1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/PostOrderIterator.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/CodeMetrics.h"
24#include "llvm/Analysis/GlobalsModRef.h"
25#include "llvm/Analysis/LoopAccessAnalysis.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Analysis/VectorUtils.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/NoFolder.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Vectorize.h"
44#include <algorithm>
45#include <memory>
46
47using namespace llvm;
48using namespace slpvectorizer;
49
50#define SV_NAME "slp-vectorizer"
51#define DEBUG_TYPE "SLP"
52
53STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
54
55static cl::opt<int>
56    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
57                     cl::desc("Only vectorize if you gain more than this "
58                              "number "));
59
60static cl::opt<bool>
61ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
62                   cl::desc("Attempt to vectorize horizontal reductions"));
63
64static cl::opt<bool> ShouldStartVectorizeHorAtStore(
65    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
66    cl::desc(
67        "Attempt to vectorize horizontal reductions feeding into a store"));
68
69static cl::opt<int>
70MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
71    cl::desc("Attempt to vectorize for this register size in bits"));
72
73/// Limits the size of scheduling regions in a block.
74/// It avoid long compile times for _very_ large blocks where vector
75/// instructions are spread over a wide range.
76/// This limit is way higher than needed by real-world functions.
77static cl::opt<int>
78ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
79    cl::desc("Limit the size of the SLP scheduling region per block"));
80
81static cl::opt<int> MinVectorRegSizeOption(
82    "slp-min-reg-size", cl::init(128), cl::Hidden,
83    cl::desc("Attempt to vectorize for this register size in bits"));
84
85// FIXME: Set this via cl::opt to allow overriding.
86static const unsigned RecursionMaxDepth = 12;
87
88// Limit the number of alias checks. The limit is chosen so that
89// it has no negative effect on the llvm benchmarks.
90static const unsigned AliasedCheckLimit = 10;
91
92// Another limit for the alias checks: The maximum distance between load/store
93// instructions where alias checks are done.
94// This limit is useful for very large basic blocks.
95static const unsigned MaxMemDepDistance = 160;
96
97/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
98/// regions to be handled.
99static const int MinScheduleRegionSize = 16;
100
101/// \brief Predicate for the element types that the SLP vectorizer supports.
102///
103/// The most important thing to filter here are types which are invalid in LLVM
104/// vectors. We also filter target specific types which have absolutely no
105/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
106/// avoids spending time checking the cost model and realizing that they will
107/// be inevitably scalarized.
108static bool isValidElementType(Type *Ty) {
109  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
110         !Ty->isPPC_FP128Ty();
111}
112
113/// \returns the parent basic block if all of the instructions in \p VL
114/// are in the same block or null otherwise.
115static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
116  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
117  if (!I0)
118    return nullptr;
119  BasicBlock *BB = I0->getParent();
120  for (int i = 1, e = VL.size(); i < e; i++) {
121    Instruction *I = dyn_cast<Instruction>(VL[i]);
122    if (!I)
123      return nullptr;
124
125    if (BB != I->getParent())
126      return nullptr;
127  }
128  return BB;
129}
130
131/// \returns True if all of the values in \p VL are constants.
132static bool allConstant(ArrayRef<Value *> VL) {
133  for (Value *i : VL)
134    if (!isa<Constant>(i))
135      return false;
136  return true;
137}
138
139/// \returns True if all of the values in \p VL are identical.
140static bool isSplat(ArrayRef<Value *> VL) {
141  for (unsigned i = 1, e = VL.size(); i < e; ++i)
142    if (VL[i] != VL[0])
143      return false;
144  return true;
145}
146
147///\returns Opcode that can be clubbed with \p Op to create an alternate
148/// sequence which can later be merged as a ShuffleVector instruction.
149static unsigned getAltOpcode(unsigned Op) {
150  switch (Op) {
151  case Instruction::FAdd:
152    return Instruction::FSub;
153  case Instruction::FSub:
154    return Instruction::FAdd;
155  case Instruction::Add:
156    return Instruction::Sub;
157  case Instruction::Sub:
158    return Instruction::Add;
159  default:
160    return 0;
161  }
162}
163
164///\returns bool representing if Opcode \p Op can be part
165/// of an alternate sequence which can later be merged as
166/// a ShuffleVector instruction.
167static bool canCombineAsAltInst(unsigned Op) {
168  return Op == Instruction::FAdd || Op == Instruction::FSub ||
169         Op == Instruction::Sub || Op == Instruction::Add;
170}
171
172/// \returns ShuffleVector instruction if instructions in \p VL have
173///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
174/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
175static unsigned isAltInst(ArrayRef<Value *> VL) {
176  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
177  unsigned Opcode = I0->getOpcode();
178  unsigned AltOpcode = getAltOpcode(Opcode);
179  for (int i = 1, e = VL.size(); i < e; i++) {
180    Instruction *I = dyn_cast<Instruction>(VL[i]);
181    if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
182      return 0;
183  }
184  return Instruction::ShuffleVector;
185}
186
187/// \returns The opcode if all of the Instructions in \p VL have the same
188/// opcode, or zero.
189static unsigned getSameOpcode(ArrayRef<Value *> VL) {
190  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
191  if (!I0)
192    return 0;
193  unsigned Opcode = I0->getOpcode();
194  for (int i = 1, e = VL.size(); i < e; i++) {
195    Instruction *I = dyn_cast<Instruction>(VL[i]);
196    if (!I || Opcode != I->getOpcode()) {
197      if (canCombineAsAltInst(Opcode) && i == 1)
198        return isAltInst(VL);
199      return 0;
200    }
201  }
202  return Opcode;
203}
204
205/// Get the intersection (logical and) of all of the potential IR flags
206/// of each scalar operation (VL) that will be converted into a vector (I).
207/// Flag set: NSW, NUW, exact, and all of fast-math.
208static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
209  if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
210    if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
211      // Intersection is initialized to the 0th scalar,
212      // so start counting from index '1'.
213      for (int i = 1, e = VL.size(); i < e; ++i) {
214        if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
215          Intersection->andIRFlags(Scalar);
216      }
217      VecOp->copyIRFlags(Intersection);
218    }
219  }
220}
221
222/// \returns The type that all of the values in \p VL have or null if there
223/// are different types.
224static Type* getSameType(ArrayRef<Value *> VL) {
225  Type *Ty = VL[0]->getType();
226  for (int i = 1, e = VL.size(); i < e; i++)
227    if (VL[i]->getType() != Ty)
228      return nullptr;
229
230  return Ty;
231}
232
233/// \returns True if Extract{Value,Element} instruction extracts element Idx.
234static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
235  assert(Opcode == Instruction::ExtractElement ||
236         Opcode == Instruction::ExtractValue);
237  if (Opcode == Instruction::ExtractElement) {
238    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
239    return CI && CI->getZExtValue() == Idx;
240  } else {
241    ExtractValueInst *EI = cast<ExtractValueInst>(E);
242    return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
243  }
244}
245
246/// \returns True if in-tree use also needs extract. This refers to
247/// possible scalar operand in vectorized instruction.
248static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
249                                    TargetLibraryInfo *TLI) {
250
251  unsigned Opcode = UserInst->getOpcode();
252  switch (Opcode) {
253  case Instruction::Load: {
254    LoadInst *LI = cast<LoadInst>(UserInst);
255    return (LI->getPointerOperand() == Scalar);
256  }
257  case Instruction::Store: {
258    StoreInst *SI = cast<StoreInst>(UserInst);
259    return (SI->getPointerOperand() == Scalar);
260  }
261  case Instruction::Call: {
262    CallInst *CI = cast<CallInst>(UserInst);
263    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
264    if (hasVectorInstrinsicScalarOpd(ID, 1)) {
265      return (CI->getArgOperand(1) == Scalar);
266    }
267  }
268  default:
269    return false;
270  }
271}
272
273/// \returns the AA location that is being access by the instruction.
274static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
275  if (StoreInst *SI = dyn_cast<StoreInst>(I))
276    return MemoryLocation::get(SI);
277  if (LoadInst *LI = dyn_cast<LoadInst>(I))
278    return MemoryLocation::get(LI);
279  return MemoryLocation();
280}
281
282/// \returns True if the instruction is not a volatile or atomic load/store.
283static bool isSimple(Instruction *I) {
284  if (LoadInst *LI = dyn_cast<LoadInst>(I))
285    return LI->isSimple();
286  if (StoreInst *SI = dyn_cast<StoreInst>(I))
287    return SI->isSimple();
288  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
289    return !MI->isVolatile();
290  return true;
291}
292
293namespace llvm {
294namespace slpvectorizer {
295/// Bottom Up SLP Vectorizer.
296class BoUpSLP {
297public:
298  typedef SmallVector<Value *, 8> ValueList;
299  typedef SmallVector<Instruction *, 16> InstrList;
300  typedef SmallPtrSet<Value *, 16> ValueSet;
301  typedef SmallVector<StoreInst *, 8> StoreList;
302
303  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
304          TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
305          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
306          const DataLayout *DL)
307      : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
308        SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
309        DL(DL), Builder(Se->getContext()) {
310    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
311    // Use the vector register size specified by the target unless overridden
312    // by a command-line option.
313    // TODO: It would be better to limit the vectorization factor based on
314    //       data type rather than just register size. For example, x86 AVX has
315    //       256-bit registers, but it does not support integer operations
316    //       at that width (that requires AVX2).
317    if (MaxVectorRegSizeOption.getNumOccurrences())
318      MaxVecRegSize = MaxVectorRegSizeOption;
319    else
320      MaxVecRegSize = TTI->getRegisterBitWidth(true);
321
322    MinVecRegSize = MinVectorRegSizeOption;
323  }
324
325  /// \brief Vectorize the tree that starts with the elements in \p VL.
326  /// Returns the vectorized root.
327  Value *vectorizeTree();
328
329  /// \returns the cost incurred by unwanted spills and fills, caused by
330  /// holding live values over call sites.
331  int getSpillCost();
332
333  /// \returns the vectorization cost of the subtree that starts at \p VL.
334  /// A negative number means that this is profitable.
335  int getTreeCost();
336
337  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
338  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
339  void buildTree(ArrayRef<Value *> Roots,
340                 ArrayRef<Value *> UserIgnoreLst = None);
341
342  /// Clear the internal data structures that are created by 'buildTree'.
343  void deleteTree() {
344    VectorizableTree.clear();
345    ScalarToTreeEntry.clear();
346    MustGather.clear();
347    ExternalUses.clear();
348    NumLoadsWantToKeepOrder = 0;
349    NumLoadsWantToChangeOrder = 0;
350    for (auto &Iter : BlocksSchedules) {
351      BlockScheduling *BS = Iter.second.get();
352      BS->clear();
353    }
354    MinBWs.clear();
355  }
356
357  /// \brief Perform LICM and CSE on the newly generated gather sequences.
358  void optimizeGatherSequence();
359
360  /// \returns true if it is beneficial to reverse the vector order.
361  bool shouldReorder() const {
362    return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
363  }
364
365  /// \return The vector element size in bits to use when vectorizing the
366  /// expression tree ending at \p V. If V is a store, the size is the width of
367  /// the stored value. Otherwise, the size is the width of the largest loaded
368  /// value reaching V. This method is used by the vectorizer to calculate
369  /// vectorization factors.
370  unsigned getVectorElementSize(Value *V);
371
372  /// Compute the minimum type sizes required to represent the entries in a
373  /// vectorizable tree.
374  void computeMinimumValueSizes();
375
376  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
377  unsigned getMaxVecRegSize() const {
378    return MaxVecRegSize;
379  }
380
381  // \returns minimum vector register size as set by cl::opt.
382  unsigned getMinVecRegSize() const {
383    return MinVecRegSize;
384  }
385
386  /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
387  ///
388  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
389  unsigned canMapToVector(Type *T, const DataLayout &DL) const;
390
391private:
392  struct TreeEntry;
393
394  /// \returns the cost of the vectorizable entry.
395  int getEntryCost(TreeEntry *E);
396
397  /// This is the recursive part of buildTree.
398  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
399
400  /// \returns True if the ExtractElement/ExtractValue instructions in VL can
401  /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
402  bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const;
403
404  /// Vectorize a single entry in the tree.
405  Value *vectorizeTree(TreeEntry *E);
406
407  /// Vectorize a single entry in the tree, starting in \p VL.
408  Value *vectorizeTree(ArrayRef<Value *> VL);
409
410  /// \returns the pointer to the vectorized value if \p VL is already
411  /// vectorized, or NULL. They may happen in cycles.
412  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
413
414  /// \returns the scalarization cost for this type. Scalarization in this
415  /// context means the creation of vectors from a group of scalars.
416  int getGatherCost(Type *Ty);
417
418  /// \returns the scalarization cost for this list of values. Assuming that
419  /// this subtree gets vectorized, we may need to extract the values from the
420  /// roots. This method calculates the cost of extracting the values.
421  int getGatherCost(ArrayRef<Value *> VL);
422
423  /// \brief Set the Builder insert point to one after the last instruction in
424  /// the bundle
425  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
426
427  /// \returns a vector from a collection of scalars in \p VL.
428  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
429
430  /// \returns whether the VectorizableTree is fully vectorizable and will
431  /// be beneficial even the tree height is tiny.
432  bool isFullyVectorizableTinyTree();
433
434  /// \reorder commutative operands in alt shuffle if they result in
435  ///  vectorized code.
436  void reorderAltShuffleOperands(ArrayRef<Value *> VL,
437                                 SmallVectorImpl<Value *> &Left,
438                                 SmallVectorImpl<Value *> &Right);
439  /// \reorder commutative operands to get better probability of
440  /// generating vectorized code.
441  void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
442                                      SmallVectorImpl<Value *> &Left,
443                                      SmallVectorImpl<Value *> &Right);
444  struct TreeEntry {
445    TreeEntry() : Scalars(), VectorizedValue(nullptr),
446    NeedToGather(0) {}
447
448    /// \returns true if the scalars in VL are equal to this entry.
449    bool isSame(ArrayRef<Value *> VL) const {
450      assert(VL.size() == Scalars.size() && "Invalid size");
451      return std::equal(VL.begin(), VL.end(), Scalars.begin());
452    }
453
454    /// A vector of scalars.
455    ValueList Scalars;
456
457    /// The Scalars are vectorized into this value. It is initialized to Null.
458    Value *VectorizedValue;
459
460    /// Do we need to gather this sequence ?
461    bool NeedToGather;
462  };
463
464  /// Create a new VectorizableTree entry.
465  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
466    VectorizableTree.emplace_back();
467    int idx = VectorizableTree.size() - 1;
468    TreeEntry *Last = &VectorizableTree[idx];
469    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
470    Last->NeedToGather = !Vectorized;
471    if (Vectorized) {
472      for (int i = 0, e = VL.size(); i != e; ++i) {
473        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
474        ScalarToTreeEntry[VL[i]] = idx;
475      }
476    } else {
477      MustGather.insert(VL.begin(), VL.end());
478    }
479    return Last;
480  }
481
482  /// -- Vectorization State --
483  /// Holds all of the tree entries.
484  std::vector<TreeEntry> VectorizableTree;
485
486  /// Maps a specific scalar to its tree entry.
487  SmallDenseMap<Value*, int> ScalarToTreeEntry;
488
489  /// A list of scalars that we found that we need to keep as scalars.
490  ValueSet MustGather;
491
492  /// This POD struct describes one external user in the vectorized tree.
493  struct ExternalUser {
494    ExternalUser (Value *S, llvm::User *U, int L) :
495      Scalar(S), User(U), Lane(L){}
496    // Which scalar in our function.
497    Value *Scalar;
498    // Which user that uses the scalar.
499    llvm::User *User;
500    // Which lane does the scalar belong to.
501    int Lane;
502  };
503  typedef SmallVector<ExternalUser, 16> UserList;
504
505  /// Checks if two instructions may access the same memory.
506  ///
507  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
508  /// is invariant in the calling loop.
509  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
510                 Instruction *Inst2) {
511
512    // First check if the result is already in the cache.
513    AliasCacheKey key = std::make_pair(Inst1, Inst2);
514    Optional<bool> &result = AliasCache[key];
515    if (result.hasValue()) {
516      return result.getValue();
517    }
518    MemoryLocation Loc2 = getLocation(Inst2, AA);
519    bool aliased = true;
520    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
521      // Do the alias check.
522      aliased = AA->alias(Loc1, Loc2);
523    }
524    // Store the result in the cache.
525    result = aliased;
526    return aliased;
527  }
528
529  typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
530
531  /// Cache for alias results.
532  /// TODO: consider moving this to the AliasAnalysis itself.
533  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
534
535  /// Removes an instruction from its block and eventually deletes it.
536  /// It's like Instruction::eraseFromParent() except that the actual deletion
537  /// is delayed until BoUpSLP is destructed.
538  /// This is required to ensure that there are no incorrect collisions in the
539  /// AliasCache, which can happen if a new instruction is allocated at the
540  /// same address as a previously deleted instruction.
541  void eraseInstruction(Instruction *I) {
542    I->removeFromParent();
543    I->dropAllReferences();
544    DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
545  }
546
547  /// Temporary store for deleted instructions. Instructions will be deleted
548  /// eventually when the BoUpSLP is destructed.
549  SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
550
551  /// A list of values that need to extracted out of the tree.
552  /// This list holds pairs of (Internal Scalar : External User).
553  UserList ExternalUses;
554
555  /// Values used only by @llvm.assume calls.
556  SmallPtrSet<const Value *, 32> EphValues;
557
558  /// Holds all of the instructions that we gathered.
559  SetVector<Instruction *> GatherSeq;
560  /// A list of blocks that we are going to CSE.
561  SetVector<BasicBlock *> CSEBlocks;
562
563  /// Contains all scheduling relevant data for an instruction.
564  /// A ScheduleData either represents a single instruction or a member of an
565  /// instruction bundle (= a group of instructions which is combined into a
566  /// vector instruction).
567  struct ScheduleData {
568
569    // The initial value for the dependency counters. It means that the
570    // dependencies are not calculated yet.
571    enum { InvalidDeps = -1 };
572
573    ScheduleData()
574        : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
575          NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
576          Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
577          UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
578
579    void init(int BlockSchedulingRegionID) {
580      FirstInBundle = this;
581      NextInBundle = nullptr;
582      NextLoadStore = nullptr;
583      IsScheduled = false;
584      SchedulingRegionID = BlockSchedulingRegionID;
585      UnscheduledDepsInBundle = UnscheduledDeps;
586      clearDependencies();
587    }
588
589    /// Returns true if the dependency information has been calculated.
590    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
591
592    /// Returns true for single instructions and for bundle representatives
593    /// (= the head of a bundle).
594    bool isSchedulingEntity() const { return FirstInBundle == this; }
595
596    /// Returns true if it represents an instruction bundle and not only a
597    /// single instruction.
