1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// The interleaved access vectorization is based on the paper:
38//  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
39//  Data for SIMD
40//
41// Other ideas/concepts are from:
42//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43//
44//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
45//  Vectorizing Compilers.
46//
47//===----------------------------------------------------------------------===//
48
49#include "llvm/Transforms/Vectorize/LoopVectorize.h"
50#include "llvm/ADT/DenseMap.h"
51#include "llvm/ADT/Hashing.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/StringExtras.h"
59#include "llvm/Analysis/CodeMetrics.h"
60#include "llvm/Analysis/GlobalsModRef.h"
61#include "llvm/Analysis/LoopInfo.h"
62#include "llvm/Analysis/LoopIterator.h"
63#include "llvm/Analysis/LoopPass.h"
64#include "llvm/Analysis/ScalarEvolutionExpander.h"
65#include "llvm/Analysis/ScalarEvolutionExpressions.h"
66#include "llvm/Analysis/ValueTracking.h"
67#include "llvm/Analysis/VectorUtils.h"
68#include "llvm/IR/Constants.h"
69#include "llvm/IR/DataLayout.h"
70#include "llvm/IR/DebugInfo.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/DiagnosticInfo.h"
73#include "llvm/IR/Dominators.h"
74#include "llvm/IR/Function.h"
75#include "llvm/IR/IRBuilder.h"
76#include "llvm/IR/Instructions.h"
77#include "llvm/IR/IntrinsicInst.h"
78#include "llvm/IR/LLVMContext.h"
79#include "llvm/IR/Module.h"
80#include "llvm/IR/PatternMatch.h"
81#include "llvm/IR/Type.h"
82#include "llvm/IR/Value.h"
83#include "llvm/IR/ValueHandle.h"
84#include "llvm/IR/Verifier.h"
85#include "llvm/Pass.h"
86#include "llvm/Support/BranchProbability.h"
87#include "llvm/Support/CommandLine.h"
88#include "llvm/Support/Debug.h"
89#include "llvm/Support/raw_ostream.h"
90#include "llvm/Transforms/Scalar.h"
91#include "llvm/Transforms/Utils/BasicBlockUtils.h"
92#include "llvm/Transforms/Utils/Local.h"
93#include "llvm/Transforms/Utils/LoopUtils.h"
94#include "llvm/Transforms/Utils/LoopVersioning.h"
95#include "llvm/Transforms/Vectorize.h"
96#include <algorithm>
97#include <map>
98#include <tuple>
99
100using namespace llvm;
101using namespace llvm::PatternMatch;
102
103#define LV_NAME "loop-vectorize"
104#define DEBUG_TYPE LV_NAME
105
106STATISTIC(LoopsVectorized, "Number of loops vectorized");
107STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
108
109static cl::opt<bool>
110    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
111                       cl::desc("Enable if-conversion during vectorization."));
112
113/// We don't vectorize loops with a known constant trip count below this number.
114static cl::opt<unsigned> TinyTripCountVectorThreshold(
115    "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
116    cl::desc("Don't vectorize loops with a constant "
117             "trip count that is smaller than this "
118             "value."));
119
120static cl::opt<bool> MaximizeBandwidth(
121    "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
122    cl::desc("Maximize bandwidth when selecting vectorization factor which "
123             "will be determined by the smallest type in loop."));
124
125static cl::opt<bool> EnableInterleavedMemAccesses(
126    "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
127    cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
128
129/// Maximum factor for an interleaved memory access.
130static cl::opt<unsigned> MaxInterleaveGroupFactor(
131    "max-interleave-group-factor", cl::Hidden,
132    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
133    cl::init(8));
134
135/// We don't interleave loops with a known constant trip count below this
136/// number.
137static const unsigned TinyTripCountInterleaveThreshold = 128;
138
139static cl::opt<unsigned> ForceTargetNumScalarRegs(
140    "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
141    cl::desc("A flag that overrides the target's number of scalar registers."));
142
143static cl::opt<unsigned> ForceTargetNumVectorRegs(
144    "force-target-num-vector-regs", cl::init(0), cl::Hidden,
145    cl::desc("A flag that overrides the target's number of vector registers."));
146
147/// Maximum vectorization interleave count.
148static const unsigned MaxInterleaveFactor = 16;
149
150static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
151    "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
152    cl::desc("A flag that overrides the target's max interleave factor for "
153             "scalar loops."));
154
155static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
156    "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
157    cl::desc("A flag that overrides the target's max interleave factor for "
158             "vectorized loops."));
159
160static cl::opt<unsigned> ForceTargetInstructionCost(
161    "force-target-instruction-cost", cl::init(0), cl::Hidden,
162    cl::desc("A flag that overrides the target's expected cost for "
163             "an instruction to a single constant value. Mostly "
164             "useful for getting consistent testing."));
165
166static cl::opt<unsigned> SmallLoopCost(
167    "small-loop-cost", cl::init(20), cl::Hidden,
168    cl::desc(
169        "The cost of a loop that is considered 'small' by the interleaver."));
170
171static cl::opt<bool> LoopVectorizeWithBlockFrequency(
172    "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
173    cl::desc("Enable the use of the block frequency analysis to access PGO "
174             "heuristics minimizing code growth in cold regions and being more "
175             "aggressive in hot regions."));
176
177// Runtime interleave loops for load/store throughput.
178static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
179    "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
180    cl::desc(
181        "Enable runtime interleaving until load/store ports are saturated"));
182
183/// The number of stores in a loop that are allowed to need predication.
184static cl::opt<unsigned> NumberOfStoresToPredicate(
185    "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
186    cl::desc("Max number of stores to be predicated behind an if."));
187
188static cl::opt<bool> EnableIndVarRegisterHeur(
189    "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
190    cl::desc("Count the induction variable only once when interleaving"));
191
192static cl::opt<bool> EnableCondStoresVectorization(
193    "enable-cond-stores-vec", cl::init(false), cl::Hidden,
194    cl::desc("Enable if predication of stores during vectorization."));
195
196static cl::opt<unsigned> MaxNestedScalarReductionIC(
197    "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
198    cl::desc("The maximum interleave count to use when interleaving a scalar "
199             "reduction in a nested loop."));
200
201static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203    cl::desc("The maximum allowed number of runtime memory checks with a "
204             "vectorize(enable) pragma."));
205
206static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
207    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
208    cl::desc("The maximum number of SCEV checks allowed."));
209
210static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
211    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
212    cl::desc("The maximum number of SCEV checks allowed with a "
213             "vectorize(enable) pragma"));
214
215namespace {
216
217// Forward declarations.
218class LoopVectorizeHints;
219class LoopVectorizationLegality;
220class LoopVectorizationCostModel;
221class LoopVectorizationRequirements;
222
223/// \brief This modifies LoopAccessReport to initialize message with
224/// loop-vectorizer-specific part.
225class VectorizationReport : public LoopAccessReport {
226public:
227  VectorizationReport(Instruction *I = nullptr)
228      : LoopAccessReport("loop not vectorized: ", I) {}
229
230  /// \brief This allows promotion of the loop-access analysis report into the
231  /// loop-vectorizer report.  It modifies the message to add the
232  /// loop-vectorizer-specific part of the message.
233  explicit VectorizationReport(const LoopAccessReport &R)
234      : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
235                         R.getInstr()) {}
236};
237
238/// A helper function for converting Scalar types to vector types.
239/// If the incoming type is void, we return void. If the VF is 1, we return
240/// the scalar type.
241static Type *ToVectorTy(Type *Scalar, unsigned VF) {
242  if (Scalar->isVoidTy() || VF == 1)
243    return Scalar;
244  return VectorType::get(Scalar, VF);
245}
246
247/// A helper function that returns GEP instruction and knows to skip a
248/// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
249/// pointee types of the 'bitcast' have the same size.
250/// For example:
251///   bitcast double** %var to i64* - can be skipped
252///   bitcast double** %var to i8*  - can not
253static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
254
255  if (isa<GetElementPtrInst>(Ptr))
256    return cast<GetElementPtrInst>(Ptr);
257
258  if (isa<BitCastInst>(Ptr) &&
259      isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
260    Type *BitcastTy = Ptr->getType();
261    Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
262    if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
263      return nullptr;
264    Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
265    Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
266    const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
267    if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
268      return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
269  }
270  return nullptr;
271}
272
273/// InnerLoopVectorizer vectorizes loops which contain only one basic
274/// block to a specified vectorization factor (VF).
275/// This class performs the widening of scalars into vectors, or multiple
276/// scalars. This class also implements the following features:
277/// * It inserts an epilogue loop for handling loops that don't have iteration
278///   counts that are known to be a multiple of the vectorization factor.
279/// * It handles the code generation for reduction variables.
280/// * Scalarization (implementation using scalars) of un-vectorizable
281///   instructions.
282/// InnerLoopVectorizer does not perform any vectorization-legality
283/// checks, and relies on the caller to check for the different legality
284/// aspects. The InnerLoopVectorizer relies on the
285/// LoopVectorizationLegality class to provide information about the induction
286/// and reduction variables that were found to a given vectorization factor.
287class InnerLoopVectorizer {
288public:
289  InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
290                      LoopInfo *LI, DominatorTree *DT,
291                      const TargetLibraryInfo *TLI,
292                      const TargetTransformInfo *TTI, AssumptionCache *AC,
293                      unsigned VecWidth, unsigned UnrollFactor)
294      : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
295        AC(AC), VF(VecWidth), UF(UnrollFactor),
296        Builder(PSE.getSE()->getContext()), Induction(nullptr),
297        OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr),
298        VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {}
299
300  // Perform the actual loop widening (vectorization).
301  // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
302  // can be validly truncated to. The cost model has assumed this truncation
303  // will happen when vectorizing. VecValuesToIgnore contains scalar values
304  // that the cost model has chosen to ignore because they will not be
305  // vectorized.
306  void vectorize(LoopVectorizationLegality *L,
307                 const MapVector<Instruction *, uint64_t> &MinimumBitWidths,
308                 SmallPtrSetImpl<const Value *> &VecValuesToIgnore) {
309    MinBWs = &MinimumBitWidths;
310    ValuesNotWidened = &VecValuesToIgnore;
311    Legal = L;
312    // Create a new empty loop. Unlink the old loop and connect the new one.
313    createEmptyLoop();
314    // Widen each instruction in the old loop to a new one in the new loop.
315    // Use the Legality module to find the induction and reduction variables.
316    vectorizeLoop();
317  }
318
319  // Return true if any runtime check is added.
320  bool areSafetyChecksAdded() { return AddedSafetyChecks; }
321
322  virtual ~InnerLoopVectorizer() {}
323
324protected:
325  /// A small list of PHINodes.
326  typedef SmallVector<PHINode *, 4> PhiVector;
327  /// When we unroll loops we have multiple vector values for each scalar.
328  /// This data structure holds the unrolled and vectorized values that
329  /// originated from one scalar instruction.
330  typedef SmallVector<Value *, 2> VectorParts;
331
332  // When we if-convert we need to create edge masks. We have to cache values
333  // so that we don't end up with exponential recursion/IR.
334  typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>
335      EdgeMaskCache;
336
337  /// Create an empty loop, based on the loop ranges of the old loop.
338  void createEmptyLoop();
339
340  /// Set up the values of the IVs correctly when exiting the vector loop.
341  void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
342                    Value *CountRoundDown, Value *EndValue,
343                    BasicBlock *MiddleBlock);
344
345  /// Create a new induction variable inside L.
346  PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
347                                   Value *Step, Instruction *DL);
348  /// Copy and widen the instructions from the old loop.
349  virtual void vectorizeLoop();
350
351  /// Fix a first-order recurrence. This is the second phase of vectorizing
352  /// this phi node.
353  void fixFirstOrderRecurrence(PHINode *Phi);
354
355  /// \brief The Loop exit block may have single value PHI nodes where the
356  /// incoming value is 'Undef'. While vectorizing we only handled real values
357  /// that were defined inside the loop. Here we fix the 'undef case'.
358  /// See PR14725.
359  void fixLCSSAPHIs();
360
361  /// Shrinks vector element sizes based on information in "MinBWs".
362  void truncateToMinimalBitwidths();
363
364  /// A helper function that computes the predicate of the block BB, assuming
365  /// that the header block of the loop is set to True. It returns the *entry*
366  /// mask for the block BB.
367  VectorParts createBlockInMask(BasicBlock *BB);
368  /// A helper function that computes the predicate of the edge between SRC
369  /// and DST.
370  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
371
372  /// A helper function to vectorize a single BB within the innermost loop.
373  void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
374
375  /// Vectorize a single PHINode in a block. This method handles the induction
376  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
377  /// arbitrary length vectors.
378  void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF,
379                           unsigned VF, PhiVector *PV);
380
381  /// Insert the new loop to the loop hierarchy and pass manager
382  /// and update the analysis passes.
383  void updateAnalysis();
384
385  /// This instruction is un-vectorizable. Implement it as a sequence
386  /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
387  /// scalarized instruction behind an if block predicated on the control
388  /// dependence of the instruction.
389  virtual void scalarizeInstruction(Instruction *Instr,
390                                    bool IfPredicateStore = false);
391
392  /// Vectorize Load and Store instructions,
393  virtual void vectorizeMemoryInstruction(Instruction *Instr);
394
395  /// Create a broadcast instruction. This method generates a broadcast
396  /// instruction (shuffle) for loop invariant values and for the induction
397  /// value. If this is the induction variable then we extend it to N, N+1, ...
398  /// this is needed because each iteration in the loop corresponds to a SIMD
399  /// element.
400  virtual Value *getBroadcastInstrs(Value *V);
401
402  /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
403  /// to each vector element of Val. The sequence starts at StartIndex.
404  virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
405
406  /// Compute scalar induction steps. \p ScalarIV is the scalar induction
407  /// variable on which to base the steps, \p Step is the size of the step, and
408  /// \p EntryVal is the value from the original loop that maps to the steps.
409  /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
410  /// can be a truncate instruction).
411  void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal);
412
413  /// Create a vector induction phi node based on an existing scalar one. This
414  /// currently only works for integer induction variables with a constant
415  /// step. If \p TruncType is non-null, instead of widening the original IV,
416  /// we widen a version of the IV truncated to \p TruncType.
417  void createVectorIntInductionPHI(const InductionDescriptor &II,
418                                   VectorParts &Entry, IntegerType *TruncType);
419
420  /// Widen an integer induction variable \p IV. If \p Trunc is provided, the
421  /// induction variable will first be truncated to the corresponding type. The
422  /// widened values are placed in \p Entry.
423  void widenIntInduction(PHINode *IV, VectorParts &Entry,
424                         TruncInst *Trunc = nullptr);
425
426  /// When we go over instructions in the basic block we rely on previous
427  /// values within the current basic block or on loop invariant values.
428  /// When we widen (vectorize) values we place them in the map. If the values
429  /// are not within the map, they have to be loop invariant, so we simply
430  /// broadcast them into a vector.
431  VectorParts &getVectorValue(Value *V);
432
433  /// Try to vectorize the interleaved access group that \p Instr belongs to.
434  void vectorizeInterleaveGroup(Instruction *Instr);
435
436  /// Generate a shuffle sequence that will reverse the vector Vec.
437  virtual Value *reverseVector(Value *Vec);
438
439  /// Returns (and creates if needed) the original loop trip count.
440  Value *getOrCreateTripCount(Loop *NewLoop);
441
442  /// Returns (and creates if needed) the trip count of the widened loop.
443  Value *getOrCreateVectorTripCount(Loop *NewLoop);
444
445  /// Emit a bypass check to see if the trip count would overflow, or we
446  /// wouldn't have enough iterations to execute one vector loop.
447  void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
448  /// Emit a bypass check to see if the vector trip count is nonzero.
449  void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
450  /// Emit a bypass check to see if all of the SCEV assumptions we've
451  /// had to make are correct.
452  void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
453  /// Emit bypass checks to check any memory assumptions we may have made.
454  void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
455
456  /// Add additional metadata to \p To that was not present on \p Orig.
457  ///
458  /// Currently this is used to add the noalias annotations based on the
459  /// inserted memchecks.  Use this for instructions that are *cloned* into the
460  /// vector loop.
461  void addNewMetadata(Instruction *To, const Instruction *Orig);
462
463  /// Add metadata from one instruction to another.
464  ///
465  /// This includes both the original MDs from \p From and additional ones (\see
466  /// addNewMetadata).  Use this for *newly created* instructions in the vector
467  /// loop.
468  void addMetadata(Instruction *To, Instruction *From);
469
470  /// \brief Similar to the previous function but it adds the metadata to a
471  /// vector of instructions.
472  void addMetadata(ArrayRef<Value *> To, Instruction *From);
473
474  /// This is a helper class that holds the vectorizer state. It maps scalar
475  /// instructions to vector instructions. When the code is 'unrolled' then
476  /// then a single scalar value is mapped to multiple vector parts. The parts
477  /// are stored in the VectorPart type.
478  struct ValueMap {
479    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
480    /// are mapped.
481    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
482
483    /// \return True if 'Key' is saved in the Value Map.
484    bool has(Value *Key) const { return MapStorage.count(Key); }
485
486    /// Initializes a new entry in the map. Sets all of the vector parts to the
487    /// save value in 'Val'.
488    /// \return A reference to a vector with splat values.
489    VectorParts &splat(Value *Key, Value *Val) {
490      VectorParts &Entry = MapStorage[Key];
491      Entry.assign(UF, Val);
492      return Entry;
493    }
494
495    ///\return A reference to the value that is stored at 'Key'.
496    VectorParts &get(Value *Key) {
497      VectorParts &Entry = MapStorage[Key];
498      if (Entry.empty())
499        Entry.resize(UF);
500      assert(Entry.size() == UF);
501      return Entry;
502    }
503
504  private:
505    /// The unroll factor. Each entry in the map stores this number of vector
506    /// elements.
507    unsigned UF;
508
509    /// Map storage. We use std::map and not DenseMap because insertions to a
510    /// dense map invalidates its iterators.
511    std::map<Value *, VectorParts> MapStorage;
512  };
513
514  /// The original loop.
515  Loop *OrigLoop;
516  /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
517  /// dynamic knowledge to simplify SCEV expressions and converts them to a
518  /// more usable form.
519  PredicatedScalarEvolution &PSE;
520  /// Loop Info.
521  LoopInfo *LI;
522  /// Dominator Tree.
523  DominatorTree *DT;
524  /// Alias Analysis.
525  AliasAnalysis *AA;
526  /// Target Library Info.
527  const TargetLibraryInfo *TLI;
528  /// Target Transform Info.
529  const TargetTransformInfo *TTI;
530  /// Assumption Cache.
531  AssumptionCache *AC;
532
533  /// \brief LoopVersioning.  It's only set up (non-null) if memchecks were
534  /// used.
535  ///
536  /// This is currently only used to add no-alias metadata based on the
537  /// memchecks.  The actually versioning is performed manually.
538  std::unique_ptr<LoopVersioning> LVer;
539
540  /// The vectorization SIMD factor to use. Each vector will have this many
541  /// vector elements.
542  unsigned VF;
543
544protected:
545  /// The vectorization unroll factor to use. Each scalar is vectorized to this
546  /// many different vector instructions.
547  unsigned UF;
548
549  /// The builder that we use
550  IRBuilder<> Builder;
551
552  // --- Vectorization state ---
553
554  /// The vector-loop preheader.
555  BasicBlock *LoopVectorPreHeader;
556  /// The scalar-loop preheader.
557  BasicBlock *LoopScalarPreHeader;
558  /// Middle Block between the vector and the scalar.
559  BasicBlock *LoopMiddleBlock;
560  /// The ExitBlock of the scalar loop.
561  BasicBlock *LoopExitBlock;
562  /// The vector loop body.
563  BasicBlock *LoopVectorBody;
564  /// The scalar loop body.
565  BasicBlock *LoopScalarBody;
566  /// A list of all bypass blocks. The first block is the entry of the loop.
567  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
568
569  /// The new Induction variable which was added to the new block.
570  PHINode *Induction;
571  /// The induction variable of the old basic block.
572  PHINode *OldInduction;
573  /// Maps scalars to widened vectors.
574  ValueMap WidenMap;
575
576  /// A map of induction variables from the original loop to their
577  /// corresponding VF * UF scalarized values in the vectorized loop. The
578  /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap
579  /// maps original loop values to their vector versions in the new loop,
580  /// ScalarIVMap maps induction variables from the original loop that are not
581  /// vectorized to their scalar equivalents in the vector loop. Maintaining a
582  /// separate map for scalarized induction variables allows us to avoid
583  /// unnecessary scalar-to-vector-to-scalar conversions.
584  DenseMap<Value *, SmallVector<Value *, 8>> ScalarIVMap;
585
586  /// Store instructions that should be predicated, as a pair
587  ///   <StoreInst, Predicate>
588  SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores;
589  EdgeMaskCache MaskCache;
590  /// Trip count of the original loop.
591  Value *TripCount;
592  /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
593  Value *VectorTripCount;
594
595  /// Map of scalar integer values to the smallest bitwidth they can be legally
596  /// represented as. The vector equivalents of these values should be truncated
597  /// to this type.
598  const MapVector<Instruction *, uint64_t> *MinBWs;
599
600  /// A set of values that should not be widened. This is taken from
601  /// VecValuesToIgnore in the cost model.
602  SmallPtrSetImpl<const Value *> *ValuesNotWidened;
603
604  LoopVectorizationLegality *Legal;
605
606  // Record whether runtime checks are added.
607  bool AddedSafetyChecks;
608};
609
610class InnerLoopUnroller : public InnerLoopVectorizer {
611public:
612  InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
613                    LoopInfo *LI, DominatorTree *DT,
614                    const TargetLibraryInfo *TLI,
615                    const TargetTransformInfo *TTI, AssumptionCache *AC,
616                    unsigned UnrollFactor)
617      : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1,
618                            UnrollFactor) {}
619
620private:
621  void scalarizeInstruction(Instruction *Instr,
622                            bool IfPredicateStore = false) override;
623  void vectorizeMemoryInstruction(Instruction *Instr) override;
624  Value *getBroadcastInstrs(Value *V) override;
625  Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
626  Value *reverseVector(Value *Vec) override;
627};
628
629/// \brief Look for a meaningful debug location on the instruction or it's
630/// operands.
631static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
632  if (!I)
633    return I;
634
635  DebugLoc Empty;
636  if (I->getDebugLoc() != Empty)
637    return I;
638
639  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
640    if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
641      if (OpInst->getDebugLoc() != Empty)
642        return OpInst;
643  }
644
645  return I;
646}
647
648/// \brief Set the debug location in the builder using the debug location in the
649/// instruction.
650static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
651  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
652    B.SetCurrentDebugLocation(Inst->getDebugLoc());
653  else
654    B.SetCurrentDebugLocation(DebugLoc());
655}
656
657#ifndef NDEBUG
658/// \return string containing a file name and a line # for the given loop.
659static std::string getDebugLocString(const Loop *L) {
660  std::string Result;
661  if (L) {
662    raw_string_ostream OS(Result);
663    if (const DebugLoc LoopDbgLoc = L->getStartLoc())
664      LoopDbgLoc.print(OS);
665    else
666      // Just print the module name.
667      OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
668    OS.flush();
669  }
670  return Result;
671}
672#endif
673
674void InnerLoopVectorizer::addNewMetadata(Instruction *To,
675                                         const Instruction *Orig) {
676  // If the loop was versioned with memchecks, add the corresponding no-alias
677  // metadata.
678  if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
679    LVer->annotateInstWithNoAlias(To, Orig);
680}
681
682void InnerLoopVectorizer::addMetadata(Instruction *To,
683                                      Instruction *From) {
684  propagateMetadata(To, From);
685  addNewMetadata(To, From);
686}
687
688void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
689                                      Instruction *From) {
690  for (Value *V : To) {
691    if (Instruction *I = dyn_cast<Instruction>(V))
692      addMetadata(I, From);
693  }
694}
695
696/// \brief The group of interleaved loads/stores sharing the same stride and
697/// close to each other.
698///
699/// Each member in this group has an index starting from 0, and the largest
700/// index should be less than interleaved factor, which is equal to the absolute
701/// value of the access's stride.
702///
703/// E.g. An interleaved load group of factor 4:
704///        for (unsigned i = 0; i < 1024; i+=4) {
705///          a = A[i];                           // Member of index 0
706///          b = A[i+1];                         // Member of index 1
707///          d = A[i+3];                         // Member of index 3
708///          ...
709///        }
710///
711///      An interleaved store group of factor 4:
712///        for (unsigned i = 0; i < 1024; i+=4) {
713///          ...
714///          A[i]   = a;                         // Member of index 0
715///          A[i+1] = b;                         // Member of index 1
716///          A[i+2] = c;                         // Member of index 2
717///          A[i+3] = d;                         // Member of index 3
718///        }
719///
720/// Note: the interleaved load group could have gaps (missing members), but
721/// the interleaved store group doesn't allow gaps.
722class InterleaveGroup {
723public:
724  InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
725      : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
726    assert(Align && "The alignment should be non-zero");
727
728    Factor = std::abs(Stride);
729    assert(Factor > 1 && "Invalid interleave factor");
730
731    Reverse = Stride < 0;
732    Members[0] = Instr;
733  }
734
735  bool isReverse() const { return Reverse; }
736  unsigned getFactor() const { return Factor; }
737  unsigned getAlignment() const { return Align; }
738  unsigned getNumMembers() const { return Members.size(); }
739
740  /// \brief Try to insert a new member \p Instr with index \p Index and
741  /// alignment \p NewAlign. The index is related to the leader and it could be
742  /// negative if it is the new leader.
743  ///
744  /// \returns false if the instruction doesn't belong to the group.
745  bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
746    assert(NewAlign && "The new member's alignment should be non-zero");
747
748    int Key = Index + SmallestKey;
749
750    // Skip if there is already a member with the same index.
751    if (Members.count(Key))
752      return false;
753
754    if (Key > LargestKey) {
755      // The largest index is always less than the interleave factor.
756      if (Index >= static_cast<int>(Factor))
757        return false;
758
759      LargestKey = Key;
760    } else if (Key < SmallestKey) {
761      // The largest index is always less than the interleave factor.
762      if (LargestKey - Key >= static_cast<int>(Factor))
763        return false;
764
765      SmallestKey = Key;
766    }
767
768    // It's always safe to select the minimum alignment.
769    Align = std::min(Align, NewAlign);
770    Members[Key] = Instr;
771    return true;
772  }
773
774  /// \brief Get the member with the given index \p Index
775  ///
776  /// \returns nullptr if contains no such member.
777  Instruction *getMember(unsigned Index) const {
778    int Key = SmallestKey + Index;
779    if (!Members.count(Key))
780      return nullptr;
781
782    return Members.find(Key)->second;
783  }
784
785  /// \brief Get the index for the given member. Unlike the key in the member
786  /// map, the index starts from 0.
787  unsigned getIndex(Instruction *Instr) const {
788    for (auto I : Members)
789      if (I.second == Instr)
790        return I.first - SmallestKey;
791
792    llvm_unreachable("InterleaveGroup contains no such member");
793  }
794
795  Instruction *getInsertPos() const { return InsertPos; }
796  void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
797
798private:
799  unsigned Factor; // Interleave Factor.
800  bool Reverse;
801  unsigned Align;
802  DenseMap<int, Instruction *> Members;
803  int SmallestKey;
804  int LargestKey;
805
806  // To avoid breaking dependences, vectorized instructions of an interleave
807  // group should be inserted at either the first load or the last store in
808  // program order.
809  //
810  // E.g. %even = load i32             // Insert Position
811  //      %add = add i32 %even         // Use of %even
812  //      %odd = load i32
813  //
814  //      store i32 %even
815  //      %odd = add i32               // Def of %odd
816  //      store i32 %odd               // Insert Position
817  Instruction *InsertPos;
818};
819
820/// \brief Drive the analysis of interleaved memory accesses in the loop.
821///
822/// Use this class to analyze interleaved accesses only when we can vectorize
823/// a loop. Otherwise it's meaningless to do analysis as the vectorization
824/// on interleaved accesses is unsafe.
825///
826/// The analysis collects interleave groups and records the relationships
827/// between the member and the group in a map.
828class InterleavedAccessInfo {
829public:
830  InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
831                        DominatorTree *DT, LoopInfo *LI)
832      : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr),
833        RequiresScalarEpilogue(false) {}
834
835  ~InterleavedAccessInfo() {
836    SmallSet<InterleaveGroup *, 4> DelSet;
837    // Avoid releasing a pointer twice.
838    for (auto &I : InterleaveGroupMap)
839      DelSet.insert(I.second);
840    for (auto *Ptr : DelSet)
841      delete Ptr;
842  }
843
844  /// \brief Analyze the interleaved accesses and collect them in interleave
845  /// groups. Substitute symbolic strides using \p Strides.
846  void analyzeInterleaving(const ValueToValueMap &Strides);
847
848  /// \brief Check if \p Instr belongs to any interleave group.
