SLPVectorizer.cpp revision 68ccbf648ea544faad29115cdda929920739e154
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#define SV_NAME "slp-vectorizer"
19#define DEBUG_TYPE "SLP"
20
21#include "llvm/Transforms/Vectorize.h"
22#include "llvm/ADT/MapVector.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/Analysis/TargetTransformInfo.h"
30#include "llvm/Analysis/Verifier.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46using namespace llvm;
47
48static cl::opt<int>
49    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
50                     cl::desc("Only vectorize if you gain more than this "
51                              "number "));
52namespace {
53
54static const unsigned MinVecRegSize = 128;
55
56static const unsigned RecursionMaxDepth = 12;
57
58/// RAII pattern to save the insertion point of the IR builder.
59class BuilderLocGuard {
60public:
61  BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {}
62  ~BuilderLocGuard() { if (Loc) Builder.SetInsertPoint(Loc); }
63
64private:
65  // Prevent copying.
66  BuilderLocGuard(const BuilderLocGuard &);
67  BuilderLocGuard &operator=(const BuilderLocGuard &);
68  IRBuilder<> &Builder;
69  AssertingVH<Instruction> Loc;
70};
71
72/// A helper class for numbering instructions in multible blocks.
73/// Numbers starts at zero for each basic block.
74struct BlockNumbering {
75
76  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
77
78  BlockNumbering() : BB(0), Valid(false) {}
79
80  void numberInstructions() {
81    unsigned Loc = 0;
82    InstrIdx.clear();
83    InstrVec.clear();
84    // Number the instructions in the block.
85    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
86      InstrIdx[it] = Loc++;
87      InstrVec.push_back(it);
88      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
89    }
90    Valid = true;
91  }
92
93  int getIndex(Instruction *I) {
94    assert(I->getParent() == BB && "Invalid instruction");
95    if (!Valid)
96      numberInstructions();
97    assert(InstrIdx.count(I) && "Unknown instruction");
98    return InstrIdx[I];
99  }
100
101  Instruction *getInstruction(unsigned loc) {
102    if (!Valid)
103      numberInstructions();
104    assert(InstrVec.size() > loc && "Invalid Index");
105    return InstrVec[loc];
106  }
107
108  void forget() { Valid = false; }
109
110private:
111  /// The block we are numbering.
112  BasicBlock *BB;
113  /// Is the block numbered.
114  bool Valid;
115  /// Maps instructions to numbers and back.
116  SmallDenseMap<Instruction *, int> InstrIdx;
117  /// Maps integers to Instructions.
118  SmallVector<Instruction *, 32> InstrVec;
119};
120
121/// \returns the parent basic block if all of the instructions in \p VL
122/// are in the same block or null otherwise.
123static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
124  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
125  if (!I0)
126    return 0;
127  BasicBlock *BB = I0->getParent();
128  for (int i = 1, e = VL.size(); i < e; i++) {
129    Instruction *I = dyn_cast<Instruction>(VL[i]);
130    if (!I)
131      return 0;
132
133    if (BB != I->getParent())
134      return 0;
135  }
136  return BB;
137}
138
139/// \returns True if all of the values in \p VL are constants.
140static bool allConstant(ArrayRef<Value *> VL) {
141  for (unsigned i = 0, e = VL.size(); i < e; ++i)
142    if (!isa<Constant>(VL[i]))
143      return false;
144  return true;
145}
146
147/// \returns True if all of the values in \p VL are identical.
148static bool isSplat(ArrayRef<Value *> VL) {
149  for (unsigned i = 1, e = VL.size(); i < e; ++i)
150    if (VL[i] != VL[0])
151      return false;
152  return true;
153}
154
155/// \returns The opcode if all of the Instructions in \p VL have the same
156/// opcode, or zero.
157static unsigned getSameOpcode(ArrayRef<Value *> VL) {
158  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
159  if (!I0)
160    return 0;
161  unsigned Opcode = I0->getOpcode();
162  for (int i = 1, e = VL.size(); i < e; i++) {
163    Instruction *I = dyn_cast<Instruction>(VL[i]);
164    if (!I || Opcode != I->getOpcode())
165      return 0;
166  }
167  return Opcode;
168}
169
170/// \returns The type that all of the values in \p VL have or null if there
171/// are different types.
172static Type* getSameType(ArrayRef<Value *> VL) {
173  Type *Ty = VL[0]->getType();
174  for (int i = 1, e = VL.size(); i < e; i++)
175    if (VL[i]->getType() != Ty)
176      return 0;
177
178  return Ty;
179}
180
181/// \returns True if the ExtractElement instructions in VL can be vectorized
182/// to use the original vector.
183static bool CanReuseExtract(ArrayRef<Value *> VL) {
184  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
185  // Check if all of the extracts come from the same vector and from the
186  // correct offset.
187  Value *VL0 = VL[0];
188  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
189  Value *Vec = E0->getOperand(0);
190
191  // We have to extract from the same vector type.
192  unsigned NElts = Vec->getType()->getVectorNumElements();
193
194  if (NElts != VL.size())
195    return false;
196
197  // Check that all of the indices extract from the correct offset.
198  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
199  if (!CI || CI->getZExtValue())
200    return false;
201
202  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
203    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
204    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
205
206    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
207      return false;
208  }
209
210  return true;
211}
212
213/// Bottom Up SLP Vectorizer.
214class BoUpSLP {
215public:
216  typedef SmallVector<Value *, 8> ValueList;
217  typedef SmallVector<Instruction *, 16> InstrList;
218  typedef SmallPtrSet<Value *, 16> ValueSet;
219  typedef SmallVector<StoreInst *, 8> StoreList;
220
221  BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
222          TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
223          DominatorTree *Dt) :
224    F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
225    Builder(Se->getContext()) {
226      // Setup the block numbering utility for all of the blocks in the
227      // function.
228      for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
229        BasicBlock *BB = it;
230        BlocksNumbers[BB] = BlockNumbering(BB);
231      }
232    }
233
234  /// \brief Vectorize the tree that starts with the elements in \p VL.
235  void vectorizeTree();
236
237  /// \returns the vectorization cost of the subtree that starts at \p VL.
238  /// A negative number means that this is profitable.
239  int getTreeCost();
240
241  /// Construct a vectorizable tree that starts at \p Roots.
242  void buildTree(ArrayRef<Value *> Roots);
243
244  /// Clear the internal data structures that are created by 'buildTree'.
245  void deleteTree() {
246    VectorizableTree.clear();
247    ScalarToTreeEntry.clear();
248    MustGather.clear();
249    ExternalUses.clear();
250    MemBarrierIgnoreList.clear();
251  }
252
253  /// \returns true if the memory operations A and B are consecutive.
254  bool isConsecutiveAccess(Value *A, Value *B);
255
256  /// \brief Perform LICM and CSE on the newly generated gather sequences.
257  void optimizeGatherSequence();
258private:
259  struct TreeEntry;
260
261  /// \returns the cost of the vectorizable entry.
262  int getEntryCost(TreeEntry *E);
263
264  /// This is the recursive part of buildTree.
265  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
266
267  /// Vectorizer a single entry in the tree.
268  Value *vectorizeTree(TreeEntry *E);
269
270  /// Vectorizer a single entry in the tree, starting in \p VL.
