Instruction &I : *BB) { 4865 // Check that we don't have a constant expression that can trap as operand. 4866 for (Value *Operand : I.operands()) { 4867 if (auto *C = dyn_cast<Constant>(Operand)) 4868 if (C->canTrap()) 4869 return false; 4870 } 4871 // We might be able to hoist the load. 4872 if (I.mayReadFromMemory()) { 4873 auto *LI = dyn_cast<LoadInst>(&I); 4874 if (!LI) 4875 return false; 4876 if (!SafePtrs.count(LI->getPointerOperand())) { 4877 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4878 isLegalMaskedGather(LI->getType())) { 4879 MaskedOp.insert(LI); 4880 continue; 4881 } 4882 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4883 if (IsAnnotatedParallel) 4884 continue; 4885 return false; 4886 } 4887 } 4888 4889 // We don't predicate stores at the moment. 4890 if (I.mayWriteToMemory()) { 4891 auto *SI = dyn_cast<StoreInst>(&I); 4892 // We only support predication of stores in basic blocks with one 4893 // predecessor. 4894 if (!SI) 4895 return false; 4896 4897 // Build a masked store if it is legal for the target. 4898 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 4899 SI->getPointerOperand()) || 4900 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 4901 MaskedOp.insert(SI); 4902 continue; 4903 } 4904 4905 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4906 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4907 4908 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4909 !isSinglePredecessor) 4910 return false; 4911 } 4912 if (I.mayThrow()) 4913 return false; 4914 4915 // The instructions below can trap. 4916 switch (I.getOpcode()) { 4917 default: 4918 continue; 4919 case Instruction::UDiv: 4920 case Instruction::SDiv: 4921 case Instruction::URem: 4922 case Instruction::SRem: 4923 return false; 4924 } 4925 } 4926 4927 return true; 4928} 4929 4930void InterleavedAccessInfo::collectConstStrideAccesses( 4931 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4932 const ValueToValueMap &Strides) { 4933 4934 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4935 4936 // Since it's desired that the load/store instructions be maintained in 4937 // "program order" for the interleaved access analysis, we have to visit the 4938 // blocks in the loop in reverse postorder (i.e., in a topological order). 4939 // Such an ordering will ensure that any load/store that may be executed 4940 // before a second load/store will precede the second load/store in 4941 // AccessStrideInfo. 4942 LoopBlocksDFS DFS(TheLoop); 4943 DFS.perform(LI); 4944 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4945 for (auto &I : *BB) { 4946 auto *LI = dyn_cast<LoadInst>(&I); 4947 auto *SI = dyn_cast<StoreInst>(&I); 4948 if (!LI && !SI) 4949 continue; 4950 4951 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4952 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 4953 4954 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4955 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4956 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4957 4958 // An alignment of 0 means target ABI alignment. 4959 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4960 if (!Align) 4961 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4962 4963 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4964 } 4965} 4966 4967// Analyze interleaved accesses and collect them into interleaved load and 4968// store groups. 4969// 4970// When generating code for an interleaved load group, we effectively hoist all 4971// loads in the group to the location of the first load in program order. When 4972// generating code for an interleaved store group, we sink all stores to the 4973// location of the last store. This code motion can change the order of load 4974// and store instructions and may break dependences. 4975// 4976// The code generation strategy mentioned above ensures that we won't violate 4977// any write-after-read (WAR) dependences. 4978// 4979// E.g., for the WAR dependence: a = A[i]; // (1) 4980// A[i] = b; // (2) 4981// 4982// The store group of (2) is always inserted at or below (2), and the load 4983// group of (1) is always inserted at or above (1). Thus, the instructions will 4984// never be reordered. All other dependences are checked to ensure the 4985// correctness of the instruction reordering. 4986// 4987// The algorithm visits all memory accesses in the loop in bottom-up program 4988// order. Program order is established by traversing the blocks in the loop in 4989// reverse postorder when collecting the accesses. 4990// 4991// We visit the memory accesses in bottom-up order because it can simplify the 4992// construction of store groups in the presence of write-after-write (WAW) 4993// dependences. 4994// 4995// E.g., for the WAW dependence: A[i] = a; // (1) 4996// A[i] = b; // (2) 4997// A[i + 1] = c; // (3) 4998// 4999// We will first create a store group with (3) and (2). (1) can't be added to 5000// this group because it and (2) are dependent. However, (1) can be grouped 5001// with other accesses that may precede it in program order. Note that a 5002// bottom-up order does not imply that WAW dependences should not be checked. 5003void InterleavedAccessInfo::analyzeInterleaving( 5004 const ValueToValueMap &Strides) { 5005 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5006 5007 // Holds all accesses with a constant stride. 5008 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5009 collectConstStrideAccesses(AccessStrideInfo, Strides); 5010 5011 if (AccessStrideInfo.empty()) 5012 return; 5013 5014 // Collect the dependences in the loop. 5015 collectDependences(); 5016 5017 // Holds all interleaved store groups temporarily. 5018 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5019 // Holds all interleaved load groups temporarily. 5020 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5021 5022 // Search the load-load/write-write pair B-A in bottom-up order and try to 5023 // insert B into the interleave group of A according to 3 rules: 5024 // 1. A and B have the same stride. 5025 // 2. A and B have the same memory object size. 5026 // 3. B belongs to the group according to the distance. 5027 for (auto AI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5028 AI != E; ++AI) { 5029 Instruction *A = AI->first; 5030 StrideDescriptor DesA = AI->second; 5031 5032 // Initialize a group for A if it has an allowable stride. Even if we don't 5033 // create a group for A, we continue with the bottom-up algorithm to ensure 5034 // we don't break any of A's dependences. 5035 InterleaveGroup *Group = nullptr; 5036 if (isStrided(DesA.Stride)) { 5037 Group = getInterleaveGroup(A); 5038 if (!Group) { 5039 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5040 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5041 } 5042 if (A->mayWriteToMemory()) 5043 StoreGroups.insert(Group); 5044 else 5045 LoadGroups.insert(Group); 5046 } 5047 5048 for (auto BI = std::next(AI); BI != E; ++BI) { 5049 Instruction *B = BI->first; 5050 StrideDescriptor DesB = BI->second; 5051 5052 // Our code motion strategy implies that we can't have dependences 5053 // between accesses in an interleaved group and other accesses located 5054 // between the first and last member of the group. Note that this also 5055 // means that a group can't have more than one member at a given offset. 5056 // The accesses in a group can have dependences with other accesses, but 5057 // we must ensure we don't extend the boundaries of the group such that 5058 // we encompass those dependent accesses. 5059 // 5060 // For example, assume we have the sequence of accesses shown below in a 5061 // stride-2 loop: 5062 // 5063 // (1, 2) is a group | A[i] = a; // (1) 5064 // | A[i-1] = b; // (2) | 5065 // A[i-3] = c; // (3) 5066 // A[i] = d; // (4) | (2, 4) is not a group 5067 // 5068 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5069 // but not with (4). If we did, the dependent access (3) would be within 5070 // the boundaries of the (2, 4) group. 5071 if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) { 5072 5073 // If a dependence exists and B is already in a group, we know that B 5074 // must be a store since B precedes A and WAR dependences are allowed. 5075 // Thus, B would be sunk below A. We release B's group to prevent this 5076 // illegal code motion. B will then be free to form another group with 5077 // instructions that precede it. 5078 if (isInterleaved(B)) { 5079 InterleaveGroup *StoreGroup = getInterleaveGroup(B); 5080 StoreGroups.remove(StoreGroup); 5081 releaseGroup(StoreGroup); 5082 } 5083 5084 // If a dependence exists and B is not already in a group (or it was 5085 // and we just released it), A might be hoisted above B (if A is a 5086 // load) or another store might be sunk below B (if A is a store). In 5087 // either case, we can't add additional instructions to A's group. A 5088 // will only form a group with instructions that it precedes. 