1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenRegisters.h"
16#include "CodeGenTarget.h"
17#include "llvm/ADT/IntEqClasses.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/TableGen/Error.h"
24
25using namespace llvm;
26
27#define DEBUG_TYPE "regalloc-emitter"
28
29//===----------------------------------------------------------------------===//
30//                             CodeGenSubRegIndex
31//===----------------------------------------------------------------------===//
32
33CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34  : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35  Name = R->getName();
36  if (R->getValue("Namespace"))
37    Namespace = R->getValueAsString("Namespace");
38  Size = R->getValueAsInt("Size");
39  Offset = R->getValueAsInt("Offset");
40}
41
42CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43                                       unsigned Enum)
44  : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45    EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46}
47
48std::string CodeGenSubRegIndex::getQualifiedName() const {
49  std::string N = getNamespace();
50  if (!N.empty())
51    N += "::";
52  N += getName();
53  return N;
54}
55
56void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57  if (!TheDef)
58    return;
59
60  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61  if (!Comps.empty()) {
62    if (Comps.size() != 2)
63      PrintFatalError(TheDef->getLoc(),
64                      "ComposedOf must have exactly two entries");
65    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67    CodeGenSubRegIndex *X = A->addComposite(B, this);
68    if (X)
69      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70  }
71
72  std::vector<Record*> Parts =
73    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74  if (!Parts.empty()) {
75    if (Parts.size() < 2)
76      PrintFatalError(TheDef->getLoc(),
77                      "CoveredBySubRegs must have two or more entries");
78    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79    for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80      IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81    RegBank.addConcatSubRegIndex(IdxParts, this);
82  }
83}
84
85unsigned CodeGenSubRegIndex::computeLaneMask() const {
86  // Already computed?
87  if (LaneMask)
88    return LaneMask;
89
90  // Recursion guard, shouldn't be required.
91  LaneMask = ~0u;
92
93  // The lane mask is simply the union of all sub-indices.
94  unsigned M = 0;
95  for (const auto &C : Composed)
96    M |= C.second->computeLaneMask();
97  assert(M && "Missing lane mask, sub-register cycle?");
98  LaneMask = M;
99  return LaneMask;
100}
101
102//===----------------------------------------------------------------------===//
103//                              CodeGenRegister
104//===----------------------------------------------------------------------===//
105
106CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107  : TheDef(R),
108    EnumValue(Enum),
109    CostPerUse(R->getValueAsInt("CostPerUse")),
110    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111    HasDisjunctSubRegs(false),
112    SubRegsComplete(false),
113    SuperRegsComplete(false),
114    TopoSig(~0u)
115{}
116
117void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121  if (SRIs.size() != SRs.size())
122    PrintFatalError(TheDef->getLoc(),
123                    "SubRegs and SubRegIndices must have the same size");
124
125  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128  }
129
130  // Also compute leading super-registers. Each register has a list of
131  // covered-by-subregs super-registers where it appears as the first explicit
132  // sub-register.
133  //
134  // This is used by computeSecondarySubRegs() to find candidates.
135  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138  // Add ad hoc alias links. This is a symmetric relationship between two
139  // registers, so build a symmetric graph by adding links in both ends.
140  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142    CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143    ExplicitAliases.push_back(Reg);
144    Reg->ExplicitAliases.push_back(this);
145  }
146}
147
148const std::string &CodeGenRegister::getName() const {
149  assert(TheDef && "no def");
150  return TheDef->getName();
151}
152
153namespace {
154// Iterate over all register units in a set of registers.
155class RegUnitIterator {
156  CodeGenRegister::Vec::const_iterator RegI, RegE;
157  CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
158
159public:
160  RegUnitIterator(const CodeGenRegister::Vec &Regs):
161    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
162
163    if (RegI != RegE) {
164      UnitI = (*RegI)->getRegUnits().begin();
165      UnitE = (*RegI)->getRegUnits().end();
166      advance();
167    }
168  }
169
170  bool isValid() const { return UnitI != UnitE; }
171
172  unsigned operator* () const { assert(isValid()); return *UnitI; }
173
174  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
175
176  /// Preincrement.  Move to the next unit.