271  Value *vectorizeTree(ArrayRef<Value *> VL);
272
273  /// \brief Take the pointer operand from the Load/Store instruction.
274  /// \returns NULL if this is not a valid Load/Store instruction.
275  static Value *getPointerOperand(Value *I);
276
277  /// \brief Take the address space operand from the Load/Store instruction.
278  /// \returns -1 if this is not a valid Load/Store instruction.
279  static unsigned getAddressSpaceOperand(Value *I);
280
281  /// \returns the scalarization cost for this type. Scalarization in this
282  /// context means the creation of vectors from a group of scalars.
283  int getGatherCost(Type *Ty);
284
285  /// \returns the scalarization cost for this list of values. Assuming that
286  /// this subtree gets vectorized, we may need to extract the values from the
287  /// roots. This method calculates the cost of extracting the values.
288  int getGatherCost(ArrayRef<Value *> VL);
289
290  /// \returns the AA location that is being access by the instruction.
291  AliasAnalysis::Location getLocation(Instruction *I);
292
293  /// \brief Checks if it is possible to sink an instruction from
294  /// \p Src to \p Dst.
295  /// \returns the pointer to the barrier instruction if we can't sink.
296  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
297
298  /// \returns the index of the last instrucion in the BB from \p VL.
299  int getLastIndex(ArrayRef<Value *> VL);
300
301  /// \returns the Instrucion in the bundle \p VL.
302  Instruction *getLastInstruction(ArrayRef<Value *> VL);
303
304  /// \returns the Instruction at index \p Index which is in Block \p BB.
305  Instruction *getInstructionForIndex(unsigned Index, BasicBlock *BB);
306
307  /// \returns the index of the first User of \p VL.
308  int getFirstUserIndex(ArrayRef<Value *> VL);
309
310  /// \returns a vector from a collection of scalars in \p VL.
311  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
312
313  struct TreeEntry {
314    TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
315    NeedToGather(0) {}
316
317    /// \returns true if the scalars in VL are equal to this entry.
318    bool isSame(ArrayRef<Value *> VL) {
319      assert(VL.size() == Scalars.size() && "Invalid size");
320      for (int i = 0, e = VL.size(); i != e; ++i)
321        if (VL[i] != Scalars[i])
322          return false;
323      return true;
324    }
325
326    /// A vector of scalars.
327    ValueList Scalars;
328
329    /// The Scalars are vectorized into this value. It is initialized to Null.
330    Value *VectorizedValue;
331
332    /// The index in the basic block of the last scalar.
333    int LastScalarIndex;
334
335    /// Do we need to gather this sequence ?
336    bool NeedToGather;
337  };
338
339  /// Create a new VectorizableTree entry.
340  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
341    VectorizableTree.push_back(TreeEntry());
342    int idx = VectorizableTree.size() - 1;
343    TreeEntry *Last = &VectorizableTree[idx];
344    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
345    Last->NeedToGather = !Vectorized;
346    if (Vectorized) {
347      Last->LastScalarIndex = getLastIndex(VL);
348      for (int i = 0, e = VL.size(); i != e; ++i) {
349        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
350        ScalarToTreeEntry[VL[i]] = idx;
351      }
352    } else {
353      Last->LastScalarIndex = 0;
354      MustGather.insert(VL.begin(), VL.end());
355    }
356    return Last;
357  }
358
359  /// -- Vectorization State --
360  /// Holds all of the tree entries.
361  std::vector<TreeEntry> VectorizableTree;
362
363  /// Maps a specific scalar to its tree entry.
364  SmallDenseMap<Value*, int> ScalarToTreeEntry;
365
366  /// A list of scalars that we found that we need to keep as scalars.
367  ValueSet MustGather;
368
369  /// This POD struct describes one external user in the vectorized tree.
370  struct ExternalUser {
371    ExternalUser (Value *S, llvm::User *U, int L) :
372      Scalar(S), User(U), Lane(L){};
373    // Which scalar in our function.
374    Value *Scalar;
375    // Which user that uses the scalar.
376    llvm::User *User;
377    // Which lane does the scalar belong to.
378    int Lane;
379  };
380  typedef SmallVector<ExternalUser, 16> UserList;
381
382  /// A list of values that need to extracted out of the tree.
383  /// This list holds pairs of (Internal Scalar : External User).
384  UserList ExternalUses;
385
386  /// A list of instructions to ignore while sinking
387  /// memory instructions. This map must be reset between runs of getCost.
388  ValueSet MemBarrierIgnoreList;
389
390  /// Holds all of the instructions that we gathered.
391  SetVector<Instruction *> GatherSeq;
392
393  /// Numbers instructions in different blocks.
394  DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
395
396  // Analysis and block reference.
397  Function *F;
398  ScalarEvolution *SE;
399  DataLayout *DL;
400  TargetTransformInfo *TTI;
401  AliasAnalysis *AA;
402  LoopInfo *LI;
403  DominatorTree *DT;
404  /// Instruction builder to construct the vectorized tree.
405  IRBuilder<> Builder;
406};
407
408void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
409  deleteTree();
410  if (!getSameType(Roots))
411    return;
412  buildTree_rec(Roots, 0);
413
414  // Collect the values that we need to extract from the tree.
415  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
416    TreeEntry *Entry = &VectorizableTree[EIdx];
417
418    // For each lane:
419    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
420      Value *Scalar = Entry->Scalars[Lane];
421
422      // No need to handle users of gathered values.
423      if (Entry->NeedToGather)
424        continue;
425
426      for (Value::use_iterator User = Scalar->use_begin(),
427           UE = Scalar->use_end(); User != UE; ++User) {
428        DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
429
430        bool Gathered = MustGather.count(*User);
431
432        // Skip in-tree scalars that become vectors.
433        if (ScalarToTreeEntry.count(*User) && !Gathered) {
434          DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
435                **User << ".\n");
436          int Idx = ScalarToTreeEntry[*User]; (void) Idx;
437          assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
438          continue;
439        }
440
441        if (!isa<Instruction>(*User))
442          continue;
443
444        DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
445              Lane << " from " << *Scalar << ".\n");
446        ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
447      }
448    }
449  }
450}
451
452
453void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
454  bool SameTy = getSameType(VL); (void)SameTy;
455  assert(SameTy && "Invalid types!");
456
457  if (Depth == RecursionMaxDepth) {
458    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
459    newTreeEntry(VL, false);
460    return;
461  }
462
463  // Don't handle vectors.
464  if (VL[0]->getType()->isVectorTy()) {
465    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
466    newTreeEntry(VL, false);
467    return;
468  }
469
470  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
471    if (SI->getValueOperand()->getType()->isVectorTy()) {
472      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
473      newTreeEntry(VL, false);
474      return;
475    }
476
477  // If all of the operands are identical or constant we have a simple solution.
478  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
479      !getSameOpcode(VL)) {
480    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
481    newTreeEntry(VL, false);
482    return;
483  }
484
485  // We now know that this is a vector of instructions of the same type from
486  // the same block.
487
488  // Check if this is a duplicate of another entry.
489  if (ScalarToTreeEntry.count(VL[0])) {
490    int Idx = ScalarToTreeEntry[VL[0]];
491    TreeEntry *E = &VectorizableTree[Idx];
492    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
493      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
494      if (E->Scalars[i] != VL[i]) {
495        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
496        newTreeEntry(VL, false);
497        return;
498      }
499    }
500    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
501    return;
502  }
503
504  // Check that none of the instructions in the bundle are already in the tree.