849  bool isInterleaved(Instruction *Instr) const {
850    return InterleaveGroupMap.count(Instr);
851  }
852
853  /// \brief Return the maximum interleave factor of all interleaved groups.
854  unsigned getMaxInterleaveFactor() const {
855    unsigned MaxFactor = 1;
856    for (auto &Entry : InterleaveGroupMap)
857      MaxFactor = std::max(MaxFactor, Entry.second->getFactor());
858    return MaxFactor;
859  }
860
861  /// \brief Get the interleave group that \p Instr belongs to.
862  ///
863  /// \returns nullptr if doesn't have such group.
864  InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
865    if (InterleaveGroupMap.count(Instr))
866      return InterleaveGroupMap.find(Instr)->second;
867    return nullptr;
868  }
869
870  /// \brief Returns true if an interleaved group that may access memory
871  /// out-of-bounds requires a scalar epilogue iteration for correctness.
872  bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
873
874  /// \brief Initialize the LoopAccessInfo used for dependence checking.
875  void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
876
877private:
878  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
879  /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
880  /// The interleaved access analysis can also add new predicates (for example
881  /// by versioning strides of pointers).
882  PredicatedScalarEvolution &PSE;
883  Loop *TheLoop;
884  DominatorTree *DT;
885  LoopInfo *LI;
886  const LoopAccessInfo *LAI;
887
888  /// True if the loop may contain non-reversed interleaved groups with
889  /// out-of-bounds accesses. We ensure we don't speculatively access memory
890  /// out-of-bounds by executing at least one scalar epilogue iteration.
891  bool RequiresScalarEpilogue;
892
893  /// Holds the relationships between the members and the interleave group.
894  DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
895
896  /// Holds dependences among the memory accesses in the loop. It maps a source
897  /// access to a set of dependent sink accesses.
898  DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
899
900  /// \brief The descriptor for a strided memory access.
901  struct StrideDescriptor {
902    StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
903                     unsigned Align)
904        : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
905
906    StrideDescriptor() = default;
907
908    // The access's stride. It is negative for a reverse access.
909    int64_t Stride = 0;
910    const SCEV *Scev = nullptr; // The scalar expression of this access
911    uint64_t Size = 0;          // The size of the memory object.
912    unsigned Align = 0;         // The alignment of this access.
913  };
914
915  /// \brief A type for holding instructions and their stride descriptors.
916  typedef std::pair<Instruction *, StrideDescriptor> StrideEntry;
917
918  /// \brief Create a new interleave group with the given instruction \p Instr,
919  /// stride \p Stride and alignment \p Align.
920  ///
921  /// \returns the newly created interleave group.
922  InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
923                                         unsigned Align) {
924    assert(!InterleaveGroupMap.count(Instr) &&
925           "Already in an interleaved access group");
926    InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
927    return InterleaveGroupMap[Instr];
928  }
929
930  /// \brief Release the group and remove all the relationships.
931  void releaseGroup(InterleaveGroup *Group) {
932    for (unsigned i = 0; i < Group->getFactor(); i++)
933      if (Instruction *Member = Group->getMember(i))
934        InterleaveGroupMap.erase(Member);
935
936    delete Group;
937  }
938
939  /// \brief Collect all the accesses with a constant stride in program order.
940  void collectConstStrideAccesses(
941      MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
942      const ValueToValueMap &Strides);
943
944  /// \brief Returns true if \p Stride is allowed in an interleaved group.
945  static bool isStrided(int Stride) {
946    unsigned Factor = std::abs(Stride);
947    return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
948  }
949
950  /// \brief Returns true if \p BB is a predicated block.
951  bool isPredicated(BasicBlock *BB) const {
952    return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
953  }
954
955  /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
956  bool areDependencesValid() const {
957    return LAI && LAI->getDepChecker().getDependences();
958  }
959
960  /// \brief Returns true if memory accesses \p B and \p A can be reordered, if
961  /// necessary, when constructing interleaved groups.
962  ///
963  /// \p B must precede \p A in program order. We return false if reordering is
964  /// not necessary or is prevented because \p B and \p A may be dependent.
965  bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B,
966                                                 StrideEntry *A) const {
967
968    // Code motion for interleaved accesses can potentially hoist strided loads
969    // and sink strided stores. The code below checks the legality of the
970    // following two conditions:
971    //
972    // 1. Potentially moving a strided load (A) before any store (B) that
973    //    precedes A, or
974    //
975    // 2. Potentially moving a strided store (B) after any load or store (A)
976    //    that B precedes.
977    //
978    // It's legal to reorder B and A if we know there isn't a dependence from B
979    // to A. Note that this determination is conservative since some
980    // dependences could potentially be reordered safely.
981
982    // B is potentially the source of a dependence.
983    auto *Src = B->first;
984    auto SrcDes = B->second;
985
986    // A is potentially the sink of a dependence.
987    auto *Sink = A->first;
988    auto SinkDes = A->second;
989
990    // Code motion for interleaved accesses can't violate WAR dependences.
991    // Thus, reordering is legal if the source isn't a write.
992    if (!Src->mayWriteToMemory())
993      return true;
994
995    // At least one of the accesses must be strided.
996    if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
997      return true;
998
999    // If dependence information is not available from LoopAccessInfo,
1000    // conservatively assume the instructions can't be reordered.
1001    if (!areDependencesValid())
1002      return false;
1003
1004    // If we know there is a dependence from source to sink, assume the
1005    // instructions can't be reordered. Otherwise, reordering is legal.
1006    return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1007  }
1008
1009  /// \brief Collect the dependences from LoopAccessInfo.
1010  ///
1011  /// We process the dependences once during the interleaved access analysis to
1012  /// enable constant-time dependence queries.
1013  void collectDependences() {
1014    if (!areDependencesValid())
1015      return;
1016    auto *Deps = LAI->getDepChecker().getDependences();
1017    for (auto Dep : *Deps)
1018      Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1019  }
1020};
1021
1022/// Utility class for getting and setting loop vectorizer hints in the form
1023/// of loop metadata.
1024/// This class keeps a number of loop annotations locally (as member variables)
1025/// and can, upon request, write them back as metadata on the loop. It will
1026/// initially scan the loop for existing metadata, and will update the local
1027/// values based on information in the loop.
1028/// We cannot write all values to metadata, as the mere presence of some info,
1029/// for example 'force', means a decision has been made. So, we need to be
1030/// careful NOT to add them if the user hasn't specifically asked so.
1031class LoopVectorizeHints {
1032  enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE };
1033
1034  /// Hint - associates name and validation with the hint value.
1035  struct Hint {
1036    const char *Name;
1037    unsigned Value; // This may have to change for non-numeric values.
1038    HintKind Kind;
1039
1040    Hint(const char *Name, unsigned Value, HintKind Kind)
1041        : Name(Name), Value(Value), Kind(Kind) {}
1042
1043    bool validate(unsigned Val) {
1044      switch (Kind) {
1045      case HK_WIDTH:
1046        return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1047      case HK_UNROLL:
1048        return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1049      case HK_FORCE:
1050        return (Val <= 1);
1051      }
1052      return false;
1053    }
1054  };
1055
1056  /// Vectorization width.
1057  Hint Width;
1058  /// Vectorization interleave factor.
1059  Hint Interleave;
1060  /// Vectorization forced
1061  Hint Force;
1062
1063  /// Return the loop metadata prefix.
1064  static StringRef Prefix() { return "llvm.loop."; }
1065
1066  /// True if there is any unsafe math in the loop.
1067  bool PotentiallyUnsafe;
1068
1069public:
1070  enum ForceKind {
1071    FK_Undefined = -1, ///< Not selected.
1072    FK_Disabled = 0,   ///< Forcing disabled.
1073    FK_Enabled = 1,    ///< Forcing enabled.
1074  };
1075
1076  LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1077      : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1078              HK_WIDTH),
1079        Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1080        Force("vectorize.enable", FK_Undefined, HK_FORCE),
1081        PotentiallyUnsafe(false), TheLoop(L) {
1082    // Populate values with existing loop metadata.
1083    getHintsFromMetadata();
1084
1085    // force-vector-interleave overrides DisableInterleaving.
1086    if (VectorizerParams::isInterleaveForced())
1087      Interleave.Value = VectorizerParams::VectorizationInterleave;
1088
1089    DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1090          << "LV: Interleaving disabled by the pass manager\n");
1091  }
1092
1093  /// Mark the loop L as already vectorized by setting the width to 1.
1094  void setAlreadyVectorized() {
1095    Width.Value = Interleave.Value = 1;
1096    Hint Hints[] = {Width, Interleave};
1097    writeHintsToMetadata(Hints);
1098  }
1099
1100  bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1101    if (getForce() == LoopVectorizeHints::FK_Disabled) {
1102      DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1103      emitOptimizationRemarkAnalysis(F->getContext(),
1104                                     vectorizeAnalysisPassName(), *F,
1105                                     L->getStartLoc(), emitRemark());
1106      return false;
1107    }
1108
1109    if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1110      DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1111      emitOptimizationRemarkAnalysis(F->getContext(),
1112                                     vectorizeAnalysisPassName(), *F,
1113                                     L->getStartLoc(), emitRemark());
1114      return false;
1115    }
1116
1117    if (getWidth() == 1 && getInterleave() == 1) {
1118      // FIXME: Add a separate metadata to indicate when the loop has already
1119      // been vectorized instead of setting width and count to 1.
1120      DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1121      // FIXME: Add interleave.disable metadata. This will allow
1122      // vectorize.disable to be used without disabling the pass and errors
1123      // to differentiate between disabled vectorization and a width of 1.
1124      emitOptimizationRemarkAnalysis(
1125          F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
1126          "loop not vectorized: vectorization and interleaving are explicitly "
1127          "disabled, or vectorize width and interleave count are both set to "
1128          "1");
1129      return false;
1130    }
1131
1132    return true;
1133  }
1134
1135  /// Dumps all the hint information.
1136  std::string emitRemark() const {
1137    VectorizationReport R;
1138    if (Force.Value == LoopVectorizeHints::FK_Disabled)
1139      R << "vectorization is explicitly disabled";
1140    else {
1141      R << "use -Rpass-analysis=loop-vectorize for more info";
1142      if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1143        R << " (Force=true";
1144        if (Width.Value != 0)
1145          R << ", Vector Width=" << Width.Value;
1146        if (Interleave.Value != 0)
1147          R << ", Interleave Count=" << Interleave.Value;
1148        R << ")";
1149      }
1150    }
1151
1152    return R.str();
1153  }
1154
1155  unsigned getWidth() const { return Width.Value; }
1156  unsigned getInterleave() const { return Interleave.Value; }
1157  enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1158
1159  /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1160  /// pass name to force the frontend to print the diagnostic.
1161  const char *vectorizeAnalysisPassName() const {
1162    if (getWidth() == 1)
1163      return LV_NAME;
1164    if (getForce() == LoopVectorizeHints::FK_Disabled)
1165      return LV_NAME;
1166    if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1167      return LV_NAME;
1168    return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint;
1169  }
1170
1171  bool allowReordering() const {
1172    // When enabling loop hints are provided we allow the vectorizer to change
1173    // the order of operations that is given by the scalar loop. This is not
1174    // enabled by default because can be unsafe or inefficient. For example,
1175    // reordering floating-point operations will change the way round-off
1176    // error accumulates in the loop.
1177    return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1178  }
1179
1180  bool isPotentiallyUnsafe() const {
1181    // Avoid FP vectorization if the target is unsure about proper support.
1182    // This may be related to the SIMD unit in the target not handling
1183    // IEEE 754 FP ops properly, or bad single-to-double promotions.
1184    // Otherwise, a sequence of vectorized loops, even without reduction,
1185    // could lead to different end results on the destination vectors.
1186    return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1187  }
1188
1189  void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1190
1191private:
1192  /// Find hints specified in the loop metadata and update local values.
1193  void getHintsFromMetadata() {
1194    MDNode *LoopID = TheLoop->getLoopID();
1195    if (!LoopID)
1196      return;
1197
1198    // First operand should refer to the loop id itself.
1199    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1200    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1201
1202    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1203      const MDString *S = nullptr;
1204      SmallVector<Metadata *, 4> Args;
1205
1206      // The expected hint is either a MDString or a MDNode with the first
1207      // operand a MDString.
1208      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1209        if (!MD || MD->getNumOperands() == 0)
1210          continue;
1211        S = dyn_cast<MDString>(MD->getOperand(0));
1212        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1213          Args.push_back(MD->getOperand(i));
1214      } else {
1215        S = dyn_cast<MDString>(LoopID->getOperand(i));
1216        assert(Args.size() == 0 && "too many arguments for MDString");
1217      }
1218
1219      if (!S)
1220        continue;
1221
1222      // Check if the hint starts with the loop metadata prefix.
1223      StringRef Name = S->getString();
1224      if (Args.size() == 1)
1225        setHint(Name, Args[0]);
1226    }
1227  }
1228
1229  /// Checks string hint with one operand and set value if valid.
1230  void setHint(StringRef Name, Metadata *Arg) {
1231    if (!Name.startswith(Prefix()))
1232      return;
1233    Name = Name.substr(Prefix().size(), StringRef::npos);
1234
1235    const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1236    if (!C)
1237      return;
1238    unsigned Val = C->getZExtValue();
1239
1240    Hint *Hints[] = {&Width, &Interleave, &Force};
1241    for (auto H : Hints) {
1242      if (Name == H->Name) {
1243        if (H->validate(Val))
1244          H->Value = Val;
1245        else
1246          DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1247        break;
1248      }
1249    }
1250  }
1251
1252  /// Create a new hint from name / value pair.
1253  MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1254    LLVMContext &Context = TheLoop->getHeader()->getContext();
1255    Metadata *MDs[] = {MDString::get(Context, Name),
1256                       ConstantAsMetadata::get(
1257                           ConstantInt::get(Type::getInt32Ty(Context), V))};
1258    return MDNode::get(Context, MDs);
1259  }
1260
1261  /// Matches metadata with hint name.
1262  bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1263    MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1264    if (!Name)
1265      return false;
1266
1267    for (auto H : HintTypes)
1268      if (Name->getString().endswith(H.Name))
1269        return true;
1270    return false;
1271  }
1272
1273  /// Sets current hints into loop metadata, keeping other values intact.
1274  void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1275    if (HintTypes.size() == 0)
1276      return;
1277
1278    // Reserve the first element to LoopID (see below).
1279    SmallVector<Metadata *, 4> MDs(1);
1280    // If the loop already has metadata, then ignore the existing operands.
1281    MDNode *LoopID = TheLoop->getLoopID();
1282    if (LoopID) {
1283      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1284        MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1285        // If node in update list, ignore old value.
1286        if (!matchesHintMetadataName(Node, HintTypes))
1287          MDs.push_back(Node);
1288      }
1289    }
1290
1291    // Now, add the missing hints.
1292    for (auto H : HintTypes)
1293      MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1294
1295    // Replace current metadata node with new one.
1296    LLVMContext &Context = TheLoop->getHeader()->getContext();
1297    MDNode *NewLoopID = MDNode::get(Context, MDs);
1298    // Set operand 0 to refer to the loop id itself.
1299    NewLoopID->replaceOperandWith(0, NewLoopID);
1300
1301    TheLoop->setLoopID(NewLoopID);
1302  }
1303
1304  /// The loop these hints belong to.
1305  const Loop *TheLoop;
1306};
1307
1308static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
1309                             const LoopVectorizeHints &Hints,
1310                             const LoopAccessReport &Message) {
1311  const char *Name = Hints.vectorizeAnalysisPassName();
1312  LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
1313}
1314
1315static void emitMissedWarning(Function *F, Loop *L,
1316                              const LoopVectorizeHints &LH) {
1317  emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1318                               LH.emitRemark());
1319
1320  if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1321    if (LH.getWidth() != 1)
1322      emitLoopVectorizeWarning(
1323          F->getContext(), *F, L->getStartLoc(),
1324          "failed explicitly specified loop vectorization");
1325    else if (LH.getInterleave() != 1)
1326      emitLoopInterleaveWarning(
1327          F->getContext(), *F, L->getStartLoc(),
1328          "failed explicitly specified loop interleaving");
1329  }
1330}
1331
1332/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1333/// to what vectorization factor.
1334/// This class does not look at the profitability of vectorization, only the
1335/// legality. This class has two main kinds of checks:
1336/// * Memory checks - The code in canVectorizeMemory checks if vectorization
1337///   will change the order of memory accesses in a way that will change the
1338///   correctness of the program.
1339/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1340/// checks for a number of different conditions, such as the availability of a
1341/// single induction variable, that all types are supported and vectorize-able,
1342/// etc. This code reflects the capabilities of InnerLoopVectorizer.
1343/// This class is also used by InnerLoopVectorizer for identifying
1344/// induction variable and the different reduction variables.
1345class LoopVectorizationLegality {
1346public:
1347  LoopVectorizationLegality(
1348      Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1349      TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1350      const TargetTransformInfo *TTI,
1351      std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1352      LoopVectorizationRequirements *R, LoopVectorizeHints *H)
1353      : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F),
1354        TTI(TTI), DT(DT), GetLAA(GetLAA), LAI(nullptr),
1355        InterleaveInfo(PSE, L, DT, LI), Induction(nullptr),
1356        WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R),
1357        Hints(H) {}
1358
1359  /// ReductionList contains the reduction descriptors for all
1360  /// of the reductions that were found in the loop.
1361  typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1362
1363  /// InductionList saves induction variables and maps them to the
1364  /// induction descriptor.
1365  typedef MapVector<PHINode *, InductionDescriptor> InductionList;
1366
1367  /// RecurrenceSet contains the phi nodes that are recurrences other than
1368  /// inductions and reductions.
1369  typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet;
1370
1371  /// Returns true if it is legal to vectorize this loop.
1372  /// This does not mean that it is profitable to vectorize this
1373  /// loop, only that it is legal to do so.
1374  bool canVectorize();
1375
1376  /// Returns the Induction variable.
1377  PHINode *getInduction() { return Induction; }
1378
1379  /// Returns the reduction variables found in the loop.
1380  ReductionList *getReductionVars() { return &Reductions; }
1381
1382  /// Returns the induction variables found in the loop.
1383  InductionList *getInductionVars() { return &Inductions; }
1384
1385  /// Return the first-order recurrences found in the loop.
1386  RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1387
1388  /// Returns the widest induction type.
1389  Type *getWidestInductionType() { return WidestIndTy; }
1390
1391  /// Returns True if V is an induction variable in this loop.
1392  bool isInductionVariable(const Value *V);
1393
1394  /// Returns True if PN is a reduction variable in this loop.
1395  bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1396
1397  /// Returns True if Phi is a first-order recurrence in this loop.
1398  bool isFirstOrderRecurrence(const PHINode *Phi);
1399
1400  /// Return true if the block BB needs to be predicated in order for the loop
1401  /// to be vectorized.
1402  bool blockNeedsPredication(BasicBlock *BB);
1403
1404  /// Check if this pointer is consecutive when vectorizing. This happens
1405  /// when the last index of the GEP is the induction variable, or that the
1406  /// pointer itself is an induction variable.
1407  /// This check allows us to vectorize A[idx] into a wide load/store.
1408  /// Returns:
1409  /// 0 - Stride is unknown or non-consecutive.
1410  /// 1 - Address is consecutive.
1411  /// -1 - Address is consecutive, and decreasing.
1412  int isConsecutivePtr(Value *Ptr);
1413
1414  /// Returns true if the value V is uniform within the loop.
1415  bool isUniform(Value *V);
1416
1417  /// Returns true if this instruction will remain scalar after vectorization.
1418  bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); }
1419
1420  /// Returns the information that we collected about runtime memory check.
1421  const RuntimePointerChecking *getRuntimePointerChecking() const {
1422    return LAI->getRuntimePointerChecking();
1423  }
1424
1425  const LoopAccessInfo *getLAI() const { return LAI; }
1426
1427  /// \brief Check if \p Instr belongs to any interleaved access group.
1428  bool isAccessInterleaved(Instruction *Instr) {
1429    return InterleaveInfo.isInterleaved(Instr);
1430  }
1431
1432  /// \brief Return the maximum interleave factor of all interleaved groups.
1433  unsigned getMaxInterleaveFactor() const {
1434    return InterleaveInfo.getMaxInterleaveFactor();
1435  }
1436
1437  /// \brief Get the interleaved access group that \p Instr belongs to.
1438  const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1439    return InterleaveInfo.getInterleaveGroup(Instr);
1440  }
1441
1442  /// \brief Returns true if an interleaved group requires a scalar iteration
1443  /// to handle accesses with gaps.
1444  bool requiresScalarEpilogue() const {
1445    return InterleaveInfo.requiresScalarEpilogue();
1446  }
1447
1448  unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1449
1450  bool hasStride(Value *V) { return LAI->hasStride(V); }
1451
1452  /// Returns true if the target machine supports masked store operation
1453  /// for the given \p DataType and kind of access to \p Ptr.
1454  bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1455    return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1456  }
1457  /// Returns true if the target machine supports masked load operation
1458  /// for the given \p DataType and kind of access to \p Ptr.
1459  bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1460    return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1461  }
1462  /// Returns true if the target machine supports masked scatter operation
1463  /// for the given \p DataType.
1464  bool isLegalMaskedScatter(Type *DataType) {
1465    return TTI->isLegalMaskedScatter(DataType);
1466  }
1467  /// Returns true if the target machine supports masked gather operation
1468  /// for the given \p DataType.
1469  bool isLegalMaskedGather(Type *DataType) {
1470    return TTI->isLegalMaskedGather(DataType);
1471  }
1472
1473  /// Returns true if vector representation of the instruction \p I
1474  /// requires mask.
1475  bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
1476  unsigned getNumStores() const { return LAI->getNumStores(); }
1477  unsigned getNumLoads() const { return LAI->getNumLoads(); }
1478  unsigned getNumPredStores() const { return NumPredStores; }
1479
1480private:
1481  /// Check if a single basic block loop is vectorizable.
1482  /// At this point we know that this is a loop with a constant trip count
1483  /// and we only need to check individual instructions.
1484  bool canVectorizeInstrs();
1485
1486  /// When we vectorize loops we may change the order in which
1487  /// we read and write from memory. This method checks if it is
1488  /// legal to vectorize the code, considering only memory constrains.
1489  /// Returns true if the loop is vectorizable
1490  bool canVectorizeMemory();
1491
1492  /// Return true if we can vectorize this loop using the IF-conversion
1493  /// transformation.
1494  bool canVectorizeWithIfConvert();
1495
1496  /// Collect the variables that need to stay uniform after vectorization.
1497  void collectLoopUniforms();
1498
1499  /// Return true if all of the instructions in the block can be speculatively
1500  /// executed. \p SafePtrs is a list of addresses that are known to be legal
1501  /// and we know that we can read from them without segfault.
1502  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1503
1504  /// Updates the vectorization state by adding \p Phi to the inductions list.
1505  /// This can set \p Phi as the main induction of the loop if \p Phi is a
1506  /// better choice for the main induction than the existing one.
1507  void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1508                       SmallPtrSetImpl<Value *> &AllowedExit);
1509
1510  /// Report an analysis message to assist the user in diagnosing loops that are
1511  /// not vectorized.  These are handled as LoopAccessReport rather than
1512  /// VectorizationReport because the << operator of VectorizationReport returns
1513  /// LoopAccessReport.
1514  void emitAnalysis(const LoopAccessReport &Message) const {
1515    emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1516  }
1517
1518  /// \brief If an access has a symbolic strides, this maps the pointer value to
1519  /// the stride symbol.
1520  const ValueToValueMap *getSymbolicStrides() {
1521    // FIXME: Currently, the set of symbolic strides is sometimes queried before
1522    // it's collected.  This happens from canVectorizeWithIfConvert, when the
1523    // pointer is checked to reference consecutive elements suitable for a
1524    // masked access.
1525    return LAI ? &LAI->getSymbolicStrides() : nullptr;
1526  }
1527
1528  unsigned NumPredStores;
1529
1530  /// The loop that we evaluate.
1531  Loop *TheLoop;
1532  /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1533  /// Applies dynamic knowledge to simplify SCEV expressions in the context
1534  /// of existing SCEV assumptions. The analysis will also add a minimal set
1535  /// of new predicates if this is required to enable vectorization and
1536  /// unrolling.
1537  PredicatedScalarEvolution &PSE;
1538  /// Target Library Info.
1539  TargetLibraryInfo *TLI;
1540  /// Parent function
1541  Function *TheFunction;
1542  /// Target Transform Info
1543  const TargetTransformInfo *TTI;
1544  /// Dominator Tree.
1545  DominatorTree *DT;
1546  // LoopAccess analysis.
1547  std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1548  // And the loop-accesses info corresponding to this loop.  This pointer is
1549  // null until canVectorizeMemory sets it up.
1550  const LoopAccessInfo *LAI;
1551
1552  /// The interleave access information contains groups of interleaved accesses
1553  /// with the same stride and close to each other.
1554  InterleavedAccessInfo InterleaveInfo;
1555
1556  //  ---  vectorization state --- //
1557
1558  /// Holds the integer induction variable. This is the counter of the
1559  /// loop.
1560  PHINode *Induction;
1561  /// Holds the reduction variables.
1562  ReductionList Reductions;
1563  /// Holds all of the induction variables that we found in the loop.
1564  /// Notice that inductions don't need to start at zero and that induction
1565  /// variables can be pointers.
1566  InductionList Inductions;
1567  /// Holds the phi nodes that are first-order recurrences.
1568  RecurrenceSet FirstOrderRecurrences;
1569  /// Holds the widest induction type encountered.
1570  Type *WidestIndTy;
1571
1572  /// Allowed outside users. This holds the induction and reduction
1573  /// vars which can be accessed from outside the loop.
1574  SmallPtrSet<Value *, 4> AllowedExit;
1575  /// This set holds the variables which are known to be uniform after
1576  /// vectorization.
1577  SmallPtrSet<Instruction *, 4> Uniforms;
1578
1579  /// Can we assume the absence of NaNs.
1580  bool HasFunNoNaNAttr;
1581
1582  /// Vectorization requirements that will go through late-evaluation.
1583  LoopVectorizationRequirements *Requirements;
1584
1585  /// Used to emit an analysis of any legality issues.
1586  LoopVectorizeHints *Hints;
1587
1588  /// While vectorizing these instructions we have to generate a
1589  /// call to the appropriate masked intrinsic
1590  SmallPtrSet<const Instruction *, 8> MaskedOp;
1591};
1592
1593/// LoopVectorizationCostModel - estimates the expected speedups due to
1594/// vectorization.
1595/// In many cases vectorization is not profitable. This can happen because of
1596/// a number of reasons. In this class we mainly attempt to predict the
1597/// expected speedup/slowdowns due to the supported instruction set. We use the
1598/// TargetTransformInfo to query the different backends for the cost of
1599/// different operations.
1600class LoopVectorizationCostModel {
1601public:
1602  LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1603                             LoopInfo *LI, LoopVectorizationLegality *Legal,
1604                             const TargetTransformInfo &TTI,
1605                             const TargetLibraryInfo *TLI, DemandedBits *DB,
1606                             AssumptionCache *AC, const Function *F,
1607                             const LoopVectorizeHints *Hints)
1608      : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1609        AC(AC), TheFunction(F), Hints(Hints) {}
1610
1611  /// Information about vectorization costs
1612  struct VectorizationFactor {
1613    unsigned Width; // Vector width with best cost
1614    unsigned Cost;  // Cost of the loop with that width
1615  };
1616  /// \return The most profitable vectorization factor and the cost of that VF.
1617  /// This method checks every power of two up to VF. If UserVF is not ZERO
1618  /// then this vectorization factor will be selected if vectorization is
1619  /// possible.
1620  VectorizationFactor selectVectorizationFactor(bool OptForSize);
1621
1622  /// \return The size (in bits) of the smallest and widest types in the code
1623  /// that needs to be vectorized. We ignore values that remain scalar such as
1624  /// 64 bit loop indices.
1625  std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1626
1627  /// \return The desired interleave count.
1628  /// If interleave count has been specified by metadata it will be returned.
1629  /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1630  /// are the selected vectorization factor and the cost of the selected VF.
1631  unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1632                                 unsigned LoopCost);
1633
1634  /// \return The most profitable unroll factor.
1635  /// This method finds the best unroll-factor based on register pressure and
1636  /// other parameters. VF and LoopCost are the selected vectorization factor
1637  /// and the cost of the selected VF.
1638  unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
1639                                  unsigned LoopCost);
1640
1641  /// \brief A struct that represents some properties of the register usage
1642  /// of a loop.
1643  struct RegisterUsage {
1644    /// Holds the number of loop invariant values that are used in the loop.
1645    unsigned LoopInvariantRegs;
1646    /// Holds the maximum number of concurrent live intervals in the loop.
1647    unsigned MaxLocalUsers;
1648    /// Holds the number of instructions in the loop.