598    bool isPartOfBundle() const {
599      return NextInBundle != nullptr || FirstInBundle != this;
600    }
601
602    /// Returns true if it is ready for scheduling, i.e. it has no more
603    /// unscheduled depending instructions/bundles.
604    bool isReady() const {
605      assert(isSchedulingEntity() &&
606             "can't consider non-scheduling entity for ready list");
607      return UnscheduledDepsInBundle == 0 && !IsScheduled;
608    }
609
610    /// Modifies the number of unscheduled dependencies, also updating it for
611    /// the whole bundle.
612    int incrementUnscheduledDeps(int Incr) {
613      UnscheduledDeps += Incr;
614      return FirstInBundle->UnscheduledDepsInBundle += Incr;
615    }
616
617    /// Sets the number of unscheduled dependencies to the number of
618    /// dependencies.
619    void resetUnscheduledDeps() {
620      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
621    }
622
623    /// Clears all dependency information.
624    void clearDependencies() {
625      Dependencies = InvalidDeps;
626      resetUnscheduledDeps();
627      MemoryDependencies.clear();
628    }
629
630    void dump(raw_ostream &os) const {
631      if (!isSchedulingEntity()) {
632        os << "/ " << *Inst;
633      } else if (NextInBundle) {
634        os << '[' << *Inst;
635        ScheduleData *SD = NextInBundle;
636        while (SD) {
637          os << ';' << *SD->Inst;
638          SD = SD->NextInBundle;
639        }
640        os << ']';
641      } else {
642        os << *Inst;
643      }
644    }
645
646    Instruction *Inst;
647
648    /// Points to the head in an instruction bundle (and always to this for
649    /// single instructions).
650    ScheduleData *FirstInBundle;
651
652    /// Single linked list of all instructions in a bundle. Null if it is a
653    /// single instruction.
654    ScheduleData *NextInBundle;
655
656    /// Single linked list of all memory instructions (e.g. load, store, call)
657    /// in the block - until the end of the scheduling region.
658    ScheduleData *NextLoadStore;
659
660    /// The dependent memory instructions.
661    /// This list is derived on demand in calculateDependencies().
662    SmallVector<ScheduleData *, 4> MemoryDependencies;
663
664    /// This ScheduleData is in the current scheduling region if this matches
665    /// the current SchedulingRegionID of BlockScheduling.
666    int SchedulingRegionID;
667
668    /// Used for getting a "good" final ordering of instructions.
669    int SchedulingPriority;
670
671    /// The number of dependencies. Constitutes of the number of users of the
672    /// instruction plus the number of dependent memory instructions (if any).
673    /// This value is calculated on demand.
674    /// If InvalidDeps, the number of dependencies is not calculated yet.
675    ///
676    int Dependencies;
677
678    /// The number of dependencies minus the number of dependencies of scheduled
679    /// instructions. As soon as this is zero, the instruction/bundle gets ready
680    /// for scheduling.
681    /// Note that this is negative as long as Dependencies is not calculated.
682    int UnscheduledDeps;
683
684    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
685    /// single instructions.
686    int UnscheduledDepsInBundle;
687
688    /// True if this instruction is scheduled (or considered as scheduled in the
689    /// dry-run).
690    bool IsScheduled;
691  };
692
693#ifndef NDEBUG
694  friend inline raw_ostream &operator<<(raw_ostream &os,
695                                        const BoUpSLP::ScheduleData &SD) {
696    SD.dump(os);
697    return os;
698  }
699#endif
700
701  /// Contains all scheduling data for a basic block.
702  ///
703  struct BlockScheduling {
704
705    BlockScheduling(BasicBlock *BB)
706        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
707          ScheduleStart(nullptr), ScheduleEnd(nullptr),
708          FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
709          ScheduleRegionSize(0),
710          ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
711          // Make sure that the initial SchedulingRegionID is greater than the
712          // initial SchedulingRegionID in ScheduleData (which is 0).
713          SchedulingRegionID(1) {}
714
715    void clear() {
716      ReadyInsts.clear();
717      ScheduleStart = nullptr;
718      ScheduleEnd = nullptr;
719      FirstLoadStoreInRegion = nullptr;
720      LastLoadStoreInRegion = nullptr;
721
722      // Reduce the maximum schedule region size by the size of the
723      // previous scheduling run.
724      ScheduleRegionSizeLimit -= ScheduleRegionSize;
725      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
726        ScheduleRegionSizeLimit = MinScheduleRegionSize;
727      ScheduleRegionSize = 0;
728
729      // Make a new scheduling region, i.e. all existing ScheduleData is not
730      // in the new region yet.
731      ++SchedulingRegionID;
732    }
733
734    ScheduleData *getScheduleData(Value *V) {
735      ScheduleData *SD = ScheduleDataMap[V];
736      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
737        return SD;
738      return nullptr;
739    }
740
741    bool isInSchedulingRegion(ScheduleData *SD) {
742      return SD->SchedulingRegionID == SchedulingRegionID;
743    }
744
745    /// Marks an instruction as scheduled and puts all dependent ready
746    /// instructions into the ready-list.
747    template <typename ReadyListType>
748    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
749      SD->IsScheduled = true;
750      DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
751
752      ScheduleData *BundleMember = SD;
753      while (BundleMember) {
754        // Handle the def-use chain dependencies.
755        for (Use &U : BundleMember->Inst->operands()) {
756          ScheduleData *OpDef = getScheduleData(U.get());
757          if (OpDef && OpDef->hasValidDependencies() &&
758              OpDef->incrementUnscheduledDeps(-1) == 0) {
759            // There are no more unscheduled dependencies after decrementing,
760            // so we can put the dependent instruction into the ready list.
761            ScheduleData *DepBundle = OpDef->FirstInBundle;
762            assert(!DepBundle->IsScheduled &&
763                   "already scheduled bundle gets ready");
764            ReadyList.insert(DepBundle);
765            DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
766          }
767        }
768        // Handle the memory dependencies.
769        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
770          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
771            // There are no more unscheduled dependencies after decrementing,
772            // so we can put the dependent instruction into the ready list.
773            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
774            assert(!DepBundle->IsScheduled &&
775                   "already scheduled bundle gets ready");
776            ReadyList.insert(DepBundle);
777            DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
778          }
779        }
780        BundleMember = BundleMember->NextInBundle;
781      }
782    }
783
784    /// Put all instructions into the ReadyList which are ready for scheduling.
785    template <typename ReadyListType>
786    void initialFillReadyList(ReadyListType &ReadyList) {
787      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
788        ScheduleData *SD = getScheduleData(I);
789        if (SD->isSchedulingEntity() && SD->isReady()) {
790          ReadyList.insert(SD);
791          DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
792        }
793      }
794    }
795
796    /// Checks if a bundle of instructions can be scheduled, i.e. has no
797    /// cyclic dependencies. This is only a dry-run, no instructions are
798    /// actually moved at this stage.
799    bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
800
801    /// Un-bundles a group of instructions.
802    void cancelScheduling(ArrayRef<Value *> VL);
803
804    /// Extends the scheduling region so that V is inside the region.
805    /// \returns true if the region size is within the limit.
806    bool extendSchedulingRegion(Value *V);
807
808    /// Initialize the ScheduleData structures for new instructions in the
809    /// scheduling region.
810    void initScheduleData(Instruction *FromI, Instruction *ToI,
811                          ScheduleData *PrevLoadStore,
812                          ScheduleData *NextLoadStore);
813
814    /// Updates the dependency information of a bundle and of all instructions/
815    /// bundles which depend on the original bundle.
816    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
817                               BoUpSLP *SLP);
818
819    /// Sets all instruction in the scheduling region to un-scheduled.
820    void resetSchedule();
821
822    BasicBlock *BB;
823
824    /// Simple memory allocation for ScheduleData.
825    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
826
827    /// The size of a ScheduleData array in ScheduleDataChunks.
828    int ChunkSize;
829
830    /// The allocator position in the current chunk, which is the last entry
831    /// of ScheduleDataChunks.
832    int ChunkPos;
833
834    /// Attaches ScheduleData to Instruction.
835    /// Note that the mapping survives during all vectorization iterations, i.e.
836    /// ScheduleData structures are recycled.
837    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
838
839    struct ReadyList : SmallVector<ScheduleData *, 8> {
840      void insert(ScheduleData *SD) { push_back(SD); }
841    };
842
843    /// The ready-list for scheduling (only used for the dry-run).
844    ReadyList ReadyInsts;
845
846    /// The first instruction of the scheduling region.
847    Instruction *ScheduleStart;
848
849    /// The first instruction _after_ the scheduling region.
850    Instruction *ScheduleEnd;
851
852    /// The first memory accessing instruction in the scheduling region
853    /// (can be null).
854    ScheduleData *FirstLoadStoreInRegion;
855
856    /// The last memory accessing instruction in the scheduling region
857    /// (can be null).
858    ScheduleData *LastLoadStoreInRegion;
859
860    /// The current size of the scheduling region.
861    int ScheduleRegionSize;
862
863    /// The maximum size allowed for the scheduling region.
864    int ScheduleRegionSizeLimit;
865
866    /// The ID of the scheduling region. For a new vectorization iteration this
867    /// is incremented which "removes" all ScheduleData from the region.
868    int SchedulingRegionID;
869  };
870
871  /// Attaches the BlockScheduling structures to basic blocks.
872  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
873
874  /// Performs the "real" scheduling. Done before vectorization is actually
875  /// performed in a basic block.
876  void scheduleBlock(BlockScheduling *BS);
877
878  /// List of users to ignore during scheduling and that don't need extracting.
879  ArrayRef<Value *> UserIgnoreList;
880
881  // Number of load-bundles, which contain consecutive loads.
882  int NumLoadsWantToKeepOrder;
883
884  // Number of load-bundles of size 2, which are consecutive loads if reversed.
885  int NumLoadsWantToChangeOrder;
886
887  // Analysis and block reference.
888  Function *F;
889  ScalarEvolution *SE;
890  TargetTransformInfo *TTI;
891  TargetLibraryInfo *TLI;
892  AliasAnalysis *AA;
893  LoopInfo *LI;
894  DominatorTree *DT;
895  AssumptionCache *AC;
896  DemandedBits *DB;
897  const DataLayout *DL;
898  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
899  unsigned MinVecRegSize; // Set by cl::opt (default: 128).
900  /// Instruction builder to construct the vectorized tree.
901  IRBuilder<> Builder;
902
903  /// A map of scalar integer values to the smallest bit width with which they
904  /// can legally be represented.
905  MapVector<Value *, uint64_t> MinBWs;
906};
907
908} // end namespace llvm
909} // end namespace slpvectorizer
910
911void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
912                        ArrayRef<Value *> UserIgnoreLst) {
913  deleteTree();
914  UserIgnoreList = UserIgnoreLst;
915  if (!getSameType(Roots))
916    return;
917  buildTree_rec(Roots, 0);
918
919  // Collect the values that we need to extract from the tree.
920  for (TreeEntry &EIdx : VectorizableTree) {
921    TreeEntry *Entry = &EIdx;
922
923    // For each lane:
924    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
925      Value *Scalar = Entry->Scalars[Lane];
926
927      // No need to handle users of gathered values.
928      if (Entry->NeedToGather)
929        continue;
930
931      for (User *U : Scalar->users()) {
932        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
933
934        Instruction *UserInst = dyn_cast<Instruction>(U);
935        if (!UserInst)
936          continue;
937
938        // Skip in-tree scalars that become vectors
939        if (ScalarToTreeEntry.count(U)) {
940          int Idx = ScalarToTreeEntry[U];
941          TreeEntry *UseEntry = &VectorizableTree[Idx];
942          Value *UseScalar = UseEntry->Scalars[0];
943          // Some in-tree scalars will remain as scalar in vectorized
944          // instructions. If that is the case, the one in Lane 0 will
945          // be used.
946          if (UseScalar != U ||
947              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
948            DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
949                         << ".\n");
950            assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
951            continue;
952          }
953        }
954
955        // Ignore users in the user ignore list.
956        if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
957            UserIgnoreList.end())
958          continue;
959
960        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
961              Lane << " from " << *Scalar << ".\n");
962        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
963      }
964    }
965  }
966}
967
968
969void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
970  bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy;
971  bool isAltShuffle = false;
972  assert(SameTy && "Invalid types!");
973
974  if (Depth == RecursionMaxDepth) {
975    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
976    newTreeEntry(VL, false);
977    return;
978  }
979
980  // Don't handle vectors.
981  if (VL[0]->getType()->isVectorTy()) {
982    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
983    newTreeEntry(VL, false);
984    return;
985  }
986
987  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
988    if (SI->getValueOperand()->getType()->isVectorTy()) {
989      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
990      newTreeEntry(VL, false);
991      return;
992    }
993  unsigned Opcode = getSameOpcode(VL);
994
995  // Check that this shuffle vector refers to the alternate
996  // sequence of opcodes.
997  if (Opcode == Instruction::ShuffleVector) {
998    Instruction *I0 = dyn_cast<Instruction>(VL[0]);
999    unsigned Op = I0->getOpcode();
1000    if (Op != Instruction::ShuffleVector)
1001      isAltShuffle = true;
1002  }
1003
1004  // If all of the operands are identical or constant we have a simple solution.
1005  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
1006    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1007    newTreeEntry(VL, false);
1008    return;
1009  }
1010
1011  // We now know that this is a vector of instructions of the same type from
1012  // the same block.
1013
1014  // Don't vectorize ephemeral values.
1015  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1016    if (EphValues.count(VL[i])) {
1017      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1018            ") is ephemeral.\n");
1019      newTreeEntry(VL, false);
1020      return;
1021    }
1022  }
1023
1024  // Check if this is a duplicate of another entry.
1025  if (ScalarToTreeEntry.count(VL[0])) {
1026    int Idx = ScalarToTreeEntry[VL[0]];
1027    TreeEntry *E = &VectorizableTree[Idx];
1028    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1029      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1030      if (E->Scalars[i] != VL[i]) {
1031        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1032        newTreeEntry(VL, false);
1033        return;
1034      }
1035    }
1036    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1037    return;
1038  }
1039
1040  // Check that none of the instructions in the bundle are already in the tree.
1041  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1042    if (ScalarToTreeEntry.count(VL[i])) {
1043      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1044            ") is already in tree.\n");
1045      newTreeEntry(VL, false);
1046      return;
1047    }
1048  }
1049
1050  // If any of the scalars is marked as a value that needs to stay scalar then
1051  // we need to gather the scalars.
1052  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1053    if (MustGather.count(VL[i])) {
1054      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1055      newTreeEntry(VL, false);
1056      return;
1057    }
1058  }
1059
1060  // Check that all of the users of the scalars that we want to vectorize are
1061  // schedulable.
1062  Instruction *VL0 = cast<Instruction>(VL[0]);
1063  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1064
1065  if (!DT->isReachableFromEntry(BB)) {
1066    // Don't go into unreachable blocks. They may contain instructions with
1067    // dependency cycles which confuse the final scheduling.
1068    DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1069    newTreeEntry(VL, false);
1070    return;
1071  }
1072
1073  // Check that every instructions appears once in this bundle.
1074  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1075    for (unsigned j = i+1; j < e; ++j)
1076      if (VL[i] == VL[j]) {
1077        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1078        newTreeEntry(VL, false);
1079        return;
1080      }
1081
1082  auto &BSRef = BlocksSchedules[BB];
1083  if (!BSRef) {
1084    BSRef = llvm::make_unique<BlockScheduling>(BB);
1085  }
1086  BlockScheduling &BS = *BSRef.get();
1087
1088  if (!BS.tryScheduleBundle(VL, this)) {
1089    DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1090    assert((!BS.getScheduleData(VL[0]) ||
1091            !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
1092           "tryScheduleBundle should cancelScheduling on failure");
1093    newTreeEntry(VL, false);
1094    return;
1095  }
1096  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1097
1098  switch (Opcode) {
1099    case Instruction::PHI: {
1100      PHINode *PH = dyn_cast<PHINode>(VL0);
1101
1102      // Check for terminator values (e.g. invoke).
1103      for (unsigned j = 0; j < VL.size(); ++j)
1104        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1105          TerminatorInst *Term = dyn_cast<TerminatorInst>(
1106              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1107          if (Term) {
1108            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1109            BS.cancelScheduling(VL);
1110            newTreeEntry(VL, false);
1111            return;
1112          }
1113        }
1114
1115      newTreeEntry(VL, true);
1116      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1117
1118      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1119        ValueList Operands;
1120        // Prepare the operand vector.
1121        for (Value *j : VL)
1122          Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1123              PH->getIncomingBlock(i)));
1124
1125        buildTree_rec(Operands, Depth + 1);
1126      }
1127      return;
1128    }
1129    case Instruction::ExtractValue:
1130    case Instruction::ExtractElement: {
1131      bool Reuse = canReuseExtract(VL, Opcode);
1132      if (Reuse) {
1133        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1134      } else {
1135        BS.cancelScheduling(VL);
1136      }
1137      newTreeEntry(VL, Reuse);
1138      return;
1139    }
1140    case Instruction::Load: {
1141      // Check that a vectorized load would load the same memory as a scalar
1142      // load.
1143      // For example we don't want vectorize loads that are smaller than 8 bit.
1144      // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1145      // loading/storing it as an i8 struct. If we vectorize loads/stores from
1146      // such a struct we read/write packed bits disagreeing with the
1147      // unvectorized version.
1148      Type *ScalarTy = VL[0]->getType();
1149
1150      if (DL->getTypeSizeInBits(ScalarTy) !=
1151          DL->getTypeAllocSizeInBits(ScalarTy)) {
1152        BS.cancelScheduling(VL);
1153        newTreeEntry(VL, false);
1154        DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1155        return;
1156      }
1157      // Check if the loads are consecutive or of we need to swizzle them.
1158      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1159        LoadInst *L = cast<LoadInst>(VL[i]);
1160        if (!L->isSimple()) {
1161          BS.cancelScheduling(VL);
1162          newTreeEntry(VL, false);
1163          DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1164          return;
1165        }
1166
1167        if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1168          if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) {
1169            ++NumLoadsWantToChangeOrder;
1170          }
1171          BS.cancelScheduling(VL);
1172          newTreeEntry(VL, false);
1173          DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1174          return;
1175        }
1176      }
1177      ++NumLoadsWantToKeepOrder;
1178      newTreeEntry(VL, true);
1179      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1180      return;
1181    }
1182    case Instruction::ZExt:
1183    case Instruction::SExt:
1184    case Instruction::FPToUI:
1185    case Instruction::FPToSI:
1186    case Instruction::FPExt:
1187    case Instruction::PtrToInt:
1188    case Instruction::IntToPtr:
1189    case Instruction::SIToFP:
1190    case Instruction::UIToFP:
1191    case Instruction::Trunc:
1192    case Instruction::FPTrunc:
1193    case Instruction::BitCast: {
1194      Type *SrcTy = VL0->getOperand(0)->getType();
1195      for (unsigned i = 0; i < VL.size(); ++i) {
1196        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1197        if (Ty != SrcTy || !isValidElementType(Ty)) {
1198          BS.cancelScheduling(VL);
1199          newTreeEntry(VL, false);
1200          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1201          return;
1202        }
1203      }
1204      newTreeEntry(VL, true);
1205      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1206
1207      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1208        ValueList Operands;
1209        // Prepare the operand vector.