505  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
506    if (ScalarToTreeEntry.count(VL[i])) {
507      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
508            ") is already in tree.\n");
509      newTreeEntry(VL, false);
510      return;
511    }
512  }
513
514  // If any of the scalars appears in the table OR it is marked as a value that
515  // needs to stat scalar then we need to gather the scalars.
516  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
517    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
518      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
519      newTreeEntry(VL, false);
520      return;
521    }
522  }
523
524  // Check that all of the users of the scalars that we want to vectorize are
525  // schedulable.
526  Instruction *VL0 = cast<Instruction>(VL[0]);
527  int MyLastIndex = getLastIndex(VL);
528  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
529
530  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
531    Instruction *Scalar = cast<Instruction>(VL[i]);
532    DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
533    for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
534         U != UE; ++U) {
535      DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
536      Instruction *User = dyn_cast<Instruction>(*U);
537      if (!User) {
538        DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
539        newTreeEntry(VL, false);
540        return;
541      }
542
543      // We don't care if the user is in a different basic block.
544      BasicBlock *UserBlock = User->getParent();
545      if (UserBlock != BB) {
546        DEBUG(dbgs() << "SLP: User from a different basic block "
547              << *User << ". \n");
548        continue;
549      }
550
551      // If this is a PHINode within this basic block then we can place the
552      // extract wherever we want.
553      if (isa<PHINode>(*User)) {
554        DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
555        continue;
556      }
557
558      // Check if this is a safe in-tree user.
559      if (ScalarToTreeEntry.count(User)) {
560        int Idx = ScalarToTreeEntry[User];
561        int VecLocation = VectorizableTree[Idx].LastScalarIndex;
562        if (VecLocation <= MyLastIndex) {
563          DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
564          newTreeEntry(VL, false);
565          return;
566        }
567        DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
568              VecLocation << " vector value (" << *Scalar << ") at #"
569              << MyLastIndex << ".\n");
570        continue;
571      }
572
573      // Make sure that we can schedule this unknown user.
574      BlockNumbering &BN = BlocksNumbers[BB];
575      int UserIndex = BN.getIndex(User);
576      if (UserIndex < MyLastIndex) {
577
578        DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
579              << *User << ". \n");
580        newTreeEntry(VL, false);
581        return;
582      }
583    }
584  }
585
586  // Check that every instructions appears once in this bundle.
587  for (unsigned i = 0, e = VL.size(); i < e; ++i)
588    for (unsigned j = i+1; j < e; ++j)
589      if (VL[i] == VL[j]) {
590        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
591        newTreeEntry(VL, false);
592        return;
593      }
594
595  // Check that instructions in this bundle don't reference other instructions.
596  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
597  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
598    for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
599         U != UE; ++U) {
600      for (unsigned j = 0; j < e; ++j) {
601        if (i != j && *U == VL[j]) {
602          DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
603          newTreeEntry(VL, false);
604          return;
605        }
606      }
607    }
608  }
609
610  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
611
612  unsigned Opcode = getSameOpcode(VL);
613
614  // Check if it is safe to sink the loads or the stores.
615  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
616    Instruction *Last = getLastInstruction(VL);
617
618    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
619      if (VL[i] == Last)
620        continue;
621      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
622      if (Barrier) {
623        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
624              << "\n because of " << *Barrier << ".  Gathering.\n");
625        newTreeEntry(VL, false);
626        return;
627      }
628    }
629  }
630
631  switch (Opcode) {
632    case Instruction::PHI: {
633      PHINode *PH = dyn_cast<PHINode>(VL0);
634      newTreeEntry(VL, true);
635      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
636
637      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
638        ValueList Operands;
639        // Prepare the operand vector.
640        for (unsigned j = 0; j < VL.size(); ++j)
641          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
642
643        buildTree_rec(Operands, Depth + 1);
644      }
645      return;
646    }
647    case Instruction::ExtractElement: {
648      bool Reuse = CanReuseExtract(VL);
649      if (Reuse) {
650        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
651      }
652      newTreeEntry(VL, Reuse);
653      return;
654    }
655    case Instruction::Load: {
656      // Check if the loads are consecutive or of we need to swizzle them.
657      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
658        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
659          newTreeEntry(VL, false);
660          DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
661          return;
662        }
663
664      newTreeEntry(VL, true);
665      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
666      return;
667    }
668    case Instruction::ZExt:
669    case Instruction::SExt:
670    case Instruction::FPToUI:
671    case Instruction::FPToSI:
672    case Instruction::FPExt:
673    case Instruction::PtrToInt:
674    case Instruction::IntToPtr:
675    case Instruction::SIToFP:
676    case Instruction::UIToFP:
677    case Instruction::Trunc:
678    case Instruction::FPTrunc:
679    case Instruction::BitCast: {
680      Type *SrcTy = VL0->getOperand(0)->getType();
681      for (unsigned i = 0; i < VL.size(); ++i) {
682        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
683        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
684          newTreeEntry(VL, false);
685          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
686          return;
687        }
688      }
689      newTreeEntry(VL, true);
690      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
691
692      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
693        ValueList Operands;
694        // Prepare the operand vector.
695        for (unsigned j = 0; j < VL.size(); ++j)
696          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
697
698        buildTree_rec(Operands, Depth+1);
699      }
700      return;
701    }
702    case Instruction::ICmp:
703    case Instruction::FCmp: {
704      // Check that all of the compares have the same predicate.
705      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
706      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
707      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
708        CmpInst *Cmp = cast<CmpInst>(VL[i]);
709        if (Cmp->getPredicate() != P0 ||
710            Cmp->getOperand(0)->getType() != ComparedTy) {
711          newTreeEntry(VL, false);
712          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
713          return;
714        }
715      }
716
717      newTreeEntry(VL, true);
718      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
719
720      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
721        ValueList Operands;
722        // Prepare the operand vector.
723        for (unsigned j = 0; j < VL.size(); ++j)
724          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
725
726        buildTree_rec(Operands, Depth+1);
727      }
728      return;
729    }
730    case Instruction::Select:
731    case Instruction::Add:
732    case Instruction::FAdd:
733    case Instruction::Sub:
734    case Instruction::FSub:
735    case Instruction::Mul:
736    case Instruction::FMul:
737    case Instruction::UDiv:
738    case Instruction::SDiv:
739    case Instruction::FDiv:
740    case Instruction::URem:
741    case Instruction::SRem:
742    case Instruction::FRem:
743    case Instruction::Shl:
744    case Instruction::LShr:
745    case Instruction::AShr:
746    case Instruction::And:
747    case Instruction::Or:
748    case Instruction::Xor: {
749      newTreeEntry(VL, true);
750      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
751
752      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
753        ValueList Operands;
754        // Prepare the operand vector.
755        for (unsigned j = 0; j < VL.size(); ++j)
756          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
757
758        buildTree_rec(Operands, Depth+1);
759      }
760      return;
761    }
762    case Instruction::Store: {
763      // Check if the stores are consecutive or of we need to swizzle them.