1649    unsigned NumInstructions;
1650  };
1651
1652  /// \return Returns information about the register usages of the loop for the
1653  /// given vectorization factors.
1654  SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1655
1656  /// Collect values we want to ignore in the cost model.
1657  void collectValuesToIgnore();
1658
1659private:
1660  /// The vectorization cost is a combination of the cost itself and a boolean
1661  /// indicating whether any of the contributing operations will actually
1662  /// operate on
1663  /// vector values after type legalization in the backend. If this latter value
1664  /// is
1665  /// false, then all operations will be scalarized (i.e. no vectorization has
1666  /// actually taken place).
1667  typedef std::pair<unsigned, bool> VectorizationCostTy;
1668
1669  /// Returns the expected execution cost. The unit of the cost does
1670  /// not matter because we use the 'cost' units to compare different
1671  /// vector widths. The cost that is returned is *not* normalized by
1672  /// the factor width.
1673  VectorizationCostTy expectedCost(unsigned VF);
1674
1675  /// Returns the execution time cost of an instruction for a given vector
1676  /// width. Vector width of one means scalar.
1677  VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1678
1679  /// The cost-computation logic from getInstructionCost which provides
1680  /// the vector type as an output parameter.
1681  unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1682
1683  /// Returns whether the instruction is a load or store and will be a emitted
1684  /// as a vector operation.
1685  bool isConsecutiveLoadOrStore(Instruction *I);
1686
1687  /// Report an analysis message to assist the user in diagnosing loops that are
1688  /// not vectorized.  These are handled as LoopAccessReport rather than
1689  /// VectorizationReport because the << operator of VectorizationReport returns
1690  /// LoopAccessReport.
1691  void emitAnalysis(const LoopAccessReport &Message) const {
1692    emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1693  }
1694
1695public:
1696  /// Map of scalar integer values to the smallest bitwidth they can be legally
1697  /// represented as. The vector equivalents of these values should be truncated
1698  /// to this type.
1699  MapVector<Instruction *, uint64_t> MinBWs;
1700
1701  /// The loop that we evaluate.
1702  Loop *TheLoop;
1703  /// Predicated scalar evolution analysis.
1704  PredicatedScalarEvolution &PSE;
1705  /// Loop Info analysis.
1706  LoopInfo *LI;
1707  /// Vectorization legality.
1708  LoopVectorizationLegality *Legal;
1709  /// Vector target information.
1710  const TargetTransformInfo &TTI;
1711  /// Target Library Info.
1712  const TargetLibraryInfo *TLI;
1713  /// Demanded bits analysis.
1714  DemandedBits *DB;
1715  /// Assumption cache.
1716  AssumptionCache *AC;
1717  const Function *TheFunction;
1718  /// Loop Vectorize Hint.
1719  const LoopVectorizeHints *Hints;
1720  /// Values to ignore in the cost model.
1721  SmallPtrSet<const Value *, 16> ValuesToIgnore;
1722  /// Values to ignore in the cost model when VF > 1.
1723  SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1724};
1725
1726/// \brief This holds vectorization requirements that must be verified late in
1727/// the process. The requirements are set by legalize and costmodel. Once
1728/// vectorization has been determined to be possible and profitable the
1729/// requirements can be verified by looking for metadata or compiler options.
1730/// For example, some loops require FP commutativity which is only allowed if
1731/// vectorization is explicitly specified or if the fast-math compiler option
1732/// has been provided.
1733/// Late evaluation of these requirements allows helpful diagnostics to be
1734/// composed that tells the user what need to be done to vectorize the loop. For
1735/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
1736/// evaluation should be used only when diagnostics can generated that can be
1737/// followed by a non-expert user.
1738class LoopVectorizationRequirements {
1739public:
1740  LoopVectorizationRequirements()
1741      : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
1742
1743  void addUnsafeAlgebraInst(Instruction *I) {
1744    // First unsafe algebra instruction.
1745    if (!UnsafeAlgebraInst)
1746      UnsafeAlgebraInst = I;
1747  }
1748
1749  void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
1750
1751  bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
1752    const char *Name = Hints.vectorizeAnalysisPassName();
1753    bool Failed = false;
1754    if (UnsafeAlgebraInst && !Hints.allowReordering()) {
1755      emitOptimizationRemarkAnalysisFPCommute(
1756          F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
1757          VectorizationReport() << "cannot prove it is safe to reorder "
1758                                   "floating-point operations");
1759      Failed = true;
1760    }
1761
1762    // Test if runtime memcheck thresholds are exceeded.
1763    bool PragmaThresholdReached =
1764        NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
1765    bool ThresholdReached =
1766        NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
1767    if ((ThresholdReached && !Hints.allowReordering()) ||
1768        PragmaThresholdReached) {
1769      emitOptimizationRemarkAnalysisAliasing(
1770          F->getContext(), Name, *F, L->getStartLoc(),
1771          VectorizationReport()
1772              << "cannot prove it is safe to reorder memory operations");
1773      DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1774      Failed = true;
1775    }
1776
1777    return Failed;
1778  }
1779
1780private:
1781  unsigned NumRuntimePointerChecks;
1782  Instruction *UnsafeAlgebraInst;
1783};
1784
1785static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1786  if (L.empty())
1787    return V.push_back(&L);
1788
1789  for (Loop *InnerL : L)
1790    addInnerLoop(*InnerL, V);
1791}
1792
1793/// The LoopVectorize Pass.
1794struct LoopVectorize : public FunctionPass {
1795  /// Pass identification, replacement for typeid
1796  static char ID;
1797
1798  explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1799      : FunctionPass(ID) {
1800    Impl.DisableUnrolling = NoUnrolling;
1801    Impl.AlwaysVectorize = AlwaysVectorize;
1802    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1803  }
1804
1805  LoopVectorizePass Impl;
1806
1807  bool runOnFunction(Function &F) override {
1808    if (skipFunction(F))
1809      return false;
1810
1811    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1812    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1813    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1814    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1815    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1816    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1817    auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
1818    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1819    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1820    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1821    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1822
1823    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1824        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1825
1826    return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1827                        GetLAA);
1828  }
1829
1830  void getAnalysisUsage(AnalysisUsage &AU) const override {
1831    AU.addRequired<AssumptionCacheTracker>();
1832    AU.addRequiredID(LoopSimplifyID);
1833    AU.addRequiredID(LCSSAID);
1834    AU.addRequired<BlockFrequencyInfoWrapperPass>();
1835    AU.addRequired<DominatorTreeWrapperPass>();
1836    AU.addRequired<LoopInfoWrapperPass>();
1837    AU.addRequired<ScalarEvolutionWrapperPass>();
1838    AU.addRequired<TargetTransformInfoWrapperPass>();
1839    AU.addRequired<AAResultsWrapperPass>();
1840    AU.addRequired<LoopAccessLegacyAnalysis>();
1841    AU.addRequired<DemandedBitsWrapperPass>();
1842    AU.addPreserved<LoopInfoWrapperPass>();
1843    AU.addPreserved<DominatorTreeWrapperPass>();
1844    AU.addPreserved<BasicAAWrapperPass>();
1845    AU.addPreserved<GlobalsAAWrapperPass>();
1846  }
1847};
1848
1849} // end anonymous namespace
1850
1851//===----------------------------------------------------------------------===//
1852// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1853// LoopVectorizationCostModel.
1854//===----------------------------------------------------------------------===//
1855
1856Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1857  // We need to place the broadcast of invariant variables outside the loop.
1858  Instruction *Instr = dyn_cast<Instruction>(V);
1859  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1860  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1861
1862  // Place the code for broadcasting invariant variables in the new preheader.
1863  IRBuilder<>::InsertPointGuard Guard(Builder);
1864  if (Invariant)
1865    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1866
1867  // Broadcast the scalar into all locations in the vector.
1868  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1869
1870  return Shuf;
1871}
1872
1873void InnerLoopVectorizer::createVectorIntInductionPHI(
1874    const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) {
1875  Value *Start = II.getStartValue();
1876  ConstantInt *Step = II.getConstIntStepValue();
1877  assert(Step && "Can not widen an IV with a non-constant step");
1878
1879  // Construct the initial value of the vector IV in the vector loop preheader
1880  auto CurrIP = Builder.saveIP();
1881  Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1882  if (TruncType) {
1883    Step = ConstantInt::getSigned(TruncType, Step->getSExtValue());
1884    Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1885  }
1886  Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1887  Value *SteppedStart = getStepVector(SplatStart, 0, Step);
1888  Builder.restoreIP(CurrIP);
1889
1890  Value *SplatVF =
1891      ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(),
1892                               VF * Step->getSExtValue()));
1893  // We may need to add the step a number of times, depending on the unroll
1894  // factor. The last of those goes into the PHI.
1895  PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1896                                    &*LoopVectorBody->getFirstInsertionPt());
1897  Value *LastInduction = VecInd;
1898  for (unsigned Part = 0; Part < UF; ++Part) {
1899    Entry[Part] = LastInduction;
1900    LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add");
1901  }
1902
1903  VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1904  VecInd->addIncoming(LastInduction, LoopVectorBody);
1905}
1906
1907void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry,
1908                                            TruncInst *Trunc) {
1909
1910  auto II = Legal->getInductionVars()->find(IV);
1911  assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
1912
1913  auto ID = II->second;
1914  assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1915
1916  // If a truncate instruction was provided, get the smaller type.
1917  auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr;
1918
1919  // The step of the induction.
1920  Value *Step = nullptr;
1921
1922  // If the induction variable has a constant integer step value, go ahead and
1923  // get it now.
1924  if (ID.getConstIntStepValue())
1925    Step = ID.getConstIntStepValue();
1926
1927  // Try to create a new independent vector induction variable. If we can't
1928  // create the phi node, we will splat the scalar induction variable in each
1929  // loop iteration.
1930  if (VF > 1 && IV->getType() == Induction->getType() && Step &&
1931      !ValuesNotWidened->count(IV))
1932    return createVectorIntInductionPHI(ID, Entry, TruncType);
1933
1934  // The scalar value to broadcast. This will be derived from the canonical
1935  // induction variable.
1936  Value *ScalarIV = nullptr;
1937
1938  // Define the scalar induction variable and step values. If we were given a
1939  // truncation type, truncate the canonical induction variable and constant
1940  // step. Otherwise, derive these values from the induction descriptor.
1941  if (TruncType) {
1942    assert(Step && "Truncation requires constant integer step");
1943    auto StepInt = cast<ConstantInt>(Step)->getSExtValue();
1944    ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType);
1945    Step = ConstantInt::getSigned(TruncType, StepInt);
1946  } else {
1947    ScalarIV = Induction;
1948    auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1949    if (IV != OldInduction) {
1950      ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType());
1951      ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
1952      ScalarIV->setName("offset.idx");
1953    }
1954    if (!Step) {
1955      SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1956      Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
1957                               &*Builder.GetInsertPoint());
1958    }
1959  }
1960
1961  // Splat the scalar induction variable, and build the necessary step vectors.
1962  Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1963  for (unsigned Part = 0; Part < UF; ++Part)
1964    Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
1965
1966  // If an induction variable is only used for counting loop iterations or
1967  // calculating addresses, it doesn't need to be widened. Create scalar steps
1968  // that can be used by instructions we will later scalarize. Note that the
1969  // addition of the scalar steps will not increase the number of instructions
1970  // in the loop in the common case prior to InstCombine. We will be trading
1971  // one vector extract for each scalar step.
1972  if (VF > 1 && ValuesNotWidened->count(IV)) {
1973    auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV;
1974    buildScalarSteps(ScalarIV, Step, EntryVal);
1975  }
1976}
1977
1978Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1979                                          Value *Step) {
1980  assert(Val->getType()->isVectorTy() && "Must be a vector");
1981  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1982         "Elem must be an integer");
1983  assert(Step->getType() == Val->getType()->getScalarType() &&
1984         "Step has wrong type");
1985  // Create the types.
1986  Type *ITy = Val->getType()->getScalarType();
1987  VectorType *Ty = cast<VectorType>(Val->getType());
1988  int VLen = Ty->getNumElements();
1989  SmallVector<Constant *, 8> Indices;
1990
1991  // Create a vector of consecutive numbers from zero to VF.
1992  for (int i = 0; i < VLen; ++i)
1993    Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1994
1995  // Add the consecutive indices to the vector value.
1996  Constant *Cv = ConstantVector::get(Indices);
1997  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1998  Step = Builder.CreateVectorSplat(VLen, Step);
1999  assert(Step->getType() == Val->getType() && "Invalid step vec");
2000  // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2001  // which can be found from the original scalar operations.
2002  Step = Builder.CreateMul(Cv, Step);
2003  return Builder.CreateAdd(Val, Step, "induction");
2004}
2005
2006void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2007                                           Value *EntryVal) {
2008
2009  // We shouldn't have to build scalar steps if we aren't vectorizing.
2010  assert(VF > 1 && "VF should be greater than one");
2011
2012  // Get the value type and ensure it and the step have the same integer type.
2013  Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2014  assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() &&
2015         "Val and Step should have the same integer type");
2016
2017  // Compute the scalar steps and save the results in ScalarIVMap.
2018  for (unsigned Part = 0; Part < UF; ++Part)
2019    for (unsigned I = 0; I < VF; ++I) {
2020      auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I);
2021      auto *Mul = Builder.CreateMul(StartIdx, Step);
2022      auto *Add = Builder.CreateAdd(ScalarIV, Mul);
2023      ScalarIVMap[EntryVal].push_back(Add);
2024    }
2025}
2026
2027int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2028  assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
2029  auto *SE = PSE.getSE();
2030  // Make sure that the pointer does not point to structs.
2031  if (Ptr->getType()->getPointerElementType()->isAggregateType())
2032    return 0;
2033
2034  // If this value is a pointer induction variable, we know it is consecutive.
2035  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
2036  if (Phi && Inductions.count(Phi)) {
2037    InductionDescriptor II = Inductions[Phi];
2038    return II.getConsecutiveDirection();
2039  }
2040
2041  GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2042  if (!Gep)
2043    return 0;
2044
2045  unsigned NumOperands = Gep->getNumOperands();
2046  Value *GpPtr = Gep->getPointerOperand();
2047  // If this GEP value is a consecutive pointer induction variable and all of
2048  // the indices are constant, then we know it is consecutive.
2049  Phi = dyn_cast<PHINode>(GpPtr);
2050  if (Phi && Inductions.count(Phi)) {
2051
2052    // Make sure that the pointer does not point to structs.
2053    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
2054    if (GepPtrType->getElementType()->isAggregateType())
2055      return 0;
2056
2057    // Make sure that all of the index operands are loop invariant.
2058    for (unsigned i = 1; i < NumOperands; ++i)
2059      if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2060        return 0;
2061
2062    InductionDescriptor II = Inductions[Phi];
2063    return II.getConsecutiveDirection();
2064  }
2065
2066  unsigned InductionOperand = getGEPInductionOperand(Gep);
2067
2068  // Check that all of the gep indices are uniform except for our induction
2069  // operand.
2070  for (unsigned i = 0; i != NumOperands; ++i)
2071    if (i != InductionOperand &&
2072        !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2073      return 0;
2074
2075  // We can emit wide load/stores only if the last non-zero index is the
2076  // induction variable.
2077  const SCEV *Last = nullptr;
2078  if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep))
2079    Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
2080  else {
2081    // Because of the multiplication by a stride we can have a s/zext cast.
2082    // We are going to replace this stride by 1 so the cast is safe to ignore.
2083    //
2084    //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
2085    //  %0 = trunc i64 %indvars.iv to i32
2086    //  %mul = mul i32 %0, %Stride1
2087    //  %idxprom = zext i32 %mul to i64  << Safe cast.
2088    //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
2089    //
2090    Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(),
2091                                     Gep->getOperand(InductionOperand), Gep);
2092    if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
2093      Last =
2094          (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
2095              ? C->getOperand()
2096              : Last;
2097  }
2098  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
2099    const SCEV *Step = AR->getStepRecurrence(*SE);
2100
2101    // The memory is consecutive because the last index is consecutive
2102    // and all other indices are loop invariant.
2103    if (Step->isOne())
2104      return 1;
2105    if (Step->isAllOnesValue())
2106      return -1;
2107  }
2108
2109  return 0;
2110}
2111
2112bool LoopVectorizationLegality::isUniform(Value *V) {
2113  return LAI->isUniform(V);
2114}
2115
2116InnerLoopVectorizer::VectorParts &
2117InnerLoopVectorizer::getVectorValue(Value *V) {
2118  assert(V != Induction && "The new induction variable should not be used.");
2119  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2120
2121  // If we have a stride that is replaced by one, do it here.
2122  if (Legal->hasStride(V))
2123    V = ConstantInt::get(V->getType(), 1);
2124
2125  // If we have this scalar in the map, return it.
2126  if (WidenMap.has(V))
2127    return WidenMap.get(V);
2128
2129  // If this scalar is unknown, assume that it is a constant or that it is
2130  // loop invariant. Broadcast V and save the value for future uses.
2131  Value *B = getBroadcastInstrs(V);
2132  return WidenMap.splat(V, B);
2133}
2134
2135Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2136  assert(Vec->getType()->isVectorTy() && "Invalid type");
2137  SmallVector<Constant *, 8> ShuffleMask;
2138  for (unsigned i = 0; i < VF; ++i)
2139    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2140
2141  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2142                                     ConstantVector::get(ShuffleMask),
2143                                     "reverse");
2144}
2145
2146// Get a mask to interleave \p NumVec vectors into a wide vector.
2147// I.e.  <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
2148// E.g. For 2 interleaved vectors, if VF is 4, the mask is:
2149//      <0, 4, 1, 5, 2, 6, 3, 7>
2150static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
2151                                    unsigned NumVec) {
2152  SmallVector<Constant *, 16> Mask;
2153  for (unsigned i = 0; i < VF; i++)
2154    for (unsigned j = 0; j < NumVec; j++)
2155      Mask.push_back(Builder.getInt32(j * VF + i));
2156
2157  return ConstantVector::get(Mask);
2158}
2159
2160// Get the strided mask starting from index \p Start.
2161// I.e.  <Start, Start + Stride, ..., Start + Stride*(VF-1)>
2162static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
2163                                unsigned Stride, unsigned VF) {
2164  SmallVector<Constant *, 16> Mask;
2165  for (unsigned i = 0; i < VF; i++)
2166    Mask.push_back(Builder.getInt32(Start + i * Stride));
2167
2168  return ConstantVector::get(Mask);
2169}
2170
2171// Get a mask of two parts: The first part consists of sequential integers
2172// starting from 0, The second part consists of UNDEFs.
2173// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
2174static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
2175                                   unsigned NumUndef) {
2176  SmallVector<Constant *, 16> Mask;
2177  for (unsigned i = 0; i < NumInt; i++)
2178    Mask.push_back(Builder.getInt32(i));
2179
2180  Constant *Undef = UndefValue::get(Builder.getInt32Ty());
2181  for (unsigned i = 0; i < NumUndef; i++)
2182    Mask.push_back(Undef);
2183
2184  return ConstantVector::get(Mask);
2185}
2186
2187// Concatenate two vectors with the same element type. The 2nd vector should
2188// not have more elements than the 1st vector. If the 2nd vector has less
2189// elements, extend it with UNDEFs.
2190static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
2191                                    Value *V2) {
2192  VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
2193  VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
2194  assert(VecTy1 && VecTy2 &&
2195         VecTy1->getScalarType() == VecTy2->getScalarType() &&
2196         "Expect two vectors with the same element type");
2197
2198  unsigned NumElts1 = VecTy1->getNumElements();
2199  unsigned NumElts2 = VecTy2->getNumElements();
2200  assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
2201
2202  if (NumElts1 > NumElts2) {
2203    // Extend with UNDEFs.
2204    Constant *ExtMask =
2205        getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
2206    V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
2207  }
2208
2209  Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
2210  return Builder.CreateShuffleVector(V1, V2, Mask);
2211}
2212
2213// Concatenate vectors in the given list. All vectors have the same type.
2214static Value *ConcatenateVectors(IRBuilder<> &Builder,
2215                                 ArrayRef<Value *> InputList) {
2216  unsigned NumVec = InputList.size();
2217  assert(NumVec > 1 && "Should be at least two vectors");
2218
2219  SmallVector<Value *, 8> ResList;
2220  ResList.append(InputList.begin(), InputList.end());
2221  do {
2222    SmallVector<Value *, 8> TmpList;
2223    for (unsigned i = 0; i < NumVec - 1; i += 2) {
2224      Value *V0 = ResList[i], *V1 = ResList[i + 1];
2225      assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
2226             "Only the last vector may have a different type");
2227
2228      TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
2229    }
2230
2231    // Push the last vector if the total number of vectors is odd.
2232    if (NumVec % 2 != 0)
2233      TmpList.push_back(ResList[NumVec - 1]);
2234
2235    ResList = TmpList;
2236    NumVec = ResList.size();
2237  } while (NumVec > 1);
2238
2239  return ResList[0];
2240}
2241
2242// Try to vectorize the interleave group that \p Instr belongs to.
2243//
2244// E.g. Translate following interleaved load group (factor = 3):
2245//   for (i = 0; i < N; i+=3) {
2246//     R = Pic[i];             // Member of index 0
2247//     G = Pic[i+1];           // Member of index 1
2248//     B = Pic[i+2];           // Member of index 2
2249//     ... // do something to R, G, B
2250//   }
2251// To:
2252//   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2253//   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2254//   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2255//   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2256//
2257// Or translate following interleaved store group (factor = 3):
2258//   for (i = 0; i < N; i+=3) {
2259//     ... do something to R, G, B
2260//     Pic[i]   = R;           // Member of index 0
2261//     Pic[i+1] = G;           // Member of index 1
2262//     Pic[i+2] = B;           // Member of index 2
2263//   }
2264// To:
2265//   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2266//   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2267//   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2268//        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2269//   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2270void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2271  const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2272  assert(Group && "Fail to get an interleaved access group.");
2273
2274  // Skip if current instruction is not the insert position.
2275  if (Instr != Group->getInsertPos())
2276    return;
2277
2278  LoadInst *LI = dyn_cast<LoadInst>(Instr);
2279  StoreInst *SI = dyn_cast<StoreInst>(Instr);
2280  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2281
2282  // Prepare for the vector type of the interleaved load/store.
2283  Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2284  unsigned InterleaveFactor = Group->getFactor();
2285  Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2286  Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
2287
2288  // Prepare for the new pointers.
2289  setDebugLocFromInst(Builder, Ptr);
2290  VectorParts &PtrParts = getVectorValue(Ptr);
2291  SmallVector<Value *, 2> NewPtrs;
2292  unsigned Index = Group->getIndex(Instr);
2293  for (unsigned Part = 0; Part < UF; Part++) {
2294    // Extract the pointer for current instruction from the pointer vector. A
2295    // reverse access uses the pointer in the last lane.
2296    Value *NewPtr = Builder.CreateExtractElement(
2297        PtrParts[Part],
2298        Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
2299
2300    // Notice current instruction could be any index. Need to adjust the address
2301    // to the member of index 0.
2302    //
2303    // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2304    //       b = A[i];       // Member of index 0
2305    // Current pointer is pointed to A[i+1], adjust it to A[i].
2306    //
2307    // E.g.  A[i+1] = a;     // Member of index 1
2308    //       A[i]   = b;     // Member of index 0
2309    //       A[i+2] = c;     // Member of index 2 (Current instruction)
2310    // Current pointer is pointed to A[i+2], adjust it to A[i].
2311    NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2312
2313    // Cast to the vector pointer type.
2314    NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2315  }
2316
2317  setDebugLocFromInst(Builder, Instr);
2318  Value *UndefVec = UndefValue::get(VecTy);
2319
2320  // Vectorize the interleaved load group.
2321  if (LI) {
2322    for (unsigned Part = 0; Part < UF; Part++) {
2323      Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
2324          NewPtrs[Part], Group->getAlignment(), "wide.vec");
2325
2326      for (unsigned i = 0; i < InterleaveFactor; i++) {
2327        Instruction *Member = Group->getMember(i);
2328
2329        // Skip the gaps in the group.
2330        if (!Member)
2331          continue;
2332
2333        Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
2334        Value *StridedVec = Builder.CreateShuffleVector(
2335            NewLoadInstr, UndefVec, StrideMask, "strided.vec");
2336
2337        // If this member has different type, cast the result type.
2338        if (Member->getType() != ScalarTy) {
2339          VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2340          StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2341        }
2342
2343        VectorParts &Entry = WidenMap.get(Member);
2344        Entry[Part] =
2345            Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2346      }
2347
2348      addMetadata(NewLoadInstr, Instr);
2349    }
2350    return;
2351  }
2352
2353  // The sub vector type for current instruction.
2354  VectorType *SubVT = VectorType::get(ScalarTy, VF);
2355
2356  // Vectorize the interleaved store group.
2357  for (unsigned Part = 0; Part < UF; Part++) {
2358    // Collect the stored vector from each member.
2359    SmallVector<Value *, 4> StoredVecs;
2360    for (unsigned i = 0; i < InterleaveFactor; i++) {
2361      // Interleaved store group doesn't allow a gap, so each index has a member
2362      Instruction *Member = Group->getMember(i);
2363      assert(Member && "Fail to get a member from an interleaved store group");
2364
2365      Value *StoredVec =
2366          getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part];
2367      if (Group->isReverse())
2368        StoredVec = reverseVector(StoredVec);
2369
2370      // If this member has different type, cast it to an unified type.
2371      if (StoredVec->getType() != SubVT)
2372        StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2373
2374      StoredVecs.push_back(StoredVec);
2375    }
2376
2377    // Concatenate all vectors into a wide vector.
2378    Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
2379
2380    // Interleave the elements in the wide vector.
2381    Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
2382    Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2383                                              "interleaved.vec");
2384
2385    Instruction *NewStoreInstr =
2386        Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2387    addMetadata(NewStoreInstr, Instr);
2388  }
2389}
2390
2391void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2392  // Attempt to issue a wide load.
2393  LoadInst *LI = dyn_cast<LoadInst>(Instr);
2394  StoreInst *SI = dyn_cast<StoreInst>(Instr);
2395
2396  assert((LI || SI) && "Invalid Load/Store instruction");
2397
2398  // Try to vectorize the interleave group if this access is interleaved.
2399  if (Legal->isAccessInterleaved(Instr))
2400    return vectorizeInterleaveGroup(Instr);
2401
2402  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2403  Type *DataTy = VectorType::get(ScalarDataTy, VF);
2404  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2405  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
2406  // An alignment of 0 means target abi alignment. We need to use the scalar's
2407  // target abi alignment in such a case.
2408  const DataLayout &DL = Instr->getModule()->getDataLayout();
2409  if (!Alignment)
2410    Alignment = DL.getABITypeAlignment(ScalarDataTy);
2411  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2412  uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
2413  uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
2414
2415  if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
2416      !Legal->isMaskRequired(SI))
2417    return scalarizeInstruction(Instr, true);
2418
2419  if (ScalarAllocatedSize != VectorElementSize)
2420    return scalarizeInstruction(Instr);
2421
2422  // If the pointer is loop invariant scalarize the load.
2423  if (LI && Legal->isUniform(Ptr))
2424    return scalarizeInstruction(Instr);
2425
2426  // If the pointer is non-consecutive and gather/scatter is not supported
2427  // scalarize the instruction.
2428  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2429  bool Reverse = ConsecutiveStride < 0;
2430  bool CreateGatherScatter =
2431      !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) ||
2432                             (SI && Legal->isLegalMaskedScatter(ScalarDataTy)));
2433
2434  if (!ConsecutiveStride && !CreateGatherScatter)
2435    return scalarizeInstruction(Instr);
2436
2437  Constant *Zero = Builder.getInt32(0);
2438  VectorParts &Entry = WidenMap.get(Instr);
2439  VectorParts VectorGep;
2440
2441  // Handle consecutive loads/stores.
2442  GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2443  if (ConsecutiveStride) {
2444    if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
2445      setDebugLocFromInst(Builder, Gep);
2446      Value *PtrOperand = Gep->getPointerOperand();
2447      Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
2448      FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
2449
2450      // Create the new GEP with the new induction variable.
2451      GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2452      Gep2->setOperand(0, FirstBasePtr);
2453      Gep2->setName("gep.indvar.base");
2454      Ptr = Builder.Insert(Gep2);
2455    } else if (Gep) {
2456      setDebugLocFromInst(Builder, Gep);
2457      assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
2458                                          OrigLoop) &&
2459             "Base ptr must be invariant");
2460      // The last index does not have to be the induction. It can be
2461      // consecutive and be a function of the index. For example A[I+1];
2462      unsigned NumOperands = Gep->getNumOperands();
2463      unsigned InductionOperand = getGEPInductionOperand(Gep);
2464      // Create the new GEP with the new induction variable.
2465      GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2466
2467      for (unsigned i = 0; i < NumOperands; ++i) {
2468        Value *GepOperand = Gep->getOperand(i);
2469        Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
2470
2471        // Update last index or loop invariant instruction anchored in loop.