1210        for (Value *j : VL)
1211          Operands.push_back(cast<Instruction>(j)->getOperand(i));
1212
1213        buildTree_rec(Operands, Depth+1);
1214      }
1215      return;
1216    }
1217    case Instruction::ICmp:
1218    case Instruction::FCmp: {
1219      // Check that all of the compares have the same predicate.
1220      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1221      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1222      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1223        CmpInst *Cmp = cast<CmpInst>(VL[i]);
1224        if (Cmp->getPredicate() != P0 ||
1225            Cmp->getOperand(0)->getType() != ComparedTy) {
1226          BS.cancelScheduling(VL);
1227          newTreeEntry(VL, false);
1228          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1229          return;
1230        }
1231      }
1232
1233      newTreeEntry(VL, true);
1234      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1235
1236      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1237        ValueList Operands;
1238        // Prepare the operand vector.
1239        for (Value *j : VL)
1240          Operands.push_back(cast<Instruction>(j)->getOperand(i));
1241
1242        buildTree_rec(Operands, Depth+1);
1243      }
1244      return;
1245    }
1246    case Instruction::Select:
1247    case Instruction::Add:
1248    case Instruction::FAdd:
1249    case Instruction::Sub:
1250    case Instruction::FSub:
1251    case Instruction::Mul:
1252    case Instruction::FMul:
1253    case Instruction::UDiv:
1254    case Instruction::SDiv:
1255    case Instruction::FDiv:
1256    case Instruction::URem:
1257    case Instruction::SRem:
1258    case Instruction::FRem:
1259    case Instruction::Shl:
1260    case Instruction::LShr:
1261    case Instruction::AShr:
1262    case Instruction::And:
1263    case Instruction::Or:
1264    case Instruction::Xor: {
1265      newTreeEntry(VL, true);
1266      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1267
1268      // Sort operands of the instructions so that each side is more likely to
1269      // have the same opcode.
1270      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1271        ValueList Left, Right;
1272        reorderInputsAccordingToOpcode(VL, Left, Right);
1273        buildTree_rec(Left, Depth + 1);
1274        buildTree_rec(Right, Depth + 1);
1275        return;
1276      }
1277
1278      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1279        ValueList Operands;
1280        // Prepare the operand vector.
1281        for (Value *j : VL)
1282          Operands.push_back(cast<Instruction>(j)->getOperand(i));
1283
1284        buildTree_rec(Operands, Depth+1);
1285      }
1286      return;
1287    }
1288    case Instruction::GetElementPtr: {
1289      // We don't combine GEPs with complicated (nested) indexing.
1290      for (unsigned j = 0; j < VL.size(); ++j) {
1291        if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1292          DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1293          BS.cancelScheduling(VL);
1294          newTreeEntry(VL, false);
1295          return;
1296        }
1297      }
1298
1299      // We can't combine several GEPs into one vector if they operate on
1300      // different types.
1301      Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1302      for (unsigned j = 0; j < VL.size(); ++j) {
1303        Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1304        if (Ty0 != CurTy) {
1305          DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1306          BS.cancelScheduling(VL);
1307          newTreeEntry(VL, false);
1308          return;
1309        }
1310      }
1311
1312      // We don't combine GEPs with non-constant indexes.
1313      for (unsigned j = 0; j < VL.size(); ++j) {
1314        auto Op = cast<Instruction>(VL[j])->getOperand(1);
1315        if (!isa<ConstantInt>(Op)) {
1316          DEBUG(
1317              dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1318          BS.cancelScheduling(VL);
1319          newTreeEntry(VL, false);
1320          return;
1321        }
1322      }
1323
1324      newTreeEntry(VL, true);
1325      DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1326      for (unsigned i = 0, e = 2; i < e; ++i) {
1327        ValueList Operands;
1328        // Prepare the operand vector.
1329        for (Value *j : VL)
1330          Operands.push_back(cast<Instruction>(j)->getOperand(i));
1331
1332        buildTree_rec(Operands, Depth + 1);
1333      }
1334      return;
1335    }
1336    case Instruction::Store: {
1337      // Check if the stores are consecutive or of we need to swizzle them.
1338      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1339        if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1340          BS.cancelScheduling(VL);
1341          newTreeEntry(VL, false);
1342          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1343          return;
1344        }
1345
1346      newTreeEntry(VL, true);
1347      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1348
1349      ValueList Operands;
1350      for (Value *j : VL)
1351        Operands.push_back(cast<Instruction>(j)->getOperand(0));
1352
1353      buildTree_rec(Operands, Depth + 1);
1354      return;
1355    }
1356    case Instruction::Call: {
1357      // Check if the calls are all to the same vectorizable intrinsic.
1358      CallInst *CI = cast<CallInst>(VL[0]);
1359      // Check if this is an Intrinsic call or something that can be
1360      // represented by an intrinsic call
1361      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1362      if (!isTriviallyVectorizable(ID)) {
1363        BS.cancelScheduling(VL);
1364        newTreeEntry(VL, false);
1365        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1366        return;
1367      }
1368      Function *Int = CI->getCalledFunction();
1369      Value *A1I = nullptr;
1370      if (hasVectorInstrinsicScalarOpd(ID, 1))
1371        A1I = CI->getArgOperand(1);
1372      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1373        CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1374        if (!CI2 || CI2->getCalledFunction() != Int ||
1375            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1376            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1377          BS.cancelScheduling(VL);
1378          newTreeEntry(VL, false);
1379          DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1380                       << "\n");
1381          return;
1382        }
1383        // ctlz,cttz and powi are special intrinsics whose second argument
1384        // should be same in order for them to be vectorized.
1385        if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1386          Value *A1J = CI2->getArgOperand(1);
1387          if (A1I != A1J) {
1388            BS.cancelScheduling(VL);
1389            newTreeEntry(VL, false);
1390            DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1391                         << " argument "<< A1I<<"!=" << A1J
1392                         << "\n");
1393            return;
1394          }
1395        }
1396        // Verify that the bundle operands are identical between the two calls.
1397        if (CI->hasOperandBundles() &&
1398            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1399                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
1400                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1401          BS.cancelScheduling(VL);
1402          newTreeEntry(VL, false);
1403          DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
1404                       << *VL[i] << '\n');
1405          return;
1406        }
1407      }
1408
1409      newTreeEntry(VL, true);
1410      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1411        ValueList Operands;
1412        // Prepare the operand vector.
1413        for (Value *j : VL) {
1414          CallInst *CI2 = dyn_cast<CallInst>(j);
1415          Operands.push_back(CI2->getArgOperand(i));
1416        }
1417        buildTree_rec(Operands, Depth + 1);
1418      }
1419      return;
1420    }
1421    case Instruction::ShuffleVector: {
1422      // If this is not an alternate sequence of opcode like add-sub
1423      // then do not vectorize this instruction.
1424      if (!isAltShuffle) {
1425        BS.cancelScheduling(VL);
1426        newTreeEntry(VL, false);
1427        DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1428        return;
1429      }
1430      newTreeEntry(VL, true);
1431      DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1432
1433      // Reorder operands if reordering would enable vectorization.
1434      if (isa<BinaryOperator>(VL0)) {
1435        ValueList Left, Right;
1436        reorderAltShuffleOperands(VL, Left, Right);
1437        buildTree_rec(Left, Depth + 1);
1438        buildTree_rec(Right, Depth + 1);
1439        return;
1440      }
1441
1442      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1443        ValueList Operands;
1444        // Prepare the operand vector.
1445        for (Value *j : VL)
1446          Operands.push_back(cast<Instruction>(j)->getOperand(i));
1447
1448        buildTree_rec(Operands, Depth + 1);
1449      }
1450      return;
1451    }
1452    default:
1453      BS.cancelScheduling(VL);
1454      newTreeEntry(VL, false);
1455      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1456      return;
1457  }
1458}
1459
1460unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1461  unsigned N;
1462  Type *EltTy;
1463  auto *ST = dyn_cast<StructType>(T);
1464  if (ST) {
1465    N = ST->getNumElements();
1466    EltTy = *ST->element_begin();
1467  } else {
1468    N = cast<ArrayType>(T)->getNumElements();
1469    EltTy = cast<ArrayType>(T)->getElementType();
1470  }
1471  if (!isValidElementType(EltTy))
1472    return 0;
1473  uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1474  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1475    return 0;
1476  if (ST) {
1477    // Check that struct is homogeneous.
1478    for (const auto *Ty : ST->elements())
1479      if (Ty != EltTy)
1480        return 0;
1481  }
1482  return N;
1483}
1484
1485bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const {
1486  assert(Opcode == Instruction::ExtractElement ||
1487         Opcode == Instruction::ExtractValue);
1488  assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
1489  // Check if all of the extracts come from the same vector and from the
1490  // correct offset.
1491  Value *VL0 = VL[0];
1492  Instruction *E0 = cast<Instruction>(VL0);
1493  Value *Vec = E0->getOperand(0);
1494
1495  // We have to extract from a vector/aggregate with the same number of elements.
1496  unsigned NElts;
1497  if (Opcode == Instruction::ExtractValue) {
1498    const DataLayout &DL = E0->getModule()->getDataLayout();
1499    NElts = canMapToVector(Vec->getType(), DL);
1500    if (!NElts)
1501      return false;
1502    // Check if load can be rewritten as load of vector.
1503    LoadInst *LI = dyn_cast<LoadInst>(Vec);
1504    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
1505      return false;
1506  } else {
1507    NElts = Vec->getType()->getVectorNumElements();
1508  }
1509
1510  if (NElts != VL.size())
1511    return false;
1512
1513  // Check that all of the indices extract from the correct offset.
1514  if (!matchExtractIndex(E0, 0, Opcode))
1515    return false;
1516
1517  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1518    Instruction *E = cast<Instruction>(VL[i]);
1519    if (!matchExtractIndex(E, i, Opcode))
1520      return false;
1521    if (E->getOperand(0) != Vec)
1522      return false;
1523  }
1524
1525  return true;
1526}
1527
1528int BoUpSLP::getEntryCost(TreeEntry *E) {
1529  ArrayRef<Value*> VL = E->Scalars;
1530
1531  Type *ScalarTy = VL[0]->getType();
1532  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1533    ScalarTy = SI->getValueOperand()->getType();
1534  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1535
1536  // If we have computed a smaller type for the expression, update VecTy so
1537  // that the costs will be accurate.
1538  if (MinBWs.count(VL[0]))
1539    VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]),
1540                            VL.size());
1541
1542  if (E->NeedToGather) {
1543    if (allConstant(VL))
1544      return 0;
1545    if (isSplat(VL)) {
1546      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1547    }
1548    return getGatherCost(E->Scalars);
1549  }
1550  unsigned Opcode = getSameOpcode(VL);
1551  assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1552  Instruction *VL0 = cast<Instruction>(VL[0]);
1553  switch (Opcode) {
1554    case Instruction::PHI: {
1555      return 0;
1556    }
1557    case Instruction::ExtractValue:
1558    case Instruction::ExtractElement: {
1559      if (canReuseExtract(VL, Opcode)) {
1560        int DeadCost = 0;
1561        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1562          Instruction *E = cast<Instruction>(VL[i]);
1563          if (E->hasOneUse())
1564            // Take credit for instruction that will become dead.
1565            DeadCost +=
1566                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1567        }
1568        return -DeadCost;
1569      }
1570      return getGatherCost(VecTy);
1571    }
1572    case Instruction::ZExt:
1573    case Instruction::SExt:
1574    case Instruction::FPToUI:
1575    case Instruction::FPToSI:
1576    case Instruction::FPExt:
1577    case Instruction::PtrToInt:
1578    case Instruction::IntToPtr:
1579    case Instruction::SIToFP:
1580    case Instruction::UIToFP:
1581    case Instruction::Trunc:
1582    case Instruction::FPTrunc:
1583    case Instruction::BitCast: {
1584      Type *SrcTy = VL0->getOperand(0)->getType();
1585
1586      // Calculate the cost of this instruction.
1587      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1588                                                         VL0->getType(), SrcTy);
1589
1590      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1591      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1592      return VecCost - ScalarCost;
1593    }
1594    case Instruction::FCmp:
1595    case Instruction::ICmp:
1596    case Instruction::Select: {
1597      // Calculate the cost of this instruction.
1598      VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1599      int ScalarCost = VecTy->getNumElements() *
1600          TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1601      int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1602      return VecCost - ScalarCost;
1603    }
1604    case Instruction::Add:
1605    case Instruction::FAdd:
1606    case Instruction::Sub:
1607    case Instruction::FSub:
1608    case Instruction::Mul:
1609    case Instruction::FMul:
1610    case Instruction::UDiv:
1611    case Instruction::SDiv:
1612    case Instruction::FDiv:
1613    case Instruction::URem:
1614    case Instruction::SRem:
1615    case Instruction::FRem:
1616    case Instruction::Shl:
1617    case Instruction::LShr:
1618    case Instruction::AShr:
1619    case Instruction::And:
1620    case Instruction::Or:
1621    case Instruction::Xor: {
1622      // Certain instructions can be cheaper to vectorize if they have a
1623      // constant second vector operand.
1624      TargetTransformInfo::OperandValueKind Op1VK =
1625          TargetTransformInfo::OK_AnyValue;
1626      TargetTransformInfo::OperandValueKind Op2VK =
1627          TargetTransformInfo::OK_UniformConstantValue;
1628      TargetTransformInfo::OperandValueProperties Op1VP =
1629          TargetTransformInfo::OP_None;
1630      TargetTransformInfo::OperandValueProperties Op2VP =
1631          TargetTransformInfo::OP_None;
1632
1633      // If all operands are exactly the same ConstantInt then set the
1634      // operand kind to OK_UniformConstantValue.
1635      // If instead not all operands are constants, then set the operand kind
1636      // to OK_AnyValue. If all operands are constants but not the same,
1637      // then set the operand kind to OK_NonUniformConstantValue.
1638      ConstantInt *CInt = nullptr;
1639      for (unsigned i = 0; i < VL.size(); ++i) {
1640        const Instruction *I = cast<Instruction>(VL[i]);
1641        if (!isa<ConstantInt>(I->getOperand(1))) {
1642          Op2VK = TargetTransformInfo::OK_AnyValue;
1643          break;
1644        }
1645        if (i == 0) {
1646          CInt = cast<ConstantInt>(I->getOperand(1));
1647          continue;
1648        }
1649        if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1650            CInt != cast<ConstantInt>(I->getOperand(1)))
1651          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1652      }
1653      // FIXME: Currently cost of model modification for division by power of
1654      // 2 is handled for X86 and AArch64. Add support for other targets.
1655      if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1656          CInt->getValue().isPowerOf2())
1657        Op2VP = TargetTransformInfo::OP_PowerOf2;
1658
1659      int ScalarCost = VecTy->getNumElements() *
1660                       TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK,
1661                                                   Op2VK, Op1VP, Op2VP);
1662      int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1663                                                Op1VP, Op2VP);
1664      return VecCost - ScalarCost;
1665    }
1666    case Instruction::GetElementPtr: {
1667      TargetTransformInfo::OperandValueKind Op1VK =
1668          TargetTransformInfo::OK_AnyValue;
1669      TargetTransformInfo::OperandValueKind Op2VK =
1670          TargetTransformInfo::OK_UniformConstantValue;
1671
1672      int ScalarCost =
1673          VecTy->getNumElements() *
1674          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1675      int VecCost =
1676          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1677
1678      return VecCost - ScalarCost;
1679    }
1680    case Instruction::Load: {
1681      // Cost of wide load - cost of scalar loads.
1682      unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
1683      int ScalarLdCost = VecTy->getNumElements() *
1684            TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0);
1685      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
1686                                           VecTy, alignment, 0);
1687      return VecLdCost - ScalarLdCost;
1688    }
1689    case Instruction::Store: {
1690      // We know that we can merge the stores. Calculate the cost.
1691      unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
1692      int ScalarStCost = VecTy->getNumElements() *
1693            TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0);
1694      int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
1695                                           VecTy, alignment, 0);
1696      return VecStCost - ScalarStCost;
1697    }
1698    case Instruction::Call: {
1699      CallInst *CI = cast<CallInst>(VL0);
1700      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1701
1702      // Calculate the cost of the scalar and vector calls.
1703      SmallVector<Type*, 4> ScalarTys, VecTys;
1704      for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1705        ScalarTys.push_back(CI->getArgOperand(op)->getType());
1706        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1707                                         VecTy->getNumElements()));
1708      }
1709
1710      FastMathFlags FMF;
1711      if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
1712        FMF = FPMO->getFastMathFlags();
1713
1714      int ScalarCallCost = VecTy->getNumElements() *
1715          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
1716
1717      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF);
1718
1719      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1720            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1721            << " for " << *CI << "\n");
1722
1723      return VecCallCost - ScalarCallCost;
1724    }
1725    case Instruction::ShuffleVector: {
1726      TargetTransformInfo::OperandValueKind Op1VK =
1727          TargetTransformInfo::OK_AnyValue;
1728      TargetTransformInfo::OperandValueKind Op2VK =
1729          TargetTransformInfo::OK_AnyValue;
1730      int ScalarCost = 0;
1731      int VecCost = 0;
1732      for (Value *i : VL) {
1733        Instruction *I = cast<Instruction>(i);
1734        if (!I)
1735          break;
1736        ScalarCost +=
1737            TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1738      }
1739      // VecCost is equal to sum of the cost of creating 2 vectors
1740      // and the cost of creating shuffle.
1741      Instruction *I0 = cast<Instruction>(VL[0]);
1742      VecCost =
1743          TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1744      Instruction *I1 = cast<Instruction>(VL[1]);
1745      VecCost +=
1746          TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1747      VecCost +=
1748          TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1749      return VecCost - ScalarCost;
1750    }
1751    default:
1752      llvm_unreachable("Unknown instruction");
1753  }
1754}
1755
1756bool BoUpSLP::isFullyVectorizableTinyTree() {
1757  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1758        VectorizableTree.size() << " is fully vectorizable .\n");
1759
1760  // We only handle trees of height 2.
1761  if (VectorizableTree.size() != 2)
1762    return false;
1763
1764  // Handle splat and all-constants stores.
1765  if (!VectorizableTree[0].NeedToGather &&
1766      (allConstant(VectorizableTree[1].Scalars) ||
1767       isSplat(VectorizableTree[1].Scalars)))
1768    return true;
1769
1770  // Gathering cost would be too much for tiny trees.