177  void operator++() {
178    assert(isValid() && "Cannot advance beyond the last operand");
179    ++UnitI;
180    advance();
181  }
182
183protected:
184  void advance() {
185    while (UnitI == UnitE) {
186      if (++RegI == RegE)
187        break;
188      UnitI = (*RegI)->getRegUnits().begin();
189      UnitE = (*RegI)->getRegUnits().end();
190    }
191  }
192};
193} // namespace
194
195// Return true of this unit appears in RegUnits.
196static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
197  return RegUnits.test(Unit);
198}
199
200// Inherit register units from subregisters.
201// Return true if the RegUnits changed.
202bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
203  bool changed = false;
204  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
205       I != E; ++I) {
206    CodeGenRegister *SR = I->second;
207    // Merge the subregister's units into this register's RegUnits.
208    changed |= (RegUnits |= SR->RegUnits);
209  }
210
211  return changed;
212}
213
214const CodeGenRegister::SubRegMap &
215CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
216  // Only compute this map once.
217  if (SubRegsComplete)
218    return SubRegs;
219  SubRegsComplete = true;
220
221  HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
222
223  // First insert the explicit subregs and make sure they are fully indexed.
224  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225    CodeGenRegister *SR = ExplicitSubRegs[i];
226    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                      " appears twice in Register " + getName());
230    // Map explicit sub-registers first, so the names take precedence.
231    // The inherited sub-registers are mapped below.
232    SubReg2Idx.insert(std::make_pair(SR, Idx));
233  }
234
235  // Keep track of inherited subregs and how they can be reached.
236  SmallPtrSet<CodeGenRegister*, 8> Orphans;
237
238  // Clone inherited subregs and place duplicate entries in Orphans.
239  // Here the order is important - earlier subregs take precedence.
240  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241    CodeGenRegister *SR = ExplicitSubRegs[i];
242    const SubRegMap &Map = SR->computeSubRegs(RegBank);
243    HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
244
245    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
246         ++SI) {
247      if (!SubRegs.insert(*SI).second)
248        Orphans.insert(SI->second);
249    }
250  }
251
252  // Expand any composed subreg indices.
253  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
254  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
255  // expanded subreg indices recursively.
256  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
257  for (unsigned i = 0; i != Indices.size(); ++i) {
258    CodeGenSubRegIndex *Idx = Indices[i];
259    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
260    CodeGenRegister *SR = SubRegs[Idx];
261    const SubRegMap &Map = SR->computeSubRegs(RegBank);
262
263    // Look at the possible compositions of Idx.
264    // They may not all be supported by SR.
265    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
266           E = Comps.end(); I != E; ++I) {
267      SubRegMap::const_iterator SRI = Map.find(I->first);
268      if (SRI == Map.end())
269        continue; // Idx + I->first doesn't exist in SR.
270      // Add I->second as a name for the subreg SRI->second, assuming it is
271      // orphaned, and the name isn't already used for something else.
272      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
273        continue;
274      // We found a new name for the orphaned sub-register.
275      SubRegs.insert(std::make_pair(I->second, SRI->second));
276      Indices.push_back(I->second);
277    }
278  }
279
280  // Now Orphans contains the inherited subregisters without a direct index.
281  // Create inferred indexes for all missing entries.
282  // Work backwards in the Indices vector in order to compose subregs bottom-up.
283  // Consider this subreg sequence:
284  //
285  //   qsub_1 -> dsub_0 -> ssub_0
286  //
287  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
288  // can be reached in two different ways:
289  //
290  //   qsub_1 -> ssub_0
291  //   dsub_2 -> ssub_0
292  //
293  // We pick the latter composition because another register may have [dsub_0,
294  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
295  // dsub_2 -> ssub_0 composition can be shared.