2472        if (i == InductionOperand ||
2473            (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
2474          assert((i == InductionOperand ||
2475                  PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst),
2476                                               OrigLoop)) &&
2477                 "Must be last index or loop invariant");
2478
2479          VectorParts &GEPParts = getVectorValue(GepOperand);
2480
2481          // If GepOperand is an induction variable, and there's a scalarized
2482          // version of it available, use it. Otherwise, we will need to create
2483          // an extractelement instruction.
2484          Value *Index = ScalarIVMap.count(GepOperand)
2485                             ? ScalarIVMap[GepOperand][0]
2486                             : Builder.CreateExtractElement(GEPParts[0], Zero);
2487
2488          Gep2->setOperand(i, Index);
2489          Gep2->setName("gep.indvar.idx");
2490        }
2491      }
2492      Ptr = Builder.Insert(Gep2);
2493    } else { // No GEP
2494      // Use the induction element ptr.
2495      assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
2496      setDebugLocFromInst(Builder, Ptr);
2497      VectorParts &PtrVal = getVectorValue(Ptr);
2498      Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
2499    }
2500  } else {
2501    // At this point we should vector version of GEP for Gather or Scatter
2502    assert(CreateGatherScatter && "The instruction should be scalarized");
2503    if (Gep) {
2504      // Vectorizing GEP, across UF parts. We want to get a vector value for base
2505      // and each index that's defined inside the loop, even if it is
2506      // loop-invariant but wasn't hoisted out. Otherwise we want to keep them
2507      // scalar.
2508      SmallVector<VectorParts, 4> OpsV;
2509      for (Value *Op : Gep->operands()) {
2510        Instruction *SrcInst = dyn_cast<Instruction>(Op);
2511        if (SrcInst && OrigLoop->contains(SrcInst))
2512          OpsV.push_back(getVectorValue(Op));
2513        else
2514          OpsV.push_back(VectorParts(UF, Op));
2515      }
2516      for (unsigned Part = 0; Part < UF; ++Part) {
2517        SmallVector<Value *, 4> Ops;
2518        Value *GEPBasePtr = OpsV[0][Part];
2519        for (unsigned i = 1; i < Gep->getNumOperands(); i++)
2520          Ops.push_back(OpsV[i][Part]);
2521        Value *NewGep =  Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep");
2522        cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds());
2523        assert(NewGep->getType()->isVectorTy() && "Expected vector GEP");
2524
2525        NewGep =
2526            Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF));
2527        VectorGep.push_back(NewGep);
2528      }
2529    } else
2530      VectorGep = getVectorValue(Ptr);
2531  }
2532
2533  VectorParts Mask = createBlockInMask(Instr->getParent());
2534  // Handle Stores:
2535  if (SI) {
2536    assert(!Legal->isUniform(SI->getPointerOperand()) &&
2537           "We do not allow storing to uniform addresses");
2538    setDebugLocFromInst(Builder, SI);
2539    // We don't want to update the value in the map as it might be used in
2540    // another expression. So don't use a reference type for "StoredVal".
2541    VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2542
2543    for (unsigned Part = 0; Part < UF; ++Part) {
2544      Instruction *NewSI = nullptr;
2545      if (CreateGatherScatter) {
2546        Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
2547        NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part],
2548                                            Alignment, MaskPart);
2549      } else {
2550        // Calculate the pointer for the specific unroll-part.
2551        Value *PartPtr =
2552            Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2553
2554        if (Reverse) {
2555          // If we store to reverse consecutive memory locations, then we need
2556          // to reverse the order of elements in the stored value.
2557          StoredVal[Part] = reverseVector(StoredVal[Part]);
2558          // If the address is consecutive but reversed, then the
2559          // wide store needs to start at the last vector element.
2560          PartPtr =
2561              Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2562          PartPtr =
2563              Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2564          Mask[Part] = reverseVector(Mask[Part]);
2565        }
2566
2567        Value *VecPtr =
2568            Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2569
2570        if (Legal->isMaskRequired(SI))
2571          NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
2572                                            Mask[Part]);
2573        else
2574          NewSI =
2575              Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
2576      }
2577      addMetadata(NewSI, SI);
2578    }
2579    return;
2580  }
2581
2582  // Handle loads.
2583  assert(LI && "Must have a load instruction");
2584  setDebugLocFromInst(Builder, LI);
2585  for (unsigned Part = 0; Part < UF; ++Part) {
2586    Instruction *NewLI;
2587    if (CreateGatherScatter) {
2588      Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
2589      NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart,
2590                                         0, "wide.masked.gather");
2591      Entry[Part] = NewLI;
2592    } else {
2593      // Calculate the pointer for the specific unroll-part.
2594      Value *PartPtr =
2595          Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2596
2597      if (Reverse) {
2598        // If the address is consecutive but reversed, then the
2599        // wide load needs to start at the last vector element.
2600        PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2601        PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2602        Mask[Part] = reverseVector(Mask[Part]);
2603      }
2604
2605      Value *VecPtr =
2606          Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2607      if (Legal->isMaskRequired(LI))
2608        NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2609                                         UndefValue::get(DataTy),
2610                                         "wide.masked.load");
2611      else
2612        NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2613      Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
2614    }
2615    addMetadata(NewLI, LI);
2616  }
2617}
2618
2619void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2620                                               bool IfPredicateStore) {
2621  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2622  // Holds vector parameters or scalars, in case of uniform vals.
2623  SmallVector<VectorParts, 4> Params;
2624
2625  setDebugLocFromInst(Builder, Instr);
2626
2627  // Find all of the vectorized parameters.
2628  for (Value *SrcOp : Instr->operands()) {
2629    // If we are accessing the old induction variable, use the new one.
2630    if (SrcOp == OldInduction) {
2631      Params.push_back(getVectorValue(SrcOp));
2632      continue;
2633    }
2634
2635    // Try using previously calculated values.
2636    auto *SrcInst = dyn_cast<Instruction>(SrcOp);
2637
2638    // If the src is an instruction that appeared earlier in the basic block,
2639    // then it should already be vectorized.
2640    if (SrcInst && OrigLoop->contains(SrcInst)) {
2641      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2642      // The parameter is a vector value from earlier.
2643      Params.push_back(WidenMap.get(SrcInst));
2644    } else {
2645      // The parameter is a scalar from outside the loop. Maybe even a constant.
2646      VectorParts Scalars;
2647      Scalars.append(UF, SrcOp);
2648      Params.push_back(Scalars);
2649    }
2650  }
2651
2652  assert(Params.size() == Instr->getNumOperands() &&
2653         "Invalid number of operands");
2654
2655  // Does this instruction return a value ?
2656  bool IsVoidRetTy = Instr->getType()->isVoidTy();
2657
2658  Value *UndefVec =
2659      IsVoidRetTy ? nullptr
2660                  : UndefValue::get(VectorType::get(Instr->getType(), VF));
2661  // Create a new entry in the WidenMap and initialize it to Undef or Null.
2662  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2663
2664  VectorParts Cond;
2665  if (IfPredicateStore) {
2666    assert(Instr->getParent()->getSinglePredecessor() &&
2667           "Only support single predecessor blocks");
2668    Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2669                          Instr->getParent());
2670  }
2671
2672  // For each vector unroll 'part':
2673  for (unsigned Part = 0; Part < UF; ++Part) {
2674    // For each scalar that we create:
2675    for (unsigned Width = 0; Width < VF; ++Width) {
2676
2677      // Start if-block.
2678      Value *Cmp = nullptr;
2679      if (IfPredicateStore) {
2680        Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2681        Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
2682                                 ConstantInt::get(Cmp->getType(), 1));
2683      }
2684
2685      Instruction *Cloned = Instr->clone();
2686      if (!IsVoidRetTy)
2687        Cloned->setName(Instr->getName() + ".cloned");
2688      // Replace the operands of the cloned instructions with extracted scalars.
2689      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2690
2691        // If the operand is an induction variable, and there's a scalarized
2692        // version of it available, use it. Otherwise, we will need to create
2693        // an extractelement instruction if vectorizing.
2694        auto *NewOp = Params[op][Part];
2695        auto *ScalarOp = Instr->getOperand(op);
2696        if (ScalarIVMap.count(ScalarOp))
2697          NewOp = ScalarIVMap[ScalarOp][VF * Part + Width];
2698        else if (NewOp->getType()->isVectorTy())
2699          NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width));
2700        Cloned->setOperand(op, NewOp);
2701      }
2702      addNewMetadata(Cloned, Instr);
2703
2704      // Place the cloned scalar in the new loop.
2705      Builder.Insert(Cloned);
2706
2707      // If we just cloned a new assumption, add it the assumption cache.
2708      if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2709        if (II->getIntrinsicID() == Intrinsic::assume)
2710          AC->registerAssumption(II);
2711
2712      // If the original scalar returns a value we need to place it in a vector
2713      // so that future users will be able to use it.
2714      if (!IsVoidRetTy)
2715        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2716                                                       Builder.getInt32(Width));
2717      // End if-block.
2718      if (IfPredicateStore)
2719        PredicatedStores.push_back(
2720            std::make_pair(cast<StoreInst>(Cloned), Cmp));
2721    }
2722  }
2723}
2724
2725PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2726                                                      Value *End, Value *Step,
2727                                                      Instruction *DL) {
2728  BasicBlock *Header = L->getHeader();
2729  BasicBlock *Latch = L->getLoopLatch();
2730  // As we're just creating this loop, it's possible no latch exists
2731  // yet. If so, use the header as this will be a single block loop.
2732  if (!Latch)
2733    Latch = Header;
2734
2735  IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2736  setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2737  auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2738
2739  Builder.SetInsertPoint(Latch->getTerminator());
2740
2741  // Create i+1 and fill the PHINode.
2742  Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2743  Induction->addIncoming(Start, L->getLoopPreheader());
2744  Induction->addIncoming(Next, Latch);
2745  // Create the compare.
2746  Value *ICmp = Builder.CreateICmpEQ(Next, End);
2747  Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2748
2749  // Now we have two terminators. Remove the old one from the block.
2750  Latch->getTerminator()->eraseFromParent();
2751
2752  return Induction;
2753}
2754
2755Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2756  if (TripCount)
2757    return TripCount;
2758
2759  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2760  // Find the loop boundaries.
2761  ScalarEvolution *SE = PSE.getSE();
2762  const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2763  assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2764         "Invalid loop count");
2765
2766  Type *IdxTy = Legal->getWidestInductionType();
2767
2768  // The exit count might have the type of i64 while the phi is i32. This can
2769  // happen if we have an induction variable that is sign extended before the
2770  // compare. The only way that we get a backedge taken count is that the
2771  // induction variable was signed and as such will not overflow. In such a case
2772  // truncation is legal.
2773  if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2774      IdxTy->getPrimitiveSizeInBits())
2775    BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2776  BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2777
2778  // Get the total trip count from the count by adding 1.
2779  const SCEV *ExitCount = SE->getAddExpr(
2780      BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2781
2782  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2783
2784  // Expand the trip count and place the new instructions in the preheader.
2785  // Notice that the pre-header does not change, only the loop body.
2786  SCEVExpander Exp(*SE, DL, "induction");
2787
2788  // Count holds the overall loop count (N).
2789  TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2790                                L->getLoopPreheader()->getTerminator());
2791
2792  if (TripCount->getType()->isPointerTy())
2793    TripCount =
2794        CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2795                                    L->getLoopPreheader()->getTerminator());
2796
2797  return TripCount;
2798}
2799
2800Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2801  if (VectorTripCount)
2802    return VectorTripCount;
2803
2804  Value *TC = getOrCreateTripCount(L);
2805  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2806
2807  // Now we need to generate the expression for the part of the loop that the
2808  // vectorized body will execute. This is equal to N - (N % Step) if scalar
2809  // iterations are not required for correctness, or N - Step, otherwise. Step
2810  // is equal to the vectorization factor (number of SIMD elements) times the
2811  // unroll factor (number of SIMD instructions).
2812  Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2813  Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2814
2815  // If there is a non-reversed interleaved group that may speculatively access
2816  // memory out-of-bounds, we need to ensure that there will be at least one
2817  // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2818  // the trip count, we set the remainder to be equal to the step. If the step
2819  // does not evenly divide the trip count, no adjustment is necessary since
2820  // there will already be scalar iterations. Note that the minimum iterations
2821  // check ensures that N >= Step.
2822  if (VF > 1 && Legal->requiresScalarEpilogue()) {
2823    auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2824    R = Builder.CreateSelect(IsZero, Step, R);
2825  }
2826
2827  VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2828
2829  return VectorTripCount;
2830}
2831
2832void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2833                                                         BasicBlock *Bypass) {
2834  Value *Count = getOrCreateTripCount(L);
2835  BasicBlock *BB = L->getLoopPreheader();
2836  IRBuilder<> Builder(BB->getTerminator());
2837
2838  // Generate code to check that the loop's trip count that we computed by
2839  // adding one to the backedge-taken count will not overflow.
2840  Value *CheckMinIters = Builder.CreateICmpULT(
2841      Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
2842
2843  BasicBlock *NewBB =
2844      BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked");
2845  // Update dominator tree immediately if the generated block is a
2846  // LoopBypassBlock because SCEV expansions to generate loop bypass
2847  // checks may query it before the current function is finished.
2848  DT->addNewBlock(NewBB, BB);
2849  if (L->getParentLoop())
2850    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2851  ReplaceInstWithInst(BB->getTerminator(),
2852                      BranchInst::Create(Bypass, NewBB, CheckMinIters));
2853  LoopBypassBlocks.push_back(BB);
2854}
2855
2856void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
2857                                                     BasicBlock *Bypass) {
2858  Value *TC = getOrCreateVectorTripCount(L);
2859  BasicBlock *BB = L->getLoopPreheader();
2860  IRBuilder<> Builder(BB->getTerminator());
2861
2862  // Now, compare the new count to zero. If it is zero skip the vector loop and
2863  // jump to the scalar loop.
2864  Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
2865                                    "cmp.zero");
2866
2867  // Generate code to check that the loop's trip count that we computed by
2868  // adding one to the backedge-taken count will not overflow.
2869  BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2870  // Update dominator tree immediately if the generated block is a
2871  // LoopBypassBlock because SCEV expansions to generate loop bypass
2872  // checks may query it before the current function is finished.
2873  DT->addNewBlock(NewBB, BB);
2874  if (L->getParentLoop())
2875    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2876  ReplaceInstWithInst(BB->getTerminator(),
2877                      BranchInst::Create(Bypass, NewBB, Cmp));
2878  LoopBypassBlocks.push_back(BB);
2879}
2880
2881void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2882  BasicBlock *BB = L->getLoopPreheader();
2883
2884  // Generate the code to check that the SCEV assumptions that we made.
2885  // We want the new basic block to start at the first instruction in a
2886  // sequence of instructions that form a check.
2887  SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2888                   "scev.check");
2889  Value *SCEVCheck =
2890      Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
2891
2892  if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2893    if (C->isZero())
2894      return;
2895
2896  // Create a new block containing the stride check.
2897  BB->setName("vector.scevcheck");
2898  auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2899  // Update dominator tree immediately if the generated block is a
2900  // LoopBypassBlock because SCEV expansions to generate loop bypass
2901  // checks may query it before the current function is finished.
2902  DT->addNewBlock(NewBB, BB);
2903  if (L->getParentLoop())
2904    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2905  ReplaceInstWithInst(BB->getTerminator(),
2906                      BranchInst::Create(Bypass, NewBB, SCEVCheck));
2907  LoopBypassBlocks.push_back(BB);
2908  AddedSafetyChecks = true;
2909}
2910
2911void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2912  BasicBlock *BB = L->getLoopPreheader();
2913
2914  // Generate the code that checks in runtime if arrays overlap. We put the
2915  // checks into a separate block to make the more common case of few elements
2916  // faster.
2917  Instruction *FirstCheckInst;
2918  Instruction *MemRuntimeCheck;
2919  std::tie(FirstCheckInst, MemRuntimeCheck) =
2920      Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2921  if (!MemRuntimeCheck)
2922    return;
2923
2924  // Create a new block containing the memory check.
2925  BB->setName("vector.memcheck");
2926  auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2927  // Update dominator tree immediately if the generated block is a
2928  // LoopBypassBlock because SCEV expansions to generate loop bypass
2929  // checks may query it before the current function is finished.
2930  DT->addNewBlock(NewBB, BB);
2931  if (L->getParentLoop())
2932    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2933  ReplaceInstWithInst(BB->getTerminator(),
2934                      BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2935  LoopBypassBlocks.push_back(BB);
2936  AddedSafetyChecks = true;
2937
2938  // We currently don't use LoopVersioning for the actual loop cloning but we
2939  // still use it to add the noalias metadata.
2940  LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2941                                           PSE.getSE());
2942  LVer->prepareNoAliasMetadata();
2943}
2944
2945void InnerLoopVectorizer::createEmptyLoop() {
2946  /*
2947   In this function we generate a new loop. The new loop will contain
2948   the vectorized instructions while the old loop will continue to run the
2949   scalar remainder.
2950
2951       [ ] <-- loop iteration number check.
2952    /   |
2953   /    v
2954  |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2955  |  /  |
2956  | /   v
2957  ||   [ ]     <-- vector pre header.
2958  |/    |
2959  |     v
2960  |    [  ] \
2961  |    [  ]_|   <-- vector loop.
2962  |     |
2963  |     v
2964  |   -[ ]   <--- middle-block.
2965  |  /  |
2966  | /   v
2967  -|- >[ ]     <--- new preheader.
2968   |    |
2969   |    v
2970   |   [ ] \
2971   |   [ ]_|   <-- old scalar loop to handle remainder.
2972    \   |
2973     \  v
2974      >[ ]     <-- exit block.
2975   ...
2976   */
2977
2978  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2979  BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2980  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2981  assert(VectorPH && "Invalid loop structure");
2982  assert(ExitBlock && "Must have an exit block");
2983
2984  // Some loops have a single integer induction variable, while other loops
2985  // don't. One example is c++ iterators that often have multiple pointer
2986  // induction variables. In the code below we also support a case where we
2987  // don't have a single induction variable.
2988  //
2989  // We try to obtain an induction variable from the original loop as hard
2990  // as possible. However if we don't find one that:
2991  //   - is an integer
2992  //   - counts from zero, stepping by one
2993  //   - is the size of the widest induction variable type
2994  // then we create a new one.
2995  OldInduction = Legal->getInduction();
2996  Type *IdxTy = Legal->getWidestInductionType();
2997
2998  // Split the single block loop into the two loop structure described above.
2999  BasicBlock *VecBody =
3000      VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3001  BasicBlock *MiddleBlock =
3002      VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3003  BasicBlock *ScalarPH =
3004      MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3005
3006  // Create and register the new vector loop.
3007  Loop *Lp = new Loop();
3008  Loop *ParentLoop = OrigLoop->getParentLoop();
3009
3010  // Insert the new loop into the loop nest and register the new basic blocks
3011  // before calling any utilities such as SCEV that require valid LoopInfo.
3012  if (ParentLoop) {
3013    ParentLoop->addChildLoop(Lp);
3014    ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3015    ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3016  } else {
3017    LI->addTopLevelLoop(Lp);
3018  }
3019  Lp->addBasicBlockToLoop(VecBody, *LI);
3020
3021  // Find the loop boundaries.
3022  Value *Count = getOrCreateTripCount(Lp);
3023
3024  Value *StartIdx = ConstantInt::get(IdxTy, 0);
3025
3026  // We need to test whether the backedge-taken count is uint##_max. Adding one
3027  // to it will cause overflow and an incorrect loop trip count in the vector
3028  // body. In case of overflow we want to directly jump to the scalar remainder
3029  // loop.
3030  emitMinimumIterationCountCheck(Lp, ScalarPH);
3031  // Now, compare the new count to zero. If it is zero skip the vector loop and
3032  // jump to the scalar loop.
3033  emitVectorLoopEnteredCheck(Lp, ScalarPH);
3034  // Generate the code to check any assumptions that we've made for SCEV
3035  // expressions.
3036  emitSCEVChecks(Lp, ScalarPH);
3037
3038  // Generate the code that checks in runtime if arrays overlap. We put the
3039  // checks into a separate block to make the more common case of few elements
3040  // faster.
3041  emitMemRuntimeChecks(Lp, ScalarPH);
3042
3043  // Generate the induction variable.
3044  // The loop step is equal to the vectorization factor (num of SIMD elements)
3045  // times the unroll factor (num of SIMD instructions).
3046  Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3047  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3048  Induction =
3049      createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3050                              getDebugLocFromInstOrOperands(OldInduction));
3051
3052  // We are going to resume the execution of the scalar loop.
3053  // Go over all of the induction variables that we found and fix the
3054  // PHIs that are left in the scalar version of the loop.
3055  // The starting values of PHI nodes depend on the counter of the last
3056  // iteration in the vectorized loop.
3057  // If we come from a bypass edge then we need to start from the original
3058  // start value.
3059
3060  // This variable saves the new starting index for the scalar loop. It is used
3061  // to test if there are any tail iterations left once the vector loop has
3062  // completed.
3063  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3064  for (auto &InductionEntry : *List) {
3065    PHINode *OrigPhi = InductionEntry.first;
3066    InductionDescriptor II = InductionEntry.second;
3067
3068    // Create phi nodes to merge from the  backedge-taken check block.
3069    PHINode *BCResumeVal = PHINode::Create(
3070        OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3071    Value *EndValue;
3072    if (OrigPhi == OldInduction) {
3073      // We know what the end value is.
3074      EndValue = CountRoundDown;
3075    } else {
3076      IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
3077      Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
3078                                       II.getStep()->getType(), "cast.crd");
3079      const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3080      EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3081      EndValue->setName("ind.end");
3082    }
3083
3084    // The new PHI merges the original incoming value, in case of a bypass,
3085    // or the value at the end of the vectorized loop.
3086    BCResumeVal->addIncoming(EndValue, MiddleBlock);
3087
3088    // Fix up external users of the induction variable.
3089    fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock);
3090
3091    // Fix the scalar body counter (PHI node).
3092    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3093
3094    // The old induction's phi node in the scalar body needs the truncated
3095    // value.
3096    for (BasicBlock *BB : LoopBypassBlocks)
3097      BCResumeVal->addIncoming(II.getStartValue(), BB);
3098    OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3099  }
3100
3101  // Add a check in the middle block to see if we have completed
3102  // all of the iterations in the first vector loop.
3103  // If (N - N%VF) == N, then we *don't* need to run the remainder.
3104  Value *CmpN =
3105      CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3106                      CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3107  ReplaceInstWithInst(MiddleBlock->getTerminator(),
3108                      BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3109
3110  // Get ready to start creating new instructions into the vectorized body.
3111  Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3112
3113  // Save the state.
3114  LoopVectorPreHeader = Lp->getLoopPreheader();
3115  LoopScalarPreHeader = ScalarPH;
3116  LoopMiddleBlock = MiddleBlock;
3117  LoopExitBlock = ExitBlock;
3118  LoopVectorBody = VecBody;
3119  LoopScalarBody = OldBasicBlock;
3120
3121  // Keep all loop hints from the original loop on the vector loop (we'll
3122  // replace the vectorizer-specific hints below).
3123  if (MDNode *LID = OrigLoop->getLoopID())
3124    Lp->setLoopID(LID);
3125
3126  LoopVectorizeHints Hints(Lp, true);
3127  Hints.setAlreadyVectorized();
3128}
3129
3130// Fix up external users of the induction variable. At this point, we are
3131// in LCSSA form, with all external PHIs that use the IV having one input value,
3132// coming from the remainder loop. We need those PHIs to also have a correct
3133// value for the IV when arriving directly from the middle block.
3134void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3135                                       const InductionDescriptor &II,
3136                                       Value *CountRoundDown, Value *EndValue,
3137                                       BasicBlock *MiddleBlock) {
3138  // There are two kinds of external IV usages - those that use the value
3139  // computed in the last iteration (the PHI) and those that use the penultimate
3140  // value (the value that feeds into the phi from the loop latch).
3141  // We allow both, but they, obviously, have different values.
3142
3143  assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3144
3145  DenseMap<Value *, Value *> MissingVals;
3146
3147  // An external user of the last iteration's value should see the value that
3148  // the remainder loop uses to initialize its own IV.
3149  Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3150  for (User *U : PostInc->users()) {
3151    Instruction *UI = cast<Instruction>(U);
3152    if (!OrigLoop->contains(UI)) {
3153      assert(isa<PHINode>(UI) && "Expected LCSSA form");
3154      MissingVals[UI] = EndValue;
3155    }
3156  }
3157
3158  // An external user of the penultimate value need to see EndValue - Step.
3159  // The simplest way to get this is to recompute it from the constituent SCEVs,
3160  // that is Start + (Step * (CRD - 1)).
3161  for (User *U : OrigPhi->users()) {
3162    auto *UI = cast<Instruction>(U);
3163    if (!OrigLoop->contains(UI)) {
3164      const DataLayout &DL =
3165          OrigLoop->getHeader()->getModule()->getDataLayout();
3166      assert(isa<PHINode>(UI) && "Expected LCSSA form");
3167
3168      IRBuilder<> B(MiddleBlock->getTerminator());
3169      Value *CountMinusOne = B.CreateSub(
3170          CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3171      Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(),
3172                                       "cast.cmo");
3173      Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3174      Escape->setName("ind.escape");
3175      MissingVals[UI] = Escape;
3176    }
3177  }
3178
3179  for (auto &I : MissingVals) {
3180    PHINode *PHI = cast<PHINode>(I.first);
3181    // One corner case we have to handle is two IVs "chasing" each-other,
3182    // that is %IV2 = phi [...], [ %IV1, %latch ]
3183    // In this case, if IV1 has an external use, we need to avoid adding both
3184    // "last value of IV1" and "penultimate value of IV2". So, verify that we
3185    // don't already have an incoming value for the middle block.
3186    if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3187      PHI->addIncoming(I.second, MiddleBlock);
3188  }
3189}
3190
3191namespace {
3192struct CSEDenseMapInfo {
3193  static bool canHandle(Instruction *I) {
3194    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3195           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3196  }
3197  static inline Instruction *getEmptyKey() {
3198    return DenseMapInfo<Instruction *>::getEmptyKey();
3199  }
3200  static inline Instruction *getTombstoneKey() {
3201    return DenseMapInfo<Instruction *>::getTombstoneKey();
3202  }
3203  static unsigned getHashValue(Instruction *I) {
3204    assert(canHandle(I) && "Unknown instruction!");
3205    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3206                                                           I->value_op_end()));
3207  }
3208  static bool isEqual(Instruction *LHS, Instruction *RHS) {
3209    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3210        LHS == getTombstoneKey() || RHS == getTombstoneKey())
3211      return LHS == RHS;
3212    return LHS->isIdenticalTo(RHS);
3213  }
3214};
3215}
3216
3217///\brief Perform cse of induction variable instructions.
3218static void cse(BasicBlock *BB) {
3219  // Perform simple cse.
3220  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3221  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3222    Instruction *In = &*I++;
3223
3224    if (!CSEDenseMapInfo::canHandle(In))
3225      continue;
3226
3227    // Check if we can replace this instruction with any of the
3228    // visited instructions.
3229    if (Instruction *V = CSEMap.lookup(In)) {
3230      In->replaceAllUsesWith(V);
3231      In->eraseFromParent();
3232      continue;
3233    }
3234
3235    CSEMap[In] = In;
3236  }
3237}
3238
3239/// \brief Adds a 'fast' flag to floating point operations.
3240static Value *addFastMathFlag(Value *V) {
3241  if (isa<FPMathOperator>(V)) {
3242    FastMathFlags Flags;
3243    Flags.setUnsafeAlgebra();
3244    cast<Instruction>(V)->setFastMathFlags(Flags);
3245  }
3246  return V;
3247}
3248
3249/// Estimate the overhead of scalarizing a value. Insert and Extract are set if
3250/// the result needs to be inserted and/or extracted from vectors.
3251static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
3252                                         const TargetTransformInfo &TTI) {
3253  if (Ty->isVoidTy())
3254    return 0;
3255
3256  assert(Ty->isVectorTy() && "Can only scalarize vectors");
3257  unsigned Cost = 0;
3258
3259  for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) {
3260    if (Insert)
3261      Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I);
3262    if (Extract)
3263      Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I);
3264  }
3265
3266  return Cost;
3267}
3268
3269// Estimate cost of a call instruction CI if it were vectorized with factor VF.
3270// Return the cost of the instruction, including scalarization overhead if it's
3271// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3272// i.e. either vector version isn't available, or is too expensive.