1771  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1772    return false;
1773
1774  return true;
1775}
1776
1777int BoUpSLP::getSpillCost() {
1778  // Walk from the bottom of the tree to the top, tracking which values are
1779  // live. When we see a call instruction that is not part of our tree,
1780  // query TTI to see if there is a cost to keeping values live over it
1781  // (for example, if spills and fills are required).
1782  unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1783  int Cost = 0;
1784
1785  SmallPtrSet<Instruction*, 4> LiveValues;
1786  Instruction *PrevInst = nullptr;
1787
1788  for (const auto &N : VectorizableTree) {
1789    Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
1790    if (!Inst)
1791      continue;
1792
1793    if (!PrevInst) {
1794      PrevInst = Inst;
1795      continue;
1796    }
1797
1798    // Update LiveValues.
1799    LiveValues.erase(PrevInst);
1800    for (auto &J : PrevInst->operands()) {
1801      if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1802        LiveValues.insert(cast<Instruction>(&*J));
1803    }
1804
1805    DEBUG(
1806      dbgs() << "SLP: #LV: " << LiveValues.size();
1807      for (auto *X : LiveValues)
1808        dbgs() << " " << X->getName();
1809      dbgs() << ", Looking at ";
1810      Inst->dump();
1811      );
1812
1813    // Now find the sequence of instructions between PrevInst and Inst.
1814    BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
1815        PrevInstIt(PrevInst->getIterator());
1816    --PrevInstIt;
1817    while (InstIt != PrevInstIt) {
1818      if (PrevInstIt == PrevInst->getParent()->rend()) {
1819        PrevInstIt = Inst->getParent()->rbegin();
1820        continue;
1821      }
1822
1823      if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1824        SmallVector<Type*, 4> V;
1825        for (auto *II : LiveValues)
1826          V.push_back(VectorType::get(II->getType(), BundleWidth));
1827        Cost += TTI->getCostOfKeepingLiveOverCall(V);
1828      }
1829
1830      ++PrevInstIt;
1831    }
1832
1833    PrevInst = Inst;
1834  }
1835
1836  return Cost;
1837}
1838
1839int BoUpSLP::getTreeCost() {
1840  int Cost = 0;
1841  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1842        VectorizableTree.size() << ".\n");
1843
1844  // We only vectorize tiny trees if it is fully vectorizable.
1845  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1846    if (VectorizableTree.empty()) {
1847      assert(!ExternalUses.size() && "We should not have any external users");
1848    }
1849    return INT_MAX;
1850  }
1851
1852  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1853
1854  for (TreeEntry &TE : VectorizableTree) {
1855    int C = getEntryCost(&TE);
1856    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1857                 << *TE.Scalars[0] << ".\n");
1858    Cost += C;
1859  }
1860
1861  SmallSet<Value *, 16> ExtractCostCalculated;
1862  int ExtractCost = 0;
1863  for (ExternalUser &EU : ExternalUses) {
1864    // We only add extract cost once for the same scalar.
1865    if (!ExtractCostCalculated.insert(EU.Scalar).second)
1866      continue;
1867
1868    // Uses by ephemeral values are free (because the ephemeral value will be
1869    // removed prior to code generation, and so the extraction will be
1870    // removed as well).
1871    if (EphValues.count(EU.User))
1872      continue;
1873
1874    // If we plan to rewrite the tree in a smaller type, we will need to sign
1875    // extend the extracted value back to the original type. Here, we account
1876    // for the extract and the added cost of the sign extend if needed.
1877    auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
1878    auto *ScalarRoot = VectorizableTree[0].Scalars[0];
1879    if (MinBWs.count(ScalarRoot)) {
1880      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
1881      VecTy = VectorType::get(MinTy, BundleWidth);
1882      ExtractCost += TTI->getExtractWithExtendCost(
1883          Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane);
1884    } else {
1885      ExtractCost +=
1886          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
1887    }
1888  }
1889
1890  int SpillCost = getSpillCost();
1891  Cost += SpillCost + ExtractCost;
1892
1893  DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n"
1894               << "SLP: Extract Cost = " << ExtractCost << ".\n"
1895               << "SLP: Total Cost = " << Cost << ".\n");
1896  return Cost;
1897}
1898
1899int BoUpSLP::getGatherCost(Type *Ty) {
1900  int Cost = 0;
1901  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1902    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1903  return Cost;
1904}
1905
1906int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1907  // Find the type of the operands in VL.
1908  Type *ScalarTy = VL[0]->getType();
1909  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1910    ScalarTy = SI->getValueOperand()->getType();
1911  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1912  // Find the cost of inserting/extracting values from the vector.
1913  return getGatherCost(VecTy);
1914}
1915
1916// Reorder commutative operations in alternate shuffle if the resulting vectors
1917// are consecutive loads. This would allow us to vectorize the tree.
1918// If we have something like-
1919// load a[0] - load b[0]
1920// load b[1] + load a[1]
1921// load a[2] - load b[2]
1922// load a[3] + load b[3]
1923// Reordering the second load b[1]  load a[1] would allow us to vectorize this
1924// code.
1925void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1926                                        SmallVectorImpl<Value *> &Left,
1927                                        SmallVectorImpl<Value *> &Right) {
1928  // Push left and right operands of binary operation into Left and Right
1929  for (Value *i : VL) {
1930    Left.push_back(cast<Instruction>(i)->getOperand(0));
1931    Right.push_back(cast<Instruction>(i)->getOperand(1));
1932  }
1933
1934  // Reorder if we have a commutative operation and consecutive access
1935  // are on either side of the alternate instructions.
1936  for (unsigned j = 0; j < VL.size() - 1; ++j) {
1937    if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1938      if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1939        Instruction *VL1 = cast<Instruction>(VL[j]);
1940        Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1941        if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
1942          std::swap(Left[j], Right[j]);
1943          continue;
1944        } else if (VL2->isCommutative() &&
1945                   isConsecutiveAccess(L, L1, *DL, *SE)) {
1946          std::swap(Left[j + 1], Right[j + 1]);
1947          continue;
1948        }
1949        // else unchanged
1950      }
1951    }
1952    if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1953      if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1954        Instruction *VL1 = cast<Instruction>(VL[j]);
1955        Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1956        if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
1957          std::swap(Left[j], Right[j]);
1958          continue;
1959        } else if (VL2->isCommutative() &&
1960                   isConsecutiveAccess(L, L1, *DL, *SE)) {
1961          std::swap(Left[j + 1], Right[j + 1]);
1962          continue;
1963        }
1964        // else unchanged
1965      }
1966    }
1967  }
1968}
1969
1970// Return true if I should be commuted before adding it's left and right
1971// operands to the arrays Left and Right.
1972//
1973// The vectorizer is trying to either have all elements one side being
1974// instruction with the same opcode to enable further vectorization, or having
1975// a splat to lower the vectorizing cost.
1976static bool shouldReorderOperands(int i, Instruction &I,
1977                                  SmallVectorImpl<Value *> &Left,
1978                                  SmallVectorImpl<Value *> &Right,
1979                                  bool AllSameOpcodeLeft,
1980                                  bool AllSameOpcodeRight, bool SplatLeft,
1981                                  bool SplatRight) {
1982  Value *VLeft = I.getOperand(0);
1983  Value *VRight = I.getOperand(1);
1984  // If we have "SplatRight", try to see if commuting is needed to preserve it.
1985  if (SplatRight) {
1986    if (VRight == Right[i - 1])
1987      // Preserve SplatRight
1988      return false;
1989    if (VLeft == Right[i - 1]) {
1990      // Commuting would preserve SplatRight, but we don't want to break
1991      // SplatLeft either, i.e. preserve the original order if possible.
1992      // (FIXME: why do we care?)
1993      if (SplatLeft && VLeft == Left[i - 1])
1994        return false;
1995      return true;
1996    }
1997  }
1998  // Symmetrically handle Right side.
1999  if (SplatLeft) {
2000    if (VLeft == Left[i - 1])
2001      // Preserve SplatLeft
2002      return false;
2003    if (VRight == Left[i - 1])
2004      return true;
2005  }
2006
2007  Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2008  Instruction *IRight = dyn_cast<Instruction>(VRight);
2009
2010  // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2011  // it and not the right, in this case we want to commute.
2012  if (AllSameOpcodeRight) {
2013    unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2014    if (IRight && RightPrevOpcode == IRight->getOpcode())
2015      // Do not commute, a match on the right preserves AllSameOpcodeRight
2016      return false;
2017    if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2018      // We have a match and may want to commute, but first check if there is
2019      // not also a match on the existing operands on the Left to preserve
2020      // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2021      // (FIXME: why do we care?)
2022      if (AllSameOpcodeLeft && ILeft &&
2023          cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2024        return false;
2025      return true;
2026    }
2027  }
2028  // Symmetrically handle Left side.
2029  if (AllSameOpcodeLeft) {
2030    unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2031    if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2032      return false;
2033    if (IRight && LeftPrevOpcode == IRight->getOpcode())
2034      return true;
2035  }
2036  return false;
2037}
2038
2039void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2040                                             SmallVectorImpl<Value *> &Left,
2041                                             SmallVectorImpl<Value *> &Right) {
2042
2043  if (VL.size()) {
2044    // Peel the first iteration out of the loop since there's nothing
2045    // interesting to do anyway and it simplifies the checks in the loop.
2046    auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
2047    auto VRight = cast<Instruction>(VL[0])->getOperand(1);
2048    if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2049      // Favor having instruction to the right. FIXME: why?
2050      std::swap(VLeft, VRight);
2051    Left.push_back(VLeft);
2052    Right.push_back(VRight);
2053  }
2054
2055  // Keep track if we have instructions with all the same opcode on one side.
2056  bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2057  bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2058  // Keep track if we have one side with all the same value (broadcast).
2059  bool SplatLeft = true;
2060  bool SplatRight = true;
2061
2062  for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2063    Instruction *I = cast<Instruction>(VL[i]);
2064    assert(I->isCommutative() && "Can only process commutative instruction");
2065    // Commute to favor either a splat or maximizing having the same opcodes on
2066    // one side.
2067    if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
2068                              AllSameOpcodeRight, SplatLeft, SplatRight)) {
2069      Left.push_back(I->getOperand(1));
2070      Right.push_back(I->getOperand(0));
2071    } else {
2072      Left.push_back(I->getOperand(0));
2073      Right.push_back(I->getOperand(1));
2074    }
2075    // Update Splat* and AllSameOpcode* after the insertion.
2076    SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2077    SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2078    AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2079                        (cast<Instruction>(Left[i - 1])->getOpcode() ==
2080                         cast<Instruction>(Left[i])->getOpcode());
2081    AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2082                         (cast<Instruction>(Right[i - 1])->getOpcode() ==
2083                          cast<Instruction>(Right[i])->getOpcode());
2084  }
2085
2086  // If one operand end up being broadcast, return this operand order.
2087  if (SplatRight || SplatLeft)
2088    return;
2089
2090  // Finally check if we can get longer vectorizable chain by reordering
2091  // without breaking the good operand order detected above.
2092  // E.g. If we have something like-
2093  // load a[0]  load b[0]
2094  // load b[1]  load a[1]
2095  // load a[2]  load b[2]
2096  // load a[3]  load b[3]
2097  // Reordering the second load b[1]  load a[1] would allow us to vectorize
2098  // this code and we still retain AllSameOpcode property.
2099  // FIXME: This load reordering might break AllSameOpcode in some rare cases
2100  // such as-
2101  // add a[0],c[0]  load b[0]
2102  // add a[1],c[2]  load b[1]
2103  // b[2]           load b[2]
2104  // add a[3],c[3]  load b[3]
2105  for (unsigned j = 0; j < VL.size() - 1; ++j) {
2106    if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2107      if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2108        if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2109          std::swap(Left[j + 1], Right[j + 1]);
2110          continue;
2111        }
2112      }
2113    }
2114    if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2115      if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2116        if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2117          std::swap(Left[j + 1], Right[j + 1]);
2118          continue;
2119        }
2120      }
2121    }
2122    // else unchanged
2123  }
2124}
2125
2126void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2127  Instruction *VL0 = cast<Instruction>(VL[0]);
2128  BasicBlock::iterator NextInst(VL0);
2129  ++NextInst;
2130  Builder.SetInsertPoint(VL0->getParent(), NextInst);
2131  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2132}
2133
2134Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2135  Value *Vec = UndefValue::get(Ty);
2136  // Generate the 'InsertElement' instruction.
2137  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2138    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2139    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2140      GatherSeq.insert(Insrt);
2141      CSEBlocks.insert(Insrt->getParent());
2142
2143      // Add to our 'need-to-extract' list.
2144      if (ScalarToTreeEntry.count(VL[i])) {
2145        int Idx = ScalarToTreeEntry[VL[i]];
2146        TreeEntry *E = &VectorizableTree[Idx];
2147        // Find which lane we need to extract.
2148        int FoundLane = -1;
2149        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2150          // Is this the lane of the scalar that we are looking for ?
2151          if (E->Scalars[Lane] == VL[i]) {
2152            FoundLane = Lane;
2153            break;
2154          }
2155        }
2156        assert(FoundLane >= 0 && "Could not find the correct lane");
2157        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2158      }
2159    }
2160  }
2161
2162  return Vec;
2163}
2164
2165Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2166  SmallDenseMap<Value*, int>::const_iterator Entry
2167    = ScalarToTreeEntry.find(VL[0]);
2168  if (Entry != ScalarToTreeEntry.end()) {
2169    int Idx = Entry->second;
2170    const TreeEntry *En = &VectorizableTree[Idx];
2171    if (En->isSame(VL) && En->VectorizedValue)
2172      return En->VectorizedValue;
2173  }
2174  return nullptr;
2175}
2176
2177Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2178  if (ScalarToTreeEntry.count(VL[0])) {
2179    int Idx = ScalarToTreeEntry[VL[0]];
2180    TreeEntry *E = &VectorizableTree[Idx];
2181    if (E->isSame(VL))
2182      return vectorizeTree(E);
2183  }
2184
2185  Type *ScalarTy = VL[0]->getType();
2186  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2187    ScalarTy = SI->getValueOperand()->getType();
2188  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2189
2190  return Gather(VL, VecTy);
2191}
2192
2193Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2194  IRBuilder<>::InsertPointGuard Guard(Builder);
2195
2196  if (E->VectorizedValue) {
2197    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2198    return E->VectorizedValue;
2199  }
2200
2201  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2202  Type *ScalarTy = VL0->getType();
2203  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2204    ScalarTy = SI->getValueOperand()->getType();
2205  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2206
2207  if (E->NeedToGather) {
2208    setInsertPointAfterBundle(E->Scalars);
2209    return Gather(E->Scalars, VecTy);
2210  }
2211
2212  unsigned Opcode = getSameOpcode(E->Scalars);
2213
2214  switch (Opcode) {
2215    case Instruction::PHI: {
2216      PHINode *PH = dyn_cast<PHINode>(VL0);
2217      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2218      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2219      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2220      E->VectorizedValue = NewPhi;
2221
2222      // PHINodes may have multiple entries from the same block. We want to
2223      // visit every block once.
2224      SmallSet<BasicBlock*, 4> VisitedBBs;
2225
2226      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2227        ValueList Operands;
2228        BasicBlock *IBB = PH->getIncomingBlock(i);
2229
2230        if (!VisitedBBs.insert(IBB).second) {
2231          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2232          continue;
2233        }
2234
2235        // Prepare the operand vector.
2236        for (Value *V : E->Scalars)
2237          Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2238
2239        Builder.SetInsertPoint(IBB->getTerminator());
2240        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2241        Value *Vec = vectorizeTree(Operands);
2242        NewPhi->addIncoming(Vec, IBB);
2243      }
2244
2245      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2246             "Invalid number of incoming values");
2247      return NewPhi;
2248    }
2249
2250    case Instruction::ExtractElement: {
2251      if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) {
2252        Value *V = VL0->getOperand(0);
2253        E->VectorizedValue = V;
2254        return V;
2255      }
2256      return Gather(E->Scalars, VecTy);
2257    }
2258    case Instruction::ExtractValue: {
2259      if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) {
2260        LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
2261        Builder.SetInsertPoint(LI);
2262        PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
2263        Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
2264        LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
2265        E->VectorizedValue = V;
2266        return propagateMetadata(V, E->Scalars);
2267      }
2268      return Gather(E->Scalars, VecTy);
2269    }
2270    case Instruction::ZExt:
2271    case Instruction::SExt:
2272    case Instruction::FPToUI:
2273    case Instruction::FPToSI:
2274    case Instruction::FPExt:
2275    case Instruction::PtrToInt:
2276    case Instruction::IntToPtr:
2277    case Instruction::SIToFP:
2278    case Instruction::UIToFP:
2279    case Instruction::Trunc:
2280    case Instruction::FPTrunc:
2281    case Instruction::BitCast: {
2282      ValueList INVL;
2283      for (Value *V : E->Scalars)
2284        INVL.push_back(cast<Instruction>(V)->getOperand(0));
2285
2286      setInsertPointAfterBundle(E->Scalars);
2287
2288      Value *InVec = vectorizeTree(INVL);
2289
2290      if (Value *V = alreadyVectorized(E->Scalars))
2291        return V;
2292
2293      CastInst *CI = dyn_cast<CastInst>(VL0);
2294      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2295      E->VectorizedValue = V;
2296      ++NumVectorInstructions;
2297      return V;
2298    }
2299    case Instruction::FCmp:
2300    case Instruction::ICmp: {
2301      ValueList LHSV, RHSV;
2302      for (Value *V : E->Scalars) {
2303        LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2304        RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2305      }
2306
2307      setInsertPointAfterBundle(E->Scalars);
2308
2309      Value *L = vectorizeTree(LHSV);
2310      Value *R = vectorizeTree(RHSV);
2311
2312      if (Value *V = alreadyVectorized(E->Scalars))
2313        return V;
2314
2315      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2316      Value *V;
2317      if (Opcode == Instruction::FCmp)
2318        V = Builder.CreateFCmp(P0, L, R);
2319      else
2320        V = Builder.CreateICmp(P0, L, R);
2321
2322      E->VectorizedValue = V;
2323      ++NumVectorInstructions;
2324      return V;
2325    }
2326    case Instruction::Select: {
2327      ValueList TrueVec, FalseVec, CondVec;
2328      for (Value *V : E->Scalars) {
2329        CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2330        TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2331        FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2332      }
2333
2334      setInsertPointAfterBundle(E->Scalars);
2335
2336      Value *Cond = vectorizeTree(CondVec);
2337      Value *True = vectorizeTree(TrueVec);
2338      Value *False = vectorizeTree(FalseVec);
2339
2340      if (Value *V = alreadyVectorized(E->Scalars))
2341        return V;
2342
2343      Value *V = Builder.CreateSelect(Cond, True, False);
2344      E->VectorizedValue = V;
2345      ++NumVectorInstructions;
2346      return V;
2347    }
2348    case Instruction::Add:
2349    case Instruction::FAdd:
2350    case Instruction::Sub:
2351    case Instruction::FSub:
2352    case Instruction::Mul:
2353    case Instruction::FMul:
2354    case Instruction::UDiv:
2355    case Instruction::SDiv:
2356    case Instruction::FDiv:
2357    case Instruction::URem:
2358    case Instruction::SRem:
2359    case Instruction::FRem:
2360    case Instruction::Shl:
2361    case Instruction::LShr:
2362    case Instruction::AShr:
2363    case Instruction::And:
2364    case Instruction::Or:
2365    case Instruction::Xor: {
2366      ValueList LHSVL, RHSVL;
2367      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2368        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2369      else
2370        for (Value *V : E->Scalars) {
2371          LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2372          RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2373        }
2374
2375      setInsertPointAfterBundle(E->Scalars);
2376
2377      Value *LHS = vectorizeTree(LHSVL);
2378      Value *RHS = vectorizeTree(RHSVL);
2379
2380      if (LHS == RHS && isa<Instruction>(LHS)) {
2381        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
2382      }
2383
2384      if (Value *V = alreadyVectorized(E->Scalars))
2385        return V;
2386
2387      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2388      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2389      E->VectorizedValue = V;
2390      propagateIRFlags(E->VectorizedValue, E->Scalars);
2391      ++NumVectorInstructions;
2392
2393      if (Instruction *I = dyn_cast<Instruction>(V))
2394        return propagateMetadata(I, E->Scalars);
2395
2396      return V;
2397    }
2398    case Instruction::Load: {
2399      // Loads are inserted at the head of the tree because we don't want to
2400      // sink them all the way down past store instructions.