764      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
765        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
766          newTreeEntry(VL, false);
767          DEBUG(dbgs() << "SLP: Non consecutive store.\n");
768          return;
769        }
770
771      newTreeEntry(VL, true);
772      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
773
774      ValueList Operands;
775      for (unsigned j = 0; j < VL.size(); ++j)
776        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
777
778      // We can ignore these values because we are sinking them down.
779      MemBarrierIgnoreList.insert(VL.begin(), VL.end());
780      buildTree_rec(Operands, Depth + 1);
781      return;
782    }
783    default:
784      newTreeEntry(VL, false);
785      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
786      return;
787  }
788}
789
790int BoUpSLP::getEntryCost(TreeEntry *E) {
791  ArrayRef<Value*> VL = E->Scalars;
792
793  Type *ScalarTy = VL[0]->getType();
794  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
795    ScalarTy = SI->getValueOperand()->getType();
796  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
797
798  if (E->NeedToGather) {
799    if (allConstant(VL))
800      return 0;
801    if (isSplat(VL)) {
802      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
803    }
804    return getGatherCost(E->Scalars);
805  }
806
807  assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
808         "Invalid VL");
809  Instruction *VL0 = cast<Instruction>(VL[0]);
810  unsigned Opcode = VL0->getOpcode();
811  switch (Opcode) {
812    case Instruction::PHI: {
813      return 0;
814    }
815    case Instruction::ExtractElement: {
816      if (CanReuseExtract(VL))
817        return 0;
818      return getGatherCost(VecTy);
819    }
820    case Instruction::ZExt:
821    case Instruction::SExt:
822    case Instruction::FPToUI:
823    case Instruction::FPToSI:
824    case Instruction::FPExt:
825    case Instruction::PtrToInt:
826    case Instruction::IntToPtr:
827    case Instruction::SIToFP:
828    case Instruction::UIToFP:
829    case Instruction::Trunc:
830    case Instruction::FPTrunc:
831    case Instruction::BitCast: {
832      Type *SrcTy = VL0->getOperand(0)->getType();
833
834      // Calculate the cost of this instruction.
835      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
836                                                         VL0->getType(), SrcTy);
837
838      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
839      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
840      return VecCost - ScalarCost;
841    }
842    case Instruction::FCmp:
843    case Instruction::ICmp:
844    case Instruction::Select:
845    case Instruction::Add:
846    case Instruction::FAdd:
847    case Instruction::Sub:
848    case Instruction::FSub:
849    case Instruction::Mul:
850    case Instruction::FMul:
851    case Instruction::UDiv:
852    case Instruction::SDiv:
853    case Instruction::FDiv:
854    case Instruction::URem:
855    case Instruction::SRem:
856    case Instruction::FRem:
857    case Instruction::Shl:
858    case Instruction::LShr:
859    case Instruction::AShr:
860    case Instruction::And:
861    case Instruction::Or:
862    case Instruction::Xor: {
863      // Calculate the cost of this instruction.
864      int ScalarCost = 0;
865      int VecCost = 0;
866      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
867          Opcode == Instruction::Select) {
868        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
869        ScalarCost = VecTy->getNumElements() *
870        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
871        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
872      } else {
873        ScalarCost = VecTy->getNumElements() *
874        TTI->getArithmeticInstrCost(Opcode, ScalarTy);
875        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
876      }
877      return VecCost - ScalarCost;
878    }
879    case Instruction::Load: {
880      // Cost of wide load - cost of scalar loads.
881      int ScalarLdCost = VecTy->getNumElements() *
882      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
883      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
884      return VecLdCost - ScalarLdCost;
885    }
886    case Instruction::Store: {
887      // We know that we can merge the stores. Calculate the cost.
888      int ScalarStCost = VecTy->getNumElements() *
889      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
890      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
891      return VecStCost - ScalarStCost;
892    }
893    default:
894      llvm_unreachable("Unknown instruction");
895  }
896}
897
898int BoUpSLP::getTreeCost() {
899  int Cost = 0;
900  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
901        VectorizableTree.size() << ".\n");
902
903  if (!VectorizableTree.size()) {
904    assert(!ExternalUses.size() && "We should not have any external users");
905    return 0;
906  }
907
908  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
909
910  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
911    int C = getEntryCost(&VectorizableTree[i]);
912    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
913          << *VectorizableTree[i].Scalars[0] << " .\n");
914    Cost += C;
915  }
916
917  int ExtractCost = 0;
918  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
919       I != E; ++I) {
920
921    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
922    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
923                                           I->Lane);
924  }
925
926
927  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
928  return  Cost + ExtractCost;
929}
930
931int BoUpSLP::getGatherCost(Type *Ty) {
932  int Cost = 0;
933  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
934    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
935  return Cost;
936}
937
938int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
939  // Find the type of the operands in VL.
940  Type *ScalarTy = VL[0]->getType();
941  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
942    ScalarTy = SI->getValueOperand()->getType();
943  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
944  // Find the cost of inserting/extracting values from the vector.
945  return getGatherCost(VecTy);
946}
947
948AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
949  if (StoreInst *SI = dyn_cast<StoreInst>(I))
950    return AA->getLocation(SI);
951  if (LoadInst *LI = dyn_cast<LoadInst>(I))
952    return AA->getLocation(LI);
953  return AliasAnalysis::Location();
954}
955
956Value *BoUpSLP::getPointerOperand(Value *I) {
957  if (LoadInst *LI = dyn_cast<LoadInst>(I))
958    return LI->getPointerOperand();
959  if (StoreInst *SI = dyn_cast<StoreInst>(I))
960    return SI->getPointerOperand();
961  return 0;
962}
963
964unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
965  if (LoadInst *L = dyn_cast<LoadInst>(I))
966    return L->getPointerAddressSpace();
967  if (StoreInst *S = dyn_cast<StoreInst>(I))
968    return S->getPointerAddressSpace();
969  return -1;
970}
971
972bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
973  Value *PtrA = getPointerOperand(A);
974  Value *PtrB = getPointerOperand(B);
975  unsigned ASA = getAddressSpaceOperand(A);
976  unsigned ASB = getAddressSpaceOperand(B);
977
978  // Check that the address spaces match and that the pointers are valid.
979  if (!PtrA || !PtrB || (ASA != ASB))
980    return false;
981
982  // Make sure that A and B are different pointers of the same type.
983  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
984    return false;
985
986  // Calculate a constant offset from the base pointer without using SCEV
987  // in the supported cases.
988  // TODO: Add support for the case where one of the pointers is a GEP that
989  // uses the other pointer.
990  GetElementPtrInst *GepA = dyn_cast<GetElementPtrInst>(PtrA);
991  GetElementPtrInst *GepB = dyn_cast<GetElementPtrInst>(PtrB);
992
993  unsigned BW = DL->getPointerSizeInBits(ASA);
994  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
995  int64_t Sz = DL->getTypeStoreSize(Ty);
996
997  // Check if PtrA is the base and PtrB is a constant offset.
998  if (GepB && GepB->getPointerOperand() == PtrA) {
999    APInt Offset(BW, 0);
1000    if (GepB->accumulateConstantOffset(*DL, Offset))
1001      return Offset.getSExtValue() == Sz;
1002    return false;
1003  }
1004
1005  // Check if PtrB is the base and PtrA is a constant offset.