3273static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3274                                  const TargetTransformInfo &TTI,
3275                                  const TargetLibraryInfo *TLI,
3276                                  bool &NeedToScalarize) {
3277  Function *F = CI->getCalledFunction();
3278  StringRef FnName = CI->getCalledFunction()->getName();
3279  Type *ScalarRetTy = CI->getType();
3280  SmallVector<Type *, 4> Tys, ScalarTys;
3281  for (auto &ArgOp : CI->arg_operands())
3282    ScalarTys.push_back(ArgOp->getType());
3283
3284  // Estimate cost of scalarized vector call. The source operands are assumed
3285  // to be vectors, so we need to extract individual elements from there,
3286  // execute VF scalar calls, and then gather the result into the vector return
3287  // value.
3288  unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3289  if (VF == 1)
3290    return ScalarCallCost;
3291
3292  // Compute corresponding vector type for return value and arguments.
3293  Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3294  for (Type *ScalarTy : ScalarTys)
3295    Tys.push_back(ToVectorTy(ScalarTy, VF));
3296
3297  // Compute costs of unpacking argument values for the scalar calls and
3298  // packing the return values to a vector.
3299  unsigned ScalarizationCost =
3300      getScalarizationOverhead(RetTy, true, false, TTI);
3301  for (Type *Ty : Tys)
3302    ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI);
3303
3304  unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3305
3306  // If we can't emit a vector call for this function, then the currently found
3307  // cost is the cost we need to return.
3308  NeedToScalarize = true;
3309  if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3310    return Cost;
3311
3312  // If the corresponding vector cost is cheaper, return its cost.
3313  unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3314  if (VectorCallCost < Cost) {
3315    NeedToScalarize = false;
3316    return VectorCallCost;
3317  }
3318  return Cost;
3319}
3320
3321// Estimate cost of an intrinsic call instruction CI if it were vectorized with
3322// factor VF.  Return the cost of the instruction, including scalarization
3323// overhead if it's needed.
3324static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3325                                       const TargetTransformInfo &TTI,
3326                                       const TargetLibraryInfo *TLI) {
3327  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3328  assert(ID && "Expected intrinsic call!");
3329
3330  Type *RetTy = ToVectorTy(CI->getType(), VF);
3331  SmallVector<Type *, 4> Tys;
3332  for (Value *ArgOperand : CI->arg_operands())
3333    Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
3334
3335  FastMathFlags FMF;
3336  if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3337    FMF = FPMO->getFastMathFlags();
3338
3339  return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF);
3340}
3341
3342static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3343  auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3344  auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3345  return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3346}
3347static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3348  auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3349  auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3350  return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3351}
3352
3353void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3354  // For every instruction `I` in MinBWs, truncate the operands, create a
3355  // truncated version of `I` and reextend its result. InstCombine runs
3356  // later and will remove any ext/trunc pairs.
3357  //
3358  SmallPtrSet<Value *, 4> Erased;
3359  for (const auto &KV : *MinBWs) {
3360    VectorParts &Parts = WidenMap.get(KV.first);
3361    for (Value *&I : Parts) {
3362      if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3363        continue;
3364      Type *OriginalTy = I->getType();
3365      Type *ScalarTruncatedTy =
3366          IntegerType::get(OriginalTy->getContext(), KV.second);
3367      Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3368                                          OriginalTy->getVectorNumElements());
3369      if (TruncatedTy == OriginalTy)
3370        continue;
3371
3372      IRBuilder<> B(cast<Instruction>(I));
3373      auto ShrinkOperand = [&](Value *V) -> Value * {
3374        if (auto *ZI = dyn_cast<ZExtInst>(V))
3375          if (ZI->getSrcTy() == TruncatedTy)
3376            return ZI->getOperand(0);
3377        return B.CreateZExtOrTrunc(V, TruncatedTy);
3378      };
3379
3380      // The actual instruction modification depends on the instruction type,
3381      // unfortunately.
3382      Value *NewI = nullptr;
3383      if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3384        NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3385                             ShrinkOperand(BO->getOperand(1)));
3386        cast<BinaryOperator>(NewI)->copyIRFlags(I);
3387      } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3388        NewI =
3389            B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3390                         ShrinkOperand(CI->getOperand(1)));
3391      } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3392        NewI = B.CreateSelect(SI->getCondition(),
3393                              ShrinkOperand(SI->getTrueValue()),
3394                              ShrinkOperand(SI->getFalseValue()));
3395      } else if (auto *CI = dyn_cast<CastInst>(I)) {
3396        switch (CI->getOpcode()) {
3397        default:
3398          llvm_unreachable("Unhandled cast!");
3399        case Instruction::Trunc:
3400          NewI = ShrinkOperand(CI->getOperand(0));
3401          break;
3402        case Instruction::SExt:
3403          NewI = B.CreateSExtOrTrunc(
3404              CI->getOperand(0),
3405              smallestIntegerVectorType(OriginalTy, TruncatedTy));
3406          break;
3407        case Instruction::ZExt:
3408          NewI = B.CreateZExtOrTrunc(
3409              CI->getOperand(0),
3410              smallestIntegerVectorType(OriginalTy, TruncatedTy));
3411          break;
3412        }
3413      } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3414        auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3415        auto *O0 = B.CreateZExtOrTrunc(
3416            SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3417        auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3418        auto *O1 = B.CreateZExtOrTrunc(
3419            SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3420
3421        NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3422      } else if (isa<LoadInst>(I)) {
3423        // Don't do anything with the operands, just extend the result.
3424        continue;
3425      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3426        auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3427        auto *O0 = B.CreateZExtOrTrunc(
3428            IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3429        auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3430        NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3431      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3432        auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3433        auto *O0 = B.CreateZExtOrTrunc(
3434            EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3435        NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3436      } else {
3437        llvm_unreachable("Unhandled instruction type!");
3438      }
3439
3440      // Lastly, extend the result.
3441      NewI->takeName(cast<Instruction>(I));
3442      Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3443      I->replaceAllUsesWith(Res);
3444      cast<Instruction>(I)->eraseFromParent();
3445      Erased.insert(I);
3446      I = Res;
3447    }
3448  }
3449
3450  // We'll have created a bunch of ZExts that are now parentless. Clean up.
3451  for (const auto &KV : *MinBWs) {
3452    VectorParts &Parts = WidenMap.get(KV.first);
3453    for (Value *&I : Parts) {
3454      ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3455      if (Inst && Inst->use_empty()) {
3456        Value *NewI = Inst->getOperand(0);
3457        Inst->eraseFromParent();
3458        I = NewI;
3459      }
3460    }
3461  }
3462}
3463
3464void InnerLoopVectorizer::vectorizeLoop() {
3465  //===------------------------------------------------===//
3466  //
3467  // Notice: any optimization or new instruction that go
3468  // into the code below should be also be implemented in
3469  // the cost-model.
3470  //
3471  //===------------------------------------------------===//
3472  Constant *Zero = Builder.getInt32(0);
3473
3474  // In order to support recurrences we need to be able to vectorize Phi nodes.
3475  // Phi nodes have cycles, so we need to vectorize them in two stages. First,
3476  // we create a new vector PHI node with no incoming edges. We use this value
3477  // when we vectorize all of the instructions that use the PHI. Next, after
3478  // all of the instructions in the block are complete we add the new incoming
3479  // edges to the PHI. At this point all of the instructions in the basic block
3480  // are vectorized, so we can use them to construct the PHI.
3481  PhiVector PHIsToFix;
3482
3483  // Scan the loop in a topological order to ensure that defs are vectorized
3484  // before users.
3485  LoopBlocksDFS DFS(OrigLoop);
3486  DFS.perform(LI);
3487
3488  // Vectorize all of the blocks in the original loop.
3489  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
3490    vectorizeBlockInLoop(BB, &PHIsToFix);
3491
3492  // Insert truncates and extends for any truncated instructions as hints to
3493  // InstCombine.
3494  if (VF > 1)
3495    truncateToMinimalBitwidths();
3496
3497  // At this point every instruction in the original loop is widened to a
3498  // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI
3499  // nodes are currently empty because we did not want to introduce cycles.
3500  // This is the second stage of vectorizing recurrences.
3501  for (PHINode *Phi : PHIsToFix) {
3502    assert(Phi && "Unable to recover vectorized PHI");
3503
3504    // Handle first-order recurrences that need to be fixed.
3505    if (Legal->isFirstOrderRecurrence(Phi)) {
3506      fixFirstOrderRecurrence(Phi);
3507      continue;
3508    }
3509
3510    // If the phi node is not a first-order recurrence, it must be a reduction.
3511    // Get it's reduction variable descriptor.
3512    assert(Legal->isReductionVariable(Phi) &&
3513           "Unable to find the reduction variable");
3514    RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
3515
3516    RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3517    TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3518    Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3519    RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3520        RdxDesc.getMinMaxRecurrenceKind();
3521    setDebugLocFromInst(Builder, ReductionStartValue);
3522
3523    // We need to generate a reduction vector from the incoming scalar.
3524    // To do so, we need to generate the 'identity' vector and override
3525    // one of the elements with the incoming scalar reduction. We need
3526    // to do it in the vector-loop preheader.
3527    Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
3528
3529    // This is the vector-clone of the value that leaves the loop.
3530    VectorParts &VectorExit = getVectorValue(LoopExitInst);
3531    Type *VecTy = VectorExit[0]->getType();
3532
3533    // Find the reduction identity variable. Zero for addition, or, xor,
3534    // one for multiplication, -1 for And.
3535    Value *Identity;
3536    Value *VectorStart;
3537    if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3538        RK == RecurrenceDescriptor::RK_FloatMinMax) {
3539      // MinMax reduction have the start value as their identify.
3540      if (VF == 1) {
3541        VectorStart = Identity = ReductionStartValue;
3542      } else {
3543        VectorStart = Identity =
3544            Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3545      }
3546    } else {
3547      // Handle other reduction kinds:
3548      Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3549          RK, VecTy->getScalarType());
3550      if (VF == 1) {
3551        Identity = Iden;
3552        // This vector is the Identity vector where the first element is the
3553        // incoming scalar reduction.
3554        VectorStart = ReductionStartValue;
3555      } else {
3556        Identity = ConstantVector::getSplat(VF, Iden);
3557
3558        // This vector is the Identity vector where the first element is the
3559        // incoming scalar reduction.
3560        VectorStart =
3561            Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3562      }
3563    }
3564
3565    // Fix the vector-loop phi.
3566
3567    // Reductions do not have to start at zero. They can start with
3568    // any loop invariant values.
3569    VectorParts &VecRdxPhi = WidenMap.get(Phi);
3570    BasicBlock *Latch = OrigLoop->getLoopLatch();
3571    Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3572    VectorParts &Val = getVectorValue(LoopVal);
3573    for (unsigned part = 0; part < UF; ++part) {
3574      // Make sure to add the reduction stat value only to the
3575      // first unroll part.
3576      Value *StartVal = (part == 0) ? VectorStart : Identity;
3577      cast<PHINode>(VecRdxPhi[part])
3578          ->addIncoming(StartVal, LoopVectorPreHeader);
3579      cast<PHINode>(VecRdxPhi[part])
3580          ->addIncoming(Val[part], LoopVectorBody);
3581    }
3582
3583    // Before each round, move the insertion point right between
3584    // the PHIs and the values we are going to write.
3585    // This allows us to write both PHINodes and the extractelement
3586    // instructions.
3587    Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3588
3589    VectorParts RdxParts = getVectorValue(LoopExitInst);
3590    setDebugLocFromInst(Builder, LoopExitInst);
3591
3592    // If the vector reduction can be performed in a smaller type, we truncate
3593    // then extend the loop exit value to enable InstCombine to evaluate the
3594    // entire expression in the smaller type.
3595    if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3596      Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3597      Builder.SetInsertPoint(LoopVectorBody->getTerminator());
3598      for (unsigned part = 0; part < UF; ++part) {
3599        Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3600        Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3601                                          : Builder.CreateZExt(Trunc, VecTy);
3602        for (Value::user_iterator UI = RdxParts[part]->user_begin();
3603             UI != RdxParts[part]->user_end();)
3604          if (*UI != Trunc) {
3605            (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
3606            RdxParts[part] = Extnd;
3607          } else {
3608            ++UI;
3609          }
3610      }
3611      Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3612      for (unsigned part = 0; part < UF; ++part)
3613        RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3614    }
3615
3616    // Reduce all of the unrolled parts into a single vector.
3617    Value *ReducedPartRdx = RdxParts[0];
3618    unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3619    setDebugLocFromInst(Builder, ReducedPartRdx);
3620    for (unsigned part = 1; part < UF; ++part) {
3621      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3622        // Floating point operations had to be 'fast' to enable the reduction.
3623        ReducedPartRdx = addFastMathFlag(
3624            Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
3625                                ReducedPartRdx, "bin.rdx"));
3626      else
3627        ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
3628            Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
3629    }
3630
3631    if (VF > 1) {
3632      // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
3633      // and vector ops, reducing the set of values being computed by half each
3634      // round.
3635      assert(isPowerOf2_32(VF) &&
3636             "Reduction emission only supported for pow2 vectors!");
3637      Value *TmpVec = ReducedPartRdx;
3638      SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
3639      for (unsigned i = VF; i != 1; i >>= 1) {
3640        // Move the upper half of the vector to the lower half.
3641        for (unsigned j = 0; j != i / 2; ++j)
3642          ShuffleMask[j] = Builder.getInt32(i / 2 + j);
3643
3644        // Fill the rest of the mask with undef.
3645        std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
3646                  UndefValue::get(Builder.getInt32Ty()));
3647
3648        Value *Shuf = Builder.CreateShuffleVector(
3649            TmpVec, UndefValue::get(TmpVec->getType()),
3650            ConstantVector::get(ShuffleMask), "rdx.shuf");
3651
3652        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3653          // Floating point operations had to be 'fast' to enable the reduction.
3654          TmpVec = addFastMathFlag(Builder.CreateBinOp(
3655              (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
3656        else
3657          TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
3658                                                        TmpVec, Shuf);
3659      }
3660
3661      // The result is in the first element of the vector.
3662      ReducedPartRdx =
3663          Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3664
3665      // If the reduction can be performed in a smaller type, we need to extend
3666      // the reduction to the wider type before we branch to the original loop.
3667      if (Phi->getType() != RdxDesc.getRecurrenceType())
3668        ReducedPartRdx =
3669            RdxDesc.isSigned()
3670                ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3671                : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3672    }
3673
3674    // Create a phi node that merges control-flow from the backedge-taken check
3675    // block and the middle block.
3676    PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3677                                          LoopScalarPreHeader->getTerminator());
3678    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3679      BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3680    BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3681
3682    // Now, we need to fix the users of the reduction variable
3683    // inside and outside of the scalar remainder loop.
3684    // We know that the loop is in LCSSA form. We need to update the
3685    // PHI nodes in the exit blocks.
3686    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3687                              LEE = LoopExitBlock->end();
3688         LEI != LEE; ++LEI) {
3689      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3690      if (!LCSSAPhi)
3691        break;
3692
3693      // All PHINodes need to have a single entry edge, or two if
3694      // we already fixed them.
3695      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3696
3697      // We found our reduction value exit-PHI. Update it with the
3698      // incoming bypass edge.
3699      if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
3700        // Add an edge coming from the bypass.
3701        LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3702        break;
3703      }
3704    } // end of the LCSSA phi scan.
3705
3706    // Fix the scalar loop reduction variable with the incoming reduction sum
3707    // from the vector body and from the backedge value.
3708    int IncomingEdgeBlockIdx =
3709        Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3710    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3711    // Pick the other block.
3712    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3713    Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3714    Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3715  } // end of for each Phi in PHIsToFix.
3716
3717  fixLCSSAPHIs();
3718
3719  // Make sure DomTree is updated.
3720  updateAnalysis();
3721
3722  // Predicate any stores.
3723  for (auto KV : PredicatedStores) {
3724    BasicBlock::iterator I(KV.first);
3725    auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
3726    auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
3727                                        /*BranchWeights=*/nullptr, DT, LI);
3728    I->moveBefore(T);
3729    I->getParent()->setName("pred.store.if");
3730    BB->setName("pred.store.continue");
3731  }
3732  DEBUG(DT->verifyDomTree());
3733  // Remove redundant induction instructions.
3734  cse(LoopVectorBody);
3735}
3736
3737void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3738
3739  // This is the second phase of vectorizing first-order recurrences. An
3740  // overview of the transformation is described below. Suppose we have the
3741  // following loop.
3742  //
3743  //   for (int i = 0; i < n; ++i)
3744  //     b[i] = a[i] - a[i - 1];
3745  //
3746  // There is a first-order recurrence on "a". For this loop, the shorthand
3747  // scalar IR looks like:
3748  //
3749  //   scalar.ph:
3750  //     s_init = a[-1]
3751  //     br scalar.body
3752  //
3753  //   scalar.body:
3754  //     i = phi [0, scalar.ph], [i+1, scalar.body]
3755  //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3756  //     s2 = a[i]
3757  //     b[i] = s2 - s1
3758  //     br cond, scalar.body, ...
3759  //
3760  // In this example, s1 is a recurrence because it's value depends on the
3761  // previous iteration. In the first phase of vectorization, we created a
3762  // temporary value for s1. We now complete the vectorization and produce the
3763  // shorthand vector IR shown below (for VF = 4, UF = 1).
3764  //
3765  //   vector.ph:
3766  //     v_init = vector(..., ..., ..., a[-1])
3767  //     br vector.body
3768  //
3769  //   vector.body
3770  //     i = phi [0, vector.ph], [i+4, vector.body]
3771  //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3772  //     v2 = a[i, i+1, i+2, i+3];
3773  //     v3 = vector(v1(3), v2(0, 1, 2))
3774  //     b[i, i+1, i+2, i+3] = v2 - v3
3775  //     br cond, vector.body, middle.block
3776  //
3777  //   middle.block:
3778  //     x = v2(3)
3779  //     br scalar.ph
3780  //
3781  //   scalar.ph:
3782  //     s_init = phi [x, middle.block], [a[-1], otherwise]
3783  //     br scalar.body
3784  //
3785  // After execution completes the vector loop, we extract the next value of
3786  // the recurrence (x) to use as the initial value in the scalar loop.
3787
3788  // Get the original loop preheader and single loop latch.
3789  auto *Preheader = OrigLoop->getLoopPreheader();
3790  auto *Latch = OrigLoop->getLoopLatch();
3791
3792  // Get the initial and previous values of the scalar recurrence.
3793  auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3794  auto *Previous = Phi->getIncomingValueForBlock(Latch);
3795
3796  // Create a vector from the initial value.
3797  auto *VectorInit = ScalarInit;
3798  if (VF > 1) {
3799    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3800    VectorInit = Builder.CreateInsertElement(
3801        UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3802        Builder.getInt32(VF - 1), "vector.recur.init");
3803  }
3804
3805  // We constructed a temporary phi node in the first phase of vectorization.
3806  // This phi node will eventually be deleted.
3807  auto &PhiParts = getVectorValue(Phi);
3808  Builder.SetInsertPoint(cast<Instruction>(PhiParts[0]));
3809
3810  // Create a phi node for the new recurrence. The current value will either be
3811  // the initial value inserted into a vector or loop-varying vector value.
3812  auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3813  VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3814
3815  // Get the vectorized previous value. We ensured the previous values was an
3816  // instruction when detecting the recurrence.
3817  auto &PreviousParts = getVectorValue(Previous);
3818
3819  // Set the insertion point to be after this instruction. We ensured the
3820  // previous value dominated all uses of the phi when detecting the
3821  // recurrence.
3822  Builder.SetInsertPoint(
3823      &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1])));
3824
3825  // We will construct a vector for the recurrence by combining the values for
3826  // the current and previous iterations. This is the required shuffle mask.
3827  SmallVector<Constant *, 8> ShuffleMask(VF);
3828  ShuffleMask[0] = Builder.getInt32(VF - 1);
3829  for (unsigned I = 1; I < VF; ++I)
3830    ShuffleMask[I] = Builder.getInt32(I + VF - 1);
3831
3832  // The vector from which to take the initial value for the current iteration
3833  // (actual or unrolled). Initially, this is the vector phi node.
3834  Value *Incoming = VecPhi;
3835
3836  // Shuffle the current and previous vector and update the vector parts.
3837  for (unsigned Part = 0; Part < UF; ++Part) {
3838    auto *Shuffle =
3839        VF > 1
3840            ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part],
3841                                          ConstantVector::get(ShuffleMask))
3842            : Incoming;
3843    PhiParts[Part]->replaceAllUsesWith(Shuffle);
3844    cast<Instruction>(PhiParts[Part])->eraseFromParent();
3845    PhiParts[Part] = Shuffle;
3846    Incoming = PreviousParts[Part];
3847  }
3848
3849  // Fix the latch value of the new recurrence in the vector loop.
3850  VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3851
3852  // Extract the last vector element in the middle block. This will be the
3853  // initial value for the recurrence when jumping to the scalar loop.
3854  auto *Extract = Incoming;
3855  if (VF > 1) {
3856    Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3857    Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1),
3858                                           "vector.recur.extract");
3859  }
3860
3861  // Fix the initial value of the original recurrence in the scalar loop.
3862  Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3863  auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3864  for (auto *BB : predecessors(LoopScalarPreHeader)) {
3865    auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit;
3866    Start->addIncoming(Incoming, BB);
3867  }
3868
3869  Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
3870  Phi->setName("scalar.recur");
3871
3872  // Finally, fix users of the recurrence outside the loop. The users will need
3873  // either the last value of the scalar recurrence or the last value of the
3874  // vector recurrence we extracted in the middle block. Since the loop is in
3875  // LCSSA form, we just need to find the phi node for the original scalar
3876  // recurrence in the exit block, and then add an edge for the middle block.
3877  for (auto &I : *LoopExitBlock) {
3878    auto *LCSSAPhi = dyn_cast<PHINode>(&I);
3879    if (!LCSSAPhi)
3880      break;
3881    if (LCSSAPhi->getIncomingValue(0) == Phi) {
3882      LCSSAPhi->addIncoming(Extract, LoopMiddleBlock);
3883      break;
3884    }
3885  }
3886}
3887
3888void InnerLoopVectorizer::fixLCSSAPHIs() {
3889  for (Instruction &LEI : *LoopExitBlock) {
3890    auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
3891    if (!LCSSAPhi)
3892      break;
3893    if (LCSSAPhi->getNumIncomingValues() == 1)
3894      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3895                            LoopMiddleBlock);
3896  }
3897}
3898
3899InnerLoopVectorizer::VectorParts
3900InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3901  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3902         "Invalid edge");
3903
3904  // Look for cached value.
3905  std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
3906  EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3907  if (ECEntryIt != MaskCache.end())
3908    return ECEntryIt->second;
3909
3910  VectorParts SrcMask = createBlockInMask(Src);
3911
3912  // The terminator has to be a branch inst!
3913  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3914  assert(BI && "Unexpected terminator found");
3915
3916  if (BI->isConditional()) {
3917    VectorParts EdgeMask = getVectorValue(BI->getCondition());
3918
3919    if (BI->getSuccessor(0) != Dst)
3920      for (unsigned part = 0; part < UF; ++part)
3921        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3922
3923    for (unsigned part = 0; part < UF; ++part)
3924      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3925
3926    MaskCache[Edge] = EdgeMask;
3927    return EdgeMask;
3928  }
3929
3930  MaskCache[Edge] = SrcMask;
3931  return SrcMask;
3932}
3933
3934InnerLoopVectorizer::VectorParts
3935InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3936  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3937
3938  // Loop incoming mask is all-one.
3939  if (OrigLoop->getHeader() == BB) {
3940    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3941    return getVectorValue(C);
3942  }
3943
3944  // This is the block mask. We OR all incoming edges, and with zero.
3945  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3946  VectorParts BlockMask = getVectorValue(Zero);
3947
3948  // For each pred:
3949  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3950    VectorParts EM = createEdgeMask(*it, BB);
3951    for (unsigned part = 0; part < UF; ++part)
3952      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3953  }
3954
3955  return BlockMask;
3956}
3957
3958void InnerLoopVectorizer::widenPHIInstruction(
3959    Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF,
3960    unsigned VF, PhiVector *PV) {
3961  PHINode *P = cast<PHINode>(PN);
3962  // Handle recurrences.
3963  if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
3964    for (unsigned part = 0; part < UF; ++part) {
3965      // This is phase one of vectorizing PHIs.
3966      Type *VecTy =
3967          (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
3968      Entry[part] = PHINode::Create(
3969          VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
3970    }
3971    PV->push_back(P);
3972    return;
3973  }
3974
3975  setDebugLocFromInst(Builder, P);
3976  // Check for PHI nodes that are lowered to vector selects.
3977  if (P->getParent() != OrigLoop->getHeader()) {
3978    // We know that all PHIs in non-header blocks are converted into
3979    // selects, so we don't have to worry about the insertion order and we
3980    // can just use the builder.
3981    // At this point we generate the predication tree. There may be
3982    // duplications since this is a simple recursive scan, but future
3983    // optimizations will clean it up.
3984
3985    unsigned NumIncoming = P->getNumIncomingValues();
3986
3987    // Generate a sequence of selects of the form:
3988    // SELECT(Mask3, In3,
3989    //      SELECT(Mask2, In2,
3990    //                   ( ...)))
3991    for (unsigned In = 0; In < NumIncoming; In++) {
3992      VectorParts Cond =
3993          createEdgeMask(P->getIncomingBlock(In), P->getParent());
3994      VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3995
3996      for (unsigned part = 0; part < UF; ++part) {
3997        // We might have single edge PHIs (blocks) - use an identity
3998        // 'select' for the first PHI operand.
3999        if (In == 0)
4000          Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]);
4001        else
4002          // Select between the current value and the previous incoming edge
4003          // based on the incoming mask.
4004          Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part],
4005                                             "predphi");
4006      }
4007    }
4008    return;
4009  }
4010
4011  // This PHINode must be an induction variable.
4012  // Make sure that we know about it.
4013  assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4014
4015  InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4016  const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4017
4018  // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4019  // which can be found from the original scalar operations.
4020  switch (II.getKind()) {
4021  case InductionDescriptor::IK_NoInduction:
4022    llvm_unreachable("Unknown induction");
4023  case InductionDescriptor::IK_IntInduction:
4024    return widenIntInduction(P, Entry);
4025  case InductionDescriptor::IK_PtrInduction:
4026    // Handle the pointer induction variable case.
4027    assert(P->getType()->isPointerTy() && "Unexpected type.");
4028    // This is the normalized GEP that starts counting at zero.
4029    Value *PtrInd = Induction;
4030    PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4031    // This is the vector of results. Notice that we don't generate
4032    // vector geps because scalar geps result in better code.
4033    for (unsigned part = 0; part < UF; ++part) {
4034      if (VF == 1) {
4035        int EltIndex = part;
4036        Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
4037        Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4038        Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4039        SclrGep->setName("next.gep");
4040        Entry[part] = SclrGep;
4041        continue;
4042      }
4043
4044      Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
4045      for (unsigned int i = 0; i < VF; ++i) {
4046        int EltIndex = i + part * VF;
4047        Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
4048        Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4049        Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4050        SclrGep->setName("next.gep");
4051        VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
4052                                             Builder.getInt32(i), "insert.gep");
4053      }
4054      Entry[part] = VecVal;
4055    }
4056    return;
4057  }
4058}
4059
4060void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
4061  // For each instruction in the old loop.
4062  for (Instruction &I : *BB) {
4063    VectorParts &Entry = WidenMap.get(&I);
4064
4065    switch (I.getOpcode()) {
4066    case Instruction::Br:
4067      // Nothing to do for PHIs and BR, since we already took care of the
4068      // loop control flow instructions.
4069      continue;
4070    case Instruction::PHI: {
4071      // Vectorize PHINodes.
4072      widenPHIInstruction(&I, Entry, UF, VF, PV);
4073      continue;
4074    } // End of PHI.
4075
4076    case Instruction::Add:
4077    case Instruction::FAdd:
4078    case Instruction::Sub:
4079    case Instruction::FSub:
4080    case Instruction::Mul:
4081    case Instruction::FMul:
4082    case Instruction::UDiv:
4083    case Instruction::SDiv:
4084    case Instruction::FDiv:
4085    case Instruction::URem:
4086    case Instruction::SRem:
4087    case Instruction::FRem:
4088    case Instruction::Shl:
4089    case Instruction::LShr:
4090    case Instruction::AShr:
4091    case Instruction::And:
4092    case Instruction::Or:
4093    case Instruction::Xor: {
4094      // Just widen binops.
4095      auto *BinOp = cast<BinaryOperator>(&I);
4096      setDebugLocFromInst(Builder, BinOp);
4097      VectorParts &A = getVectorValue(BinOp->getOperand(0));
4098      VectorParts &B = getVectorValue(BinOp->getOperand(1));
4099
4100      // Use this vector value for all users of the original instruction.
4101      for (unsigned Part = 0; Part < UF; ++Part) {
4102        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
4103
4104        if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4105          VecOp->copyIRFlags(BinOp);
4106
4107        Entry[Part] = V;
4108      }
4109
4110      addMetadata(Entry, BinOp);
4111      break;
4112    }
4113    case Instruction::Select: {
4114      // Widen selects.
4115      // If the selector is loop invariant we can create a select
4116      // instruction with a scalar condition. Otherwise, use vector-select.