5089 break; 5090 } 5091 5092 // At this point, we've checked for illegal code motion. If either A or B 5093 // isn't strided, there's nothing left to do. 5094 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5095 continue; 5096 5097 // Ignore if B is already in a group or B is a different memory operation. 5098 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5099 continue; 5100 5101 // Check the rule 1 and 2. 5102 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5103 continue; 5104 5105 // Calculate the distance and prepare for the rule 3. 5106 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5107 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5108 if (!DistToA) 5109 continue; 5110 5111 int64_t DistanceToA = DistToA->getAPInt().getSExtValue(); 5112 5113 // Skip if the distance is not multiple of size as they are not in the 5114 // same group. 5115 if (DistanceToA % static_cast<int64_t>(DesA.Size)) 5116 continue; 5117 5118 // If either A or B is in a predicated block, we prevent adding them to a 5119 // group. We may be able to relax this limitation in the future once we 5120 // handle more complicated blocks. 5121 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5122 continue; 5123 5124 // The index of B is the index of A plus the related index to A. 5125 int IndexB = 5126 Group->getIndex(A) + DistanceToA / static_cast<int64_t>(DesA.Size); 5127 5128 // Try to insert B into the group. 5129 if (Group->insertMember(B, IndexB, DesB.Align)) { 5130 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5131 << " into the interleave group with" << *A << '\n'); 5132 InterleaveGroupMap[B] = Group; 5133 5134 // Set the first load in program order as the insert position. 5135 if (B->mayReadFromMemory()) 5136 Group->setInsertPos(B); 5137 } 5138 } // Iteration on instruction B 5139 } // Iteration on instruction A 5140 5141 // Remove interleaved store groups with gaps. 5142 for (InterleaveGroup *Group : StoreGroups) 5143 if (Group->getNumMembers() != Group->getFactor()) 5144 releaseGroup(Group); 5145 5146 // If there is a non-reversed interleaved load group with gaps, we will need 5147 // to execute at least one scalar epilogue iteration. This will ensure that 5148 // we don't speculatively access memory out-of-bounds. Note that we only need 5149 // to look for a member at index factor - 1, since every group must have a 5150 // member at index zero. 5151 for (InterleaveGroup *Group : LoadGroups) 5152 if (!Group->getMember(Group->getFactor() - 1)) { 5153 if (Group->isReverse()) { 5154 releaseGroup(Group); 5155 } else { 5156 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5157 RequiresScalarEpilogue = true; 5158 } 5159 } 5160} 5161 5162LoopVectorizationCostModel::VectorizationFactor 5163LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5164 // Width 1 means no vectorize 5165 VectorizationFactor Factor = {1U, 0U}; 5166 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5167 emitAnalysis( 5168 VectorizationReport() 5169 << "runtime pointer checks needed. Enable vectorization of this " 5170 "loop with '#pragma clang loop vectorize(enable)' when " 5171 "compiling with -Os/-Oz"); 5172 DEBUG(dbgs() 5173 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5174 return Factor; 5175 } 5176 5177 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5178 emitAnalysis( 5179 VectorizationReport() 5180 << "store that is conditionally executed prevents vectorization"); 5181 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5182 return Factor; 5183 } 5184 5185 // Find the trip count. 5186 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5187 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5188 5189 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5190 unsigned SmallestType, WidestType; 5191 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5192 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5193 unsigned MaxSafeDepDist = -1U; 5194 5195 // Get the maximum safe dependence distance in bits computed by LAA. If the 5196 // loop contains any interleaved accesses, we divide the dependence distance 5197 // by the maximum interleave factor of all interleaved groups. Note that 5198 // although the division ensures correctness, this is a fairly conservative 5199 // computation because the maximum distance computed by LAA may not involve 5200 // any of the interleaved accesses. 5201 if (Legal->getMaxSafeDepDistBytes() != -1U) 5202 MaxSafeDepDist = 5203 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5204 5205 WidestRegister = 5206 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5207 unsigned MaxVectorSize = WidestRegister / WidestType; 5208 5209 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5210 << WidestType << " bits.\n"); 5211 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5212 << " bits.\n"); 5213 5214 if (MaxVectorSize == 0) { 5215 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5216 MaxVectorSize = 1; 5217 } 5218 5219 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5220 " into one vector!"); 5221 5222 unsigned VF = MaxVectorSize; 5223 if (MaximizeBandwidth && !OptForSize) { 5224 // Collect all viable vectorization factors. 5225 SmallVector<unsigned, 8> VFs; 5226 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5227 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5228 VFs.push_back(VS); 5229 5230 // For each VF calculate its register usage. 5231 auto RUs = calculateRegisterUsage(VFs); 5232 5233 // Select the largest VF which doesn't require more registers than existing 5234 // ones. 5235 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5236 for (int i = RUs.size() - 1; i >= 0; --i) { 5237 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5238 VF = VFs[i]; 5239 break; 5240 } 5241 } 5242 } 5243 5244 // If we optimize the program for size, avoid creating the tail loop. 5245 if (OptForSize) { 5246 // If we are unable to calculate the trip count then don't try to vectorize. 5247 if (TC < 2) { 5248 emitAnalysis( 5249 VectorizationReport() 5250 << "unable to calculate the loop count due to complex control flow"); 5251 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5252 return Factor; 5253 } 5254 5255 // Find the maximum SIMD width that can fit within the trip count. 5256 VF = TC % MaxVectorSize; 5257 5258 if (VF == 0) 5259 VF = MaxVectorSize; 5260 else { 5261 // If the trip count that we found modulo the vectorization factor is not 5262 // zero then we require a tail. 5263 emitAnalysis(VectorizationReport() 5264 << "cannot optimize for size and vectorize at the " 5265 "same time. Enable vectorization of this loop " 5266 "with '#pragma clang loop vectorize(enable)' " 5267 "when compiling with -Os/-Oz"); 5268 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5269 return Factor; 5270 } 5271 } 5272 5273 int UserVF = Hints->getWidth(); 5274 if (UserVF != 0) { 5275 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5276 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5277 5278 Factor.Width = UserVF; 5279 return Factor; 5280 } 5281 5282 float Cost = expectedCost(1).first; 5283#ifndef NDEBUG 5284 const float ScalarCost = Cost; 5285#endif /* NDEBUG */ 5286 unsigned Width = 1; 5287 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5288 5289 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5290 // Ignore scalar width, because the user explicitly wants vectorization. 5291 if (ForceVectorization && VF > 1) { 5292 Width = 2; 5293 Cost = expectedCost(Width).first / (float)Width; 5294 } 5295 5296 for (unsigned i = 2; i <= VF; i *= 2) { 5297 // Notice that the vector loop needs to be executed less times, so 5298 // we need to divide the cost of the vector loops by the width of 5299 // the vector elements. 5300 VectorizationCostTy C = expectedCost(i); 5301 float VectorCost = C.first / (float)i; 5302 DEBUG(dbgs() << "LV: Vector loop of width " << i 5303 << " costs: " << (int)VectorCost << ".\n"); 5304 if (!C.second && !ForceVectorization) { 5305 DEBUG( 5306 dbgs() << "LV: Not considering vector loop of width " << i 5307 << " because it will not generate any vector instructions.