1006  if (GepA && GepA->getPointerOperand() == PtrB) {
1007    APInt Offset(BW, 0);
1008    if (GepA->accumulateConstantOffset(*DL, Offset))
1009      return Offset.getSExtValue() == -Sz;
1010    return false;
1011  }
1012
1013  // If both pointers are GEPs:
1014  if (GepA && GepB) {
1015    // Check that they have the same base pointer and number of indices.
1016    if (GepA->getPointerOperand() != GepB->getPointerOperand() ||
1017        GepA->getNumIndices() != GepB->getNumIndices())
1018      return false;
1019
1020    // Try to strip the geps. This makes SCEV faster.
1021    // Make sure that all of the indices except for the last are identical.
1022    int LastIdx = GepA->getNumIndices();
1023    for (int i = 0; i < LastIdx - 1; i++) {
1024      if (GepA->getOperand(i+1) != GepB->getOperand(i+1))
1025          return false;
1026    }
1027
1028    PtrA = GepA->getOperand(LastIdx);
1029    PtrB = GepB->getOperand(LastIdx);
1030    Sz = 1;
1031  }
1032
1033  ConstantInt *CA = dyn_cast<ConstantInt>(PtrA);
1034  ConstantInt *CB = dyn_cast<ConstantInt>(PtrB);
1035  if (CA && CB) {
1036    return (CA->getSExtValue() + Sz == CB->getSExtValue());
1037  }
1038
1039  // Calculate the distance.
1040  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1041  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1042  const SCEV *C = SE->getConstant(PtrSCEVA->getType(), Sz);
1043  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1044  return X == PtrSCEVB;
1045}
1046
1047Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1048  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1049  BasicBlock::iterator I = Src, E = Dst;
1050  /// Scan all of the instruction from SRC to DST and check if
1051  /// the source may alias.
1052  for (++I; I != E; ++I) {
1053    // Ignore store instructions that are marked as 'ignore'.
1054    if (MemBarrierIgnoreList.count(I))
1055      continue;
1056    if (Src->mayWriteToMemory()) /* Write */ {
1057      if (!I->mayReadOrWriteMemory())
1058        continue;
1059    } else /* Read */ {
1060      if (!I->mayWriteToMemory())
1061        continue;
1062    }
1063    AliasAnalysis::Location A = getLocation(&*I);
1064    AliasAnalysis::Location B = getLocation(Src);
1065
1066    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1067      return I;
1068  }
1069  return 0;
1070}
1071
1072int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1073  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1074  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1075  BlockNumbering &BN = BlocksNumbers[BB];
1076
1077  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1078  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1079    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1080  return MaxIdx;
1081}
1082
1083Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1084  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1085  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1086  BlockNumbering &BN = BlocksNumbers[BB];
1087
1088  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1089  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1090    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1091  Instruction *I = BN.getInstruction(MaxIdx);
1092  assert(I && "bad location");
1093  return I;
1094}
1095
1096Instruction *BoUpSLP::getInstructionForIndex(unsigned Index, BasicBlock *BB) {
1097  BlockNumbering &BN = BlocksNumbers[BB];
1098  return BN.getInstruction(Index);
1099}
1100
1101int BoUpSLP::getFirstUserIndex(ArrayRef<Value *> VL) {
1102  BasicBlock *BB = getSameBlock(VL);
1103  assert(BB && "All instructions must come from the same block");
1104  BlockNumbering &BN = BlocksNumbers[BB];
1105
1106  // Find the first user of the values.
1107  int FirstUser = BN.getIndex(BB->getTerminator());
1108  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1109    for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
1110         U != UE; ++U) {
1111      Instruction *Instr = dyn_cast<Instruction>(*U);
1112
1113      if (!Instr || Instr->getParent() != BB)
1114        continue;
1115
1116      FirstUser = std::min(FirstUser, BN.getIndex(Instr));
1117    }
1118  }
1119  return FirstUser;
1120}
1121
1122Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1123  Value *Vec = UndefValue::get(Ty);
1124  // Generate the 'InsertElement' instruction.
1125  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1126    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1127    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1128      GatherSeq.insert(Insrt);
1129
1130      // Add to our 'need-to-extract' list.
1131      if (ScalarToTreeEntry.count(VL[i])) {
1132        int Idx = ScalarToTreeEntry[VL[i]];
1133        TreeEntry *E = &VectorizableTree[Idx];
1134        // Find which lane we need to extract.
1135        int FoundLane = -1;
1136        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1137          // Is this the lane of the scalar that we are looking for ?
1138          if (E->Scalars[Lane] == VL[i]) {
1139            FoundLane = Lane;
1140            break;
1141          }
1142        }
1143        assert(FoundLane >= 0 && "Could not find the correct lane");
1144        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1145      }
1146    }
1147  }
1148
1149  return Vec;
1150}
1151
1152Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1153  if (ScalarToTreeEntry.count(VL[0])) {
1154    int Idx = ScalarToTreeEntry[VL[0]];
1155    TreeEntry *E = &VectorizableTree[Idx];
1156    if (E->isSame(VL))
1157      return vectorizeTree(E);
1158  }
1159
1160  Type *ScalarTy = VL[0]->getType();
1161  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1162    ScalarTy = SI->getValueOperand()->getType();
1163  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1164
1165  return Gather(VL, VecTy);
1166}
1167
1168Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1169  BuilderLocGuard Guard(Builder);
1170
1171  if (E->VectorizedValue) {
1172    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1173    return E->VectorizedValue;
1174  }
1175
1176  Type *ScalarTy = E->Scalars[0]->getType();
1177  if (StoreInst *SI = dyn_cast<StoreInst>(E->Scalars[0]))
1178    ScalarTy = SI->getValueOperand()->getType();
1179  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1180
1181  if (E->NeedToGather) {
1182    return Gather(E->Scalars, VecTy);
1183  }
1184
1185  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1186  unsigned Opcode = VL0->getOpcode();
1187  assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1188
1189  switch (Opcode) {
1190    case Instruction::PHI: {
1191      PHINode *PH = dyn_cast<PHINode>(VL0);
1192      Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
1193      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1194      E->VectorizedValue = NewPhi;
1195
1196      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1197        ValueList Operands;
1198        BasicBlock *IBB = PH->getIncomingBlock(i);
1199
1200        // Prepare the operand vector.