4117      auto *SE = PSE.getSE();
4118      bool InvariantCond =
4119          SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4120      setDebugLocFromInst(Builder, &I);
4121
4122      // The condition can be loop invariant  but still defined inside the
4123      // loop. This means that we can't just use the original 'cond' value.
4124      // We have to take the 'vectorized' value and pick the first lane.
4125      // Instcombine will make this a no-op.
4126      VectorParts &Cond = getVectorValue(I.getOperand(0));
4127      VectorParts &Op0 = getVectorValue(I.getOperand(1));
4128      VectorParts &Op1 = getVectorValue(I.getOperand(2));
4129
4130      Value *ScalarCond =
4131          (VF == 1)
4132              ? Cond[0]
4133              : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
4134
4135      for (unsigned Part = 0; Part < UF; ++Part) {
4136        Entry[Part] = Builder.CreateSelect(
4137            InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]);
4138      }
4139
4140      addMetadata(Entry, &I);
4141      break;
4142    }
4143
4144    case Instruction::ICmp:
4145    case Instruction::FCmp: {
4146      // Widen compares. Generate vector compares.
4147      bool FCmp = (I.getOpcode() == Instruction::FCmp);
4148      auto *Cmp = dyn_cast<CmpInst>(&I);
4149      setDebugLocFromInst(Builder, Cmp);
4150      VectorParts &A = getVectorValue(Cmp->getOperand(0));
4151      VectorParts &B = getVectorValue(Cmp->getOperand(1));
4152      for (unsigned Part = 0; Part < UF; ++Part) {
4153        Value *C = nullptr;
4154        if (FCmp) {
4155          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
4156          cast<FCmpInst>(C)->copyFastMathFlags(Cmp);
4157        } else {
4158          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
4159        }
4160        Entry[Part] = C;
4161      }
4162
4163      addMetadata(Entry, &I);
4164      break;
4165    }
4166
4167    case Instruction::Store:
4168    case Instruction::Load:
4169      vectorizeMemoryInstruction(&I);
4170      break;
4171    case Instruction::ZExt:
4172    case Instruction::SExt:
4173    case Instruction::FPToUI:
4174    case Instruction::FPToSI:
4175    case Instruction::FPExt:
4176    case Instruction::PtrToInt:
4177    case Instruction::IntToPtr:
4178    case Instruction::SIToFP:
4179    case Instruction::UIToFP:
4180    case Instruction::Trunc:
4181    case Instruction::FPTrunc:
4182    case Instruction::BitCast: {
4183      auto *CI = dyn_cast<CastInst>(&I);
4184      setDebugLocFromInst(Builder, CI);
4185
4186      // Optimize the special case where the source is a constant integer
4187      // induction variable. Notice that we can only optimize the 'trunc' case
4188      // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
4189      // (c) other casts depend on pointer size.
4190      auto ID = Legal->getInductionVars()->lookup(OldInduction);
4191      if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction &&
4192          ID.getConstIntStepValue()) {
4193        widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI));
4194        addMetadata(Entry, &I);
4195        break;
4196      }
4197
4198      /// Vectorize casts.
4199      Type *DestTy =
4200          (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4201
4202      VectorParts &A = getVectorValue(CI->getOperand(0));
4203      for (unsigned Part = 0; Part < UF; ++Part)
4204        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
4205      addMetadata(Entry, &I);
4206      break;
4207    }
4208
4209    case Instruction::Call: {
4210      // Ignore dbg intrinsics.
4211      if (isa<DbgInfoIntrinsic>(I))
4212        break;
4213      setDebugLocFromInst(Builder, &I);
4214
4215      Module *M = BB->getParent()->getParent();
4216      auto *CI = cast<CallInst>(&I);
4217
4218      StringRef FnName = CI->getCalledFunction()->getName();
4219      Function *F = CI->getCalledFunction();
4220      Type *RetTy = ToVectorTy(CI->getType(), VF);
4221      SmallVector<Type *, 4> Tys;
4222      for (Value *ArgOperand : CI->arg_operands())
4223        Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4224
4225      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4226      if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
4227                 ID == Intrinsic::lifetime_start)) {
4228        scalarizeInstruction(&I);
4229        break;
4230      }
4231      // The flag shows whether we use Intrinsic or a usual Call for vectorized
4232      // version of the instruction.
4233      // Is it beneficial to perform intrinsic call compared to lib call?
4234      bool NeedToScalarize;
4235      unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4236      bool UseVectorIntrinsic =
4237          ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4238      if (!UseVectorIntrinsic && NeedToScalarize) {
4239        scalarizeInstruction(&I);
4240        break;
4241      }
4242
4243      for (unsigned Part = 0; Part < UF; ++Part) {
4244        SmallVector<Value *, 4> Args;
4245        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4246          Value *Arg = CI->getArgOperand(i);
4247          // Some intrinsics have a scalar argument - don't replace it with a
4248          // vector.
4249          if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
4250            VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
4251            Arg = VectorArg[Part];
4252          }
4253          Args.push_back(Arg);
4254        }
4255
4256        Function *VectorF;
4257        if (UseVectorIntrinsic) {
4258          // Use vector version of the intrinsic.
4259          Type *TysForDecl[] = {CI->getType()};
4260          if (VF > 1)
4261            TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4262          VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4263        } else {
4264          // Use vector version of the library call.
4265          StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4266          assert(!VFnName.empty() && "Vector function name is empty.");
4267          VectorF = M->getFunction(VFnName);
4268          if (!VectorF) {
4269            // Generate a declaration
4270            FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4271            VectorF =
4272                Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4273            VectorF->copyAttributesFrom(F);
4274          }
4275        }
4276        assert(VectorF && "Can't create vector function.");
4277
4278        SmallVector<OperandBundleDef, 1> OpBundles;
4279        CI->getOperandBundlesAsDefs(OpBundles);
4280        CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4281
4282        if (isa<FPMathOperator>(V))
4283          V->copyFastMathFlags(CI);
4284
4285        Entry[Part] = V;
4286      }
4287
4288      addMetadata(Entry, &I);
4289      break;
4290    }
4291
4292    default:
4293      // All other instructions are unsupported. Scalarize them.
4294      scalarizeInstruction(&I);
4295      break;
4296    } // end of switch.
4297  }   // end of for_each instr.
4298}
4299
4300void InnerLoopVectorizer::updateAnalysis() {
4301  // Forget the original basic block.
4302  PSE.getSE()->forgetLoop(OrigLoop);
4303
4304  // Update the dominator tree information.
4305  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
4306         "Entry does not dominate exit.");
4307
4308  // We don't predicate stores by this point, so the vector body should be a
4309  // single loop.
4310  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
4311
4312  DT->addNewBlock(LoopMiddleBlock, LoopVectorBody);
4313  DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4314  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4315  DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4316
4317  DEBUG(DT->verifyDomTree());
4318}
4319
4320/// \brief Check whether it is safe to if-convert this phi node.
4321///
4322/// Phi nodes with constant expressions that can trap are not safe to if
4323/// convert.
4324static bool canIfConvertPHINodes(BasicBlock *BB) {
4325  for (Instruction &I : *BB) {
4326    auto *Phi = dyn_cast<PHINode>(&I);
4327    if (!Phi)
4328      return true;
4329    for (Value *V : Phi->incoming_values())
4330      if (auto *C = dyn_cast<Constant>(V))
4331        if (C->canTrap())
4332          return false;
4333  }
4334  return true;
4335}
4336
4337bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4338  if (!EnableIfConversion) {
4339    emitAnalysis(VectorizationReport() << "if-conversion is disabled");
4340    return false;
4341  }
4342
4343  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
4344
4345  // A list of pointers that we can safely read and write to.
4346  SmallPtrSet<Value *, 8> SafePointes;
4347
4348  // Collect safe addresses.
4349  for (BasicBlock *BB : TheLoop->blocks()) {
4350    if (blockNeedsPredication(BB))
4351      continue;
4352
4353    for (Instruction &I : *BB) {
4354      if (auto *LI = dyn_cast<LoadInst>(&I))
4355        SafePointes.insert(LI->getPointerOperand());
4356      else if (auto *SI = dyn_cast<StoreInst>(&I))
4357        SafePointes.insert(SI->getPointerOperand());
4358    }
4359  }
4360
4361  // Collect the blocks that need predication.
4362  BasicBlock *Header = TheLoop->getHeader();
4363  for (BasicBlock *BB : TheLoop->blocks()) {
4364    // We don't support switch statements inside loops.
4365    if (!isa<BranchInst>(BB->getTerminator())) {
4366      emitAnalysis(VectorizationReport(BB->getTerminator())
4367                   << "loop contains a switch statement");
4368      return false;
4369    }
4370
4371    // We must be able to predicate all blocks that need to be predicated.
4372    if (blockNeedsPredication(BB)) {
4373      if (!blockCanBePredicated(BB, SafePointes)) {
4374        emitAnalysis(VectorizationReport(BB->getTerminator())
4375                     << "control flow cannot be substituted for a select");
4376        return false;
4377      }
4378    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4379      emitAnalysis(VectorizationReport(BB->getTerminator())
4380                   << "control flow cannot be substituted for a select");
4381      return false;
4382    }
4383  }
4384
4385  // We can if-convert this loop.
4386  return true;
4387}
4388
4389bool LoopVectorizationLegality::canVectorize() {
4390  // We must have a loop in canonical form. Loops with indirectbr in them cannot
4391  // be canonicalized.
4392  if (!TheLoop->getLoopPreheader()) {
4393    emitAnalysis(VectorizationReport()
4394                 << "loop control flow is not understood by vectorizer");
4395    return false;
4396  }
4397
4398  // We can only vectorize innermost loops.
4399  if (!TheLoop->empty()) {
4400    emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
4401    return false;
4402  }
4403
4404  // We must have a single backedge.
4405  if (TheLoop->getNumBackEdges() != 1) {
4406    emitAnalysis(VectorizationReport()
4407                 << "loop control flow is not understood by vectorizer");
4408    return false;
4409  }
4410
4411  // We must have a single exiting block.
4412  if (!TheLoop->getExitingBlock()) {
4413    emitAnalysis(VectorizationReport()
4414                 << "loop control flow is not understood by vectorizer");
4415    return false;
4416  }
4417
4418  // We only handle bottom-tested loops, i.e. loop in which the condition is
4419  // checked at the end of each iteration. With that we can assume that all
4420  // instructions in the loop are executed the same number of times.
4421  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4422    emitAnalysis(VectorizationReport()
4423                 << "loop control flow is not understood by vectorizer");
4424    return false;
4425  }
4426
4427  // We need to have a loop header.
4428  DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
4429               << '\n');
4430
4431  // Check if we can if-convert non-single-bb loops.
4432  unsigned NumBlocks = TheLoop->getNumBlocks();
4433  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4434    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
4435    return false;
4436  }
4437
4438  // ScalarEvolution needs to be able to find the exit count.
4439  const SCEV *ExitCount = PSE.getBackedgeTakenCount();
4440  if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
4441    emitAnalysis(VectorizationReport()
4442                 << "could not determine number of loop iterations");
4443    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
4444    return false;
4445  }
4446
4447  // Check if we can vectorize the instructions and CFG in this loop.
4448  if (!canVectorizeInstrs()) {
4449    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
4450    return false;
4451  }
4452
4453  // Go over each instruction and look at memory deps.
4454  if (!canVectorizeMemory()) {
4455    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
4456    return false;
4457  }
4458
4459  // Collect all of the variables that remain uniform after vectorization.
4460  collectLoopUniforms();
4461
4462  DEBUG(dbgs() << "LV: We can vectorize this loop"
4463               << (LAI->getRuntimePointerChecking()->Need
4464                       ? " (with a runtime bound check)"
4465                       : "")
4466               << "!\n");
4467
4468  bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
4469
4470  // If an override option has been passed in for interleaved accesses, use it.
4471  if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
4472    UseInterleaved = EnableInterleavedMemAccesses;
4473
4474  // Analyze interleaved memory accesses.
4475  if (UseInterleaved)
4476    InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
4477
4478  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4479  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4480    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4481
4482  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4483    emitAnalysis(VectorizationReport()
4484                 << "Too many SCEV assumptions need to be made and checked "
4485                 << "at runtime");
4486    DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
4487    return false;
4488  }
4489
4490  // Okay! We can vectorize. At this point we don't have any other mem analysis
4491  // which may limit our maximum vectorization factor, so just return true with
4492  // no restrictions.
4493  return true;
4494}
4495
4496static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4497  if (Ty->isPointerTy())
4498    return DL.getIntPtrType(Ty);
4499
4500  // It is possible that char's or short's overflow when we ask for the loop's
4501  // trip count, work around this by changing the type size.
4502  if (Ty->getScalarSizeInBits() < 32)
4503    return Type::getInt32Ty(Ty->getContext());
4504
4505  return Ty;
4506}
4507
4508static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4509  Ty0 = convertPointerToIntegerType(DL, Ty0);
4510  Ty1 = convertPointerToIntegerType(DL, Ty1);
4511  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4512    return Ty0;
4513  return Ty1;
4514}
4515
4516/// \brief Check that the instruction has outside loop users and is not an
4517/// identified reduction variable.
4518static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4519                               SmallPtrSetImpl<Value *> &AllowedExit) {
4520  // Reduction and Induction instructions are allowed to have exit users. All
4521  // other instructions must not have external users.
4522  if (!AllowedExit.count(Inst))
4523    // Check that all of the users of the loop are inside the BB.
4524    for (User *U : Inst->users()) {
4525      Instruction *UI = cast<Instruction>(U);
4526      // This user may be a reduction exit value.
4527      if (!TheLoop->contains(UI)) {
4528        DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
4529        return true;
4530      }
4531    }
4532  return false;
4533}
4534
4535void LoopVectorizationLegality::addInductionPhi(
4536    PHINode *Phi, const InductionDescriptor &ID,
4537    SmallPtrSetImpl<Value *> &AllowedExit) {
4538  Inductions[Phi] = ID;
4539  Type *PhiTy = Phi->getType();
4540  const DataLayout &DL = Phi->getModule()->getDataLayout();
4541
4542  // Get the widest type.
4543  if (!WidestIndTy)
4544    WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
4545  else
4546    WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
4547
4548  // Int inductions are special because we only allow one IV.
4549  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
4550      ID.getConstIntStepValue() &&
4551      ID.getConstIntStepValue()->isOne() &&
4552      isa<Constant>(ID.getStartValue()) &&
4553      cast<Constant>(ID.getStartValue())->isNullValue()) {
4554
4555    // Use the phi node with the widest type as induction. Use the last
4556    // one if there are multiple (no good reason for doing this other
4557    // than it is expedient). We've checked that it begins at zero and
4558    // steps by one, so this is a canonical induction variable.
4559    if (!Induction || PhiTy == WidestIndTy)
4560      Induction = Phi;
4561  }
4562
4563  // Both the PHI node itself, and the "post-increment" value feeding
4564  // back into the PHI node may have external users.
4565  AllowedExit.insert(Phi);
4566  AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
4567
4568  DEBUG(dbgs() << "LV: Found an induction variable.\n");
4569  return;
4570}
4571
4572bool LoopVectorizationLegality::canVectorizeInstrs() {
4573  BasicBlock *Header = TheLoop->getHeader();
4574
4575  // Look for the attribute signaling the absence of NaNs.
4576  Function &F = *Header->getParent();
4577  HasFunNoNaNAttr =
4578      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
4579
4580  // For each block in the loop.
4581  for (BasicBlock *BB : TheLoop->blocks()) {
4582    // Scan the instructions in the block and look for hazards.
4583    for (Instruction &I : *BB) {
4584      if (auto *Phi = dyn_cast<PHINode>(&I)) {
4585        Type *PhiTy = Phi->getType();
4586        // Check that this PHI type is allowed.
4587        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
4588            !PhiTy->isPointerTy()) {
4589          emitAnalysis(VectorizationReport(Phi)
4590                       << "loop control flow is not understood by vectorizer");
4591          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
4592          return false;
4593        }
4594
4595        // If this PHINode is not in the header block, then we know that we
4596        // can convert it to select during if-conversion. No need to check if
4597        // the PHIs in this block are induction or reduction variables.
4598        if (BB != Header) {
4599          // Check that this instruction has no outside users or is an
4600          // identified reduction value with an outside user.
4601          if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
4602            continue;
4603          emitAnalysis(VectorizationReport(Phi)
4604                       << "value could not be identified as "
4605                          "an induction or reduction variable");
4606          return false;
4607        }
4608
4609        // We only allow if-converted PHIs with exactly two incoming values.
4610        if (Phi->getNumIncomingValues() != 2) {
4611          emitAnalysis(VectorizationReport(Phi)
4612                       << "control flow not understood by vectorizer");
4613          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
4614          return false;
4615        }
4616
4617        RecurrenceDescriptor RedDes;
4618        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
4619          if (RedDes.hasUnsafeAlgebra())
4620            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
4621          AllowedExit.insert(RedDes.getLoopExitInstr());
4622          Reductions[Phi] = RedDes;
4623          continue;
4624        }
4625
4626        InductionDescriptor ID;
4627        if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) {
4628          addInductionPhi(Phi, ID, AllowedExit);
4629          continue;
4630        }
4631
4632        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) {
4633          FirstOrderRecurrences.insert(Phi);
4634          continue;
4635        }
4636
4637        // As a last resort, coerce the PHI to a AddRec expression
4638        // and re-try classifying it a an induction PHI.
4639        if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) {
4640          addInductionPhi(Phi, ID, AllowedExit);
4641          continue;
4642        }
4643
4644        emitAnalysis(VectorizationReport(Phi)
4645                     << "value that could not be identified as "
4646                        "reduction is used outside the loop");
4647        DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
4648        return false;
4649      } // end of PHI handling
4650
4651      // We handle calls that:
4652      //   * Are debug info intrinsics.
4653      //   * Have a mapping to an IR intrinsic.
4654      //   * Have a vector version available.
4655      auto *CI = dyn_cast<CallInst>(&I);
4656      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
4657          !isa<DbgInfoIntrinsic>(CI) &&
4658          !(CI->getCalledFunction() && TLI &&
4659            TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
4660        emitAnalysis(VectorizationReport(CI)
4661                     << "call instruction cannot be vectorized");
4662        DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
4663        return false;
4664      }
4665
4666      // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
4667      // second argument is the same (i.e. loop invariant)
4668      if (CI && hasVectorInstrinsicScalarOpd(
4669                    getVectorIntrinsicIDForCall(CI, TLI), 1)) {
4670        auto *SE = PSE.getSE();
4671        if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
4672          emitAnalysis(VectorizationReport(CI)
4673                       << "intrinsic instruction cannot be vectorized");
4674          DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
4675          return false;
4676        }
4677      }
4678
4679      // Check that the instruction return type is vectorizable.
4680      // Also, we can't vectorize extractelement instructions.
4681      if ((!VectorType::isValidElementType(I.getType()) &&
4682           !I.getType()->isVoidTy()) ||
4683          isa<ExtractElementInst>(I)) {
4684        emitAnalysis(VectorizationReport(&I)
4685                     << "instruction return type cannot be vectorized");
4686        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
4687        return false;
4688      }
4689
4690      // Check that the stored type is vectorizable.
4691      if (auto *ST = dyn_cast<StoreInst>(&I)) {
4692        Type *T = ST->getValueOperand()->getType();
4693        if (!VectorType::isValidElementType(T)) {
4694          emitAnalysis(VectorizationReport(ST)
4695                       << "store instruction cannot be vectorized");
4696          return false;
4697        }
4698
4699        // FP instructions can allow unsafe algebra, thus vectorizable by
4700        // non-IEEE-754 compliant SIMD units.
4701        // This applies to floating-point math operations and calls, not memory
4702        // operations, shuffles, or casts, as they don't change precision or
4703        // semantics.
4704      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
4705                 !I.hasUnsafeAlgebra()) {
4706        DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
4707        Hints->setPotentiallyUnsafe();
4708      }
4709
4710      // Reduction instructions are allowed to have exit users.
4711      // All other instructions must not have external users.
4712      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
4713        emitAnalysis(VectorizationReport(&I)
4714                     << "value cannot be used outside the loop");
4715        return false;
4716      }
4717
4718    } // next instr.
4719  }
4720
4721  if (!Induction) {
4722    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
4723    if (Inductions.empty()) {
4724      emitAnalysis(VectorizationReport()
4725                   << "loop induction variable could not be identified");
4726      return false;
4727    }
4728  }
4729
4730  // Now we know the widest induction type, check if our found induction
4731  // is the same size. If it's not, unset it here and InnerLoopVectorizer
4732  // will create another.
4733  if (Induction && WidestIndTy != Induction->getType())
4734    Induction = nullptr;
4735
4736  return true;
4737}
4738
4739void LoopVectorizationLegality::collectLoopUniforms() {
4740  // We now know that the loop is vectorizable!
4741  // Collect variables that will remain uniform after vectorization.
4742
4743  // If V is not an instruction inside the current loop, it is a Value
4744  // outside of the scope which we are interesting in.
4745  auto isOutOfScope = [&](Value *V) -> bool {
4746    Instruction *I = dyn_cast<Instruction>(V);
4747    return (!I || !TheLoop->contains(I));
4748  };
4749
4750  SetVector<Instruction *> Worklist;
4751  BasicBlock *Latch = TheLoop->getLoopLatch();
4752  // Start with the conditional branch.
4753  if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) {
4754    Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0));
4755    Worklist.insert(Cmp);
4756    DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
4757  }
4758
4759  // Also add all consecutive pointer values; these values will be uniform
4760  // after vectorization (and subsequent cleanup).
4761  for (auto *BB : TheLoop->blocks()) {
4762    for (auto &I : *BB) {
4763      if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) {
4764        Worklist.insert(&I);
4765        DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n");
4766      }
4767    }
4768  }
4769
4770  // Expand Worklist in topological order: whenever a new instruction
4771  // is added , its users should be either already inside Worklist, or
4772  // out of scope. It ensures a uniform instruction will only be used
4773  // by uniform instructions or out of scope instructions.
4774  unsigned idx = 0;
4775  do {
4776    Instruction *I = Worklist[idx++];
4777
4778    for (auto OV : I->operand_values()) {
4779      if (isOutOfScope(OV))
4780        continue;
4781      auto *OI = cast<Instruction>(OV);
4782      if (all_of(OI->users(), [&](User *U) -> bool {
4783            return isOutOfScope(U) || Worklist.count(cast<Instruction>(U));
4784          })) {
4785        Worklist.insert(OI);
4786        DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
4787      }
4788    }
4789  } while (idx != Worklist.size());
4790
4791  // For an instruction to be added into Worklist above, all its users inside
4792  // the current loop should be already added into Worklist. This condition
4793  // cannot be true for phi instructions which is always in a dependence loop.
4794  // Because any instruction in the dependence cycle always depends on others
4795  // in the cycle to be added into Worklist first, the result is no ones in
4796  // the cycle will be added into Worklist in the end.
4797  // That is why we process PHI separately.
4798  for (auto &Induction : *getInductionVars()) {
4799    auto *PN = Induction.first;
4800    auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
4801    if (all_of(PN->users(),
4802               [&](User *U) -> bool {
4803                 return U == UpdateV || isOutOfScope(U) ||
4804                        Worklist.count(cast<Instruction>(U));
4805               }) &&
4806        all_of(UpdateV->users(), [&](User *U) -> bool {
4807          return U == PN || isOutOfScope(U) ||
4808                 Worklist.count(cast<Instruction>(U));
4809        })) {
4810      Worklist.insert(cast<Instruction>(PN));
4811      Worklist.insert(cast<Instruction>(UpdateV));
4812      DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n");
4813      DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n");
4814    }
4815  }
4816
4817  Uniforms.insert(Worklist.begin(), Worklist.end());
4818}
4819
4820bool LoopVectorizationLegality::canVectorizeMemory() {
4821  LAI = &(*GetLAA)(*TheLoop);
4822  InterleaveInfo.setLAI(LAI);
4823  auto &OptionalReport = LAI->getReport();
4824  if (OptionalReport)
4825    emitAnalysis(VectorizationReport(*OptionalReport));
4826  if (!LAI->canVectorizeMemory())
4827    return false;
4828
4829  if (LAI->hasStoreToLoopInvariantAddress()) {
4830    emitAnalysis(
4831        VectorizationReport()
4832        << "write to a loop invariant address could not be vectorized");
4833    DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4834    return false;
4835  }
4836
4837  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
4838  PSE.addPredicate(LAI->getPSE().getUnionPredicate());
4839
4840  return true;
4841}
4842
4843bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4844  Value *In0 = const_cast<Value *>(V);
4845  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4846  if (!PN)
4847    return false;
4848
4849  return Inductions.count(PN);
4850}
4851
4852bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
4853  return FirstOrderRecurrences.count(Phi);
4854}
4855
4856bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4857  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
4858}
4859
4860bool LoopVectorizationLegality::blockCanBePredicated(
4861    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
4862  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4863
4864  for (Instruction &I : *BB) {
4865    // Check that we don't have a constant expression that can trap as operand.
4866    for (Value *Operand : I.operands()) {
4867      if (auto *C = dyn_cast<Constant>(Operand))
4868        if (C->canTrap())
4869          return false;
4870    }
4871    // We might be able to hoist the load.
4872    if (I.mayReadFromMemory()) {
4873      auto *LI = dyn_cast<LoadInst>(&I);
4874      if (!LI)
4875        return false;
4876      if (!SafePtrs.count(LI->getPointerOperand())) {
4877        if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
4878            isLegalMaskedGather(LI->getType())) {
4879          MaskedOp.insert(LI);
4880          continue;
4881        }
4882        // !llvm.mem.parallel_loop_access implies if-conversion safety.
4883        if (IsAnnotatedParallel)
4884          continue;
4885        return false;
4886      }
4887    }
4888
4889    // We don't predicate stores at the moment.
4890    if (I.mayWriteToMemory()) {
4891      auto *SI = dyn_cast<StoreInst>(&I);
4892      // We only support predication of stores in basic blocks with one
4893      // predecessor.
4894      if (!SI)
4895        return false;
4896
4897      // Build a masked store if it is legal for the target.
4898      if (isLegalMaskedStore(SI->getValueOperand()->getType(),
4899                             SI->getPointerOperand()) ||
4900          isLegalMaskedScatter(SI->getValueOperand()->getType())) {
4901        MaskedOp.insert(SI);
4902        continue;
4903      }
4904
4905      bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
4906      bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
4907
4908      if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
4909          !isSinglePredecessor)
4910        return false;
4911    }
4912    if (I.mayThrow())
4913      return false;
4914
4915    // The instructions below can trap.
4916    switch (I.getOpcode()) {
4917    default:
4918      continue;
4919    case Instruction::UDiv:
4920    case Instruction::SDiv:
4921    case Instruction::URem:
4922    case Instruction::SRem:
4923      return false;
4924    }
4925  }
4926
4927  return true;
4928}
4929
4930void InterleavedAccessInfo::collectConstStrideAccesses(
4931    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
4932    const ValueToValueMap &Strides) {
4933
4934  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
4935
4936  // Since it's desired that the load/store instructions be maintained in
4937  // "program order" for the interleaved access analysis, we have to visit the
4938  // blocks in the loop in reverse postorder (i.e., in a topological order).
4939  // Such an ordering will ensure that any load/store that may be executed
4940  // before a second load/store will precede the second load/store in
4941  // AccessStrideInfo.
4942  LoopBlocksDFS DFS(TheLoop);
4943  DFS.perform(LI);
4944  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
4945    for (auto &I : *BB) {
4946      auto *LI = dyn_cast<LoadInst>(&I);
4947      auto *SI = dyn_cast<StoreInst>(&I);
4948      if (!LI && !SI)
4949        continue;
4950
4951      Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
4952      int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides);
4953
4954      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
4955      PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4956      uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
4957
4958      // An alignment of 0 means target ABI alignment.
4959      unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
4960      if (!Align)
4961        Align = DL.getABITypeAlignment(PtrTy->getElementType());
4962
4963      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
4964    }
4965}
4966
4967// Analyze interleaved accesses and collect them into interleaved load and
4968// store groups.
4969//
4970// When generating code for an interleaved load group, we effectively hoist all
4971// loads in the group to the location of the first load in program order. When
4972// generating code for an interleaved store group, we sink all stores to the
4973// location of the last store. This code motion can change the order of load
4974// and store instructions and may break dependences.
4975//
4976// The code generation strategy mentioned above ensures that we won't violate
4977// any write-after-read (WAR) dependences.
4978//
4979// E.g., for the WAR dependence:  a = A[i];      // (1)
4980//                                A[i] = b;      // (2)
4981//
4982// The store group of (2) is always inserted at or below (2), and the load
4983// group of (1) is always inserted at or above (1). Thus, the instructions will
4984// never be reordered. All other dependences are checked to ensure the
4985// correctness of the instruction reordering.