\n"); 5308 continue; 5309 } 5310 if (VectorCost < Cost) { 5311 Cost = VectorCost; 5312 Width = i; 5313 } 5314 } 5315 5316 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5317 << "LV: Vectorization seems to be not beneficial, " 5318 << "but was forced by a user.\n"); 5319 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5320 Factor.Width = Width; 5321 Factor.Cost = Width * Cost; 5322 return Factor; 5323} 5324 5325std::pair<unsigned, unsigned> 5326LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5327 unsigned MinWidth = -1U; 5328 unsigned MaxWidth = 8; 5329 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5330 5331 // For each block. 5332 for (BasicBlock *BB : TheLoop->blocks()) { 5333 // For each instruction in the loop. 5334 for (Instruction &I : *BB) { 5335 Type *T = I.getType(); 5336 5337 // Skip ignored values. 5338 if (ValuesToIgnore.count(&I)) 5339 continue; 5340 5341 // Only examine Loads, Stores and PHINodes. 5342 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5343 continue; 5344 5345 // Examine PHI nodes that are reduction variables. Update the type to 5346 // account for the recurrence type. 5347 if (auto *PN = dyn_cast<PHINode>(&I)) { 5348 if (!Legal->isReductionVariable(PN)) 5349 continue; 5350 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5351 T = RdxDesc.getRecurrenceType(); 5352 } 5353 5354 // Examine the stored values. 5355 if (auto *ST = dyn_cast<StoreInst>(&I)) 5356 T = ST->getValueOperand()->getType(); 5357 5358 // Ignore loaded pointer types and stored pointer types that are not 5359 // consecutive. However, we do want to take consecutive stores/loads of 5360 // pointer vectors into account. 5361 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 5362 continue; 5363 5364 MinWidth = std::min(MinWidth, 5365 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5366 MaxWidth = std::max(MaxWidth, 5367 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5368 } 5369 } 5370 5371 return {MinWidth, MaxWidth}; 5372} 5373 5374unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5375 unsigned VF, 5376 unsigned LoopCost) { 5377 5378 // -- The interleave heuristics -- 5379 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5380 // There are many micro-architectural considerations that we can't predict 5381 // at this level. For example, frontend pressure (on decode or fetch) due to 5382 // code size, or the number and capabilities of the execution ports. 5383 // 5384 // We use the following heuristics to select the interleave count: 5385 // 1. If the code has reductions, then we interleave to break the cross 5386 // iteration dependency. 5387 // 2. If the loop is really small, then we interleave to reduce the loop 5388 // overhead. 5389 // 3. We don't interleave if we think that we will spill registers to memory 5390 // due to the increased register pressure. 5391 5392 // When we optimize for size, we don't interleave. 5393 if (OptForSize) 5394 return 1; 5395 5396 // We used the distance for the interleave count. 5397 if (Legal->getMaxSafeDepDistBytes() != -1U) 5398 return 1; 5399 5400 // Do not interleave loops with a relatively small trip count. 5401 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5402 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5403 return 1; 5404 5405 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5406 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5407 << " registers\n"); 5408 5409 if (VF == 1) { 5410 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5411 TargetNumRegisters = ForceTargetNumScalarRegs; 5412 } else { 5413 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5414 TargetNumRegisters = ForceTargetNumVectorRegs; 5415 } 5416 5417 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5418 // We divide by these constants so assume that we have at least one 5419 // instruction that uses at least one register. 5420 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5421 R.NumInstructions = std::max(R.NumInstructions, 1U); 5422 5423 // We calculate the interleave count using the following formula. 5424 // Subtract the number of loop invariants from the number of available 5425 // registers. These registers are used by all of the interleaved instances. 5426 // Next, divide the remaining registers by the number of registers that is 5427 // required by the loop, in order to estimate how many parallel instances 5428 // fit without causing spills. All of this is rounded down if necessary to be 5429 // a power of two. We want power of two interleave count to simplify any 5430 // addressing operations or alignment considerations. 5431 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5432 R.MaxLocalUsers); 5433 5434 // Don't count the induction variable as interleaved. 5435 if (EnableIndVarRegisterHeur) 5436 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5437 std::max(1U, (R.MaxLocalUsers - 1))); 5438 5439 // Clamp the interleave ranges to reasonable counts. 5440 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5441 5442 // Check if the user has overridden the max. 5443 if (VF == 1) { 5444 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5445 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5446 } else { 5447 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5448 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5449 } 5450 5451 // If we did not calculate the cost for VF (because the user selected the VF) 5452 // then we calculate the cost of VF here. 5453 if (LoopCost == 0) 5454 LoopCost = expectedCost(VF).first; 5455 5456 // Clamp the calculated IC to be between the 1 and the max interleave count 5457 // that the target allows. 5458 if (IC > MaxInterleaveCount) 5459 IC = MaxInterleaveCount; 5460 else if (IC < 1) 5461 IC = 1; 5462 5463 // Interleave if we vectorized this loop and there is a reduction that could 5464 // benefit from interleaving. 5465 if (VF > 1 && Legal->getReductionVars()->size()) { 5466 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5467 return IC; 5468 } 5469 5470 // Note that if we've already vectorized the loop we will have done the 5471 // runtime check and so interleaving won't require further checks. 5472 bool InterleavingRequiresRuntimePointerCheck = 5473 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5474 5475 // We want to interleave small loops in order to reduce the loop overhead and 5476 // potentially expose ILP opportunities. 5477 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5478 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5479 // We assume that the cost overhead is 1 and we use the cost model 5480 // to estimate the cost of the loop and interleave until the cost of the 5481 // loop overhead is about 5% of the cost of the loop. 5482 unsigned SmallIC = 5483 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5484 5485 // Interleave until store/load ports (estimated by max interleave count) are 5486 // saturated. 5487 unsigned NumStores = Legal->getNumStores(); 5488 unsigned NumLoads = Legal->getNumLoads(); 5489 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5490 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5491 5492 // If we have a scalar reduction (vector reductions are already dealt with 5493 // by this point), we can increase the critical path length if the loop 5494 // we're interleaving is inside another loop. Limit, by default to 2, so the 5495 // critical path only gets increased by one reduction operation. 5496 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5497 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5498 SmallIC = std::min(SmallIC, F); 5499 StoresIC = std::min(StoresIC, F); 5500 LoadsIC = std::min(LoadsIC, F); 5501 } 5502 5503 if (EnableLoadStoreRuntimeInterleave && 5504 std::max(StoresIC, LoadsIC) > SmallIC) { 5505 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5506 return std::max(StoresIC, LoadsIC); 5507 } 5508 5509 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5510 return SmallIC; 5511 } 5512 5513 // Interleave if this is a large loop (small loops are already dealt with by 5514 // this point) that could benefit from interleaving. 