1201        for (unsigned j = 0; j < E->Scalars.size(); ++j)
1202          Operands.push_back(cast<PHINode>(E->Scalars[j])->
1203                             getIncomingValueForBlock(IBB));
1204
1205        Builder.SetInsertPoint(IBB->getTerminator());
1206        Value *Vec = vectorizeTree(Operands);
1207        NewPhi->addIncoming(Vec, IBB);
1208      }
1209
1210      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1211             "Invalid number of incoming values");
1212      return NewPhi;
1213    }
1214
1215    case Instruction::ExtractElement: {
1216      if (CanReuseExtract(E->Scalars)) {
1217        Value *V = VL0->getOperand(0);
1218        E->VectorizedValue = V;
1219        return V;
1220      }
1221      return Gather(E->Scalars, VecTy);
1222    }
1223    case Instruction::ZExt:
1224    case Instruction::SExt:
1225    case Instruction::FPToUI:
1226    case Instruction::FPToSI:
1227    case Instruction::FPExt:
1228    case Instruction::PtrToInt:
1229    case Instruction::IntToPtr:
1230    case Instruction::SIToFP:
1231    case Instruction::UIToFP:
1232    case Instruction::Trunc:
1233    case Instruction::FPTrunc:
1234    case Instruction::BitCast: {
1235      ValueList INVL;
1236      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1237        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1238
1239      Builder.SetInsertPoint(getLastInstruction(E->Scalars));
1240      Value *InVec = vectorizeTree(INVL);
1241      CastInst *CI = dyn_cast<CastInst>(VL0);
1242      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1243      E->VectorizedValue = V;
1244      return V;
1245    }
1246    case Instruction::FCmp:
1247    case Instruction::ICmp: {
1248      ValueList LHSV, RHSV;
1249      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1250        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1251        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1252      }
1253
1254      Builder.SetInsertPoint(getLastInstruction(E->Scalars));
1255      Value *L = vectorizeTree(LHSV);
1256      Value *R = vectorizeTree(RHSV);
1257      Value *V;
1258
1259      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1260      if (Opcode == Instruction::FCmp)
1261        V = Builder.CreateFCmp(P0, L, R);
1262      else
1263        V = Builder.CreateICmp(P0, L, R);
1264
1265      E->VectorizedValue = V;
1266      return V;
1267    }
1268    case Instruction::Select: {
1269      ValueList TrueVec, FalseVec, CondVec;
1270      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1271        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1272        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1273        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1274      }
1275
1276      Builder.SetInsertPoint(getLastInstruction(E->Scalars));
1277      Value *Cond = vectorizeTree(CondVec);
1278      Value *True = vectorizeTree(TrueVec);
1279      Value *False = vectorizeTree(FalseVec);
1280      Value *V = Builder.CreateSelect(Cond, True, False);
1281      E->VectorizedValue = V;
1282      return V;
1283    }
1284    case Instruction::Add:
1285    case Instruction::FAdd:
1286    case Instruction::Sub:
1287    case Instruction::FSub:
1288    case Instruction::Mul:
1289    case Instruction::FMul:
1290    case Instruction::UDiv:
1291    case Instruction::SDiv:
1292    case Instruction::FDiv:
1293    case Instruction::URem:
1294    case Instruction::SRem:
1295    case Instruction::FRem:
1296    case Instruction::Shl:
1297    case Instruction::LShr:
1298    case Instruction::AShr:
1299    case Instruction::And:
1300    case Instruction::Or:
1301    case Instruction::Xor: {
1302      ValueList LHSVL, RHSVL;
1303      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1304        LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1305        RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1306      }
1307
1308      Builder.SetInsertPoint(getLastInstruction(E->Scalars));
1309      Value *LHS = vectorizeTree(LHSVL);
1310      Value *RHS = vectorizeTree(RHSVL);
1311
1312      if (LHS == RHS && isa<Instruction>(LHS)) {
1313        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1314      }
1315
1316      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1317      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1318      E->VectorizedValue = V;
1319      return V;
1320    }
1321    case Instruction::Load: {
1322      // Loads are inserted at the head of the tree because we don't want to
1323      // sink them all the way down past store instructions.
1324      Builder.SetInsertPoint(getLastInstruction(E->Scalars));
1325      LoadInst *LI = cast<LoadInst>(VL0);
1326      Value *VecPtr =
1327      Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
1328      unsigned Alignment = LI->getAlignment();
1329      LI = Builder.CreateLoad(VecPtr);
1330      LI->setAlignment(Alignment);
1331      E->VectorizedValue = LI;
1332      return LI;
1333    }
1334    case Instruction::Store: {
1335      StoreInst *SI = cast<StoreInst>(VL0);
1336      unsigned Alignment = SI->getAlignment();
1337
1338      ValueList ValueOp;
1339      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1340        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1341
1342      Builder.SetInsertPoint(getLastInstruction(E->Scalars));
1343      Value *VecValue = vectorizeTree(ValueOp);
1344      Value *VecPtr =
1345      Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
1346      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1347      S->setAlignment(Alignment);
1348      E->VectorizedValue = S;
1349      return S;
1350    }
1351    default:
1352    llvm_unreachable("unknown inst");
1353  }
1354  return 0;
1355}
1356
1357void BoUpSLP::vectorizeTree() {
1358  Builder.SetInsertPoint(F->getEntryBlock().begin());
1359  vectorizeTree(&VectorizableTree[0]);
1360
1361  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1362
1363  // Extract all of the elements with the external uses.
1364  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1365       it != e; ++it) {
1366    Value *Scalar = it->Scalar;
1367    llvm::User *User = it->User;
1368
1369    // Skip users that we already RAUW. This happens when one instruction
1370    // has multiple uses of the same value.
1371    if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
1372        Scalar->use_end())
1373      continue;
1374    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1375
1376    int Idx = ScalarToTreeEntry[Scalar];
1377    TreeEntry *E = &VectorizableTree[Idx];
1378    assert(!E->NeedToGather && "Extracting from a gather list");
1379
1380    Value *Vec = E->VectorizedValue;
1381    assert(Vec && "Can't find vectorizable value");
1382
1383    // Generate extracts for out-of-tree users.
1384    // Find the insertion point for the extractelement lane.
1385    Instruction *Loc = 0;
1386    if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
1387      Loc = PN->getParent()->getFirstInsertionPt();
1388    } else if (isa<Instruction>(Vec)){
1389      if (PHINode *PH = dyn_cast<PHINode>(User)) {
1390        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1391          if (PH->getIncomingValue(i) == Scalar) {
1392            Loc = PH->getIncomingBlock(i)->getTerminator();
1393            break;
1394          }
1395        }
1396        assert(Loc && "Unable to find incoming value for the PHI");
1397      } else {
1398        Loc = cast<Instruction>(User);
1399     }
1400    } else {
1401      Loc = F->getEntryBlock().begin();
1402    }
1403
1404    Builder.SetInsertPoint(Loc);
1405    Value *Ex = Builder.CreateExtractElement(Vec, Builder.getInt32(it->Lane));
1406    User->replaceUsesOfWith(Scalar, Ex);
1407    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1408  }
1409
1410  // For each vectorized value:
1411  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1412    TreeEntry *Entry = &VectorizableTree[EIdx];
1413
1414    // For each lane:
1415    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1416      Value *Scalar = Entry->Scalars[Lane];
1417
1418      // No need to handle users of gathered values.
1419      if (Entry->NeedToGather)
1420        continue;
1421
1422      assert(Entry->VectorizedValue && "Can't find vectorizable value");
1423
1424      Type *Ty = Scalar->getType();
1425      if (!Ty->isVoidTy()) {
1426        for (Value::use_iterator User = Scalar->use_begin(),
1427             UE = Scalar->use_end(); User != UE; ++User) {
1428          DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
1429          assert(!MustGather.count(*User) &&
1430                 "Replacing gathered value with undef");
1431          assert(ScalarToTreeEntry.count(*User) &&
1432                 "Replacing out-of-tree value with undef");
1433        }
1434        Value *Undef = UndefValue::get(Ty);
1435        Scalar->replaceAllUsesWith(Undef);
1436      }
1437      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1438      cast<Instruction>(Scalar)->eraseFromParent();
1439    }
1440  }
1441
1442  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1443    BlocksNumbers[it].forget();
1444  }
1445  Builder.ClearInsertionPoint();
1446}
1447
1448void BoUpSLP::optimizeGatherSequence() {
1449  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1450        << " gather sequences instructions.\n");
1451  // LICM InsertElementInst sequences.