4986//
4987// The algorithm visits all memory accesses in the loop in bottom-up program
4988// order. Program order is established by traversing the blocks in the loop in
4989// reverse postorder when collecting the accesses.
4990//
4991// We visit the memory accesses in bottom-up order because it can simplify the
4992// construction of store groups in the presence of write-after-write (WAW)
4993// dependences.
4994//
4995// E.g., for the WAW dependence:  A[i] = a;      // (1)
4996//                                A[i] = b;      // (2)
4997//                                A[i + 1] = c;  // (3)
4998//
4999// We will first create a store group with (3) and (2). (1) can't be added to
5000// this group because it and (2) are dependent. However, (1) can be grouped
5001// with other accesses that may precede it in program order. Note that a
5002// bottom-up order does not imply that WAW dependences should not be checked.
5003void InterleavedAccessInfo::analyzeInterleaving(
5004    const ValueToValueMap &Strides) {
5005  DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
5006
5007  // Holds all accesses with a constant stride.
5008  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
5009  collectConstStrideAccesses(AccessStrideInfo, Strides);
5010
5011  if (AccessStrideInfo.empty())
5012    return;
5013
5014  // Collect the dependences in the loop.
5015  collectDependences();
5016
5017  // Holds all interleaved store groups temporarily.
5018  SmallSetVector<InterleaveGroup *, 4> StoreGroups;
5019  // Holds all interleaved load groups temporarily.
5020  SmallSetVector<InterleaveGroup *, 4> LoadGroups;
5021
5022  // Search the load-load/write-write pair B-A in bottom-up order and try to
5023  // insert B into the interleave group of A according to 3 rules:
5024  //   1. A and B have the same stride.
5025  //   2. A and B have the same memory object size.
5026  //   3. B belongs to the group according to the distance.
5027  for (auto AI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
5028       AI != E; ++AI) {
5029    Instruction *A = AI->first;
5030    StrideDescriptor DesA = AI->second;
5031
5032    // Initialize a group for A if it has an allowable stride. Even if we don't
5033    // create a group for A, we continue with the bottom-up algorithm to ensure
5034    // we don't break any of A's dependences.
5035    InterleaveGroup *Group = nullptr;
5036    if (isStrided(DesA.Stride)) {
5037      Group = getInterleaveGroup(A);
5038      if (!Group) {
5039        DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
5040        Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
5041      }
5042      if (A->mayWriteToMemory())
5043        StoreGroups.insert(Group);
5044      else
5045        LoadGroups.insert(Group);
5046    }
5047
5048    for (auto BI = std::next(AI); BI != E; ++BI) {
5049      Instruction *B = BI->first;
5050      StrideDescriptor DesB = BI->second;
5051
5052      // Our code motion strategy implies that we can't have dependences
5053      // between accesses in an interleaved group and other accesses located
5054      // between the first and last member of the group. Note that this also
5055      // means that a group can't have more than one member at a given offset.
5056      // The accesses in a group can have dependences with other accesses, but
5057      // we must ensure we don't extend the boundaries of the group such that
5058      // we encompass those dependent accesses.
5059      //
5060      // For example, assume we have the sequence of accesses shown below in a
5061      // stride-2 loop:
5062      //
5063      //  (1, 2) is a group | A[i]   = a;  // (1)
5064      //                    | A[i-1] = b;  // (2) |
5065      //                      A[i-3] = c;  // (3)
5066      //                      A[i]   = d;  // (4) | (2, 4) is not a group
5067      //
5068      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
5069      // but not with (4). If we did, the dependent access (3) would be within
5070      // the boundaries of the (2, 4) group.
5071      if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) {
5072
5073        // If a dependence exists and B is already in a group, we know that B
5074        // must be a store since B precedes A and WAR dependences are allowed.
5075        // Thus, B would be sunk below A. We release B's group to prevent this
5076        // illegal code motion. B will then be free to form another group with
5077        // instructions that precede it.
5078        if (isInterleaved(B)) {
5079          InterleaveGroup *StoreGroup = getInterleaveGroup(B);
5080          StoreGroups.remove(StoreGroup);
5081          releaseGroup(StoreGroup);
5082        }
5083
5084        // If a dependence exists and B is not already in a group (or it was
5085        // and we just released it), A might be hoisted above B (if A is a
5086        // load) or another store might be sunk below B (if A is a store). In
5087        // either case, we can't add additional instructions to A's group. A
5088        // will only form a group with instructions that it precedes.
5089        break;
5090      }
5091
5092      // At this point, we've checked for illegal code motion. If either A or B
5093      // isn't strided, there's nothing left to do.
5094      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
5095        continue;
5096
5097      // Ignore if B is already in a group or B is a different memory operation.
5098      if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
5099        continue;
5100
5101      // Check the rule 1 and 2.
5102      if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
5103        continue;
5104
5105      // Calculate the distance and prepare for the rule 3.
5106      const SCEVConstant *DistToA = dyn_cast<SCEVConstant>(
5107          PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev));
5108      if (!DistToA)
5109        continue;
5110
5111      int64_t DistanceToA = DistToA->getAPInt().getSExtValue();
5112
5113      // Skip if the distance is not multiple of size as they are not in the
5114      // same group.
5115      if (DistanceToA % static_cast<int64_t>(DesA.Size))
5116        continue;
5117
5118      // If either A or B is in a predicated block, we prevent adding them to a
5119      // group. We may be able to relax this limitation in the future once we
5120      // handle more complicated blocks.
5121      if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
5122        continue;
5123
5124      // The index of B is the index of A plus the related index to A.
5125      int IndexB =
5126          Group->getIndex(A) + DistanceToA / static_cast<int64_t>(DesA.Size);
5127
5128      // Try to insert B into the group.
5129      if (Group->insertMember(B, IndexB, DesB.Align)) {
5130        DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
5131                     << "    into the interleave group with" << *A << '\n');
5132        InterleaveGroupMap[B] = Group;
5133
5134        // Set the first load in program order as the insert position.
5135        if (B->mayReadFromMemory())
5136          Group->setInsertPos(B);
5137      }
5138    } // Iteration on instruction B
5139  }   // Iteration on instruction A
5140
5141  // Remove interleaved store groups with gaps.
5142  for (InterleaveGroup *Group : StoreGroups)
5143    if (Group->getNumMembers() != Group->getFactor())
5144      releaseGroup(Group);
5145
5146  // If there is a non-reversed interleaved load group with gaps, we will need
5147  // to execute at least one scalar epilogue iteration. This will ensure that
5148  // we don't speculatively access memory out-of-bounds. Note that we only need
5149  // to look for a member at index factor - 1, since every group must have a
5150  // member at index zero.
5151  for (InterleaveGroup *Group : LoadGroups)
5152    if (!Group->getMember(Group->getFactor() - 1)) {
5153      if (Group->isReverse()) {
5154        releaseGroup(Group);
5155      } else {
5156        DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
5157        RequiresScalarEpilogue = true;
5158      }
5159    }
5160}
5161
5162LoopVectorizationCostModel::VectorizationFactor
5163LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
5164  // Width 1 means no vectorize
5165  VectorizationFactor Factor = {1U, 0U};
5166  if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
5167    emitAnalysis(
5168        VectorizationReport()
5169        << "runtime pointer checks needed. Enable vectorization of this "
5170           "loop with '#pragma clang loop vectorize(enable)' when "
5171           "compiling with -Os/-Oz");
5172    DEBUG(dbgs()
5173          << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
5174    return Factor;
5175  }
5176
5177  if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
5178    emitAnalysis(
5179        VectorizationReport()
5180        << "store that is conditionally executed prevents vectorization");
5181    DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5182    return Factor;
5183  }
5184
5185  // Find the trip count.
5186  unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5187  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5188
5189  MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5190  unsigned SmallestType, WidestType;
5191  std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5192  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5193  unsigned MaxSafeDepDist = -1U;
5194
5195  // Get the maximum safe dependence distance in bits computed by LAA. If the
5196  // loop contains any interleaved accesses, we divide the dependence distance
5197  // by the maximum interleave factor of all interleaved groups. Note that
5198  // although the division ensures correctness, this is a fairly conservative
5199  // computation because the maximum distance computed by LAA may not involve
5200  // any of the interleaved accesses.
5201  if (Legal->getMaxSafeDepDistBytes() != -1U)
5202    MaxSafeDepDist =
5203        Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor();
5204
5205  WidestRegister =
5206      ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist);
5207  unsigned MaxVectorSize = WidestRegister / WidestType;
5208
5209  DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
5210               << WidestType << " bits.\n");
5211  DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
5212               << " bits.\n");
5213
5214  if (MaxVectorSize == 0) {
5215    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5216    MaxVectorSize = 1;
5217  }
5218
5219  assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
5220                                " into one vector!");
5221
5222  unsigned VF = MaxVectorSize;
5223  if (MaximizeBandwidth && !OptForSize) {
5224    // Collect all viable vectorization factors.
5225    SmallVector<unsigned, 8> VFs;
5226    unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5227    for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
5228      VFs.push_back(VS);
5229
5230    // For each VF calculate its register usage.
5231    auto RUs = calculateRegisterUsage(VFs);
5232
5233    // Select the largest VF which doesn't require more registers than existing
5234    // ones.
5235    unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
5236    for (int i = RUs.size() - 1; i >= 0; --i) {
5237      if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
5238        VF = VFs[i];
5239        break;
5240      }
5241    }
5242  }
5243
5244  // If we optimize the program for size, avoid creating the tail loop.
5245  if (OptForSize) {
5246    // If we are unable to calculate the trip count then don't try to vectorize.
5247    if (TC < 2) {
5248      emitAnalysis(
5249          VectorizationReport()
5250          << "unable to calculate the loop count due to complex control flow");
5251      DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
5252      return Factor;
5253    }
5254
5255    // Find the maximum SIMD width that can fit within the trip count.
5256    VF = TC % MaxVectorSize;
5257
5258    if (VF == 0)
5259      VF = MaxVectorSize;
5260    else {
5261      // If the trip count that we found modulo the vectorization factor is not
5262      // zero then we require a tail.
5263      emitAnalysis(VectorizationReport()
5264                   << "cannot optimize for size and vectorize at the "
5265                      "same time. Enable vectorization of this loop "
5266                      "with '#pragma clang loop vectorize(enable)' "
5267                      "when compiling with -Os/-Oz");
5268      DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
5269      return Factor;
5270    }
5271  }
5272
5273  int UserVF = Hints->getWidth();
5274  if (UserVF != 0) {
5275    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5276    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5277
5278    Factor.Width = UserVF;
5279    return Factor;
5280  }
5281
5282  float Cost = expectedCost(1).first;
5283#ifndef NDEBUG
5284  const float ScalarCost = Cost;
5285#endif /* NDEBUG */
5286  unsigned Width = 1;
5287  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5288
5289  bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5290  // Ignore scalar width, because the user explicitly wants vectorization.
5291  if (ForceVectorization && VF > 1) {
5292    Width = 2;
5293    Cost = expectedCost(Width).first / (float)Width;
5294  }
5295
5296  for (unsigned i = 2; i <= VF; i *= 2) {
5297    // Notice that the vector loop needs to be executed less times, so
5298    // we need to divide the cost of the vector loops by the width of
5299    // the vector elements.
5300    VectorizationCostTy C = expectedCost(i);
5301    float VectorCost = C.first / (float)i;
5302    DEBUG(dbgs() << "LV: Vector loop of width " << i
5303                 << " costs: " << (int)VectorCost << ".\n");
5304    if (!C.second && !ForceVectorization) {
5305      DEBUG(
5306          dbgs() << "LV: Not considering vector loop of width " << i
5307                 << " because it will not generate any vector instructions.\n");
5308      continue;
5309    }
5310    if (VectorCost < Cost) {
5311      Cost = VectorCost;
5312      Width = i;
5313    }
5314  }
5315
5316  DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5317        << "LV: Vectorization seems to be not beneficial, "
5318        << "but was forced by a user.\n");
5319  DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5320  Factor.Width = Width;
5321  Factor.Cost = Width * Cost;
5322  return Factor;
5323}
5324
5325std::pair<unsigned, unsigned>
5326LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5327  unsigned MinWidth = -1U;
5328  unsigned MaxWidth = 8;
5329  const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5330
5331  // For each block.
5332  for (BasicBlock *BB : TheLoop->blocks()) {
5333    // For each instruction in the loop.
5334    for (Instruction &I : *BB) {
5335      Type *T = I.getType();
5336
5337      // Skip ignored values.
5338      if (ValuesToIgnore.count(&I))
5339        continue;
5340
5341      // Only examine Loads, Stores and PHINodes.
5342      if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5343        continue;
5344
5345      // Examine PHI nodes that are reduction variables. Update the type to
5346      // account for the recurrence type.
5347      if (auto *PN = dyn_cast<PHINode>(&I)) {
5348        if (!Legal->isReductionVariable(PN))
5349          continue;
5350        RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
5351        T = RdxDesc.getRecurrenceType();
5352      }
5353
5354      // Examine the stored values.
5355      if (auto *ST = dyn_cast<StoreInst>(&I))
5356        T = ST->getValueOperand()->getType();
5357
5358      // Ignore loaded pointer types and stored pointer types that are not
5359      // consecutive. However, we do want to take consecutive stores/loads of
5360      // pointer vectors into account.
5361      if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I))
5362        continue;
5363
5364      MinWidth = std::min(MinWidth,
5365                          (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5366      MaxWidth = std::max(MaxWidth,
5367                          (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5368    }
5369  }
5370
5371  return {MinWidth, MaxWidth};
5372}
5373
5374unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
5375                                                           unsigned VF,
5376                                                           unsigned LoopCost) {
5377
5378  // -- The interleave heuristics --
5379  // We interleave the loop in order to expose ILP and reduce the loop overhead.
5380  // There are many micro-architectural considerations that we can't predict
5381  // at this level. For example, frontend pressure (on decode or fetch) due to
5382  // code size, or the number and capabilities of the execution ports.
5383  //
5384  // We use the following heuristics to select the interleave count:
5385  // 1. If the code has reductions, then we interleave to break the cross
5386  // iteration dependency.
5387  // 2. If the loop is really small, then we interleave to reduce the loop
5388  // overhead.
5389  // 3. We don't interleave if we think that we will spill registers to memory
5390  // due to the increased register pressure.
5391
5392  // When we optimize for size, we don't interleave.
5393  if (OptForSize)
5394    return 1;
5395
5396  // We used the distance for the interleave count.
5397  if (Legal->getMaxSafeDepDistBytes() != -1U)
5398    return 1;
5399
5400  // Do not interleave loops with a relatively small trip count.
5401  unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5402  if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
5403    return 1;
5404
5405  unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5406  DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5407               << " registers\n");
5408
5409  if (VF == 1) {
5410    if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5411      TargetNumRegisters = ForceTargetNumScalarRegs;
5412  } else {
5413    if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5414      TargetNumRegisters = ForceTargetNumVectorRegs;
5415  }
5416
5417  RegisterUsage R = calculateRegisterUsage({VF})[0];
5418  // We divide by these constants so assume that we have at least one
5419  // instruction that uses at least one register.
5420  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5421  R.NumInstructions = std::max(R.NumInstructions, 1U);
5422
5423  // We calculate the interleave count using the following formula.
5424  // Subtract the number of loop invariants from the number of available
5425  // registers. These registers are used by all of the interleaved instances.
5426  // Next, divide the remaining registers by the number of registers that is
5427  // required by the loop, in order to estimate how many parallel instances
5428  // fit without causing spills. All of this is rounded down if necessary to be
5429  // a power of two. We want power of two interleave count to simplify any
5430  // addressing operations or alignment considerations.
5431  unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5432                              R.MaxLocalUsers);
5433
5434  // Don't count the induction variable as interleaved.
5435  if (EnableIndVarRegisterHeur)
5436    IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5437                       std::max(1U, (R.MaxLocalUsers - 1)));
5438
5439  // Clamp the interleave ranges to reasonable counts.
5440  unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5441
5442  // Check if the user has overridden the max.
5443  if (VF == 1) {
5444    if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5445      MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5446  } else {
5447    if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5448      MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5449  }
5450
5451  // If we did not calculate the cost for VF (because the user selected the VF)
5452  // then we calculate the cost of VF here.
5453  if (LoopCost == 0)
5454    LoopCost = expectedCost(VF).first;
5455
5456  // Clamp the calculated IC to be between the 1 and the max interleave count
5457  // that the target allows.
5458  if (IC > MaxInterleaveCount)
5459    IC = MaxInterleaveCount;
5460  else if (IC < 1)
5461    IC = 1;
5462
5463  // Interleave if we vectorized this loop and there is a reduction that could
5464  // benefit from interleaving.
5465  if (VF > 1 && Legal->getReductionVars()->size()) {
5466    DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5467    return IC;
5468  }
5469
5470  // Note that if we've already vectorized the loop we will have done the
5471  // runtime check and so interleaving won't require further checks.
5472  bool InterleavingRequiresRuntimePointerCheck =
5473      (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5474
5475  // We want to interleave small loops in order to reduce the loop overhead and
5476  // potentially expose ILP opportunities.
5477  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5478  if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5479    // We assume that the cost overhead is 1 and we use the cost model
5480    // to estimate the cost of the loop and interleave until the cost of the
5481    // loop overhead is about 5% of the cost of the loop.
5482    unsigned SmallIC =
5483        std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5484
5485    // Interleave until store/load ports (estimated by max interleave count) are
5486    // saturated.
5487    unsigned NumStores = Legal->getNumStores();
5488    unsigned NumLoads = Legal->getNumLoads();
5489    unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5490    unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5491
5492    // If we have a scalar reduction (vector reductions are already dealt with
5493    // by this point), we can increase the critical path length if the loop
5494    // we're interleaving is inside another loop. Limit, by default to 2, so the
5495    // critical path only gets increased by one reduction operation.
5496    if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) {
5497      unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5498      SmallIC = std::min(SmallIC, F);
5499      StoresIC = std::min(StoresIC, F);
5500      LoadsIC = std::min(LoadsIC, F);
5501    }
5502
5503    if (EnableLoadStoreRuntimeInterleave &&
5504        std::max(StoresIC, LoadsIC) > SmallIC) {
5505      DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5506      return std::max(StoresIC, LoadsIC);
5507    }
5508
5509    DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5510    return SmallIC;
5511  }
5512
5513  // Interleave if this is a large loop (small loops are already dealt with by
5514  // this point) that could benefit from interleaving.
5515  bool HasReductions = (Legal->getReductionVars()->size() > 0);
5516  if (TTI.enableAggressiveInterleaving(HasReductions)) {
5517    DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5518    return IC;
5519  }
5520
5521  DEBUG(dbgs() << "LV: Not Interleaving.\n");
5522  return 1;
5523}
5524
5525SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5526LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5527  // This function calculates the register usage by measuring the highest number
5528  // of values that are alive at a single location. Obviously, this is a very
5529  // rough estimation. We scan the loop in a topological order in order and
5530  // assign a number to each instruction. We use RPO to ensure that defs are
5531  // met before their users. We assume that each instruction that has in-loop
5532  // users starts an interval. We record every time that an in-loop value is
5533  // used, so we have a list of the first and last occurrences of each
5534  // instruction. Next, we transpose this data structure into a multi map that
5535  // holds the list of intervals that *end* at a specific location. This multi
5536  // map allows us to perform a linear search. We scan the instructions linearly
5537  // and record each time that a new interval starts, by placing it in a set.
5538  // If we find this value in the multi-map then we remove it from the set.
5539  // The max register usage is the maximum size of the set.
5540  // We also search for instructions that are defined outside the loop, but are
5541  // used inside the loop. We need this number separately from the max-interval
5542  // usage number because when we unroll, loop-invariant values do not take
5543  // more register.
5544  LoopBlocksDFS DFS(TheLoop);
5545  DFS.perform(LI);
5546
5547  RegisterUsage RU;
5548  RU.NumInstructions = 0;
5549
5550  // Each 'key' in the map opens a new interval. The values
5551  // of the map are the index of the 'last seen' usage of the
5552  // instruction that is the key.
5553  typedef DenseMap<Instruction *, unsigned> IntervalMap;
5554  // Maps instruction to its index.
5555  DenseMap<unsigned, Instruction *> IdxToInstr;
5556  // Marks the end of each interval.
5557  IntervalMap EndPoint;
5558  // Saves the list of instruction indices that are used in the loop.
5559  SmallSet<Instruction *, 8> Ends;
5560  // Saves the list of values that are used in the loop but are
5561  // defined outside the loop, such as arguments and constants.
5562  SmallPtrSet<Value *, 8> LoopInvariants;
5563
5564  unsigned Index = 0;
5565  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5566    RU.NumInstructions += BB->size();
5567    for (Instruction &I : *BB) {
5568      IdxToInstr[Index++] = &I;
5569
5570      // Save the end location of each USE.
5571      for (Value *U : I.operands()) {
5572        auto *Instr = dyn_cast<Instruction>(U);
5573
5574        // Ignore non-instruction values such as arguments, constants, etc.
5575        if (!Instr)
5576          continue;
5577
5578        // If this instruction is outside the loop then record it and continue.
5579        if (!TheLoop->contains(Instr)) {
5580          LoopInvariants.insert(Instr);
5581          continue;
5582        }
5583
5584        // Overwrite previous end points.
5585        EndPoint[Instr] = Index;
5586        Ends.insert(Instr);
5587      }
5588    }
5589  }
5590
5591  // Saves the list of intervals that end with the index in 'key'.
5592  typedef SmallVector<Instruction *, 2> InstrList;
5593  DenseMap<unsigned, InstrList> TransposeEnds;
5594
5595  // Transpose the EndPoints to a list of values that end at each index.
5596  for (auto &Interval : EndPoint)
5597    TransposeEnds[Interval.second].push_back(Interval.first);
5598
5599  SmallSet<Instruction *, 8> OpenIntervals;
5600
5601  // Get the size of the widest register.
5602  unsigned MaxSafeDepDist = -1U;
5603  if (Legal->getMaxSafeDepDistBytes() != -1U)
5604    MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5605  unsigned WidestRegister =
5606      std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5607  const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5608
5609  SmallVector<RegisterUsage, 8> RUs(VFs.size());
5610  SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
5611
5612  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5613
5614  // A lambda that gets the register usage for the given type and VF.
5615  auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5616    if (Ty->isTokenTy())
5617      return 0U;
5618    unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5619    return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5620  };
5621
5622  for (unsigned int i = 0; i < Index; ++i) {
5623    Instruction *I = IdxToInstr[i];
5624    // Ignore instructions that are never used within the loop.
5625    if (!Ends.count(I))
5626      continue;
5627
5628    // Remove all of the instructions that end at this location.
5629    InstrList &List = TransposeEnds[i];
5630    for (Instruction *ToRemove : List)
5631      OpenIntervals.erase(ToRemove);
5632
5633    // Skip ignored values.
5634    if (ValuesToIgnore.count(I))
5635      continue;
5636
5637    // For each VF find the maximum usage of registers.
5638    for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5639      if (VFs[j] == 1) {
5640        MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
5641        continue;
5642      }
5643
5644      // Count the number of live intervals.
5645      unsigned RegUsage = 0;
5646      for (auto Inst : OpenIntervals) {
5647        // Skip ignored values for VF > 1.
5648        if (VecValuesToIgnore.count(Inst))
5649          continue;
5650        RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
5651      }
5652      MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
5653    }
5654
5655    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5656                 << OpenIntervals.size() << '\n');
5657
5658    // Add the current instruction to the list of open intervals.
5659    OpenIntervals.insert(I);
5660  }
5661
5662  for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5663    unsigned Invariant = 0;
5664    if (VFs[i] == 1)
5665      Invariant = LoopInvariants.size();
5666    else {
5667      for (auto Inst : LoopInvariants)
5668        Invariant += GetRegUsage(Inst->getType(), VFs[i]);
5669    }
5670
5671    DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
5672    DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
5673    DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5674    DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
5675
5676    RU.LoopInvariantRegs = Invariant;
5677    RU.MaxLocalUsers = MaxUsages[i];
5678    RUs[i] = RU;
5679  }
5680
5681  return RUs;
5682}
5683
5684LoopVectorizationCostModel::VectorizationCostTy
5685LoopVectorizationCostModel::expectedCost(unsigned VF) {
5686  VectorizationCostTy Cost;
5687
5688  // For each block.
5689  for (BasicBlock *BB : TheLoop->blocks()) {
5690    VectorizationCostTy BlockCost;
5691
5692    // For each instruction in the old loop.
5693    for (Instruction &I : *BB) {
5694      // Skip dbg intrinsics.
5695      if (isa<DbgInfoIntrinsic>(I))
5696        continue;
5697
5698      // Skip ignored values.
5699      if (ValuesToIgnore.count(&I))
5700        continue;
5701
5702      VectorizationCostTy C = getInstructionCost(&I, VF);
5703
5704      // Check if we should override the cost.
5705      if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5706        C.first = ForceTargetInstructionCost;
5707
5708      BlockCost.first += C.first;
5709      BlockCost.second |= C.second;
5710      DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
5711                   << VF << " For instruction: " << I << '\n');
5712    }
5713
5714    // We assume that if-converted blocks have a 50% chance of being executed.
5715    // When the code is scalar then some of the blocks are avoided due to CF.
5716    // When the code is vectorized we execute all code paths.
5717    if (VF == 1 && Legal->blockNeedsPredication(BB))
5718      BlockCost.first /= 2;
5719
5720    Cost.first += BlockCost.first;
5721    Cost.second |= BlockCost.second;
5722  }
5723
5724  return Cost;
5725}
5726
5727/// \brief Check if the load/store instruction \p I may be translated into
5728/// gather/scatter during vectorization.
5729///
5730/// Pointer \p Ptr specifies address in memory for the given scalar memory
5731/// instruction. We need it to retrieve data type.
5732/// Using gather/scatter is possible when it is supported by target.
5733static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr,
5734                                   LoopVectorizationLegality *Legal) {
5735  auto *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
5736  return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) ||
5737         (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy));
5738}
5739
5740/// \brief Check whether the address computation for a non-consecutive memory
5741/// access looks like an unlikely candidate for being merged into the indexing
5742/// mode.
5743///
5744/// We look for a GEP which has one index that is an induction variable and all
5745/// other indices are loop invariant. If the stride of this access is also
5746/// within a small bound we decide that this address computation can likely be
5747/// merged into the addressing mode.
5748/// In all other cases, we identify the address computation as complex.
5749static bool isLikelyComplexAddressComputation(Value *Ptr,
5750                                              LoopVectorizationLegality *Legal,
5751                                              ScalarEvolution *SE,
5752                                              const Loop *TheLoop) {
5753  auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5754  if (!Gep)
5755    return true;
5756
5757  // We are looking for a gep with all loop invariant indices except for one
5758  // which should be an induction variable.
5759  unsigned NumOperands = Gep->getNumOperands();
5760  for (unsigned i = 1; i < NumOperands; ++i) {
5761    Value *Opd = Gep->getOperand(i);
5762    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5763        !Legal->isInductionVariable(Opd))
5764      return true;
5765  }
5766
5767  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5768  // can likely be merged into the address computation.
5769  unsigned MaxMergeDistance = 64;
5770
5771  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5772  if (!AddRec)
5773    return true;
5774
5775  // Check the step is constant.
5776  const SCEV *Step = AddRec->getStepRecurrence(*SE);
5777  // Calculate the pointer stride and check if it is consecutive.
5778  const auto *C = dyn_cast<SCEVConstant>(Step);
5779  if (!C)
5780    return true;
5781
5782  const APInt &APStepVal = C->getAPInt();
5783
5784  // Huge step value - give up.
5785  if (APStepVal.getBitWidth() > 64)
5786    return true;
5787
5788  int64_t StepVal = APStepVal.getSExtValue();
5789
5790  return StepVal > MaxMergeDistance;
5791}
5792
5793static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5794  return Legal->hasStride(I->getOperand(0)) ||
5795         Legal->hasStride(I->getOperand(1));
5796}
5797
5798LoopVectorizationCostModel::VectorizationCostTy
5799LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5800  // If we know that this instruction will remain uniform, check the cost of
5801  // the scalar version.
5802  if (Legal->isUniformAfterVectorization(I))
5803    VF = 1;
5804
5805  Type *VectorTy;
5806  unsigned C = getInstructionCost(I, VF, VectorTy);
5807
5808  bool TypeNotScalarized =
5809      VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF;
5810  return VectorizationCostTy(C, TypeNotScalarized);
5811}
5812
5813unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
5814                                                        unsigned VF,
5815                                                        Type *&VectorTy) {
5816  Type *RetTy = I->getType();
5817  if (VF > 1 && MinBWs.count(I))
5818    RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5819  VectorTy = ToVectorTy(RetTy, VF);
5820  auto SE = PSE.getSE();
5821
5822  // TODO: We need to estimate the cost of intrinsic calls.