2401      setInsertPointAfterBundle(E->Scalars);
2402
2403      LoadInst *LI = cast<LoadInst>(VL0);
2404      Type *ScalarLoadTy = LI->getType();
2405      unsigned AS = LI->getPointerAddressSpace();
2406
2407      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2408                                            VecTy->getPointerTo(AS));
2409
2410      // The pointer operand uses an in-tree scalar so we add the new BitCast to
2411      // ExternalUses list to make sure that an extract will be generated in the
2412      // future.
2413      if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2414        ExternalUses.push_back(
2415            ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2416
2417      unsigned Alignment = LI->getAlignment();
2418      LI = Builder.CreateLoad(VecPtr);
2419      if (!Alignment) {
2420        Alignment = DL->getABITypeAlignment(ScalarLoadTy);
2421      }
2422      LI->setAlignment(Alignment);
2423      E->VectorizedValue = LI;
2424      ++NumVectorInstructions;
2425      return propagateMetadata(LI, E->Scalars);
2426    }
2427    case Instruction::Store: {
2428      StoreInst *SI = cast<StoreInst>(VL0);
2429      unsigned Alignment = SI->getAlignment();
2430      unsigned AS = SI->getPointerAddressSpace();
2431
2432      ValueList ValueOp;
2433      for (Value *V : E->Scalars)
2434        ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2435
2436      setInsertPointAfterBundle(E->Scalars);
2437
2438      Value *VecValue = vectorizeTree(ValueOp);
2439      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2440                                            VecTy->getPointerTo(AS));
2441      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2442
2443      // The pointer operand uses an in-tree scalar so we add the new BitCast to
2444      // ExternalUses list to make sure that an extract will be generated in the
2445      // future.
2446      if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2447        ExternalUses.push_back(
2448            ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2449
2450      if (!Alignment) {
2451        Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
2452      }
2453      S->setAlignment(Alignment);
2454      E->VectorizedValue = S;
2455      ++NumVectorInstructions;
2456      return propagateMetadata(S, E->Scalars);
2457    }
2458    case Instruction::GetElementPtr: {
2459      setInsertPointAfterBundle(E->Scalars);
2460
2461      ValueList Op0VL;
2462      for (Value *V : E->Scalars)
2463        Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2464
2465      Value *Op0 = vectorizeTree(Op0VL);
2466
2467      std::vector<Value *> OpVecs;
2468      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2469           ++j) {
2470        ValueList OpVL;
2471        for (Value *V : E->Scalars)
2472          OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2473
2474        Value *OpVec = vectorizeTree(OpVL);
2475        OpVecs.push_back(OpVec);
2476      }
2477
2478      Value *V = Builder.CreateGEP(
2479          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2480      E->VectorizedValue = V;
2481      ++NumVectorInstructions;
2482
2483      if (Instruction *I = dyn_cast<Instruction>(V))
2484        return propagateMetadata(I, E->Scalars);
2485
2486      return V;
2487    }
2488    case Instruction::Call: {
2489      CallInst *CI = cast<CallInst>(VL0);
2490      setInsertPointAfterBundle(E->Scalars);
2491      Function *FI;
2492      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
2493      Value *ScalarArg = nullptr;
2494      if (CI && (FI = CI->getCalledFunction())) {
2495        IID = FI->getIntrinsicID();
2496      }
2497      std::vector<Value *> OpVecs;
2498      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2499        ValueList OpVL;
2500        // ctlz,cttz and powi are special intrinsics whose second argument is
2501        // a scalar. This argument should not be vectorized.
2502        if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2503          CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2504          ScalarArg = CEI->getArgOperand(j);
2505          OpVecs.push_back(CEI->getArgOperand(j));
2506          continue;
2507        }
2508        for (Value *V : E->Scalars) {
2509          CallInst *CEI = cast<CallInst>(V);
2510          OpVL.push_back(CEI->getArgOperand(j));
2511        }
2512
2513        Value *OpVec = vectorizeTree(OpVL);
2514        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
2515        OpVecs.push_back(OpVec);
2516      }
2517
2518      Module *M = F->getParent();
2519      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2520      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2521      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2522      SmallVector<OperandBundleDef, 1> OpBundles;
2523      CI->getOperandBundlesAsDefs(OpBundles);
2524      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
2525
2526      // The scalar argument uses an in-tree scalar so we add the new vectorized
2527      // call to ExternalUses list to make sure that an extract will be
2528      // generated in the future.
2529      if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2530        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2531
2532      E->VectorizedValue = V;
2533      ++NumVectorInstructions;
2534      return V;
2535    }
2536    case Instruction::ShuffleVector: {
2537      ValueList LHSVL, RHSVL;
2538      assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
2539      reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2540      setInsertPointAfterBundle(E->Scalars);
2541
2542      Value *LHS = vectorizeTree(LHSVL);
2543      Value *RHS = vectorizeTree(RHSVL);
2544
2545      if (Value *V = alreadyVectorized(E->Scalars))
2546        return V;
2547
2548      // Create a vector of LHS op1 RHS
2549      BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2550      Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2551
2552      // Create a vector of LHS op2 RHS
2553      Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2554      BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2555      Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2556
2557      // Create shuffle to take alternate operations from the vector.
2558      // Also, gather up odd and even scalar ops to propagate IR flags to
2559      // each vector operation.
2560      ValueList OddScalars, EvenScalars;
2561      unsigned e = E->Scalars.size();
2562      SmallVector<Constant *, 8> Mask(e);
2563      for (unsigned i = 0; i < e; ++i) {
2564        if (i & 1) {
2565          Mask[i] = Builder.getInt32(e + i);
2566          OddScalars.push_back(E->Scalars[i]);
2567        } else {
2568          Mask[i] = Builder.getInt32(i);
2569          EvenScalars.push_back(E->Scalars[i]);
2570        }
2571      }
2572
2573      Value *ShuffleMask = ConstantVector::get(Mask);
2574      propagateIRFlags(V0, EvenScalars);
2575      propagateIRFlags(V1, OddScalars);
2576
2577      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2578      E->VectorizedValue = V;
2579      ++NumVectorInstructions;
2580      if (Instruction *I = dyn_cast<Instruction>(V))
2581        return propagateMetadata(I, E->Scalars);
2582
2583      return V;
2584    }
2585    default:
2586    llvm_unreachable("unknown inst");
2587  }
2588  return nullptr;
2589}
2590
2591Value *BoUpSLP::vectorizeTree() {
2592
2593  // All blocks must be scheduled before any instructions are inserted.
2594  for (auto &BSIter : BlocksSchedules) {
2595    scheduleBlock(BSIter.second.get());
2596  }
2597
2598  Builder.SetInsertPoint(&F->getEntryBlock().front());
2599  auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
2600
2601  // If the vectorized tree can be rewritten in a smaller type, we truncate the
2602  // vectorized root. InstCombine will then rewrite the entire expression. We
2603  // sign extend the extracted values below.
2604  auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2605  if (MinBWs.count(ScalarRoot)) {
2606    if (auto *I = dyn_cast<Instruction>(VectorRoot))
2607      Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
2608    auto BundleWidth = VectorizableTree[0].Scalars.size();
2609    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
2610    auto *VecTy = VectorType::get(MinTy, BundleWidth);
2611    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
2612    VectorizableTree[0].VectorizedValue = Trunc;
2613  }
2614
2615  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
2616
2617  // Extract all of the elements with the external uses.
2618  for (const auto &ExternalUse : ExternalUses) {
2619    Value *Scalar = ExternalUse.Scalar;
2620    llvm::User *User = ExternalUse.User;
2621
2622    // Skip users that we already RAUW. This happens when one instruction
2623    // has multiple uses of the same value.
2624    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2625        Scalar->user_end())
2626      continue;
2627    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
2628
2629    int Idx = ScalarToTreeEntry[Scalar];
2630    TreeEntry *E = &VectorizableTree[Idx];
2631    assert(!E->NeedToGather && "Extracting from a gather list");
2632
2633    Value *Vec = E->VectorizedValue;
2634    assert(Vec && "Can't find vectorizable value");
2635
2636    Value *Lane = Builder.getInt32(ExternalUse.Lane);
2637    // Generate extracts for out-of-tree users.
2638    // Find the insertion point for the extractelement lane.
2639    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
2640      if (PHINode *PH = dyn_cast<PHINode>(User)) {
2641        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2642          if (PH->getIncomingValue(i) == Scalar) {
2643            TerminatorInst *IncomingTerminator =
2644                PH->getIncomingBlock(i)->getTerminator();
2645            if (isa<CatchSwitchInst>(IncomingTerminator)) {
2646              Builder.SetInsertPoint(VecI->getParent(),
2647                                     std::next(VecI->getIterator()));
2648            } else {
2649              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2650            }
2651            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2652            if (MinBWs.count(ScalarRoot))
2653              Ex = Builder.CreateSExt(Ex, Scalar->getType());
2654            CSEBlocks.insert(PH->getIncomingBlock(i));
2655            PH->setOperand(i, Ex);
2656          }
2657        }
2658      } else {
2659        Builder.SetInsertPoint(cast<Instruction>(User));
2660        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2661        if (MinBWs.count(ScalarRoot))
2662          Ex = Builder.CreateSExt(Ex, Scalar->getType());
2663        CSEBlocks.insert(cast<Instruction>(User)->getParent());
2664        User->replaceUsesOfWith(Scalar, Ex);
2665     }
2666    } else {
2667      Builder.SetInsertPoint(&F->getEntryBlock().front());
2668      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2669      if (MinBWs.count(ScalarRoot))
2670        Ex = Builder.CreateSExt(Ex, Scalar->getType());
2671      CSEBlocks.insert(&F->getEntryBlock());
2672      User->replaceUsesOfWith(Scalar, Ex);
2673    }
2674
2675    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
2676  }
2677
2678  // For each vectorized value:
2679  for (TreeEntry &EIdx : VectorizableTree) {
2680    TreeEntry *Entry = &EIdx;
2681
2682    // For each lane:
2683    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2684      Value *Scalar = Entry->Scalars[Lane];
2685      // No need to handle users of gathered values.
2686      if (Entry->NeedToGather)
2687        continue;
2688
2689      assert(Entry->VectorizedValue && "Can't find vectorizable value");
2690
2691      Type *Ty = Scalar->getType();
2692      if (!Ty->isVoidTy()) {
2693#ifndef NDEBUG
2694        for (User *U : Scalar->users()) {
2695          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2696
2697          assert((ScalarToTreeEntry.count(U) ||
2698                  // It is legal to replace users in the ignorelist by undef.
2699                  (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2700                   UserIgnoreList.end())) &&
2701                 "Replacing out-of-tree value with undef");
2702        }
2703#endif
2704        Value *Undef = UndefValue::get(Ty);
2705        Scalar->replaceAllUsesWith(Undef);
2706      }
2707      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2708      eraseInstruction(cast<Instruction>(Scalar));
2709    }
2710  }
2711
2712  Builder.ClearInsertionPoint();
2713
2714  return VectorizableTree[0].VectorizedValue;
2715}
2716
2717void BoUpSLP::optimizeGatherSequence() {
2718  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2719        << " gather sequences instructions.\n");
2720  // LICM InsertElementInst sequences.
2721  for (Instruction *it : GatherSeq) {
2722    InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
2723
2724    if (!Insert)
2725      continue;
2726
2727    // Check if this block is inside a loop.
2728    Loop *L = LI->getLoopFor(Insert->getParent());
2729    if (!L)
2730      continue;
2731
2732    // Check if it has a preheader.
2733    BasicBlock *PreHeader = L->getLoopPreheader();
2734    if (!PreHeader)
2735      continue;
2736
2737    // If the vector or the element that we insert into it are
2738    // instructions that are defined in this basic block then we can't
2739    // hoist this instruction.
2740    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2741    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2742    if (CurrVec && L->contains(CurrVec))
2743      continue;
2744    if (NewElem && L->contains(NewElem))
2745      continue;
2746
2747    // We can hoist this instruction. Move it to the pre-header.
2748    Insert->moveBefore(PreHeader->getTerminator());
2749  }
2750
2751  // Make a list of all reachable blocks in our CSE queue.
2752  SmallVector<const DomTreeNode *, 8> CSEWorkList;
2753  CSEWorkList.reserve(CSEBlocks.size());
2754  for (BasicBlock *BB : CSEBlocks)
2755    if (DomTreeNode *N = DT->getNode(BB)) {
2756      assert(DT->isReachableFromEntry(N));
2757      CSEWorkList.push_back(N);
2758    }
2759
2760  // Sort blocks by domination. This ensures we visit a block after all blocks
2761  // dominating it are visited.
2762  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2763                   [this](const DomTreeNode *A, const DomTreeNode *B) {
2764    return DT->properlyDominates(A, B);
2765  });
2766
2767  // Perform O(N^2) search over the gather sequences and merge identical
2768  // instructions. TODO: We can further optimize this scan if we split the
2769  // instructions into different buckets based on the insert lane.
2770  SmallVector<Instruction *, 16> Visited;
2771  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2772    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2773           "Worklist not sorted properly!");
2774    BasicBlock *BB = (*I)->getBlock();
2775    // For all instructions in blocks containing gather sequences:
2776    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2777      Instruction *In = &*it++;
2778      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2779        continue;
2780
2781      // Check if we can replace this instruction with any of the
2782      // visited instructions.
2783      for (Instruction *v : Visited) {
2784        if (In->isIdenticalTo(v) &&
2785            DT->dominates(v->getParent(), In->getParent())) {
2786          In->replaceAllUsesWith(v);
2787          eraseInstruction(In);
2788          In = nullptr;
2789          break;
2790        }
2791      }
2792      if (In) {
2793        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2794        Visited.push_back(In);
2795      }
2796    }
2797  }
2798  CSEBlocks.clear();
2799  GatherSeq.clear();
2800}
2801
2802// Groups the instructions to a bundle (which is then a single scheduling entity)
2803// and schedules instructions until the bundle gets ready.
2804bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2805                                                 BoUpSLP *SLP) {
2806  if (isa<PHINode>(VL[0]))
2807    return true;
2808
2809  // Initialize the instruction bundle.
2810  Instruction *OldScheduleEnd = ScheduleEnd;
2811  ScheduleData *PrevInBundle = nullptr;
2812  ScheduleData *Bundle = nullptr;
2813  bool ReSchedule = false;
2814  DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
2815
2816  // Make sure that the scheduling region contains all
2817  // instructions of the bundle.
2818  for (Value *V : VL) {
2819    if (!extendSchedulingRegion(V))
2820      return false;
2821  }
2822
2823  for (Value *V : VL) {
2824    ScheduleData *BundleMember = getScheduleData(V);
2825    assert(BundleMember &&
2826           "no ScheduleData for bundle member (maybe not in same basic block)");
2827    if (BundleMember->IsScheduled) {
2828      // A bundle member was scheduled as single instruction before and now
2829      // needs to be scheduled as part of the bundle. We just get rid of the
2830      // existing schedule.
2831      DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
2832                   << " was already scheduled\n");
2833      ReSchedule = true;
2834    }
2835    assert(BundleMember->isSchedulingEntity() &&
2836           "bundle member already part of other bundle");
2837    if (PrevInBundle) {
2838      PrevInBundle->NextInBundle = BundleMember;
2839    } else {
2840      Bundle = BundleMember;
2841    }
2842    BundleMember->UnscheduledDepsInBundle = 0;
2843    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2844
2845    // Group the instructions to a bundle.
2846    BundleMember->FirstInBundle = Bundle;
2847    PrevInBundle = BundleMember;
2848  }
2849  if (ScheduleEnd != OldScheduleEnd) {
2850    // The scheduling region got new instructions at the lower end (or it is a
2851    // new region for the first bundle). This makes it necessary to
2852    // recalculate all dependencies.
2853    // It is seldom that this needs to be done a second time after adding the
2854    // initial bundle to the region.
2855    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2856      ScheduleData *SD = getScheduleData(I);
2857      SD->clearDependencies();
2858    }
2859    ReSchedule = true;
2860  }
2861  if (ReSchedule) {
2862    resetSchedule();
2863    initialFillReadyList(ReadyInsts);
2864  }
2865
2866  DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
2867               << BB->getName() << "\n");
2868
2869  calculateDependencies(Bundle, true, SLP);
2870
2871  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2872  // means that there are no cyclic dependencies and we can schedule it.
2873  // Note that's important that we don't "schedule" the bundle yet (see
2874  // cancelScheduling).
2875  while (!Bundle->isReady() && !ReadyInsts.empty()) {
2876
2877    ScheduleData *pickedSD = ReadyInsts.back();
2878    ReadyInsts.pop_back();
2879
2880    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2881      schedule(pickedSD, ReadyInsts);
2882    }
2883  }
2884  if (!Bundle->isReady()) {
2885    cancelScheduling(VL);
2886    return false;
2887  }
2888  return true;
2889}
2890
2891void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2892  if (isa<PHINode>(VL[0]))
2893    return;
2894
2895  ScheduleData *Bundle = getScheduleData(VL[0]);
2896  DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
2897  assert(!Bundle->IsScheduled &&
2898         "Can't cancel bundle which is already scheduled");
2899  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
2900         "tried to unbundle something which is not a bundle");
2901
2902  // Un-bundle: make single instructions out of the bundle.