1452  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1453       e = GatherSeq.end(); it != e; ++it) {
1454    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
1455
1456    if (!Insert)
1457      continue;
1458
1459    // Check if this block is inside a loop.
1460    Loop *L = LI->getLoopFor(Insert->getParent());
1461    if (!L)
1462      continue;
1463
1464    // Check if it has a preheader.
1465    BasicBlock *PreHeader = L->getLoopPreheader();
1466    if (!PreHeader)
1467      continue;
1468
1469    // If the vector or the element that we insert into it are
1470    // instructions that are defined in this basic block then we can't
1471    // hoist this instruction.
1472    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1473    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1474    if (CurrVec && L->contains(CurrVec))
1475      continue;
1476    if (NewElem && L->contains(NewElem))
1477      continue;
1478
1479    // We can hoist this instruction. Move it to the pre-header.
1480    Insert->moveBefore(PreHeader->getTerminator());
1481  }
1482
1483  // Perform O(N^2) search over the gather sequences and merge identical
1484  // instructions. TODO: We can further optimize this scan if we split the
1485  // instructions into different buckets based on the insert lane.
1486  SmallPtrSet<Instruction*, 16> Visited;
1487  SmallVector<Instruction*, 16> ToRemove;
1488  ReversePostOrderTraversal<Function*> RPOT(F);
1489  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
1490       E = RPOT.end(); I != E; ++I) {
1491    BasicBlock *BB = *I;
1492    // For all instructions in the function:
1493    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1494      Instruction *In = it;
1495      if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
1496          !GatherSeq.count(In))
1497        continue;
1498
1499      // Check if we can replace this instruction with any of the
1500      // visited instructions.
1501      for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
1502           ve = Visited.end(); v != ve; ++v) {
1503        if (In->isIdenticalTo(*v) &&
1504            DT->dominates((*v)->getParent(), In->getParent())) {
1505          In->replaceAllUsesWith(*v);
1506          ToRemove.push_back(In);
1507          In = 0;
1508          break;
1509        }
1510      }
1511      if (In)
1512        Visited.insert(In);
1513    }
1514  }
1515
1516  // Erase all of the instructions that we RAUWed.
1517  for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(),
1518       ve = ToRemove.end(); v != ve; ++v) {
1519    assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
1520    (*v)->eraseFromParent();
1521  }
1522}
1523
1524/// The SLPVectorizer Pass.
1525struct SLPVectorizer : public FunctionPass {
1526  typedef SmallVector<StoreInst *, 8> StoreList;
1527  typedef MapVector<Value *, StoreList> StoreListMap;
1528
1529  /// Pass identification, replacement for typeid
1530  static char ID;
1531
1532  explicit SLPVectorizer() : FunctionPass(ID) {
1533    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
1534  }
1535
1536  ScalarEvolution *SE;
1537  DataLayout *DL;
1538  TargetTransformInfo *TTI;
1539  AliasAnalysis *AA;
1540  LoopInfo *LI;
1541  DominatorTree *DT;
1542
1543  virtual bool runOnFunction(Function &F) {
1544    SE = &getAnalysis<ScalarEvolution>();
1545    DL = getAnalysisIfAvailable<DataLayout>();
1546    TTI = &getAnalysis<TargetTransformInfo>();
1547    AA = &getAnalysis<AliasAnalysis>();
1548    LI = &getAnalysis<LoopInfo>();
1549    DT = &getAnalysis<DominatorTree>();
1550
1551    StoreRefs.clear();
1552    bool Changed = false;
1553
1554    // Must have DataLayout. We can't require it because some tests run w/o
1555    // triple.
1556    if (!DL)
1557      return false;
1558
1559    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1560
1561    // Use the bollom up slp vectorizer to construct chains that start with
1562    // he store instructions.
1563    BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1564
1565    // Scan the blocks in the function in post order.
1566    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
1567         e = po_end(&F.getEntryBlock()); it != e; ++it) {
1568      BasicBlock *BB = *it;
1569
1570      // Vectorize trees that end at stores.
1571      if (unsigned count = collectStores(BB, R)) {
1572        (void)count;
1573        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1574        Changed |= vectorizeStoreChains(R);
1575      }
1576
1577      // Vectorize trees that end at reductions.
1578      Changed |= vectorizeChainsInBlock(BB, R);
1579    }
1580
1581    if (Changed) {
1582      R.optimizeGatherSequence();
1583      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1584      DEBUG(verifyFunction(F));
1585    }
1586    return Changed;
1587  }
1588
1589  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1590    FunctionPass::getAnalysisUsage(AU);
1591    AU.addRequired<ScalarEvolution>();
1592    AU.addRequired<AliasAnalysis>();
1593    AU.addRequired<TargetTransformInfo>();
1594    AU.addRequired<LoopInfo>();
1595    AU.addRequired<DominatorTree>();
1596    AU.addPreserved<LoopInfo>();
1597    AU.addPreserved<DominatorTree>();
1598    AU.setPreservesCFG();
1599  }
1600
1601private:
1602
1603  /// \brief Collect memory references and sort them according to their base
1604  /// object. We sort the stores to their base objects to reduce the cost of the
1605  /// quadratic search on the stores. TODO: We can further reduce this cost
1606  /// if we flush the chain creation every time we run into a memory barrier.
1607  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1608
1609  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1610  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1611
1612  /// \brief Try to vectorize a list of operands.
1613  /// \returns true if a value was vectorized.
1614  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1615
1616  /// \brief Try to vectorize a chain that may start at the operands of \V;
1617  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1618
1619  /// \brief Vectorize the stores that were collected in StoreRefs.
1620  bool vectorizeStoreChains(BoUpSLP &R);
1621
1622  /// \brief Scan the basic block and look for patterns that are likely to start
1623  /// a vectorization chain.
1624  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1625
1626  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1627                           BoUpSLP &R);
1628
1629  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1630                       BoUpSLP &R);
1631private:
1632  StoreListMap StoreRefs;
1633};
1634
1635bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1636                                          int CostThreshold, BoUpSLP &R) {
1637  unsigned ChainLen = Chain.size();
1638  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1639        << "\n");
1640  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1641  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1642  unsigned VF = MinVecRegSize / Sz;
1643
1644  if (!isPowerOf2_32(Sz) || VF < 2)
1645    return false;
1646
1647  bool Changed = false;
1648  // Look for profitable vectorizable trees at all offsets, starting at zero.
1649  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
1650    if (i + VF > e)
1651      break;
1652    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
1653          << "\n");
1654    ArrayRef<Value *> Operands = Chain.slice(i, VF);
1655
1656    R.buildTree(Operands);
1657
1658    int Cost = R.getTreeCost();
1659
1660    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
1661    if (Cost < CostThreshold) {
1662      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
1663      R.vectorizeTree();
1664
1665      // Move to the next bundle.
1666      i += VF - 1;
1667      Changed = true;
1668    }
1669  }
1670
1671  if (Changed || ChainLen > VF)
1672    return Changed;
1673
1674  // Handle short chains. This helps us catch types such as <3 x float> that
1675  // are smaller than vector size.