5515 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5516 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5517 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5518 return IC; 5519 } 5520 5521 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5522 return 1; 5523} 5524 5525SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5526LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5527 // This function calculates the register usage by measuring the highest number 5528 // of values that are alive at a single location. Obviously, this is a very 5529 // rough estimation. We scan the loop in a topological order in order and 5530 // assign a number to each instruction. We use RPO to ensure that defs are 5531 // met before their users. We assume that each instruction that has in-loop 5532 // users starts an interval. We record every time that an in-loop value is 5533 // used, so we have a list of the first and last occurrences of each 5534 // instruction. Next, we transpose this data structure into a multi map that 5535 // holds the list of intervals that *end* at a specific location. This multi 5536 // map allows us to perform a linear search. We scan the instructions linearly 5537 // and record each time that a new interval starts, by placing it in a set. 5538 // If we find this value in the multi-map then we remove it from the set. 5539 // The max register usage is the maximum size of the set. 5540 // We also search for instructions that are defined outside the loop, but are 5541 // used inside the loop. We need this number separately from the max-interval 5542 // usage number because when we unroll, loop-invariant values do not take 5543 // more register. 5544 LoopBlocksDFS DFS(TheLoop); 5545 DFS.perform(LI); 5546 5547 RegisterUsage RU; 5548 RU.NumInstructions = 0; 5549 5550 // Each 'key' in the map opens a new interval. The values 5551 // of the map are the index of the 'last seen' usage of the 5552 // instruction that is the key. 5553 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5554 // Maps instruction to its index. 5555 DenseMap<unsigned, Instruction *> IdxToInstr; 5556 // Marks the end of each interval. 5557 IntervalMap EndPoint; 5558 // Saves the list of instruction indices that are used in the loop. 5559 SmallSet<Instruction *, 8> Ends; 5560 // Saves the list of values that are used in the loop but are 5561 // defined outside the loop, such as arguments and constants. 5562 SmallPtrSet<Value *, 8> LoopInvariants; 5563 5564 unsigned Index = 0; 5565 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5566 RU.NumInstructions += BB->size(); 5567 for (Instruction &I : *BB) { 5568 IdxToInstr[Index++] = &I; 5569 5570 // Save the end location of each USE. 5571 for (Value *U : I.operands()) { 5572 auto *Instr = dyn_cast<Instruction>(U); 5573 5574 // Ignore non-instruction values such as arguments, constants, etc. 5575 if (!Instr) 5576 continue; 5577 5578 // If this instruction is outside the loop then record it and continue. 5579 if (!TheLoop->contains(Instr)) { 5580 LoopInvariants.insert(Instr); 5581 continue; 5582 } 5583 5584 // Overwrite previous end points. 5585 EndPoint[Instr] = Index; 5586 Ends.insert(Instr); 5587 } 5588 } 5589 } 5590 5591 // Saves the list of intervals that end with the index in 'key'. 5592 typedef SmallVector<Instruction *, 2> InstrList; 5593 DenseMap<unsigned, InstrList> TransposeEnds; 5594 5595 // Transpose the EndPoints to a list of values that end at each index. 5596 for (auto &Interval : EndPoint) 5597 TransposeEnds[Interval.second].push_back(Interval.first); 5598 5599 SmallSet<Instruction *, 8> OpenIntervals; 5600 5601 // Get the size of the widest register. 5602 unsigned MaxSafeDepDist = -1U; 5603 if (Legal->getMaxSafeDepDistBytes() != -1U) 5604 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5605 unsigned WidestRegister = 5606 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5607 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5608 5609 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5610 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5611 5612 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5613 5614 // A lambda that gets the register usage for the given type and VF. 5615 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5616 if (Ty->isTokenTy()) 5617 return 0U; 5618 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5619 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5620 }; 5621 5622 for (unsigned int i = 0; i < Index; ++i) { 5623 Instruction *I = IdxToInstr[i]; 5624 // Ignore instructions that are never used within the loop. 5625 if (!Ends.count(I)) 5626 continue; 5627 5628 // Remove all of the instructions that end at this location. 5629 InstrList &List = TransposeEnds[i]; 5630 for (Instruction *ToRemove : List) 5631 OpenIntervals.erase(ToRemove); 5632 5633 // Skip ignored values. 5634 if (ValuesToIgnore.count(I)) 5635 continue; 5636 5637 // For each VF find the maximum usage of registers. 5638 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5639 if (VFs[j] == 1) { 5640 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5641 continue; 5642 } 5643 5644 // Count the number of live intervals. 5645 unsigned RegUsage = 0; 5646 for (auto Inst : OpenIntervals) { 5647 // Skip ignored values for VF > 1. 5648 if (VecValuesToIgnore.count(Inst)) 5649 continue; 5650 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5651 } 5652 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5653 } 5654 5655 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5656 << OpenIntervals.size() << '\n'); 5657 5658 // Add the current instruction to the list of open intervals. 5659 OpenIntervals.insert(I); 5660 } 5661 5662 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5663 unsigned Invariant = 0; 5664 if (VFs[i] == 1) 5665 Invariant = LoopInvariants.size(); 5666 else { 5667 for (auto Inst : LoopInvariants) 5668 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5669 } 5670 5671 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5672 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5673 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5674 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5675 5676 RU.LoopInvariantRegs = Invariant; 5677 RU.MaxLocalUsers = MaxUsages[i]; 5678 RUs[i] = RU; 5679 } 5680 5681 return RUs; 5682} 5683 5684LoopVectorizationCostModel::VectorizationCostTy 5685LoopVectorizationCostModel::expectedCost(unsigned VF) { 5686 VectorizationCostTy Cost; 5687 5688 // For each block. 5689 for (BasicBlock *BB : TheLoop->blocks()) { 5690 VectorizationCostTy BlockCost; 5691 5692 // For each instruction in the old loop. 5693 for (Instruction &I : *BB) { 5694 // Skip dbg intrinsics. 5695 if (isa<DbgInfoIntrinsic>(I)) 5696 continue; 5697 5698 // Skip ignored values. 5699 if (ValuesToIgnore.count(&I)) 5700 continue; 5701 5702 VectorizationCostTy C = getInstructionCost(&I, VF); 5703 5704 // Check if we should override the cost. 5705 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5706 C.first = ForceTargetInstructionCost; 5707 5708 BlockCost.first += C.first; 5709 BlockCost.second |= C.second; 5710 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5711 << VF << " For instruction: " << I << '\n'); 5712 } 5713 5714 // We assume that if-converted blocks have a 50% chance of being executed. 5715 // When the code is scalar then some of the blocks are avoided due to CF. 5716 // When the code is vectorized we execute all code paths. 5717 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5718 BlockCost.first /= 2; 5719 5720 Cost.first += BlockCost.first; 5721 Cost.second |= BlockCost.second; 5722 } 5723 5724 return Cost; 5725} 5726 5727/// \brief Check if the load/store instruction \p I may be translated into 5728/// gather/scatter during vectorization. 5729/// 5730/// Pointer \p Ptr specifies address in memory for the given scalar memory 5731/// instruction. We need it to retrieve data type. 5732/// Using gather/scatter is possible when it is supported by target. 5733static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5734 LoopVectorizationLegality *Legal) { 5735 auto *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5736 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5737 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5738} 5739 5740/// \brief Check whether the address computation for a non-consecutive memory 5741/// access looks like an unlikely candidate for being merged into the indexing 5742/// mode. 5743/// 5744/// We look for a GEP which has one index that is an induction variable and all 5745/// other indices are loop invariant. If the stride of this access is also 5746/// within a small bound we decide that this address computation can likely be 5747/// merged into the addressing mode. 5748/// In all other cases, we identify the address computation as complex. 5749static bool isLikelyComplexAddressComputation(Value *Ptr, 5750 LoopVectorizationLegality *Legal, 5751 ScalarEvolution *SE, 5752 const Loop *TheLoop) { 5753 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5754 if (!Gep) 5755 return true; 5756 5757 // We are looking for a gep with all loop invariant indices except for one 5758 // which should be an induction variable. 