2903  ScheduleData *BundleMember = Bundle;
2904  while (BundleMember) {
2905    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
2906    BundleMember->FirstInBundle = BundleMember;
2907    ScheduleData *Next = BundleMember->NextInBundle;
2908    BundleMember->NextInBundle = nullptr;
2909    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2910    if (BundleMember->UnscheduledDepsInBundle == 0) {
2911      ReadyInsts.insert(BundleMember);
2912    }
2913    BundleMember = Next;
2914  }
2915}
2916
2917bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2918  if (getScheduleData(V))
2919    return true;
2920  Instruction *I = dyn_cast<Instruction>(V);
2921  assert(I && "bundle member must be an instruction");
2922  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
2923  if (!ScheduleStart) {
2924    // It's the first instruction in the new region.
2925    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2926    ScheduleStart = I;
2927    ScheduleEnd = I->getNextNode();
2928    assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2929    DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
2930    return true;
2931  }
2932  // Search up and down at the same time, because we don't know if the new
2933  // instruction is above or below the existing scheduling region.
2934  BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
2935  BasicBlock::reverse_iterator UpperEnd = BB->rend();
2936  BasicBlock::iterator DownIter(ScheduleEnd);
2937  BasicBlock::iterator LowerEnd = BB->end();
2938  for (;;) {
2939    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
2940      DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
2941      return false;
2942    }
2943
2944    if (UpIter != UpperEnd) {
2945      if (&*UpIter == I) {
2946        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2947        ScheduleStart = I;
2948        DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
2949        return true;
2950      }
2951      UpIter++;
2952    }
2953    if (DownIter != LowerEnd) {
2954      if (&*DownIter == I) {
2955        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2956                         nullptr);
2957        ScheduleEnd = I->getNextNode();
2958        assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2959        DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
2960        return true;
2961      }
2962      DownIter++;
2963    }
2964    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
2965           "instruction not found in block");
2966  }
2967  return true;
2968}
2969
2970void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2971                                                Instruction *ToI,
2972                                                ScheduleData *PrevLoadStore,
2973                                                ScheduleData *NextLoadStore) {
2974  ScheduleData *CurrentLoadStore = PrevLoadStore;
2975  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2976    ScheduleData *SD = ScheduleDataMap[I];
2977    if (!SD) {
2978      // Allocate a new ScheduleData for the instruction.
2979      if (ChunkPos >= ChunkSize) {
2980        ScheduleDataChunks.push_back(
2981            llvm::make_unique<ScheduleData[]>(ChunkSize));
2982        ChunkPos = 0;
2983      }
2984      SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2985      ScheduleDataMap[I] = SD;
2986      SD->Inst = I;
2987    }
2988    assert(!isInSchedulingRegion(SD) &&
2989           "new ScheduleData already in scheduling region");
2990    SD->init(SchedulingRegionID);
2991
2992    if (I->mayReadOrWriteMemory()) {
2993      // Update the linked list of memory accessing instructions.
2994      if (CurrentLoadStore) {
2995        CurrentLoadStore->NextLoadStore = SD;
2996      } else {
2997        FirstLoadStoreInRegion = SD;
2998      }
2999      CurrentLoadStore = SD;
3000    }
3001  }
3002  if (NextLoadStore) {
3003    if (CurrentLoadStore)
3004      CurrentLoadStore->NextLoadStore = NextLoadStore;
3005  } else {
3006    LastLoadStoreInRegion = CurrentLoadStore;
3007  }
3008}
3009
3010void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
3011                                                     bool InsertInReadyList,
3012                                                     BoUpSLP *SLP) {
3013  assert(SD->isSchedulingEntity());
3014
3015  SmallVector<ScheduleData *, 10> WorkList;
3016  WorkList.push_back(SD);
3017
3018  while (!WorkList.empty()) {
3019    ScheduleData *SD = WorkList.back();
3020    WorkList.pop_back();
3021
3022    ScheduleData *BundleMember = SD;
3023    while (BundleMember) {
3024      assert(isInSchedulingRegion(BundleMember));
3025      if (!BundleMember->hasValidDependencies()) {
3026
3027        DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
3028        BundleMember->Dependencies = 0;
3029        BundleMember->resetUnscheduledDeps();
3030
3031        // Handle def-use chain dependencies.
3032        for (User *U : BundleMember->Inst->users()) {
3033          if (isa<Instruction>(U)) {
3034            ScheduleData *UseSD = getScheduleData(U);
3035            if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3036              BundleMember->Dependencies++;
3037              ScheduleData *DestBundle = UseSD->FirstInBundle;
3038              if (!DestBundle->IsScheduled) {
3039                BundleMember->incrementUnscheduledDeps(1);
3040              }
3041              if (!DestBundle->hasValidDependencies()) {
3042                WorkList.push_back(DestBundle);
3043              }
3044            }
3045          } else {
3046            // I'm not sure if this can ever happen. But we need to be safe.
3047            // This lets the instruction/bundle never be scheduled and
3048            // eventually disable vectorization.
3049            BundleMember->Dependencies++;
3050            BundleMember->incrementUnscheduledDeps(1);
3051          }
3052        }
3053
3054        // Handle the memory dependencies.
3055        ScheduleData *DepDest = BundleMember->NextLoadStore;
3056        if (DepDest) {
3057          Instruction *SrcInst = BundleMember->Inst;
3058          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3059          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3060          unsigned numAliased = 0;
3061          unsigned DistToSrc = 1;
3062
3063          while (DepDest) {
3064            assert(isInSchedulingRegion(DepDest));
3065
3066            // We have two limits to reduce the complexity:
3067            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3068            //    SLP->isAliased (which is the expensive part in this loop).
3069            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3070            //    the whole loop (even if the loop is fast, it's quadratic).
3071            //    It's important for the loop break condition (see below) to
3072            //    check this limit even between two read-only instructions.
3073            if (DistToSrc >= MaxMemDepDistance ||
3074                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3075                     (numAliased >= AliasedCheckLimit ||
3076                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3077
3078              // We increment the counter only if the locations are aliased
3079              // (instead of counting all alias checks). This gives a better
3080              // balance between reduced runtime and accurate dependencies.
3081              numAliased++;
3082
3083              DepDest->MemoryDependencies.push_back(BundleMember);
3084              BundleMember->Dependencies++;
3085              ScheduleData *DestBundle = DepDest->FirstInBundle;
3086              if (!DestBundle->IsScheduled) {
3087                BundleMember->incrementUnscheduledDeps(1);
3088              }
3089              if (!DestBundle->hasValidDependencies()) {
3090                WorkList.push_back(DestBundle);
3091              }
3092            }
3093            DepDest = DepDest->NextLoadStore;
3094
3095            // Example, explaining the loop break condition: Let's assume our
3096            // starting instruction is i0 and MaxMemDepDistance = 3.
3097            //
3098            //                      +--------v--v--v
3099            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3100            //             +--------^--^--^
3101            //
3102            // MaxMemDepDistance let us stop alias-checking at i3 and we add
3103            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3104            // Previously we already added dependencies from i3 to i6,i7,i8
3105            // (because of MaxMemDepDistance). As we added a dependency from
3106            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3107            // and we can abort this loop at i6.
3108            if (DistToSrc >= 2 * MaxMemDepDistance)
3109                break;
3110            DistToSrc++;
3111          }
3112        }
3113      }
3114      BundleMember = BundleMember->NextInBundle;
3115    }
3116    if (InsertInReadyList && SD->isReady()) {
3117      ReadyInsts.push_back(SD);
3118      DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
3119    }
3120  }
3121}
3122
3123void BoUpSLP::BlockScheduling::resetSchedule() {
3124  assert(ScheduleStart &&
3125         "tried to reset schedule on block which has not been scheduled");
3126  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3127    ScheduleData *SD = getScheduleData(I);
3128    assert(isInSchedulingRegion(SD));
3129    SD->IsScheduled = false;
3130    SD->resetUnscheduledDeps();
3131  }
3132  ReadyInsts.clear();
3133}
3134
3135void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3136
3137  if (!BS->ScheduleStart)
3138    return;
3139
3140  DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3141
3142  BS->resetSchedule();
3143
3144  // For the real scheduling we use a more sophisticated ready-list: it is
3145  // sorted by the original instruction location. This lets the final schedule
3146  // be as  close as possible to the original instruction order.
3147  struct ScheduleDataCompare {
3148    bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3149      return SD2->SchedulingPriority < SD1->SchedulingPriority;
3150    }
3151  };
3152  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3153
3154  // Ensure that all dependency data is updated and fill the ready-list with
3155  // initial instructions.
3156  int Idx = 0;
3157  int NumToSchedule = 0;
3158  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3159       I = I->getNextNode()) {
3160    ScheduleData *SD = BS->getScheduleData(I);
3161    assert(
3162        SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
3163        "scheduler and vectorizer have different opinion on what is a bundle");
3164    SD->FirstInBundle->SchedulingPriority = Idx++;
3165    if (SD->isSchedulingEntity()) {
3166      BS->calculateDependencies(SD, false, this);
3167      NumToSchedule++;
3168    }
3169  }
3170  BS->initialFillReadyList(ReadyInsts);
3171
3172  Instruction *LastScheduledInst = BS->ScheduleEnd;
3173
3174  // Do the "real" scheduling.
3175  while (!ReadyInsts.empty()) {
3176    ScheduleData *picked = *ReadyInsts.begin();
3177    ReadyInsts.erase(ReadyInsts.begin());
3178
3179    // Move the scheduled instruction(s) to their dedicated places, if not
3180    // there yet.
3181    ScheduleData *BundleMember = picked;
3182    while (BundleMember) {
3183      Instruction *pickedInst = BundleMember->Inst;
3184      if (LastScheduledInst->getNextNode() != pickedInst) {
3185        BS->BB->getInstList().remove(pickedInst);
3186        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3187                                     pickedInst);
3188      }
3189      LastScheduledInst = pickedInst;
3190      BundleMember = BundleMember->NextInBundle;
3191    }
3192
3193    BS->schedule(picked, ReadyInsts);
3194    NumToSchedule--;
3195  }
3196  assert(NumToSchedule == 0 && "could not schedule all instructions");
3197
3198  // Avoid duplicate scheduling of the block.
3199  BS->ScheduleStart = nullptr;
3200}
3201
3202unsigned BoUpSLP::getVectorElementSize(Value *V) {
3203  // If V is a store, just return the width of the stored value without
3204  // traversing the expression tree. This is the common case.
3205  if (auto *Store = dyn_cast<StoreInst>(V))
3206    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
3207
3208  // If V is not a store, we can traverse the expression tree to find loads
3209  // that feed it. The type of the loaded value may indicate a more suitable
3210  // width than V's type. We want to base the vector element size on the width
3211  // of memory operations where possible.
3212  SmallVector<Instruction *, 16> Worklist;
3213  SmallPtrSet<Instruction *, 16> Visited;
3214  if (auto *I = dyn_cast<Instruction>(V))
3215    Worklist.push_back(I);
3216
3217  // Traverse the expression tree in bottom-up order looking for loads. If we
3218  // encounter an instruciton we don't yet handle, we give up.
3219  auto MaxWidth = 0u;
3220  auto FoundUnknownInst = false;
3221  while (!Worklist.empty() && !FoundUnknownInst) {
3222    auto *I = Worklist.pop_back_val();
3223    Visited.insert(I);
3224
3225    // We should only be looking at scalar instructions here. If the current
3226    // instruction has a vector type, give up.
3227    auto *Ty = I->getType();
3228    if (isa<VectorType>(Ty))
3229      FoundUnknownInst = true;
3230
3231    // If the current instruction is a load, update MaxWidth to reflect the
3232    // width of the loaded value.
3233    else if (isa<LoadInst>(I))
3234      MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
3235
3236    // Otherwise, we need to visit the operands of the instruction. We only
3237    // handle the interesting cases from buildTree here. If an operand is an
3238    // instruction we haven't yet visited, we add it to the worklist.
3239    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
3240             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
3241      for (Use &U : I->operands())
3242        if (auto *J = dyn_cast<Instruction>(U.get()))
3243          if (!Visited.count(J))
3244            Worklist.push_back(J);
3245    }
3246
3247    // If we don't yet handle the instruction, give up.
3248    else
3249      FoundUnknownInst = true;
3250  }
3251
3252  // If we didn't encounter a memory access in the expression tree, or if we
3253  // gave up for some reason, just return the width of V.
3254  if (!MaxWidth || FoundUnknownInst)
3255    return DL->getTypeSizeInBits(V->getType());
3256
3257  // Otherwise, return the maximum width we found.
3258  return MaxWidth;
3259}
3260
3261// Determine if a value V in a vectorizable expression Expr can be demoted to a
3262// smaller type with a truncation. We collect the values that will be demoted
3263// in ToDemote and additional roots that require investigating in Roots.
3264static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
3265                                  SmallVectorImpl<Value *> &ToDemote,
3266                                  SmallVectorImpl<Value *> &Roots) {
3267
3268  // We can always demote constants.
3269  if (isa<Constant>(V)) {
3270    ToDemote.push_back(V);
3271    return true;
3272  }
3273
3274  // If the value is not an instruction in the expression with only one use, it
3275  // cannot be demoted.
3276  auto *I = dyn_cast<Instruction>(V);
3277  if (!I || !I->hasOneUse() || !Expr.count(I))
3278    return false;
3279
3280  switch (I->getOpcode()) {
3281
3282  // We can always demote truncations and extensions. Since truncations can
3283  // seed additional demotion, we save the truncated value.
3284  case Instruction::Trunc:
3285    Roots.push_back(I->getOperand(0));
3286  case Instruction::ZExt:
3287  case Instruction::SExt:
3288    break;
3289
3290  // We can demote certain binary operations if we can demote both of their
3291  // operands.
3292  case Instruction::Add:
3293  case Instruction::Sub:
3294  case Instruction::Mul:
3295  case Instruction::And:
3296  case Instruction::Or:
3297  case Instruction::Xor:
3298    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
3299        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
3300      return false;
3301    break;
3302
3303  // We can demote selects if we can demote their true and false values.
3304  case Instruction::Select: {
3305    SelectInst *SI = cast<SelectInst>(I);
3306    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
3307        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
3308      return false;
3309    break;
3310  }
3311
3312  // We can demote phis if we can demote all their incoming operands. Note that
3313  // we don't need to worry about cycles since we ensure single use above.
3314  case Instruction::PHI: {
3315    PHINode *PN = cast<PHINode>(I);
3316    for (Value *IncValue : PN->incoming_values())
3317      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
3318        return false;
3319    break;
3320  }
3321
3322  // Otherwise, conservatively give up.
3323  default:
3324    return false;
3325  }
3326
3327  // Record the value that we can demote.
3328  ToDemote.push_back(V);
3329  return true;
3330}
3331
3332void BoUpSLP::computeMinimumValueSizes() {
3333  // If there are no external uses, the expression tree must be rooted by a
3334  // store. We can't demote in-memory values, so there is nothing to do here.
3335  if (ExternalUses.empty())
3336    return;
3337
3338  // We only attempt to truncate integer expressions.
3339  auto &TreeRoot = VectorizableTree[0].Scalars;
3340  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
3341  if (!TreeRootIT)
3342    return;
3343
3344  // If the expression is not rooted by a store, these roots should have
3345  // external uses. We will rely on InstCombine to rewrite the expression in
3346  // the narrower type. However, InstCombine only rewrites single-use values.
3347  // This means that if a tree entry other than a root is used externally, it
3348  // must have multiple uses and InstCombine will not rewrite it. The code
3349  // below ensures that only the roots are used externally.
3350  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
3351  for (auto &EU : ExternalUses)
3352    if (!Expr.erase(EU.Scalar))
3353      return;
3354  if (!Expr.empty())
3355    return;
3356
3357  // Collect the scalar values of the vectorizable expression. We will use this
3358  // context to determine which values can be demoted. If we see a truncation,
3359  // we mark it as seeding another demotion.
3360  for (auto &Entry : VectorizableTree)
3361    Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
3362
3363  // Ensure the roots of the vectorizable tree don't form a cycle. They must
3364  // have a single external user that is not in the vectorizable tree.
3365  for (auto *Root : TreeRoot)
3366    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
3367      return;
3368
3369  // Conservatively determine if we can actually truncate the roots of the
3370  // expression. Collect the values that can be demoted in ToDemote and
3371  // additional roots that require investigating in Roots.
3372  SmallVector<Value *, 32> ToDemote;
3373  SmallVector<Value *, 4> Roots;
3374  for (auto *Root : TreeRoot)
3375    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
3376      return;
3377
3378  // The maximum bit width required to represent all the values that can be
3379  // demoted without loss of precision. It would be safe to truncate the roots
3380  // of the expression to this width.
3381  auto MaxBitWidth = 8u;
3382
3383  // We first check if all the bits of the roots are demanded. If they're not,
3384  // we can truncate the roots to this narrower type.
3385  for (auto *Root : TreeRoot) {
3386    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
3387    MaxBitWidth = std::max<unsigned>(
3388        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
3389  }
3390
3391  // If all the bits of the roots are demanded, we can try a little harder to
3392  // compute a narrower type. This can happen, for example, if the roots are
3393  // getelementptr indices. InstCombine promotes these indices to the pointer
3394  // width. Thus, all their bits are technically demanded even though the
3395  // address computation might be vectorized in a smaller type.
3396  //
3397  // We start by looking at each entry that can be demoted. We compute the
3398  // maximum bit width required to store the scalar by using ValueTracking to
3399  // compute the number of high-order bits we can truncate.
3400  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
3401    MaxBitWidth = 8u;
3402    for (auto *Scalar : ToDemote) {
3403      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
3404      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
3405      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
3406    }
3407  }
3408
3409  // Round MaxBitWidth up to the next power-of-two.
3410  if (!isPowerOf2_64(MaxBitWidth))
3411    MaxBitWidth = NextPowerOf2(MaxBitWidth);
3412
3413  // If the maximum bit width we compute is less than the with of the roots'
3414  // type, we can proceed with the narrowing. Otherwise, do nothing.
3415  if (MaxBitWidth >= TreeRootIT->getBitWidth())
3416    return;
3417
3418  // If we can truncate the root, we must collect additional values that might
3419  // be demoted as a result. That is, those seeded by truncations we will
3420  // modify.
3421  while (!Roots.empty())
3422    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
3423
3424  // Finally, map the values we can demote to the maximum bit with we computed.
3425  for (auto *Scalar : ToDemote)
3426    MinBWs[Scalar] = MaxBitWidth;
3427}
3428
3429namespace {
3430/// The SLPVectorizer Pass.