296  while (!Indices.empty() && !Orphans.empty()) {
297    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
298    CodeGenRegister *SR = SubRegs[Idx];
299    const SubRegMap &Map = SR->computeSubRegs(RegBank);
300    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
301         ++SI)
302      if (Orphans.erase(SI->second))
303        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
304  }
305
306  // Compute the inverse SubReg -> Idx map.
307  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
308       SI != SE; ++SI) {
309    if (SI->second == this) {
310      ArrayRef<SMLoc> Loc;
311      if (TheDef)
312        Loc = TheDef->getLoc();
313      PrintFatalError(Loc, "Register " + getName() +
314                      " has itself as a sub-register");
315    }
316
317    // Compute AllSuperRegsCovered.
318    if (!CoveredBySubRegs)
319      SI->first->AllSuperRegsCovered = false;
320
321    // Ensure that every sub-register has a unique name.
322    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
323      SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
324    if (Ins->second == SI->first)
325      continue;
326    // Trouble: Two different names for SI->second.
327    ArrayRef<SMLoc> Loc;
328    if (TheDef)
329      Loc = TheDef->getLoc();
330    PrintFatalError(Loc, "Sub-register can't have two names: " +
331                  SI->second->getName() + " available as " +
332                  SI->first->getName() + " and " + Ins->second->getName());
333  }
334
335  // Derive possible names for sub-register concatenations from any explicit
336  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
337  // that getConcatSubRegIndex() won't invent any concatenated indices that the
338  // user already specified.
339  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
340    CodeGenRegister *SR = ExplicitSubRegs[i];
341    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
342      continue;
343
344    // SR is composed of multiple sub-regs. Find their names in this register.
345    SmallVector<CodeGenSubRegIndex*, 8> Parts;
346    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
347      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
348
349    // Offer this as an existing spelling for the concatenation of Parts.
350    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
351  }
352
353  // Initialize RegUnitList. Because getSubRegs is called recursively, this
354  // processes the register hierarchy in postorder.
355  //
356  // Inherit all sub-register units. It is good enough to look at the explicit
357  // sub-registers, the other registers won't contribute any more units.
358  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
359    CodeGenRegister *SR = ExplicitSubRegs[i];
360    RegUnits |= SR->RegUnits;
361  }
362
363  // Absent any ad hoc aliasing, we create one register unit per leaf register.
364  // These units correspond to the maximal cliques in the register overlap
365  // graph which is optimal.
366  //
367  // When there is ad hoc aliasing, we simply create one unit per edge in the
368  // undirected ad hoc aliasing graph. Technically, we could do better by
369  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370  // are extremely rare anyway (I've never seen one), so we don't bother with
371  // the added complexity.
372  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373    CodeGenRegister *AR = ExplicitAliases[i];
374    // Only visit each edge once.
375    if (AR->SubRegsComplete)
376      continue;
377    // Create a RegUnit representing this alias edge, and add it to both
378    // registers.
379    unsigned Unit = RegBank.newRegUnit(this, AR);
380    RegUnits.set(Unit);
381    AR->RegUnits.set(Unit);
382  }
383
384  // Finally, create units for leaf registers without ad hoc aliases. Note that
385  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386  // necessary. This means the aliasing leaf registers can share a single unit.
387  if (RegUnits.empty())
388    RegUnits.set(RegBank.newRegUnit(this));
389
390  // We have now computed the native register units. More may be adopted later
391  // for balancing purposes.
392  NativeRegUnits = RegUnits;
393
394  return SubRegs;
395}
396
397// In a register that is covered by its sub-registers, try to find redundant
398// sub-registers. For example:
399//
400//   QQ0 = {Q0, Q1}
401//   Q0 = {D0, D1}
402//   Q1 = {D2, D3}
403//
404// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405// the register definition.
406//
407// The explicitly specified registers form a tree. This function discovers
408// sub-register relationships that would force a DAG.
409//
410void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411  // Collect new sub-registers first, add them later.
412  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413
414  // Look at the leading super-registers of each sub-register. Those are the
415  // candidates for new sub-registers, assuming they are fully contained in
416  // this register.