5759 unsigned NumOperands = Gep->getNumOperands(); 5760 for (unsigned i = 1; i < NumOperands; ++i) { 5761 Value *Opd = Gep->getOperand(i); 5762 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5763 !Legal->isInductionVariable(Opd)) 5764 return true; 5765 } 5766 5767 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5768 // can likely be merged into the address computation. 5769 unsigned MaxMergeDistance = 64; 5770 5771 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5772 if (!AddRec) 5773 return true; 5774 5775 // Check the step is constant. 5776 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5777 // Calculate the pointer stride and check if it is consecutive. 5778 const auto *C = dyn_cast<SCEVConstant>(Step); 5779 if (!C) 5780 return true; 5781 5782 const APInt &APStepVal = C->getAPInt(); 5783 5784 // Huge step value - give up. 5785 if (APStepVal.getBitWidth() > 64) 5786 return true; 5787 5788 int64_t StepVal = APStepVal.getSExtValue(); 5789 5790 return StepVal > MaxMergeDistance; 5791} 5792 5793static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5794 return Legal->hasStride(I->getOperand(0)) || 5795 Legal->hasStride(I->getOperand(1)); 5796} 5797 5798LoopVectorizationCostModel::VectorizationCostTy 5799LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5800 // If we know that this instruction will remain uniform, check the cost of 5801 // the scalar version. 5802 if (Legal->isUniformAfterVectorization(I)) 5803 VF = 1; 5804 5805 Type *VectorTy; 5806 unsigned C = getInstructionCost(I, VF, VectorTy); 5807 5808 bool TypeNotScalarized = 5809 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5810 return VectorizationCostTy(C, TypeNotScalarized); 5811} 5812 5813unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5814 unsigned VF, 5815 Type *&VectorTy) { 5816 Type *RetTy = I->getType(); 5817 if (VF > 1 && MinBWs.count(I)) 5818 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5819 VectorTy = ToVectorTy(RetTy, VF); 5820 auto SE = PSE.getSE(); 5821 5822 // TODO: We need to estimate the cost of intrinsic calls. 5823 switch (I->getOpcode()) { 5824 case Instruction::GetElementPtr: 5825 // We mark this instruction as zero-cost because the cost of GEPs in 5826 // vectorized code depends on whether the corresponding memory instruction 5827 // is scalarized or not. Therefore, we handle GEPs with the memory 5828 // instruction cost. 5829 return 0; 5830 case Instruction::Br: { 5831 return TTI.getCFInstrCost(I->getOpcode()); 5832 } 5833 case Instruction::PHI: { 5834 auto *Phi = cast<PHINode>(I); 5835 5836 // First-order recurrences are replaced by vector shuffles inside the loop. 5837 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5838 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5839 VectorTy, VF - 1, VectorTy); 5840 5841 // TODO: IF-converted IFs become selects. 5842 return 0; 5843 } 5844 case Instruction::Add: 5845 case Instruction::FAdd: 5846 case Instruction::Sub: 5847 case Instruction::FSub: 5848 case Instruction::Mul: 5849 case Instruction::FMul: 5850 case Instruction::UDiv: 5851 case Instruction::SDiv: 5852 case Instruction::FDiv: 5853 case Instruction::URem: 5854 case Instruction::SRem: 5855 case Instruction::FRem: 5856 case Instruction::Shl: 5857 case Instruction::LShr: 5858 case Instruction::AShr: 5859 case Instruction::And: 5860 case Instruction::Or: 5861 case Instruction::Xor: { 5862 // Since we will replace the stride by 1 the multiplication should go away. 5863 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5864 return 0; 5865 // Certain instructions can be cheaper to vectorize if they have a constant 5866 // second vector operand. One example of this are shifts on x86. 5867 TargetTransformInfo::OperandValueKind Op1VK = 5868 TargetTransformInfo::OK_AnyValue; 5869 TargetTransformInfo::OperandValueKind Op2VK = 5870 TargetTransformInfo::OK_AnyValue; 5871 TargetTransformInfo::OperandValueProperties Op1VP = 5872 TargetTransformInfo::OP_None; 5873 TargetTransformInfo::OperandValueProperties Op2VP = 5874 TargetTransformInfo::OP_None; 5875 Value *Op2 = I->getOperand(1); 5876 5877 // Check for a splat of a constant or for a non uniform vector of constants. 5878 if (isa<ConstantInt>(Op2)) { 5879 ConstantInt *CInt = cast<ConstantInt>(Op2); 5880 if (CInt && CInt->getValue().isPowerOf2()) 5881 Op2VP = TargetTransformInfo::OP_PowerOf2; 5882 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5883 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5884 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5885 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5886 if (SplatValue) { 5887 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5888 if (CInt && CInt->getValue().isPowerOf2()) 5889 Op2VP = TargetTransformInfo::OP_PowerOf2; 5890 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5891 } 5892 } 5893 5894 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5895 Op1VP, Op2VP); 5896 } 5897 case Instruction::Select: { 5898 SelectInst *SI = cast<SelectInst>(I); 5899 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5900 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5901 Type *CondTy = SI->getCondition()->getType(); 5902 if (!ScalarCond) 5903 CondTy = VectorType::get(CondTy, VF); 5904 5905 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5906 } 5907 case Instruction::ICmp: 5908 case Instruction::FCmp: { 5909 Type *ValTy = I->getOperand(0)->getType(); 5910 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5911 auto It = MinBWs.find(Op0AsInstruction); 5912 if (VF > 1 && It != MinBWs.end()) 5913 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5914 VectorTy = ToVectorTy(ValTy, VF); 5915 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5916 } 5917 case Instruction::Store: 5918 case Instruction::Load: { 5919 StoreInst *SI = dyn_cast<StoreInst>(I); 5920 LoadInst *LI = dyn_cast<LoadInst>(I); 5921 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 5922 VectorTy = ToVectorTy(ValTy, VF); 5923 5924 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5925 unsigned AS = 5926 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 5927 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5928 // We add the cost of address computation here instead of with the gep 5929 // instruction because only here we know whether the operation is 5930 // scalarized. 5931 if (VF == 1) 5932 return TTI.getAddressComputationCost(VectorTy) + 5933 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5934 5935 if (LI && Legal->isUniform(Ptr)) { 5936 // Scalar load + broadcast 5937 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5938 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5939 Alignment, AS); 5940 return Cost + 5941 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 5942 } 5943 5944 // For an interleaved access, calculate the total cost of the whole 5945 // interleave group. 5946 if (Legal->isAccessInterleaved(I)) { 5947 auto Group = Legal->getInterleavedAccessGroup(I); 5948 assert(Group && "Fail to get an interleaved access group."); 5949 5950 // Only calculate the cost once at the insert position. 5951 if (Group->getInsertPos() != I) 5952 return 0; 5953 5954 unsigned InterleaveFactor = Group->getFactor(); 5955 Type *WideVecTy = 5956 VectorType::get(VectorTy->getVectorElementType(), 5957 VectorTy->getVectorNumElements() * InterleaveFactor); 5958 5959 // Holds the indices of existing members in an interleaved load group. 5960 // An interleaved store group doesn't need this as it doesn't allow gaps. 5961 SmallVector<unsigned, 4> Indices; 5962 if (LI) { 5963 for (unsigned i = 0; i < InterleaveFactor; i++) 5964 if (Group->getMember(i)) 5965 Indices.push_back(i); 5966 } 5967 5968 // Calculate the cost of the whole interleaved group. 5969 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5970 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5971 Group->getAlignment(), AS); 5972 5973 if (Group->isReverse()) 5974 Cost += 5975 Group->getNumMembers() * 5976 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5977 5978 // FIXME: The interleaved load group with a huge gap could be even more 5979 // expensive than scalar operations. Then we could ignore such group and 5980 // use scalar operations instead. 5981 return Cost; 5982 } 5983 5984 // Scalarized loads/stores. 