3431struct SLPVectorizer : public FunctionPass {
3432  SLPVectorizerPass Impl;
3433
3434  /// Pass identification, replacement for typeid
3435  static char ID;
3436
3437  explicit SLPVectorizer() : FunctionPass(ID) {
3438    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3439  }
3440
3441
3442  bool doInitialization(Module &M) override {
3443    return false;
3444  }
3445
3446  bool runOnFunction(Function &F) override {
3447    if (skipFunction(F))
3448      return false;
3449
3450    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3451    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3452    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3453    auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
3454    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3455    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3456    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3457    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3458    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
3459
3460    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
3461  }
3462
3463  void getAnalysisUsage(AnalysisUsage &AU) const override {
3464    FunctionPass::getAnalysisUsage(AU);
3465    AU.addRequired<AssumptionCacheTracker>();
3466    AU.addRequired<ScalarEvolutionWrapperPass>();
3467    AU.addRequired<AAResultsWrapperPass>();
3468    AU.addRequired<TargetTransformInfoWrapperPass>();
3469    AU.addRequired<LoopInfoWrapperPass>();
3470    AU.addRequired<DominatorTreeWrapperPass>();
3471    AU.addRequired<DemandedBitsWrapperPass>();
3472    AU.addPreserved<LoopInfoWrapperPass>();
3473    AU.addPreserved<DominatorTreeWrapperPass>();
3474    AU.addPreserved<AAResultsWrapperPass>();
3475    AU.addPreserved<GlobalsAAWrapperPass>();
3476    AU.setPreservesCFG();
3477  }
3478};
3479} // end anonymous namespace
3480
3481PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
3482  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
3483  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
3484  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
3485  auto *AA = &AM.getResult<AAManager>(F);
3486  auto *LI = &AM.getResult<LoopAnalysis>(F);
3487  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
3488  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
3489  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
3490
3491  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
3492  if (!Changed)
3493    return PreservedAnalyses::all();
3494  PreservedAnalyses PA;
3495  PA.preserve<LoopAnalysis>();
3496  PA.preserve<DominatorTreeAnalysis>();
3497  PA.preserve<AAManager>();
3498  PA.preserve<GlobalsAA>();
3499  return PA;
3500}
3501
3502bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
3503                                TargetTransformInfo *TTI_,
3504                                TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
3505                                LoopInfo *LI_, DominatorTree *DT_,
3506                                AssumptionCache *AC_, DemandedBits *DB_) {
3507  SE = SE_;
3508  TTI = TTI_;
3509  TLI = TLI_;
3510  AA = AA_;
3511  LI = LI_;
3512  DT = DT_;
3513  AC = AC_;
3514  DB = DB_;
3515  DL = &F.getParent()->getDataLayout();
3516
3517  Stores.clear();
3518  GEPs.clear();
3519  bool Changed = false;
3520
3521  // If the target claims to have no vector registers don't attempt
3522  // vectorization.
3523  if (!TTI->getNumberOfRegisters(true))
3524    return false;
3525
3526  // Don't vectorize when the attribute NoImplicitFloat is used.
3527  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3528    return false;
3529
3530  DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
3531
3532  // Use the bottom up slp vectorizer to construct chains that start with
3533  // store instructions.
3534  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL);
3535
3536  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3537  // delete instructions.
3538
3539  // Scan the blocks in the function in post order.
3540  for (auto BB : post_order(&F.getEntryBlock())) {
3541    collectSeedInstructions(BB);
3542
3543    // Vectorize trees that end at stores.
3544    if (!Stores.empty()) {
3545      DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
3546                   << " underlying objects.\n");
3547      Changed |= vectorizeStoreChains(R);
3548    }
3549
3550    // Vectorize trees that end at reductions.
3551    Changed |= vectorizeChainsInBlock(BB, R);
3552
3553    // Vectorize the index computations of getelementptr instructions. This
3554    // is primarily intended to catch gather-like idioms ending at
3555    // non-consecutive loads.
3556    if (!GEPs.empty()) {
3557      DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
3558                   << " underlying objects.\n");
3559      Changed |= vectorizeGEPIndices(BB, R);
3560    }
3561  }
3562
3563  if (Changed) {
3564    R.optimizeGatherSequence();
3565    DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
3566    DEBUG(verifyFunction(F));
3567  }
3568  return Changed;
3569}
3570
3571/// \brief Check that the Values in the slice in VL array are still existent in
3572/// the WeakVH array.
3573/// Vectorization of part of the VL array may cause later values in the VL array
3574/// to become invalid. We track when this has happened in the WeakVH array.
3575static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3576                               unsigned SliceBegin, unsigned SliceSize) {
3577  VL = VL.slice(SliceBegin, SliceSize);
3578  VH = VH.slice(SliceBegin, SliceSize);
3579  return !std::equal(VL.begin(), VL.end(), VH.begin());
3580}
3581
3582bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain,
3583                                            int CostThreshold, BoUpSLP &R,
3584                                            unsigned VecRegSize) {
3585  unsigned ChainLen = Chain.size();
3586  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
3587        << "\n");
3588  unsigned Sz = R.getVectorElementSize(Chain[0]);
3589  unsigned VF = VecRegSize / Sz;
3590
3591  if (!isPowerOf2_32(Sz) || VF < 2)
3592    return false;
3593
3594  // Keep track of values that were deleted by vectorizing in the loop below.
3595  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3596
3597  bool Changed = false;
3598  // Look for profitable vectorizable trees at all offsets, starting at zero.
3599  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3600    if (i + VF > e)
3601      break;
3602
3603    // Check that a previous iteration of this loop did not delete the Value.
3604    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3605      continue;
3606
3607    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
3608          << "\n");
3609    ArrayRef<Value *> Operands = Chain.slice(i, VF);
3610
3611    R.buildTree(Operands);
3612    R.computeMinimumValueSizes();
3613
3614    int Cost = R.getTreeCost();
3615
3616    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
3617    if (Cost < CostThreshold) {
3618      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
3619      R.vectorizeTree();
3620
3621      // Move to the next bundle.
3622      i += VF - 1;
3623      Changed = true;
3624    }
3625  }
3626
3627  return Changed;
3628}
3629
3630bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
3631                                        int costThreshold, BoUpSLP &R) {
3632  SetVector<StoreInst *> Heads, Tails;
3633  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3634
3635  // We may run into multiple chains that merge into a single chain. We mark the
3636  // stores that we vectorized so that we don't visit the same store twice.
3637  BoUpSLP::ValueSet VectorizedStores;
3638  bool Changed = false;
3639
3640  // Do a quadratic search on all of the given stores and find
3641  // all of the pairs of stores that follow each other.
3642  SmallVector<unsigned, 16> IndexQueue;
3643  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3644    IndexQueue.clear();
3645    // If a store has multiple consecutive store candidates, search Stores
3646    // array according to the sequence: from i+1 to e, then from i-1 to 0.
3647    // This is because usually pairing with immediate succeeding or preceding
3648    // candidate create the best chance to find slp vectorization opportunity.
3649    unsigned j = 0;
3650    for (j = i + 1; j < e; ++j)
3651      IndexQueue.push_back(j);
3652    for (j = i; j > 0; --j)
3653      IndexQueue.push_back(j - 1);
3654
3655    for (auto &k : IndexQueue) {
3656      if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
3657        Tails.insert(Stores[k]);
3658        Heads.insert(Stores[i]);
3659        ConsecutiveChain[Stores[i]] = Stores[k];
3660        break;
3661      }
3662    }
3663  }
3664
3665  // For stores that start but don't end a link in the chain:
3666  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3667       it != e; ++it) {
3668    if (Tails.count(*it))
3669      continue;
3670
3671    // We found a store instr that starts a chain. Now follow the chain and try
3672    // to vectorize it.
3673    BoUpSLP::ValueList Operands;
3674    StoreInst *I = *it;
3675    // Collect the chain into a list.
3676    while (Tails.count(I) || Heads.count(I)) {
3677      if (VectorizedStores.count(I))
3678        break;
3679      Operands.push_back(I);
3680      // Move to the next value in the chain.
3681      I = ConsecutiveChain[I];
3682    }
3683
3684    // FIXME: Is division-by-2 the correct step? Should we assert that the
3685    // register size is a power-of-2?
3686    for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) {
3687      if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3688        // Mark the vectorized stores so that we don't vectorize them again.
3689        VectorizedStores.insert(Operands.begin(), Operands.end());
3690        Changed = true;
3691        break;
3692      }
3693    }
3694  }
3695
3696  return Changed;
3697}
3698
3699void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
3700
3701  // Initialize the collections. We will make a single pass over the block.
3702  Stores.clear();
3703  GEPs.clear();
3704
3705  // Visit the store and getelementptr instructions in BB and organize them in
3706  // Stores and GEPs according to the underlying objects of their pointer
3707  // operands.
3708  for (Instruction &I : *BB) {
3709
3710    // Ignore store instructions that are volatile or have a pointer operand
3711    // that doesn't point to a scalar type.
3712    if (auto *SI = dyn_cast<StoreInst>(&I)) {
3713      if (!SI->isSimple())
3714        continue;
3715      if (!isValidElementType(SI->getValueOperand()->getType()))
3716        continue;
3717      Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
3718    }
3719
3720    // Ignore getelementptr instructions that have more than one index, a
3721    // constant index, or a pointer operand that doesn't point to a scalar
3722    // type.
3723    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3724      auto Idx = GEP->idx_begin()->get();
3725      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
3726        continue;
3727      if (!isValidElementType(Idx->getType()))
3728        continue;
3729      if (GEP->getType()->isVectorTy())
3730        continue;
3731      GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
3732    }
3733  }
3734}
3735
3736bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3737  if (!A || !B)
3738    return false;
3739  Value *VL[] = { A, B };
3740  return tryToVectorizeList(VL, R, None, true);
3741}
3742
3743bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3744                                           ArrayRef<Value *> BuildVector,
3745                                           bool allowReorder) {
3746  if (VL.size() < 2)
3747    return false;
3748
3749  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
3750
3751  // Check that all of the parts are scalar instructions of the same type.
3752  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3753  if (!I0)
3754    return false;
3755
3756  unsigned Opcode0 = I0->getOpcode();
3757
3758  // FIXME: Register size should be a parameter to this function, so we can
3759  // try different vectorization factors.
3760  unsigned Sz = R.getVectorElementSize(I0);
3761  unsigned VF = R.getMinVecRegSize() / Sz;
3762
3763  for (Value *V : VL) {
3764    Type *Ty = V->getType();
3765    if (!isValidElementType(Ty))
3766      return false;
3767    Instruction *Inst = dyn_cast<Instruction>(V);
3768    if (!Inst || Inst->getOpcode() != Opcode0)
3769      return false;
3770  }
3771
3772  bool Changed = false;
3773
3774  // Keep track of values that were deleted by vectorizing in the loop below.
3775  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3776
3777  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3778    unsigned OpsWidth = 0;
3779
3780    if (i + VF > e)
3781      OpsWidth = e - i;
3782    else
3783      OpsWidth = VF;
3784
3785    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3786      break;
3787
3788    // Check that a previous iteration of this loop did not delete the Value.
3789    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3790      continue;
3791
3792    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
3793                 << "\n");
3794    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3795
3796    ArrayRef<Value *> BuildVectorSlice;
3797    if (!BuildVector.empty())
3798      BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3799
3800    R.buildTree(Ops, BuildVectorSlice);
3801    // TODO: check if we can allow reordering also for other cases than
3802    // tryToVectorizePair()
3803    if (allowReorder && R.shouldReorder()) {
3804      assert(Ops.size() == 2);
3805      assert(BuildVectorSlice.empty());
3806      Value *ReorderedOps[] = { Ops[1], Ops[0] };
3807      R.buildTree(ReorderedOps, None);
3808    }
3809    R.computeMinimumValueSizes();
3810    int Cost = R.getTreeCost();
3811
3812    if (Cost < -SLPCostThreshold) {
3813      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
3814      Value *VectorizedRoot = R.vectorizeTree();
3815
3816      // Reconstruct the build vector by extracting the vectorized root. This
3817      // way we handle the case where some elements of the vector are undefined.
3818      //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3819      if (!BuildVectorSlice.empty()) {
3820        // The insert point is the last build vector instruction. The vectorized
3821        // root will precede it. This guarantees that we get an instruction. The
3822        // vectorized tree could have been constant folded.
3823        Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3824        unsigned VecIdx = 0;
3825        for (auto &V : BuildVectorSlice) {
3826          IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
3827                                      ++BasicBlock::iterator(InsertAfter));
3828          Instruction *I = cast<Instruction>(V);
3829          assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
3830          Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3831              VectorizedRoot, Builder.getInt32(VecIdx++)));
3832          I->setOperand(1, Extract);
3833          I->removeFromParent();
3834          I->insertAfter(Extract);
3835          InsertAfter = I;
3836        }
3837      }
3838      // Move to the next bundle.
3839      i += VF - 1;
3840      Changed = true;
3841    }
3842  }
3843
3844  return Changed;
3845}
3846
3847bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3848  if (!V)
3849    return false;
3850
3851  // Try to vectorize V.
3852  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3853    return true;
3854
3855  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3856  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3857  // Try to skip B.
3858  if (B && B->hasOneUse()) {
3859    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3860    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3861    if (tryToVectorizePair(A, B0, R)) {
3862      return true;
3863    }
3864    if (tryToVectorizePair(A, B1, R)) {
3865      return true;
3866    }
3867  }
3868
3869  // Try to skip A.
3870  if (A && A->hasOneUse()) {
3871    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3872    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3873    if (tryToVectorizePair(A0, B, R)) {
3874      return true;
3875    }
3876    if (tryToVectorizePair(A1, B, R)) {
3877      return true;
3878    }
3879  }
3880  return 0;
3881}
3882
3883/// \brief Generate a shuffle mask to be used in a reduction tree.
3884///
3885/// \param VecLen The length of the vector to be reduced.
3886/// \param NumEltsToRdx The number of elements that should be reduced in the
3887///        vector.
3888/// \param IsPairwise Whether the reduction is a pairwise or splitting
3889///        reduction. A pairwise reduction will generate a mask of
3890///        <0,2,...> or <1,3,..> while a splitting reduction will generate
3891///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3892/// \param IsLeft True will generate a mask of even elements, odd otherwise.
3893static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3894                                   bool IsPairwise, bool IsLeft,
3895                                   IRBuilder<> &Builder) {
3896  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
3897
3898  SmallVector<Constant *, 32> ShuffleMask(
3899      VecLen, UndefValue::get(Builder.getInt32Ty()));
3900
3901  if (IsPairwise)
3902    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3903    for (unsigned i = 0; i != NumEltsToRdx; ++i)
3904      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3905  else
3906    // Move the upper half of the vector to the lower half.
3907    for (unsigned i = 0; i != NumEltsToRdx; ++i)
3908      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3909
3910  return ConstantVector::get(ShuffleMask);
3911}
3912
3913
3914/// Model horizontal reductions.
3915///
3916/// A horizontal reduction is a tree of reduction operations (currently add and
3917/// fadd) that has operations that can be put into a vector as its leaf.
3918/// For example, this tree:
3919///
3920/// mul mul mul mul
3921///  \  /    \  /
3922///   +       +
3923///    \     /
3924///       +
3925/// This tree has "mul" as its reduced values and "+" as its reduction
3926/// operations. A reduction might be feeding into a store or a binary operation
3927/// feeding a phi.
3928///    ...
3929///    \  /
3930///     +
3931///     |
3932///  phi +=
3933///
3934///  Or:
3935///    ...
3936///    \  /
3937///     +
3938///     |
3939///   *p =
3940///
3941class HorizontalReduction {
3942  SmallVector<Value *, 16> ReductionOps;
3943  SmallVector<Value *, 32> ReducedVals;
3944
3945  BinaryOperator *ReductionRoot;
3946  PHINode *ReductionPHI;
3947
3948  /// The opcode of the reduction.
3949  unsigned ReductionOpcode;
3950  /// The opcode of the values we perform a reduction on.
3951  unsigned ReducedValueOpcode;
3952  /// Should we model this reduction as a pairwise reduction tree or a tree that
3953  /// splits the vector in halves and adds those halves.
3954  bool IsPairwiseReduction;
3955
3956public:
3957  /// The width of one full horizontal reduction operation.
3958  unsigned ReduxWidth;
3959
3960  /// Minimal width of available vector registers. It's used to determine
3961  /// ReduxWidth.
3962  unsigned MinVecRegSize;
3963
3964  HorizontalReduction(unsigned MinVecRegSize)
3965      : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3966        ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0),
3967        MinVecRegSize(MinVecRegSize) {}
3968
3969  /// \brief Try to find a reduction tree.
3970  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3971    assert((!Phi ||
3972            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
3973           "Thi phi needs to use the binary operator");
3974
3975    // We could have a initial reductions that is not an add.
3976    //  r *= v1 + v2 + v3 + v4
3977    // In such a case start looking for a tree rooted in the first '+'.
3978    if (Phi) {
3979      if (B->getOperand(0) == Phi) {
3980        Phi = nullptr;
3981        B = dyn_cast<BinaryOperator>(B->getOperand(1));
3982      } else if (B->getOperand(1) == Phi) {
3983        Phi = nullptr;
3984        B = dyn_cast<BinaryOperator>(B->getOperand(0));
3985      }
3986    }
3987
3988    if (!B)
3989      return false;
3990
3991    Type *Ty = B->getType();
3992    if (!isValidElementType(Ty))
3993      return false;
3994
3995    const DataLayout &DL = B->getModule()->getDataLayout();
3996    ReductionOpcode = B->getOpcode();
3997    ReducedValueOpcode = 0;
3998    // FIXME: Register size should be a parameter to this function, so we can
3999    // try different vectorization factors.
4000    ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
4001    ReductionRoot = B;
4002    ReductionPHI = Phi;
4003
4004    if (ReduxWidth < 4)
4005      return false;
4006
4007    // We currently only support adds.
4008    if (ReductionOpcode != Instruction::Add &&
4009        ReductionOpcode != Instruction::FAdd)
4010      return false;
4011
4012    // Post order traverse the reduction tree starting at B. We only handle true
4013    // trees containing only binary operators or selects.
4014    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
4015    Stack.push_back(std::make_pair(B, 0));
4016    while (!Stack.empty()) {
4017      Instruction *TreeN = Stack.back().first;
4018      unsigned EdgeToVist = Stack.back().second++;
4019      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
4020
4021      // Only handle trees in the current basic block.
4022      if (TreeN->getParent() != B->getParent())
4023        return false;
4024
4025      // Each tree node needs to have one user except for the ultimate
4026      // reduction.
4027      if (!TreeN->hasOneUse() && TreeN != B)
4028        return false;
4029
4030      // Postorder vist.
4031      if (EdgeToVist == 2 || IsReducedValue) {
4032        if (IsReducedValue) {
4033          // Make sure that the opcodes of the operations that we are going to
4034          // reduce match.
4035          if (!ReducedValueOpcode)
4036            ReducedValueOpcode = TreeN->getOpcode();
4037          else if (ReducedValueOpcode != TreeN->getOpcode())
4038            return false;
4039          ReducedVals.push_back(TreeN);
4040        } else {
4041          // We need to be able to reassociate the adds.