1676  R.buildTree(Chain);
1677
1678  int Cost = R.getTreeCost();
1679
1680  if (Cost < CostThreshold) {
1681    DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost
1682          << " for size = " << ChainLen << "\n");
1683    R.vectorizeTree();
1684    return true;
1685  }
1686
1687  return false;
1688}
1689
1690bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
1691                                    int costThreshold, BoUpSLP &R) {
1692  SetVector<Value *> Heads, Tails;
1693  SmallDenseMap<Value *, Value *> ConsecutiveChain;
1694
1695  // We may run into multiple chains that merge into a single chain. We mark the
1696  // stores that we vectorized so that we don't visit the same store twice.
1697  BoUpSLP::ValueSet VectorizedStores;
1698  bool Changed = false;
1699
1700  // Do a quadratic search on all of the given stores and find
1701  // all of the pairs of stores that follow each other.
1702  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
1703    for (unsigned j = 0; j < e; ++j) {
1704      if (i == j)
1705        continue;
1706
1707      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
1708        Tails.insert(Stores[j]);
1709        Heads.insert(Stores[i]);
1710        ConsecutiveChain[Stores[i]] = Stores[j];
1711      }
1712    }
1713  }
1714
1715  // For stores that start but don't end a link in the chain:
1716  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
1717       it != e; ++it) {
1718    if (Tails.count(*it))
1719      continue;
1720
1721    // We found a store instr that starts a chain. Now follow the chain and try
1722    // to vectorize it.
1723    BoUpSLP::ValueList Operands;
1724    Value *I = *it;
1725    // Collect the chain into a list.
1726    while (Tails.count(I) || Heads.count(I)) {
1727      if (VectorizedStores.count(I))
1728        break;
1729      Operands.push_back(I);
1730      // Move to the next value in the chain.
1731      I = ConsecutiveChain[I];
1732    }
1733
1734    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
1735
1736    // Mark the vectorized stores so that we don't vectorize them again.
1737    if (Vectorized)
1738      VectorizedStores.insert(Operands.begin(), Operands.end());
1739    Changed |= Vectorized;
1740  }
1741
1742  return Changed;
1743}
1744
1745
1746unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
1747  unsigned count = 0;
1748  StoreRefs.clear();
1749  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1750    StoreInst *SI = dyn_cast<StoreInst>(it);
1751    if (!SI)
1752      continue;
1753
1754    // Check that the pointer points to scalars.
1755    Type *Ty = SI->getValueOperand()->getType();
1756    if (Ty->isAggregateType() || Ty->isVectorTy())
1757      return 0;
1758
1759    // Find the base of the GEP.
1760    Value *Ptr = SI->getPointerOperand();
1761    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
1762      Ptr = GEP->getPointerOperand();
1763
1764    // Save the store locations.
1765    StoreRefs[Ptr].push_back(SI);
1766    count++;
1767  }
1768  return count;
1769}
1770
1771bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
1772  if (!A || !B)
1773    return false;
1774  Value *VL[] = { A, B };
1775  return tryToVectorizeList(VL, R);
1776}
1777
1778bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
1779  if (VL.size() < 2)
1780    return false;
1781
1782  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
1783
1784  // Check that all of the parts are scalar instructions of the same type.
1785  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1786  if (!I0)
1787    return 0;
1788
1789  unsigned Opcode0 = I0->getOpcode();
1790
1791  for (int i = 0, e = VL.size(); i < e; ++i) {
1792    Type *Ty = VL[i]->getType();
1793    if (Ty->isAggregateType() || Ty->isVectorTy())
1794      return 0;
1795    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
1796    if (!Inst || Inst->getOpcode() != Opcode0)
1797      return 0;
1798  }
1799
1800  R.buildTree(VL);
1801  int Cost = R.getTreeCost();
1802
1803  if (Cost >= -SLPCostThreshold)
1804    return false;
1805
1806  DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
1807  R.vectorizeTree();
1808  return true;
1809}
1810
1811bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
1812  if (!V)
1813    return false;
1814
1815  // Try to vectorize V.
1816  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
1817    return true;
1818
1819  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
1820  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
1821  // Try to skip B.
1822  if (B && B->hasOneUse()) {
1823    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
1824    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
1825    if (tryToVectorizePair(A, B0, R)) {
1826      B->moveBefore(V);
1827      return true;
1828    }
1829    if (tryToVectorizePair(A, B1, R)) {
1830      B->moveBefore(V);
1831      return true;
1832    }
1833  }
1834
1835  // Try to skip A.
1836  if (A && A->hasOneUse()) {
1837    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
1838    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
1839    if (tryToVectorizePair(A0, B, R)) {
1840      A->moveBefore(V);
1841      return true;
1842    }
1843    if (tryToVectorizePair(A1, B, R)) {
1844      A->moveBefore(V);
1845      return true;
1846    }
1847  }
1848  return 0;
1849}
1850
1851bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
1852  bool Changed = false;
1853  SmallVector<Value *, 4> Incoming;
1854  // Collect the incoming values from the PHIs.
1855  for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
1856       ++instr) {
1857    PHINode *P = dyn_cast<PHINode>(instr);
1858
1859    if (!P)
1860      break;
1861
1862    // Stop constructing the list when you reach a different type.
1863    if (Incoming.size() && P->getType() != Incoming[0]->getType()) {
1864      Changed |= tryToVectorizeList(Incoming, R);
1865      Incoming.clear();
1866    }
1867
1868    Incoming.push_back(P);
1869  }
1870
1871  if (Incoming.size() > 1)
1872    Changed |= tryToVectorizeList(Incoming, R);
1873
1874  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1875    if (isa<DbgInfoIntrinsic>(it))
1876      continue;
1877
1878    // Try to vectorize reductions that use PHINodes.
1879    if (PHINode *P = dyn_cast<PHINode>(it)) {
1880      // Check that the PHI is a reduction PHI.
1881      if (P->getNumIncomingValues() != 2)
1882        return Changed;
1883      Value *Rdx =
1884          (P->getIncomingBlock(0) == BB
1885               ? (P->getIncomingValue(0))
1886               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
1887      // Check if this is a Binary Operator.
1888      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
1889      if (!BI)
1890        continue;
1891
1892      Value *Inst = BI->getOperand(0);
1893      if (Inst == P)
1894        Inst = BI->getOperand(1);
1895
1896      Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
1897      continue;
1898    }
1899
1900    // Try to vectorize trees that start at compare instructions.
1901    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
1902      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
1903        Changed |= true;
1904        continue;
1905      }
1906      for (int i = 0; i < 2; ++i)
1907        if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
1908          Changed |=
1909              tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
1910      continue;
1911    }
1912  }
1913
1914  return Changed;
1915}
1916
1917bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
1918  bool Changed = false;
1919  // Attempt to sort and vectorize each of the store-groups.
1920  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
1921       it != e; ++it) {
1922    if (it->second.size() < 2)
1923      continue;
1924
1925    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
1926          << it->second.size() << ".\n");
1927
1928    // Process the stores in chunks of 16.
1929    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
1930      unsigned Len = std::min<unsigned>(CE - CI, 16);
1931      ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
1932      Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
1933    }
1934  }
1935  return Changed;
1936}
1937
1938} // end anonymous namespace
1939
1940char SLPVectorizer::ID = 0;
1941static const char lv_name[] = "SLP Vectorizer";
1942INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
1943INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1944INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
1945INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1946INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1947INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
1948
1949namespace llvm {
1950Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
1951}
1952