417  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418    const CodeGenRegister *SubReg = I->second;
419    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422      // Already got this sub-register?
423      if (Cand == this || getSubRegIndex(Cand))
424        continue;
425      // Check if each component of Cand is already a sub-register.
426      // We know that the first component is I->second, and is present with the
427      // name I->first.
428      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429      assert(!Cand->ExplicitSubRegs.empty() &&
430             "Super-register has no sub-registers");
431      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433          Parts.push_back(Idx);
434        else {
435          // Sub-register doesn't exist.
436          Parts.clear();
437          break;
438        }
439      }
440      // If some Cand sub-register is not part of this register, or if Cand only
441      // has one sub-register, there is nothing to do.
442      if (Parts.size() <= 1)
443        continue;
444
445      // Each part of Cand is a sub-register of this. Make the full Cand also
446      // a sub-register with a concatenated sub-register index.
447      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448      NewSubRegs.push_back(std::make_pair(Concat, Cand));
449    }
450  }
451
452  // Now add all the new sub-registers.
453  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454    // Don't add Cand if another sub-register is already using the index.
455    if (!SubRegs.insert(NewSubRegs[i]).second)
456      continue;
457
458    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461  }
462
463  // Create sub-register index composition maps for the synthesized indices.
464  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470      if (!SubIdx)
471        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                        SI->second->getName() + " in " + getName());
473      NewIdx->addComposite(SI->first, SubIdx);
474    }
475  }
476}
477
478void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479  // Only visit each register once.
480  if (SuperRegsComplete)
481    return;
482  SuperRegsComplete = true;
483
484  // Make sure all sub-registers have been visited first, so the super-reg
485  // lists will be topologically ordered.
486  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487       I != E; ++I)
488    I->second->computeSuperRegs(RegBank);
489
490  // Now add this as a super-register on all sub-registers.
491  // Also compute the TopoSigId in post-order.
492  TopoSigId Id;
493  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494       I != E; ++I) {
495    // Topological signature computed from SubIdx, TopoId(SubReg).
496    // Loops and idempotent indices have TopoSig = ~0u.
497    Id.push_back(I->first->EnumValue);
498    Id.push_back(I->second->TopoSig);
499
500    // Don't add duplicate entries.
501    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502      continue;
503    I->second->SuperRegs.push_back(this);
504  }
505  TopoSig = RegBank.getTopoSig(Id);
506}
507
508void
509CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                    CodeGenRegBank &RegBank) const {
511  assert(SubRegsComplete && "Must precompute sub-registers");
512  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513    CodeGenRegister *SR = ExplicitSubRegs[i];
514    if (OSet.insert(SR))
515      SR->addSubRegsPreOrder(OSet, RegBank);
516  }
517  // Add any secondary sub-registers that weren't part of the explicit tree.
518  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519       I != E; ++I)
520    OSet.insert(I->second);
521}
522
523// Get the sum of this register's unit weights.
524unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
525  unsigned Weight = 0;
526  for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
527       I != E; ++I) {
528    Weight += RegBank.getRegUnit(*I).Weight;
529  }
530  return Weight;
531}
532
533//===----------------------------------------------------------------------===//
534//                               RegisterTuples
535//===----------------------------------------------------------------------===//
536
537// A RegisterTuples def is used to generate pseudo-registers from lists of
538// sub-registers. We provide a SetTheory expander class that returns the new
539// registers.
540namespace {
541struct TupleExpander : SetTheory::Expander {
542  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
543    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
544    unsigned Dim = Indices.size();
545    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
546    if (Dim != SubRegs->size())
547      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
548    if (Dim < 2)
549      PrintFatalError(Def->getLoc(),
550                      "Tuples must have at least 2 sub-registers");
551
552    // Evaluate the sub-register lists to be zipped.
553    unsigned Length = ~0u;
554    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
555    for (unsigned i = 0; i != Dim; ++i) {
556      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
557      Length = std::min(Length, unsigned(Lists[i].size()));
558    }
559
560    if (Length == 0)
561      return;
562
563    // Precompute some types.