4042          if (!TreeN->isAssociative())
4043            return false;
4044          ReductionOps.push_back(TreeN);
4045        }
4046        // Retract.
4047        Stack.pop_back();
4048        continue;
4049      }
4050
4051      // Visit left or right.
4052      Value *NextV = TreeN->getOperand(EdgeToVist);
4053      // We currently only allow BinaryOperator's and SelectInst's as reduction
4054      // values in our tree.
4055      if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
4056        Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
4057      else if (NextV != Phi)
4058        return false;
4059    }
4060    return true;
4061  }
4062
4063  /// \brief Attempt to vectorize the tree found by
4064  /// matchAssociativeReduction.
4065  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
4066    if (ReducedVals.empty())
4067      return false;
4068
4069    unsigned NumReducedVals = ReducedVals.size();
4070    if (NumReducedVals < ReduxWidth)
4071      return false;
4072
4073    Value *VectorizedTree = nullptr;
4074    IRBuilder<> Builder(ReductionRoot);
4075    FastMathFlags Unsafe;
4076    Unsafe.setUnsafeAlgebra();
4077    Builder.setFastMathFlags(Unsafe);
4078    unsigned i = 0;
4079
4080    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
4081      V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
4082      V.computeMinimumValueSizes();
4083
4084      // Estimate cost.
4085      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
4086      if (Cost >= -SLPCostThreshold)
4087        break;
4088
4089      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
4090                   << ". (HorRdx)\n");
4091
4092      // Vectorize a tree.
4093      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
4094      Value *VectorizedRoot = V.vectorizeTree();
4095
4096      // Emit a reduction.
4097      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
4098      if (VectorizedTree) {
4099        Builder.SetCurrentDebugLocation(Loc);
4100        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
4101                                     ReducedSubTree, "bin.rdx");
4102      } else
4103        VectorizedTree = ReducedSubTree;
4104    }
4105
4106    if (VectorizedTree) {
4107      // Finish the reduction.
4108      for (; i < NumReducedVals; ++i) {
4109        Builder.SetCurrentDebugLocation(
4110          cast<Instruction>(ReducedVals[i])->getDebugLoc());
4111        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
4112                                     ReducedVals[i]);
4113      }
4114      // Update users.
4115      if (ReductionPHI) {
4116        assert(ReductionRoot && "Need a reduction operation");
4117        ReductionRoot->setOperand(0, VectorizedTree);
4118        ReductionRoot->setOperand(1, ReductionPHI);
4119      } else
4120        ReductionRoot->replaceAllUsesWith(VectorizedTree);
4121    }
4122    return VectorizedTree != nullptr;
4123  }
4124
4125  unsigned numReductionValues() const {
4126    return ReducedVals.size();
4127  }
4128
4129private:
4130  /// \brief Calculate the cost of a reduction.
4131  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
4132    Type *ScalarTy = FirstReducedVal->getType();
4133    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
4134
4135    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
4136    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
4137
4138    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
4139    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
4140
4141    int ScalarReduxCost =
4142        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
4143
4144    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
4145                 << " for reduction that starts with " << *FirstReducedVal
4146                 << " (It is a "
4147                 << (IsPairwiseReduction ? "pairwise" : "splitting")
4148                 << " reduction)\n");
4149
4150    return VecReduxCost - ScalarReduxCost;
4151  }
4152
4153  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
4154                            Value *R, const Twine &Name = "") {
4155    if (Opcode == Instruction::FAdd)
4156      return Builder.CreateFAdd(L, R, Name);
4157    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
4158  }
4159
4160  /// \brief Emit a horizontal reduction of the vectorized value.
4161  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
4162    assert(VectorizedValue && "Need to have a vectorized tree node");
4163    assert(isPowerOf2_32(ReduxWidth) &&
4164           "We only handle power-of-two reductions for now");
4165
4166    Value *TmpVec = VectorizedValue;
4167    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
4168      if (IsPairwiseReduction) {
4169        Value *LeftMask =
4170          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
4171        Value *RightMask =
4172          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
4173
4174        Value *LeftShuf = Builder.CreateShuffleVector(
4175          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
4176        Value *RightShuf = Builder.CreateShuffleVector(
4177          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
4178          "rdx.shuf.r");
4179        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
4180                             "bin.rdx");
4181      } else {
4182        Value *UpperHalf =
4183          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
4184        Value *Shuf = Builder.CreateShuffleVector(
4185          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
4186        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
4187      }
4188    }
4189
4190    // The result is in the first element of the vector.
4191    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
4192  }
4193};
4194
4195/// \brief Recognize construction of vectors like
4196///  %ra = insertelement <4 x float> undef, float %s0, i32 0
4197///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
4198///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
4199///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
4200///
4201/// Returns true if it matches
4202///
4203static bool findBuildVector(InsertElementInst *FirstInsertElem,
4204                            SmallVectorImpl<Value *> &BuildVector,
4205                            SmallVectorImpl<Value *> &BuildVectorOpds) {
4206  if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
4207    return false;
4208
4209  InsertElementInst *IE = FirstInsertElem;
4210  while (true) {
4211    BuildVector.push_back(IE);
4212    BuildVectorOpds.push_back(IE->getOperand(1));
4213
4214    if (IE->use_empty())
4215      return false;
4216
4217    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
4218    if (!NextUse)
4219      return true;
4220
4221    // If this isn't the final use, make sure the next insertelement is the only
4222    // use. It's OK if the final constructed vector is used multiple times
4223    if (!IE->hasOneUse())
4224      return false;
4225
4226    IE = NextUse;
4227  }
4228
4229  return false;
4230}
4231
4232/// \brief Like findBuildVector, but looks backwards for construction of aggregate.
4233///
4234/// \return true if it matches.
4235static bool findBuildAggregate(InsertValueInst *IV,
4236                               SmallVectorImpl<Value *> &BuildVector,
4237                               SmallVectorImpl<Value *> &BuildVectorOpds) {
4238  if (!IV->hasOneUse())
4239    return false;
4240  Value *V = IV->getAggregateOperand();
4241  if (!isa<UndefValue>(V)) {
4242    InsertValueInst *I = dyn_cast<InsertValueInst>(V);
4243    if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds))
4244      return false;
4245  }
4246  BuildVector.push_back(IV);
4247  BuildVectorOpds.push_back(IV->getInsertedValueOperand());
4248  return true;
4249}
4250
4251static bool PhiTypeSorterFunc(Value *V, Value *V2) {
4252  return V->getType() < V2->getType();
4253}
4254
4255/// \brief Try and get a reduction value from a phi node.
4256///
4257/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
4258/// if they come from either \p ParentBB or a containing loop latch.
4259///
4260/// \returns A candidate reduction value if possible, or \code nullptr \endcode
4261/// if not possible.
4262static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
4263                                BasicBlock *ParentBB, LoopInfo *LI) {
4264  // There are situations where the reduction value is not dominated by the
4265  // reduction phi. Vectorizing such cases has been reported to cause
4266  // miscompiles. See PR25787.
4267  auto DominatedReduxValue = [&](Value *R) {
4268    return (
4269        dyn_cast<Instruction>(R) &&
4270        DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
4271  };
4272
4273  Value *Rdx = nullptr;
4274
4275  // Return the incoming value if it comes from the same BB as the phi node.
4276  if (P->getIncomingBlock(0) == ParentBB) {
4277    Rdx = P->getIncomingValue(0);
4278  } else if (P->getIncomingBlock(1) == ParentBB) {
4279    Rdx = P->getIncomingValue(1);
4280  }
4281
4282  if (Rdx && DominatedReduxValue(Rdx))
4283    return Rdx;
4284
4285  // Otherwise, check whether we have a loop latch to look at.
4286  Loop *BBL = LI->getLoopFor(ParentBB);
4287  if (!BBL)
4288    return nullptr;
4289  BasicBlock *BBLatch = BBL->getLoopLatch();
4290  if (!BBLatch)
4291    return nullptr;
4292
4293  // There is a loop latch, return the incoming value if it comes from
4294  // that. This reduction pattern occassionaly turns up.
4295  if (P->getIncomingBlock(0) == BBLatch) {
4296    Rdx = P->getIncomingValue(0);
4297  } else if (P->getIncomingBlock(1) == BBLatch) {
4298    Rdx = P->getIncomingValue(1);
4299  }
4300
4301  if (Rdx && DominatedReduxValue(Rdx))
4302    return Rdx;
4303
4304  return nullptr;
4305}
4306
4307/// \brief Attempt to reduce a horizontal reduction.
4308/// If it is legal to match a horizontal reduction feeding
4309/// the phi node P with reduction operators BI, then check if it
4310/// can be done.
4311/// \returns true if a horizontal reduction was matched and reduced.
4312/// \returns false if a horizontal reduction was not matched.
4313static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
4314                                        BoUpSLP &R, TargetTransformInfo *TTI,
4315                                        unsigned MinRegSize) {
4316  if (!ShouldVectorizeHor)
4317    return false;
4318
4319  HorizontalReduction HorRdx(MinRegSize);
4320  if (!HorRdx.matchAssociativeReduction(P, BI))
4321    return false;
4322
4323  // If there is a sufficient number of reduction values, reduce
4324  // to a nearby power-of-2. Can safely generate oversized
4325  // vectors and rely on the backend to split them to legal sizes.
4326  HorRdx.ReduxWidth =
4327    std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
4328
4329  return HorRdx.tryToReduce(R, TTI);
4330}
4331
4332bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
4333  bool Changed = false;
4334  SmallVector<Value *, 4> Incoming;
4335  SmallSet<Value *, 16> VisitedInstrs;
4336
4337  bool HaveVectorizedPhiNodes = true;
4338  while (HaveVectorizedPhiNodes) {
4339    HaveVectorizedPhiNodes = false;
4340
4341    // Collect the incoming values from the PHIs.
4342    Incoming.clear();
4343    for (Instruction &I : *BB) {
4344      PHINode *P = dyn_cast<PHINode>(&I);
4345      if (!P)
4346        break;
4347
4348      if (!VisitedInstrs.count(P))
4349        Incoming.push_back(P);
4350    }
4351
4352    // Sort by type.
4353    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
4354
4355    // Try to vectorize elements base on their type.
4356    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
4357                                           E = Incoming.end();
4358         IncIt != E;) {
4359
4360      // Look for the next elements with the same type.
4361      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
4362      while (SameTypeIt != E &&
4363             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
4364        VisitedInstrs.insert(*SameTypeIt);
4365        ++SameTypeIt;
4366      }
4367
4368      // Try to vectorize them.
4369      unsigned NumElts = (SameTypeIt - IncIt);
4370      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
4371      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
4372        // Success start over because instructions might have been changed.
4373        HaveVectorizedPhiNodes = true;
4374        Changed = true;
4375        break;
4376      }
4377
4378      // Start over at the next instruction of a different type (or the end).
4379      IncIt = SameTypeIt;
4380    }
4381  }
4382
4383  VisitedInstrs.clear();
4384
4385  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
4386    // We may go through BB multiple times so skip the one we have checked.
4387    if (!VisitedInstrs.insert(&*it).second)
4388      continue;
4389
4390    if (isa<DbgInfoIntrinsic>(it))
4391      continue;
4392
4393    // Try to vectorize reductions that use PHINodes.
4394    if (PHINode *P = dyn_cast<PHINode>(it)) {
4395      // Check that the PHI is a reduction PHI.
4396      if (P->getNumIncomingValues() != 2)
4397        return Changed;
4398
4399      Value *Rdx = getReductionValue(DT, P, BB, LI);
4400
4401      // Check if this is a Binary Operator.
4402      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
4403      if (!BI)
4404        continue;
4405
4406      // Try to match and vectorize a horizontal reduction.
4407      if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) {
4408        Changed = true;
4409        it = BB->begin();
4410        e = BB->end();
4411        continue;
4412      }
4413
4414     Value *Inst = BI->getOperand(0);
4415      if (Inst == P)
4416        Inst = BI->getOperand(1);
4417
4418      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
4419        // We would like to start over since some instructions are deleted
4420        // and the iterator may become invalid value.
4421        Changed = true;
4422        it = BB->begin();
4423        e = BB->end();
4424        continue;
4425      }
4426
4427      continue;
4428    }
4429
4430    if (ShouldStartVectorizeHorAtStore)
4431      if (StoreInst *SI = dyn_cast<StoreInst>(it))
4432        if (BinaryOperator *BinOp =
4433                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
4434          if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI,
4435                                          R.getMinVecRegSize()) ||
4436              tryToVectorize(BinOp, R)) {
4437            Changed = true;
4438            it = BB->begin();
4439            e = BB->end();
4440            continue;
4441          }
4442        }
4443
4444    // Try to vectorize horizontal reductions feeding into a return.
4445    if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
4446      if (RI->getNumOperands() != 0)
4447        if (BinaryOperator *BinOp =
4448                dyn_cast<BinaryOperator>(RI->getOperand(0))) {
4449          DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
4450          if (tryToVectorizePair(BinOp->getOperand(0),
4451                                 BinOp->getOperand(1), R)) {
4452            Changed = true;
4453            it = BB->begin();
4454            e = BB->end();
4455            continue;
4456          }
4457        }
4458
4459    // Try to vectorize trees that start at compare instructions.
4460    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
4461      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
4462        Changed = true;
4463        // We would like to start over since some instructions are deleted
4464        // and the iterator may become invalid value.
4465        it = BB->begin();
4466        e = BB->end();
4467        continue;
4468      }
4469
4470      for (int i = 0; i < 2; ++i) {
4471        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
4472          if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
4473            Changed = true;
4474            // We would like to start over since some instructions are deleted
4475            // and the iterator may become invalid value.
4476            it = BB->begin();
4477            e = BB->end();
4478            break;
4479          }
4480        }
4481      }
4482      continue;
4483    }
4484
4485    // Try to vectorize trees that start at insertelement instructions.
4486    if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4487      SmallVector<Value *, 16> BuildVector;
4488      SmallVector<Value *, 16> BuildVectorOpds;
4489      if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4490        continue;
4491
4492      // Vectorize starting with the build vector operands ignoring the
4493      // BuildVector instructions for the purpose of scheduling and user
4494      // extraction.
4495      if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4496        Changed = true;
4497        it = BB->begin();
4498        e = BB->end();
4499      }
4500
4501      continue;
4502    }
4503
4504    // Try to vectorize trees that start at insertvalue instructions feeding into
4505    // a store.
4506    if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
4507      if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) {
4508        const DataLayout &DL = BB->getModule()->getDataLayout();
4509        if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) {
4510          SmallVector<Value *, 16> BuildVector;
4511          SmallVector<Value *, 16> BuildVectorOpds;
4512          if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds))
4513            continue;
4514
4515          DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n");
4516          if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) {
4517            Changed = true;
4518            it = BB->begin();
4519            e = BB->end();
4520          }
4521          continue;
4522        }
4523      }
4524    }
4525  }
4526
4527  return Changed;
4528}
4529
4530bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
4531  auto Changed = false;
4532  for (auto &Entry : GEPs) {
4533
4534    // If the getelementptr list has fewer than two elements, there's nothing
4535    // to do.
4536    if (Entry.second.size() < 2)
4537      continue;
4538
4539    DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
4540                 << Entry.second.size() << ".\n");
4541
4542    // We process the getelementptr list in chunks of 16 (like we do for
4543    // stores) to minimize compile-time.
4544    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
4545      auto Len = std::min<unsigned>(BE - BI, 16);
4546      auto GEPList = makeArrayRef(&Entry.second[BI], Len);
4547
4548      // Initialize a set a candidate getelementptrs. Note that we use a
4549      // SetVector here to preserve program order. If the index computations
4550      // are vectorizable and begin with loads, we want to minimize the chance
4551      // of having to reorder them later.
4552      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
4553
4554      // Some of the candidates may have already been vectorized after we
4555      // initially collected them. If so, the WeakVHs will have nullified the
4556      // values, so remove them from the set of candidates.
4557      Candidates.remove(nullptr);
4558
4559      // Remove from the set of candidates all pairs of getelementptrs with
4560      // constant differences. Such getelementptrs are likely not good
4561      // candidates for vectorization in a bottom-up phase since one can be
4562      // computed from the other. We also ensure all candidate getelementptr
4563      // indices are unique.
4564      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
4565        auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
4566        if (!Candidates.count(GEPI))
4567          continue;
4568        auto *SCEVI = SE->getSCEV(GEPList[I]);
4569        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
4570          auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
4571          auto *SCEVJ = SE->getSCEV(GEPList[J]);
4572          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
4573            Candidates.remove(GEPList[I]);
4574            Candidates.remove(GEPList[J]);
4575          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
4576            Candidates.remove(GEPList[J]);
4577          }
4578        }
4579      }
4580
4581      // We break out of the above computation as soon as we know there are
4582      // fewer than two candidates remaining.
4583      if (Candidates.size() < 2)
4584        continue;
4585
4586      // Add the single, non-constant index of each candidate to the bundle. We
4587      // ensured the indices met these constraints when we originally collected
4588      // the getelementptrs.
4589      SmallVector<Value *, 16> Bundle(Candidates.size());
4590      auto BundleIndex = 0u;
4591      for (auto *V : Candidates) {
4592        auto *GEP = cast<GetElementPtrInst>(V);
4593        auto *GEPIdx = GEP->idx_begin()->get();
4594        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
4595        Bundle[BundleIndex++] = GEPIdx;
4596      }
4597
4598      // Try and vectorize the indices. We are currently only interested in
4599      // gather-like cases of the form:
4600      //
4601      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
4602      //
4603      // where the loads of "a", the loads of "b", and the subtractions can be
4604      // performed in parallel. It's likely that detecting this pattern in a
4605      // bottom-up phase will be simpler and less costly than building a
4606      // full-blown top-down phase beginning at the consecutive loads.
4607      Changed |= tryToVectorizeList(Bundle, R);
4608    }
4609  }
4610  return Changed;
4611}
4612
4613bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
4614  bool Changed = false;
4615  // Attempt to sort and vectorize each of the store-groups.
4616  for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
4617       ++it) {
4618    if (it->second.size() < 2)
4619      continue;
4620
4621    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
4622          << it->second.size() << ".\n");
4623
4624    // Process the stores in chunks of 16.
4625    // TODO: The limit of 16 inhibits greater vectorization factors.
4626    //       For example, AVX2 supports v32i8. Increasing this limit, however,
4627    //       may cause a significant compile-time increase.
4628    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4629      unsigned Len = std::min<unsigned>(CE - CI, 16);
4630      Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4631                                 -SLPCostThreshold, R);
4632    }
4633  }
4634  return Changed;
4635}
4636
4637char SLPVectorizer::ID = 0;
4638static const char lv_name[] = "SLP Vectorizer";
4639INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
4640INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4641INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4642INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4643INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4644INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4645INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
4646INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
4647
4648namespace llvm {
4649Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4650}
4651