5985 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5986 bool UseGatherOrScatter = 5987 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 5988 5989 bool Reverse = ConsecutiveStride < 0; 5990 const DataLayout &DL = I->getModule()->getDataLayout(); 5991 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5992 uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5993 if ((!ConsecutiveStride && !UseGatherOrScatter) || 5994 ScalarAllocatedSize != VectorElementSize) { 5995 bool IsComplexComputation = 5996 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5997 unsigned Cost = 0; 5998 // The cost of extracting from the value vector and pointer vector. 5999 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6000 for (unsigned i = 0; i < VF; ++i) { 6001 // The cost of extracting the pointer operand. 6002 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6003 // In case of STORE, the cost of ExtractElement from the vector. 6004 // In case of LOAD, the cost of InsertElement into the returned 6005 // vector. 6006 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6007 : Instruction::InsertElement, 6008 VectorTy, i); 6009 } 6010 6011 // The cost of the scalar loads/stores. 6012 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6013 Cost += VF * 6014 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6015 Alignment, AS); 6016 return Cost; 6017 } 6018 6019 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6020 if (UseGatherOrScatter) { 6021 assert(ConsecutiveStride == 0 && 6022 "Gather/Scatter are not used for consecutive stride"); 6023 return Cost + 6024 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6025 Legal->isMaskRequired(I), Alignment); 6026 } 6027 // Wide load/stores. 6028 if (Legal->isMaskRequired(I)) 6029 Cost += 6030 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6031 else 6032 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6033 6034 if (Reverse) 6035 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6036 return Cost; 6037 } 6038 case Instruction::ZExt: 6039 case Instruction::SExt: 6040 case Instruction::FPToUI: 6041 case Instruction::FPToSI: 6042 case Instruction::FPExt: 6043 case Instruction::PtrToInt: 6044 case Instruction::IntToPtr: 6045 case Instruction::SIToFP: 6046 case Instruction::UIToFP: 6047 case Instruction::Trunc: 6048 case Instruction::FPTrunc: 6049 case Instruction::BitCast: { 6050 // We optimize the truncation of induction variable. 6051 // The cost of these is the same as the scalar operation. 6052 if (I->getOpcode() == Instruction::Trunc && 6053 Legal->isInductionVariable(I->getOperand(0))) 6054 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6055 I->getOperand(0)->getType()); 6056 6057 Type *SrcScalarTy = I->getOperand(0)->getType(); 6058 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6059 if (VF > 1 && MinBWs.count(I)) { 6060 // This cast is going to be shrunk. This may remove the cast or it might 6061 // turn it into slightly different cast. For example, if MinBW == 16, 6062 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6063 // 6064 // Calculate the modified src and dest types. 6065 Type *MinVecTy = VectorTy; 6066 if (I->getOpcode() == Instruction::Trunc) { 6067 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6068 VectorTy = 6069 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6070 } else if (I->getOpcode() == Instruction::ZExt || 6071 I->getOpcode() == Instruction::SExt) { 6072 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6073 VectorTy = 6074 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6075 } 6076 } 6077 6078 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6079 } 6080 case Instruction::Call: { 6081 bool NeedToScalarize; 6082 CallInst *CI = cast<CallInst>(I); 6083 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6084 if (getVectorIntrinsicIDForCall(CI, TLI)) 6085 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6086 return CallCost; 6087 } 6088 default: { 6089 // We are scalarizing the instruction. Return the cost of the scalar 6090 // instruction, plus the cost of insert and extract into vector 6091 // elements, times the vector width. 6092 unsigned Cost = 0; 6093 6094 if (!RetTy->isVoidTy() && VF != 1) { 6095 unsigned InsCost = 6096 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6097 unsigned ExtCost = 6098 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6099 6100 // The cost of inserting the results plus extracting each one of the 6101 // operands. 6102 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6103 } 6104 6105 // The cost of executing VF copies of the scalar instruction. This opcode 6106 // is unknown. Assume that it is the same as 'mul'. 6107 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6108 return Cost; 6109 } 6110 } // end of switch. 6111} 6112 6113char LoopVectorize::ID = 0; 6114static const char lv_name[] = "Loop Vectorization"; 6115INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6116INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6117INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6118INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6119INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6120INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6121INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6122INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6123INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6124INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6125INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6126INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6127INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6128INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6129INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6130 6131namespace llvm { 6132Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6133 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6134} 6135} 6136 6137bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6138 // Check for a store. 6139 if (auto *ST = dyn_cast<StoreInst>(Inst)) 6140 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6141 6142 // Check for a load. 6143 if (auto *LI = dyn_cast<LoadInst>(Inst)) 6144 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6145 6146 return false; 6147} 6148 6149void LoopVectorizationCostModel::collectValuesToIgnore() { 6150 // Ignore ephemeral values. 6151 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6152 6153 // Ignore type-promoting instructions we identified during reduction 6154 // detection. 6155 for (auto &Reduction : *Legal->getReductionVars()) { 6156 RecurrenceDescriptor &RedDes = Reduction.second; 6157 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6158 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6159 } 6160 6161 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6162 // instruction to exit loop. Induction variables usually have large types and 6163 // can have big impact when estimating register usage. 6164 // This is for when VF > 1. 6165 for (auto &Induction : *Legal->getInductionVars()) { 6166 auto *PN = Induction.first; 6167 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6168 6169 // Check that the PHI is only used by the induction increment (UpdateV) or 6170 // by GEPs. Then check that UpdateV is only used by a compare instruction, 6171 // the loop header PHI, or by GEPs. 6172 // FIXME: Need precise def-use analysis to determine if this instruction 6173 // variable will be vectorized. 6174 if (all_of(PN->users(), 6175 [&](const User *U) -> bool { 6176 return U == UpdateV || isa<GetElementPtrInst>(U); 6177 }) && 6178 all_of(UpdateV->users(), [&](const User *U) -> bool { 6179 return U == PN || isa<ICmpInst>(U) || isa<GetElementPtrInst>(U); 6180 })) { 6181 VecValuesToIgnore.insert(PN); 6182 VecValuesToIgnore.insert(UpdateV); 6183 } 6184 } 6185 6186 // Ignore instructions that will not be vectorized. 6187 // This is for when VF > 1. 6188 for (BasicBlock *BB : TheLoop->blocks()) { 6189 for (auto &Inst : *BB) { 6190 switch (Inst.getOpcode()) 6191 case Instruction::GetElementPtr: { 6192 // Ignore GEP if its last operand is an induction variable so that it is 6193 // a consecutive load/store and won't be vectorized as scatter/gather 6194 // pattern. 6195 6196 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6197 unsigned NumOperands = Gep->getNumOperands(); 6198 unsigned InductionOperand = getGEPInductionOperand(Gep); 6199 bool GepToIgnore = true; 6200 6201 // Check that all of the gep indices are uniform except for the 6202 // induction operand. 