5823  switch (I->getOpcode()) {
5824  case Instruction::GetElementPtr:
5825    // We mark this instruction as zero-cost because the cost of GEPs in
5826    // vectorized code depends on whether the corresponding memory instruction
5827    // is scalarized or not. Therefore, we handle GEPs with the memory
5828    // instruction cost.
5829    return 0;
5830  case Instruction::Br: {
5831    return TTI.getCFInstrCost(I->getOpcode());
5832  }
5833  case Instruction::PHI: {
5834    auto *Phi = cast<PHINode>(I);
5835
5836    // First-order recurrences are replaced by vector shuffles inside the loop.
5837    if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
5838      return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5839                                VectorTy, VF - 1, VectorTy);
5840
5841    // TODO: IF-converted IFs become selects.
5842    return 0;
5843  }
5844  case Instruction::Add:
5845  case Instruction::FAdd:
5846  case Instruction::Sub:
5847  case Instruction::FSub:
5848  case Instruction::Mul:
5849  case Instruction::FMul:
5850  case Instruction::UDiv:
5851  case Instruction::SDiv:
5852  case Instruction::FDiv:
5853  case Instruction::URem:
5854  case Instruction::SRem:
5855  case Instruction::FRem:
5856  case Instruction::Shl:
5857  case Instruction::LShr:
5858  case Instruction::AShr:
5859  case Instruction::And:
5860  case Instruction::Or:
5861  case Instruction::Xor: {
5862    // Since we will replace the stride by 1 the multiplication should go away.
5863    if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5864      return 0;
5865    // Certain instructions can be cheaper to vectorize if they have a constant
5866    // second vector operand. One example of this are shifts on x86.
5867    TargetTransformInfo::OperandValueKind Op1VK =
5868        TargetTransformInfo::OK_AnyValue;
5869    TargetTransformInfo::OperandValueKind Op2VK =
5870        TargetTransformInfo::OK_AnyValue;
5871    TargetTransformInfo::OperandValueProperties Op1VP =
5872        TargetTransformInfo::OP_None;
5873    TargetTransformInfo::OperandValueProperties Op2VP =
5874        TargetTransformInfo::OP_None;
5875    Value *Op2 = I->getOperand(1);
5876
5877    // Check for a splat of a constant or for a non uniform vector of constants.
5878    if (isa<ConstantInt>(Op2)) {
5879      ConstantInt *CInt = cast<ConstantInt>(Op2);
5880      if (CInt && CInt->getValue().isPowerOf2())
5881        Op2VP = TargetTransformInfo::OP_PowerOf2;
5882      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5883    } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5884      Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5885      Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
5886      if (SplatValue) {
5887        ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
5888        if (CInt && CInt->getValue().isPowerOf2())
5889          Op2VP = TargetTransformInfo::OP_PowerOf2;
5890        Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5891      }
5892    }
5893
5894    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
5895                                      Op1VP, Op2VP);
5896  }
5897  case Instruction::Select: {
5898    SelectInst *SI = cast<SelectInst>(I);
5899    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5900    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5901    Type *CondTy = SI->getCondition()->getType();
5902    if (!ScalarCond)
5903      CondTy = VectorType::get(CondTy, VF);
5904
5905    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5906  }
5907  case Instruction::ICmp:
5908  case Instruction::FCmp: {
5909    Type *ValTy = I->getOperand(0)->getType();
5910    Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
5911    auto It = MinBWs.find(Op0AsInstruction);
5912    if (VF > 1 && It != MinBWs.end())
5913      ValTy = IntegerType::get(ValTy->getContext(), It->second);
5914    VectorTy = ToVectorTy(ValTy, VF);
5915    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5916  }
5917  case Instruction::Store:
5918  case Instruction::Load: {
5919    StoreInst *SI = dyn_cast<StoreInst>(I);
5920    LoadInst *LI = dyn_cast<LoadInst>(I);
5921    Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType());
5922    VectorTy = ToVectorTy(ValTy, VF);
5923
5924    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5925    unsigned AS =
5926        SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace();
5927    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5928    // We add the cost of address computation here instead of with the gep
5929    // instruction because only here we know whether the operation is
5930    // scalarized.
5931    if (VF == 1)
5932      return TTI.getAddressComputationCost(VectorTy) +
5933             TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5934
5935    if (LI && Legal->isUniform(Ptr)) {
5936      // Scalar load + broadcast
5937      unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType());
5938      Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5939                                  Alignment, AS);
5940      return Cost +
5941             TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy);
5942    }
5943
5944    // For an interleaved access, calculate the total cost of the whole
5945    // interleave group.
5946    if (Legal->isAccessInterleaved(I)) {
5947      auto Group = Legal->getInterleavedAccessGroup(I);
5948      assert(Group && "Fail to get an interleaved access group.");
5949
5950      // Only calculate the cost once at the insert position.
5951      if (Group->getInsertPos() != I)
5952        return 0;
5953
5954      unsigned InterleaveFactor = Group->getFactor();
5955      Type *WideVecTy =
5956          VectorType::get(VectorTy->getVectorElementType(),
5957                          VectorTy->getVectorNumElements() * InterleaveFactor);
5958
5959      // Holds the indices of existing members in an interleaved load group.
5960      // An interleaved store group doesn't need this as it doesn't allow gaps.
5961      SmallVector<unsigned, 4> Indices;
5962      if (LI) {
5963        for (unsigned i = 0; i < InterleaveFactor; i++)
5964          if (Group->getMember(i))
5965            Indices.push_back(i);
5966      }
5967
5968      // Calculate the cost of the whole interleaved group.
5969      unsigned Cost = TTI.getInterleavedMemoryOpCost(
5970          I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5971          Group->getAlignment(), AS);
5972
5973      if (Group->isReverse())
5974        Cost +=
5975            Group->getNumMembers() *
5976            TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5977
5978      // FIXME: The interleaved load group with a huge gap could be even more
5979      // expensive than scalar operations. Then we could ignore such group and
5980      // use scalar operations instead.
5981      return Cost;
5982    }
5983
5984    // Scalarized loads/stores.
5985    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5986    bool UseGatherOrScatter =
5987        (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal);
5988
5989    bool Reverse = ConsecutiveStride < 0;
5990    const DataLayout &DL = I->getModule()->getDataLayout();
5991    uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
5992    uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
5993    if ((!ConsecutiveStride && !UseGatherOrScatter) ||
5994        ScalarAllocatedSize != VectorElementSize) {
5995      bool IsComplexComputation =
5996          isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5997      unsigned Cost = 0;
5998      // The cost of extracting from the value vector and pointer vector.
5999      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6000      for (unsigned i = 0; i < VF; ++i) {
6001        //  The cost of extracting the pointer operand.
6002        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
6003        // In case of STORE, the cost of ExtractElement from the vector.
6004        // In case of LOAD, the cost of InsertElement into the returned
6005        // vector.
6006        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement
6007                                          : Instruction::InsertElement,
6008                                       VectorTy, i);
6009      }
6010
6011      // The cost of the scalar loads/stores.
6012      Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
6013      Cost += VF *
6014              TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
6015                                  Alignment, AS);
6016      return Cost;
6017    }
6018
6019    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
6020    if (UseGatherOrScatter) {
6021      assert(ConsecutiveStride == 0 &&
6022             "Gather/Scatter are not used for consecutive stride");
6023      return Cost +
6024             TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
6025                                        Legal->isMaskRequired(I), Alignment);
6026    }
6027    // Wide load/stores.
6028    if (Legal->isMaskRequired(I))
6029      Cost +=
6030          TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6031    else
6032      Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6033
6034    if (Reverse)
6035      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6036    return Cost;
6037  }
6038  case Instruction::ZExt:
6039  case Instruction::SExt:
6040  case Instruction::FPToUI:
6041  case Instruction::FPToSI:
6042  case Instruction::FPExt:
6043  case Instruction::PtrToInt:
6044  case Instruction::IntToPtr:
6045  case Instruction::SIToFP:
6046  case Instruction::UIToFP:
6047  case Instruction::Trunc:
6048  case Instruction::FPTrunc:
6049  case Instruction::BitCast: {
6050    // We optimize the truncation of induction variable.
6051    // The cost of these is the same as the scalar operation.
6052    if (I->getOpcode() == Instruction::Trunc &&
6053        Legal->isInductionVariable(I->getOperand(0)))
6054      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
6055                                  I->getOperand(0)->getType());
6056
6057    Type *SrcScalarTy = I->getOperand(0)->getType();
6058    Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
6059    if (VF > 1 && MinBWs.count(I)) {
6060      // This cast is going to be shrunk. This may remove the cast or it might
6061      // turn it into slightly different cast. For example, if MinBW == 16,
6062      // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6063      //
6064      // Calculate the modified src and dest types.
6065      Type *MinVecTy = VectorTy;
6066      if (I->getOpcode() == Instruction::Trunc) {
6067        SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6068        VectorTy =
6069            largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6070      } else if (I->getOpcode() == Instruction::ZExt ||
6071                 I->getOpcode() == Instruction::SExt) {
6072        SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6073        VectorTy =
6074            smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6075      }
6076    }
6077
6078    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
6079  }
6080  case Instruction::Call: {
6081    bool NeedToScalarize;
6082    CallInst *CI = cast<CallInst>(I);
6083    unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
6084    if (getVectorIntrinsicIDForCall(CI, TLI))
6085      return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
6086    return CallCost;
6087  }
6088  default: {
6089    // We are scalarizing the instruction. Return the cost of the scalar
6090    // instruction, plus the cost of insert and extract into vector
6091    // elements, times the vector width.
6092    unsigned Cost = 0;
6093
6094    if (!RetTy->isVoidTy() && VF != 1) {
6095      unsigned InsCost =
6096          TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy);
6097      unsigned ExtCost =
6098          TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy);
6099
6100      // The cost of inserting the results plus extracting each one of the
6101      // operands.
6102      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
6103    }
6104
6105    // The cost of executing VF copies of the scalar instruction. This opcode
6106    // is unknown. Assume that it is the same as 'mul'.
6107    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6108    return Cost;
6109  }
6110  } // end of switch.
6111}
6112
6113char LoopVectorize::ID = 0;
6114static const char lv_name[] = "Loop Vectorization";
6115INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6116INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6117INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6118INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6119INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6120INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6121INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6122INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6123INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6124INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
6125INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6126INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6127INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6128INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6129INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6130
6131namespace llvm {
6132Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6133  return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6134}
6135}
6136
6137bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6138  // Check for a store.
6139  if (auto *ST = dyn_cast<StoreInst>(Inst))
6140    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
6141
6142  // Check for a load.
6143  if (auto *LI = dyn_cast<LoadInst>(Inst))
6144    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
6145
6146  return false;
6147}
6148
6149void LoopVectorizationCostModel::collectValuesToIgnore() {
6150  // Ignore ephemeral values.
6151  CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6152
6153  // Ignore type-promoting instructions we identified during reduction
6154  // detection.
6155  for (auto &Reduction : *Legal->getReductionVars()) {
6156    RecurrenceDescriptor &RedDes = Reduction.second;
6157    SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6158    VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6159  }
6160
6161  // Ignore induction phis that are only used in either GetElementPtr or ICmp
6162  // instruction to exit loop. Induction variables usually have large types and
6163  // can have big impact when estimating register usage.
6164  // This is for when VF > 1.
6165  for (auto &Induction : *Legal->getInductionVars()) {
6166    auto *PN = Induction.first;
6167    auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
6168
6169    // Check that the PHI is only used by the induction increment (UpdateV) or
6170    // by GEPs. Then check that UpdateV is only used by a compare instruction,
6171    // the loop header PHI, or by GEPs.
6172    // FIXME: Need precise def-use analysis to determine if this instruction
6173    // variable will be vectorized.
6174    if (all_of(PN->users(),
6175               [&](const User *U) -> bool {
6176                 return U == UpdateV || isa<GetElementPtrInst>(U);
6177               }) &&
6178        all_of(UpdateV->users(), [&](const User *U) -> bool {
6179          return U == PN || isa<ICmpInst>(U) || isa<GetElementPtrInst>(U);
6180        })) {
6181      VecValuesToIgnore.insert(PN);
6182      VecValuesToIgnore.insert(UpdateV);
6183    }
6184  }
6185
6186  // Ignore instructions that will not be vectorized.
6187  // This is for when VF > 1.
6188  for (BasicBlock *BB : TheLoop->blocks()) {
6189    for (auto &Inst : *BB) {
6190      switch (Inst.getOpcode())
6191      case Instruction::GetElementPtr: {
6192        // Ignore GEP if its last operand is an induction variable so that it is
6193        // a consecutive load/store and won't be vectorized as scatter/gather
6194        // pattern.
6195
6196        GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst);
6197        unsigned NumOperands = Gep->getNumOperands();
6198        unsigned InductionOperand = getGEPInductionOperand(Gep);
6199        bool GepToIgnore = true;
6200
6201        // Check that all of the gep indices are uniform except for the
6202        // induction operand.
6203        for (unsigned i = 0; i != NumOperands; ++i) {
6204          if (i != InductionOperand &&
6205              !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
6206                                            TheLoop)) {
6207            GepToIgnore = false;
6208            break;
6209          }
6210        }
6211
6212        if (GepToIgnore)
6213          VecValuesToIgnore.insert(&Inst);
6214        break;
6215      }
6216    }
6217  }
6218}
6219
6220void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
6221                                             bool IfPredicateStore) {
6222  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
6223  // Holds vector parameters or scalars, in case of uniform vals.
6224  SmallVector<VectorParts, 4> Params;
6225
6226  setDebugLocFromInst(Builder, Instr);
6227
6228  // Find all of the vectorized parameters.
6229  for (Value *SrcOp : Instr->operands()) {
6230    // If we are accessing the old induction variable, use the new one.
6231    if (SrcOp == OldInduction) {
6232      Params.push_back(getVectorValue(SrcOp));
6233      continue;
6234    }
6235
6236    // Try using previously calculated values.
6237    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
6238
6239    // If the src is an instruction that appeared earlier in the basic block
6240    // then it should already be vectorized.
6241    if (SrcInst && OrigLoop->contains(SrcInst)) {
6242      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
6243      // The parameter is a vector value from earlier.
6244      Params.push_back(WidenMap.get(SrcInst));
6245    } else {
6246      // The parameter is a scalar from outside the loop. Maybe even a constant.
6247      VectorParts Scalars;
6248      Scalars.append(UF, SrcOp);
6249      Params.push_back(Scalars);
6250    }
6251  }
6252
6253  assert(Params.size() == Instr->getNumOperands() &&
6254         "Invalid number of operands");
6255
6256  // Does this instruction return a value ?
6257  bool IsVoidRetTy = Instr->getType()->isVoidTy();
6258
6259  Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType());
6260  // Create a new entry in the WidenMap and initialize it to Undef or Null.
6261  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
6262
6263  VectorParts Cond;
6264  if (IfPredicateStore) {
6265    assert(Instr->getParent()->getSinglePredecessor() &&
6266           "Only support single predecessor blocks");
6267    Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
6268                          Instr->getParent());
6269  }
6270
6271  // For each vector unroll 'part':
6272  for (unsigned Part = 0; Part < UF; ++Part) {
6273    // For each scalar that we create:
6274
6275    // Start an "if (pred) a[i] = ..." block.
6276    Value *Cmp = nullptr;
6277    if (IfPredicateStore) {
6278      if (Cond[Part]->getType()->isVectorTy())
6279        Cond[Part] =
6280            Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
6281      Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
6282                               ConstantInt::get(Cond[Part]->getType(), 1));
6283    }
6284
6285    Instruction *Cloned = Instr->clone();
6286    if (!IsVoidRetTy)
6287      Cloned->setName(Instr->getName() + ".cloned");
6288    // Replace the operands of the cloned instructions with extracted scalars.
6289    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6290      Value *Op = Params[op][Part];
6291      Cloned->setOperand(op, Op);
6292    }
6293
6294    // Place the cloned scalar in the new loop.
6295    Builder.Insert(Cloned);
6296
6297    // If we just cloned a new assumption, add it the assumption cache.
6298    if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
6299      if (II->getIntrinsicID() == Intrinsic::assume)
6300        AC->registerAssumption(II);
6301
6302    // If the original scalar returns a value we need to place it in a vector
6303    // so that future users will be able to use it.
6304    if (!IsVoidRetTy)
6305      VecResults[Part] = Cloned;
6306
6307    // End if-block.
6308    if (IfPredicateStore)
6309      PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp));
6310  }
6311}
6312
6313void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
6314  auto *SI = dyn_cast<StoreInst>(Instr);
6315  bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6316
6317  return scalarizeInstruction(Instr, IfPredicateStore);
6318}
6319
6320Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6321
6322Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6323
6324Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
6325  // When unrolling and the VF is 1, we only need to add a simple scalar.
6326  Type *ITy = Val->getType();
6327  assert(!ITy->isVectorTy() && "Val must be a scalar");
6328  Constant *C = ConstantInt::get(ITy, StartIdx);
6329  return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6330}
6331
6332static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6333  SmallVector<Metadata *, 4> MDs;
6334  // Reserve first location for self reference to the LoopID metadata node.
6335  MDs.push_back(nullptr);
6336  bool IsUnrollMetadata = false;
6337  MDNode *LoopID = L->getLoopID();
6338  if (LoopID) {
6339    // First find existing loop unrolling disable metadata.
6340    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6341      auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6342      if (MD) {
6343        const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6344        IsUnrollMetadata =
6345            S && S->getString().startswith("llvm.loop.unroll.disable");
6346      }
6347      MDs.push_back(LoopID->getOperand(i));
6348    }
6349  }
6350
6351  if (!IsUnrollMetadata) {
6352    // Add runtime unroll disable metadata.
6353    LLVMContext &Context = L->getHeader()->getContext();
6354    SmallVector<Metadata *, 1> DisableOperands;
6355    DisableOperands.push_back(
6356        MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6357    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6358    MDs.push_back(DisableNode);
6359    MDNode *NewLoopID = MDNode::get(Context, MDs);
6360    // Set operand 0 to refer to the loop id itself.
6361    NewLoopID->replaceOperandWith(0, NewLoopID);
6362    L->setLoopID(NewLoopID);
6363  }
6364}
6365
6366bool LoopVectorizePass::processLoop(Loop *L) {
6367  assert(L->empty() && "Only process inner loops.");
6368
6369#ifndef NDEBUG
6370  const std::string DebugLocStr = getDebugLocString(L);
6371#endif /* NDEBUG */
6372
6373  DEBUG(dbgs() << "\nLV: Checking a loop in \""
6374               << L->getHeader()->getParent()->getName() << "\" from "
6375               << DebugLocStr << "\n");
6376
6377  LoopVectorizeHints Hints(L, DisableUnrolling);
6378
6379  DEBUG(dbgs() << "LV: Loop hints:"
6380               << " force="
6381               << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
6382                       ? "disabled"
6383                       : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
6384                              ? "enabled"
6385                              : "?"))
6386               << " width=" << Hints.getWidth()
6387               << " unroll=" << Hints.getInterleave() << "\n");
6388
6389  // Function containing loop
6390  Function *F = L->getHeader()->getParent();
6391
6392  // Looking at the diagnostic output is the only way to determine if a loop
6393  // was vectorized (other than looking at the IR or machine code), so it
6394  // is important to generate an optimization remark for each loop. Most of
6395  // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
6396  // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
6397  // less verbose reporting vectorized loops and unvectorized loops that may
6398  // benefit from vectorization, respectively.
6399
6400  if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
6401    DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
6402    return false;
6403  }
6404
6405  // Check the loop for a trip count threshold:
6406  // do not vectorize loops with a tiny trip count.
6407  const unsigned TC = SE->getSmallConstantTripCount(L);
6408  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
6409    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
6410                 << "This loop is not worth vectorizing.");
6411    if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
6412      DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
6413    else {
6414      DEBUG(dbgs() << "\n");
6415      emitAnalysisDiag(F, L, Hints, VectorizationReport()
6416                                        << "vectorization is not beneficial "
6417                                           "and is not explicitly forced");
6418      return false;
6419    }
6420  }
6421
6422  PredicatedScalarEvolution PSE(*SE, *L);
6423
6424  // Check if it is legal to vectorize the loop.
6425  LoopVectorizationRequirements Requirements;
6426  LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI,
6427                                &Requirements, &Hints);
6428  if (!LVL.canVectorize()) {
6429    DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
6430    emitMissedWarning(F, L, Hints);
6431    return false;
6432  }
6433
6434  // Use the cost model.
6435  LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F,
6436                                &Hints);
6437  CM.collectValuesToIgnore();
6438
6439  // Check the function attributes to find out if this function should be
6440  // optimized for size.
6441  bool OptForSize =
6442      Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
6443
6444  // Compute the weighted frequency of this loop being executed and see if it
6445  // is less than 20% of the function entry baseline frequency. Note that we
6446  // always have a canonical loop here because we think we *can* vectorize.
6447  // FIXME: This is hidden behind a flag due to pervasive problems with
6448  // exactly what block frequency models.
6449  if (LoopVectorizeWithBlockFrequency) {
6450    BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
6451    if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
6452        LoopEntryFreq < ColdEntryFreq)
6453      OptForSize = true;
6454  }
6455
6456  // Check the function attributes to see if implicit floats are allowed.
6457  // FIXME: This check doesn't seem possibly correct -- what if the loop is
6458  // an integer loop and the vector instructions selected are purely integer
6459  // vector instructions?
6460  if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
6461    DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
6462                    "attribute is used.\n");
6463    emitAnalysisDiag(
6464        F, L, Hints,
6465        VectorizationReport()
6466            << "loop not vectorized due to NoImplicitFloat attribute");
6467    emitMissedWarning(F, L, Hints);
6468    return false;
6469  }
6470
6471  // Check if the target supports potentially unsafe FP vectorization.
6472  // FIXME: Add a check for the type of safety issue (denormal, signaling)
6473  // for the target we're vectorizing for, to make sure none of the
6474  // additional fp-math flags can help.
6475  if (Hints.isPotentiallyUnsafe() &&
6476      TTI->isFPVectorizationPotentiallyUnsafe()) {
6477    DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
6478    emitAnalysisDiag(F, L, Hints,
6479                     VectorizationReport()
6480                         << "loop not vectorized due to unsafe FP support.");
6481    emitMissedWarning(F, L, Hints);
6482    return false;
6483  }
6484
6485  // Select the optimal vectorization factor.
6486  const LoopVectorizationCostModel::VectorizationFactor VF =
6487      CM.selectVectorizationFactor(OptForSize);
6488
6489  // Select the interleave count.
6490  unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
6491
6492  // Get user interleave count.
6493  unsigned UserIC = Hints.getInterleave();
6494
6495  // Identify the diagnostic messages that should be produced.
6496  std::string VecDiagMsg, IntDiagMsg;
6497  bool VectorizeLoop = true, InterleaveLoop = true;
6498
6499  if (Requirements.doesNotMeet(F, L, Hints)) {
6500    DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
6501                    "requirements.\n");
6502    emitMissedWarning(F, L, Hints);
6503    return false;
6504  }
6505
6506  if (VF.Width == 1) {
6507    DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
6508    VecDiagMsg =
6509        "the cost-model indicates that vectorization is not beneficial";
6510    VectorizeLoop = false;
6511  }
6512
6513  if (IC == 1 && UserIC <= 1) {
6514    // Tell the user interleaving is not beneficial.
6515    DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
6516    IntDiagMsg =
6517        "the cost-model indicates that interleaving is not beneficial";
6518    InterleaveLoop = false;
6519    if (UserIC == 1)
6520      IntDiagMsg +=
6521          " and is explicitly disabled or interleave count is set to 1";
6522  } else if (IC > 1 && UserIC == 1) {
6523    // Tell the user interleaving is beneficial, but it explicitly disabled.
6524    DEBUG(dbgs()
6525          << "LV: Interleaving is beneficial but is explicitly disabled.");
6526    IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
6527                 "but is explicitly disabled or interleave count is set to 1";
6528    InterleaveLoop = false;
6529  }
6530
6531  // Override IC if user provided an interleave count.
6532  IC = UserIC > 0 ? UserIC : IC;
6533
6534  // Emit diagnostic messages, if any.
6535  const char *VAPassName = Hints.vectorizeAnalysisPassName();
6536  if (!VectorizeLoop && !InterleaveLoop) {
6537    // Do not vectorize or interleaving the loop.
6538    emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
6539                                   L->getStartLoc(), VecDiagMsg);
6540    emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
6541                                   L->getStartLoc(), IntDiagMsg);
6542    return false;
6543  } else if (!VectorizeLoop && InterleaveLoop) {
6544    DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
6545    emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
6546                                   L->getStartLoc(), VecDiagMsg);
6547  } else if (VectorizeLoop && !InterleaveLoop) {
6548    DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
6549                 << DebugLocStr << '\n');
6550    emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
6551                                   L->getStartLoc(), IntDiagMsg);
6552  } else if (VectorizeLoop && InterleaveLoop) {
6553    DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
6554                 << DebugLocStr << '\n');
6555    DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
6556  }
6557
6558  if (!VectorizeLoop) {
6559    assert(IC > 1 && "interleave count should not be 1 or 0");
6560    // If we decided that it is not legal to vectorize the loop, then
6561    // interleave it.
6562    InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC);
6563    Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
6564
6565    emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
6566                           Twine("interleaved loop (interleaved count: ") +
6567                               Twine(IC) + ")");
6568  } else {
6569    // If we decided that it is *legal* to vectorize the loop, then do it.
6570    InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC);
6571    LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
6572    ++LoopsVectorized;
6573
6574    // Add metadata to disable runtime unrolling a scalar loop when there are
6575    // no runtime checks about strides and memory. A scalar loop that is
6576    // rarely used is not worth unrolling.
6577    if (!LB.areSafetyChecksAdded())
6578      AddRuntimeUnrollDisableMetaData(L);
6579
6580    // Report the vectorization decision.
6581    emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
6582                           Twine("vectorized loop (vectorization width: ") +
6583                               Twine(VF.Width) + ", interleaved count: " +
6584                               Twine(IC) + ")");
6585  }
6586
6587  // Mark the loop as already vectorized to avoid vectorizing again.
6588  Hints.setAlreadyVectorized();
6589
6590  DEBUG(verifyFunction(*L->getHeader()->getParent()));
6591  return true;
6592}
6593
6594bool LoopVectorizePass::runImpl(
6595    Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
6596    DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
6597    DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
6598    std::function<const LoopAccessInfo &(Loop &)> &GetLAA_) {
6599
6600  SE = &SE_;
6601  LI = &LI_;
6602  TTI = &TTI_;
6603  DT = &DT_;
6604  BFI = &BFI_;
6605  TLI = TLI_;
6606  AA = &AA_;
6607  AC = &AC_;
6608  GetLAA = &GetLAA_;
6609  DB = &DB_;
6610
6611  // Compute some weights outside of the loop over the loops. Compute this
6612  // using a BranchProbability to re-use its scaling math.
6613  const BranchProbability ColdProb(1, 5); // 20%
6614  ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
6615
6616  // Don't attempt if
6617  // 1. the target claims to have no vector registers, and
6618  // 2. interleaving won't help ILP.
6619  //
6620  // The second condition is necessary because, even if the target has no
6621  // vector registers, loop vectorization may still enable scalar
6622  // interleaving.
6623  if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
6624    return false;
6625
6626  // Build up a worklist of inner-loops to vectorize. This is necessary as
6627  // the act of vectorizing or partially unrolling a loop creates new loops
6628  // and can invalidate iterators across the loops.
6629  SmallVector<Loop *, 8> Worklist;
6630
6631  for (Loop *L : *LI)
6632    addInnerLoop(*L, Worklist);
6633
6634  LoopsAnalyzed += Worklist.size();
6635
6636  // Now walk the identified inner loops.
6637  bool Changed = false;
6638  while (!Worklist.empty())
6639    Changed |= processLoop(Worklist.pop_back_val());
6640
6641  // Process each loop nest in the function.
6642  return Changed;
6643
6644}
6645
6646
6647PreservedAnalyses LoopVectorizePass::run(Function &F,
6648                                         FunctionAnalysisManager &AM) {
6649    auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
6650    auto &LI = AM.getResult<LoopAnalysis>(F);
6651    auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6652    auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6653    auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
6654    auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6655    auto &AA = AM.getResult<AAManager>(F);
6656    auto &AC = AM.getResult<AssumptionAnalysis>(F);
6657    auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
6658
6659    auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
6660    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
6661        [&](Loop &L) -> const LoopAccessInfo & {
6662      return LAM.getResult<LoopAccessAnalysis>(L);
6663    };
6664    bool Changed = runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA);
6665    if (!Changed)
6666      return PreservedAnalyses::all();
6667    PreservedAnalyses PA;
6668    PA.preserve<LoopAnalysis>();
6669    PA.preserve<DominatorTreeAnalysis>();
6670    PA.preserve<BasicAA>();
6671    PA.preserve<GlobalsAA>();
6672    return PA;
6673}
6674