6203 for (unsigned i = 0; i != NumOperands; ++i) { 6204 if (i != InductionOperand && 6205 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6206 TheLoop)) { 6207 GepToIgnore = false; 6208 break; 6209 } 6210 } 6211 6212 if (GepToIgnore) 6213 VecValuesToIgnore.insert(&Inst); 6214 break; 6215 } 6216 } 6217 } 6218} 6219 6220void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6221 bool IfPredicateStore) { 6222 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6223 // Holds vector parameters or scalars, in case of uniform vals. 6224 SmallVector<VectorParts, 4> Params; 6225 6226 setDebugLocFromInst(Builder, Instr); 6227 6228 // Find all of the vectorized parameters. 6229 for (Value *SrcOp : Instr->operands()) { 6230 // If we are accessing the old induction variable, use the new one. 6231 if (SrcOp == OldInduction) { 6232 Params.push_back(getVectorValue(SrcOp)); 6233 continue; 6234 } 6235 6236 // Try using previously calculated values. 6237 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6238 6239 // If the src is an instruction that appeared earlier in the basic block 6240 // then it should already be vectorized. 6241 if (SrcInst && OrigLoop->contains(SrcInst)) { 6242 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6243 // The parameter is a vector value from earlier. 6244 Params.push_back(WidenMap.get(SrcInst)); 6245 } else { 6246 // The parameter is a scalar from outside the loop. Maybe even a constant. 6247 VectorParts Scalars; 6248 Scalars.append(UF, SrcOp); 6249 Params.push_back(Scalars); 6250 } 6251 } 6252 6253 assert(Params.size() == Instr->getNumOperands() && 6254 "Invalid number of operands"); 6255 6256 // Does this instruction return a value ? 6257 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6258 6259 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6260 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6261 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6262 6263 VectorParts Cond; 6264 if (IfPredicateStore) { 6265 assert(Instr->getParent()->getSinglePredecessor() && 6266 "Only support single predecessor blocks"); 6267 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6268 Instr->getParent()); 6269 } 6270 6271 // For each vector unroll 'part': 6272 for (unsigned Part = 0; Part < UF; ++Part) { 6273 // For each scalar that we create: 6274 6275 // Start an "if (pred) a[i] = ..." block. 6276 Value *Cmp = nullptr; 6277 if (IfPredicateStore) { 6278 if (Cond[Part]->getType()->isVectorTy()) 6279 Cond[Part] = 6280 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6281 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6282 ConstantInt::get(Cond[Part]->getType(), 1)); 6283 } 6284 6285 Instruction *Cloned = Instr->clone(); 6286 if (!IsVoidRetTy) 6287 Cloned->setName(Instr->getName() + ".cloned"); 6288 // Replace the operands of the cloned instructions with extracted scalars. 6289 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6290 Value *Op = Params[op][Part]; 6291 Cloned->setOperand(op, Op); 6292 } 6293 6294 // Place the cloned scalar in the new loop. 6295 Builder.Insert(Cloned); 6296 6297 // If we just cloned a new assumption, add it the assumption cache. 6298 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6299 if (II->getIntrinsicID() == Intrinsic::assume) 6300 AC->registerAssumption(II); 6301 6302 // If the original scalar returns a value we need to place it in a vector 6303 // so that future users will be able to use it. 6304 if (!IsVoidRetTy) 6305 VecResults[Part] = Cloned; 6306 6307 // End if-block. 6308 if (IfPredicateStore) 6309 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6310 } 6311} 6312 6313void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6314 auto *SI = dyn_cast<StoreInst>(Instr); 6315 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6316 6317 return scalarizeInstruction(Instr, IfPredicateStore); 6318} 6319 6320Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6321 6322Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6323 6324Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6325 // When unrolling and the VF is 1, we only need to add a simple scalar. 6326 Type *ITy = Val->getType(); 6327 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6328 Constant *C = ConstantInt::get(ITy, StartIdx); 6329 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6330} 6331 6332static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6333 SmallVector<Metadata *, 4> MDs; 6334 // Reserve first location for self reference to the LoopID metadata node. 6335 MDs.push_back(nullptr); 6336 bool IsUnrollMetadata = false; 6337 MDNode *LoopID = L->getLoopID(); 6338 if (LoopID) { 6339 // First find existing loop unrolling disable metadata. 6340 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6341 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6342 if (MD) { 6343 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6344 IsUnrollMetadata = 6345 S && S->getString().startswith("llvm.loop.unroll.disable"); 6346 } 6347 MDs.push_back(LoopID->getOperand(i)); 6348 } 6349 } 6350 6351 if (!IsUnrollMetadata) { 6352 // Add runtime unroll disable metadata. 6353 LLVMContext &Context = L->getHeader()->getContext(); 6354 SmallVector<Metadata *, 1> DisableOperands; 6355 DisableOperands.push_back( 6356 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6357 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6358 MDs.push_back(DisableNode); 6359 MDNode *NewLoopID = MDNode::get(Context, MDs); 6360 // Set operand 0 to refer to the loop id itself. 6361 NewLoopID->replaceOperandWith(0, NewLoopID); 6362 L->setLoopID(NewLoopID); 6363 } 6364} 6365 6366bool LoopVectorizePass::processLoop(Loop *L) { 6367 assert(L->empty() && "Only process inner loops."); 6368 6369#ifndef NDEBUG 6370 const std::string DebugLocStr = getDebugLocString(L); 6371#endif /* NDEBUG */ 6372 6373 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6374 << L->getHeader()->getParent()->getName() << "\" from " 6375 << DebugLocStr << "\n"); 6376 6377 LoopVectorizeHints Hints(L, DisableUnrolling); 6378 6379 DEBUG(dbgs() << "LV: Loop hints:" 6380 << " force=" 6381 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6382 ? "disabled" 6383 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6384 ? "enabled" 6385 : "?")) 6386 << " width=" << Hints.getWidth() 6387 << " unroll=" << Hints.getInterleave() << "\n"); 6388 6389 // Function containing loop 6390 Function *F = L->getHeader()->getParent(); 6391 6392 // Looking at the diagnostic output is the only way to determine if a loop 6393 // was vectorized (other than looking at the IR or machine code), so it 6394 // is important to generate an optimization remark for each loop. Most of 6395 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 6396 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 6397 // less verbose reporting vectorized loops and unvectorized loops that may 6398 // benefit from vectorization, respectively. 6399 6400 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 6401 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 6402 return false; 6403 } 6404 6405 // Check the loop for a trip count threshold: 6406 // do not vectorize loops with a tiny trip count. 6407 const unsigned TC = SE->getSmallConstantTripCount(L); 6408 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 6409 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 6410 << "This loop is not worth vectorizing."); 6411 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 6412 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 6413 else { 6414 DEBUG(dbgs() << "\n"); 6415 emitAnalysisDiag(F, L, Hints, VectorizationReport() 6416 << "vectorization is not beneficial " 6417 "and is not explicitly forced"); 6418 return false; 6419 } 6420 } 6421 6422 PredicatedScalarEvolution PSE(*SE, *L); 6423 6424 // Check if it is legal to vectorize the loop. 6425 LoopVectorizationRequirements Requirements; 6426 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, 6427 &Requirements, &Hints); 6428 if (!LVL.canVectorize()) { 6429 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 6430 emitMissedWarning(F, L, Hints); 6431 return false; 6432 } 6433 6434 // Use the cost model. 6435 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 6436 &Hints); 6437 CM.collectValuesToIgnore(); 6438 6439 // Check the function attributes to find out if this function should be 6440 // optimized for size. 6441 bool OptForSize = 6442 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6443 6444 // Compute the weighted frequency of this loop being executed and see if it 6445 // is less than 20% of the function entry baseline frequency. Note that we 6446 // always have a canonical loop here because we think we *can* vectorize. 6447 // FIXME: This is hidden behind a flag due to pervasive problems with 6448 // exactly what block frequency models. 6449 if (LoopVectorizeWithBlockFrequency) { 6450 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 6451 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 6452 LoopEntryFreq < ColdEntryFreq) 6453 OptForSize = true; 6454 } 6455 6456 // Check the function attributes to see if implicit floats are allowed. 6457 // FIXME: This check doesn't seem possibly correct -- what if the loop is 6458 // an integer loop and the vector instructions selected are purely integer 6459 // vector instructions? 6460 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 6461 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 6462 "attribute is used.\n"); 6463 emitAnalysisDiag( 6464 F, L, Hints, 6465 VectorizationReport() 6466 << "loop not vectorized due to NoImplicitFloat attribute"); 6467 emitMissedWarning(F, L, Hints); 6468 return false; 6469 } 6470 6471 // Check if the target supports potentially unsafe FP vectorization. 6472 // FIXME: Add a check for the type of safety issue (denormal, signaling) 6473 // for the target we're vectorizing for, to make sure none of the 6474 // additional fp-math flags can help. 6475 if (Hints.isPotentiallyUnsafe() && 6476 TTI->isFPVectorizationPotentiallyUnsafe()) { 6477 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 6478 emitAnalysisDiag(F, L, Hints, 6479 VectorizationReport() 6480 << "loop not vectorized due to unsafe FP support."); 6481 emitMissedWarning(F, L, Hints); 6482 return false; 6483 } 6484 6485 // Select the optimal vectorization factor. 6486 const LoopVectorizationCostModel::VectorizationFactor VF = 6487 CM.selectVectorizationFactor(OptForSize); 6488 6489 // Select the interleave count. 6490 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 6491 6492 // Get user interleave count. 6493 unsigned UserIC = Hints.getInterleave(); 6494 6495 // Identify the diagnostic messages that should be produced. 6496 std::string VecDiagMsg, IntDiagMsg; 6497 bool VectorizeLoop = true, InterleaveLoop = true; 6498 6499 if (Requirements.doesNotMeet(F, L, Hints)) { 6500 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 6501 "requirements.\n"); 6502 emitMissedWarning(F, L, Hints); 6503 return false; 6504 } 6505 6506 if (VF.Width == 1) { 6507 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 6508 VecDiagMsg = 6509 "the cost-model indicates that vectorization is not beneficial"; 6510 VectorizeLoop = false; 6511 } 6512 6513 if (IC == 1 && UserIC <= 1) { 6514 // Tell the user interleaving is not beneficial. 6515 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 6516 IntDiagMsg = 6517 "the cost-model indicates that interleaving is not beneficial"; 6518 InterleaveLoop = false; 6519 if (UserIC == 1) 6520 IntDiagMsg += 6521 " and is explicitly disabled or interleave count is set to 1"; 6522 } else if (IC > 1 && UserIC == 1) { 6523 // Tell the user interleaving is beneficial, but it explicitly disabled. 6524 DEBUG(dbgs() 6525 << "LV: Interleaving is beneficial but is explicitly disabled."); 6526 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 6527 "but is explicitly disabled or interleave count is set to 1"; 6528 InterleaveLoop = false; 6529 } 6530 6531 // Override IC if user provided an interleave count. 6532 IC = UserIC > 0 ? UserIC : IC; 6533 6534 // Emit diagnostic messages, if any. 6535 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 6536 if (!VectorizeLoop && !InterleaveLoop) { 6537 // Do not vectorize or interleaving the loop. 6538 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 6539 L->getStartLoc(), VecDiagMsg); 6540 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 6541 L->getStartLoc(), IntDiagMsg); 6542 return false; 6543 } else if (!VectorizeLoop && InterleaveLoop) { 6544 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6545 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 6546 L->getStartLoc(), VecDiagMsg); 6547 } else if (VectorizeLoop && !InterleaveLoop) { 6548 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6549 << DebugLocStr << '\n'); 6550 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 6551 L->getStartLoc(), IntDiagMsg); 6552 } else if (VectorizeLoop && InterleaveLoop) { 6553 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6554 << DebugLocStr << '\n'); 6555 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6556 } 6557 6558 if (!VectorizeLoop) { 6559 assert(IC > 1 && "interleave count should not be 1 or 0"); 6560 // If we decided that it is not legal to vectorize the loop, then 6561 // interleave it. 6562 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 6563 Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); 6564 6565 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 6566 Twine("interleaved loop (interleaved count: ") + 6567 Twine(IC) + ")"); 6568 } else { 6569 // If we decided that it is *legal* to vectorize the loop, then do it. 6570 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 6571 LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); 6572 ++LoopsVectorized; 6573 6574 // Add metadata to disable runtime unrolling a scalar loop when there are 6575 // no runtime checks about strides and memory. A scalar loop that is 6576 // rarely used is not worth unrolling. 6577 if (!LB.areSafetyChecksAdded()) 6578 AddRuntimeUnrollDisableMetaData(L); 6579 6580 // Report the vectorization decision. 6581 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 6582 Twine("vectorized loop (vectorization width: ") + 6583 Twine(VF.Width) + ", interleaved count: " + 6584 Twine(IC) + ")"); 6585 } 6586 6587 // Mark the loop as already vectorized to avoid vectorizing again. 6588 Hints.setAlreadyVectorized(); 6589 6590 DEBUG(verifyFunction(*L->getHeader()->getParent())); 6591 return true; 6592} 6593 6594bool LoopVectorizePass::runImpl( 6595 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 6596 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 6597 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 6598 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_) { 6599 6600 SE = &SE_; 6601 LI = &LI_; 6602 TTI = &TTI_; 6603 DT = &DT_; 6604 BFI = &BFI_; 6605 TLI = TLI_; 6606 AA = &AA_; 6607 AC = &AC_; 6608 GetLAA = &GetLAA_; 6609 DB = &DB_; 6610 6611 // Compute some weights outside of the loop over the loops. Compute this 6612 // using a BranchProbability to re-use its scaling math. 6613 const BranchProbability ColdProb(1, 5); // 20% 6614 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 6615 6616 // Don't attempt if 6617 // 1. the target claims to have no vector registers, and 6618 // 2. interleaving won't help ILP. 6619 // 6620 // The second condition is necessary because, even if the target has no 6621 // vector registers, loop vectorization may still enable scalar 6622 // interleaving. 6623 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 6624 return false; 6625 6626 // Build up a worklist of inner-loops to vectorize. This is necessary as 6627 // the act of vectorizing or partially unrolling a loop creates new loops 6628 // and can invalidate iterators across the loops. 6629 SmallVector<Loop *, 8> Worklist; 6630 6631 for (Loop *L : *LI) 6632 addInnerLoop(*L, Worklist); 6633 6634 LoopsAnalyzed += Worklist.size(); 6635 6636 // Now walk the identified inner loops. 6637 bool Changed = false; 6638 while (!Worklist.empty()) 6639 Changed |= processLoop(Worklist.pop_back_val()); 6640 6641 // Process each loop nest in the function. 6642 return Changed; 6643 6644} 6645 6646 6647PreservedAnalyses LoopVectorizePass::run(Function &F, 6648 FunctionAnalysisManager &AM) { 6649 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 6650 auto &LI = AM.getResult<LoopAnalysis>(F); 6651 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 6652 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 6653 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 6654 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6655 auto &AA = AM.getResult<AAManager>(F); 6656 auto &AC = AM.getResult<AssumptionAnalysis>(F); 6657 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 6658 6659 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 6660 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 6661 [&](Loop &L) -> const LoopAccessInfo & { 6662 return LAM.getResult<LoopAccessAnalysis>(L); 6663 }; 6664 bool Changed = runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA); 6665 if (!Changed) 6666 return PreservedAnalyses::all(); 6667 PreservedAnalyses PA; 6668 PA.preserve<LoopAnalysis>(); 6669 PA.preserve<DominatorTreeAnalysis>(); 6670 PA.preserve<BasicAA>(); 6671 PA.preserve<GlobalsAA>(); 6672 return PA; 6673} 6674