564    Record *RegisterCl = Def->getRecords().getClass("Register");
565    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
566    StringInit *BlankName = StringInit::get("");
567
568    // Zip them up.
569    for (unsigned n = 0; n != Length; ++n) {
570      std::string Name;
571      Record *Proto = Lists[0][n];
572      std::vector<Init*> Tuple;
573      unsigned CostPerUse = 0;
574      for (unsigned i = 0; i != Dim; ++i) {
575        Record *Reg = Lists[i][n];
576        if (i) Name += '_';
577        Name += Reg->getName();
578        Tuple.push_back(DefInit::get(Reg));
579        CostPerUse = std::max(CostPerUse,
580                              unsigned(Reg->getValueAsInt("CostPerUse")));
581      }
582
583      // Create a new Record representing the synthesized register. This record
584      // is only for consumption by CodeGenRegister, it is not added to the
585      // RecordKeeper.
586      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
587      Elts.insert(NewReg);
588
589      // Copy Proto super-classes.
590      ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
591      for (const auto &SuperPair : Supers)
592        NewReg->addSuperClass(SuperPair.first, SuperPair.second);
593
594      // Copy Proto fields.
595      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
596        RecordVal RV = Proto->getValues()[i];
597
598        // Skip existing fields, like NAME.
599        if (NewReg->getValue(RV.getNameInit()))
600          continue;
601
602        StringRef Field = RV.getName();
603
604        // Replace the sub-register list with Tuple.
605        if (Field == "SubRegs")
606          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
607
608        // Provide a blank AsmName. MC hacks are required anyway.
609        if (Field == "AsmName")
610          RV.setValue(BlankName);
611
612        // CostPerUse is aggregated from all Tuple members.
613        if (Field == "CostPerUse")
614          RV.setValue(IntInit::get(CostPerUse));
615
616        // Composite registers are always covered by sub-registers.
617        if (Field == "CoveredBySubRegs")
618          RV.setValue(BitInit::get(true));
619
620        // Copy fields from the RegisterTuples def.
621        if (Field == "SubRegIndices" ||
622            Field == "CompositeIndices") {
623          NewReg->addValue(*Def->getValue(Field));
624          continue;
625        }
626
627        // Some fields get their default uninitialized value.
628        if (Field == "DwarfNumbers" ||
629            Field == "DwarfAlias" ||
630            Field == "Aliases") {
631          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
632            NewReg->addValue(*DefRV);
633          continue;
634        }
635
636        // Everything else is copied from Proto.
637        NewReg->addValue(RV);
638      }
639    }
640  }
641};
642}
643
644//===----------------------------------------------------------------------===//
645//                            CodeGenRegisterClass
646//===----------------------------------------------------------------------===//
647
648static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
649  std::sort(M.begin(), M.end(), deref<llvm::less>());
650  M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
651}
652
653CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
654  : TheDef(R),
655    Name(R->getName()),
656    TopoSigs(RegBank.getNumTopoSigs()),
657    EnumValue(-1),
658    LaneMask(0) {
659  // Rename anonymous register classes.
660  if (R->getName().size() > 9 && R->getName()[9] == '.') {
661    static unsigned AnonCounter = 0;
662    R->setName("AnonRegClass_" + utostr(AnonCounter++));
663  }
664
665  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
666  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
667    Record *Type = TypeList[i];
668    if (!Type->isSubClassOf("ValueType"))
669      PrintFatalError("RegTypes list member '" + Type->getName() +
670        "' does not derive from the ValueType class!");
671    VTs.push_back(getValueType(Type));
672  }
673  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
674
675  // Allocation order 0 is the full set. AltOrders provides others.
676  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
677  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
678  Orders.resize(1 + AltOrders->size());
679
680  // Default allocation order always contains all registers.
681  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
682    Orders[0].push_back((*Elements)[i]);
683    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
684    Members.push_back(Reg);
685    TopoSigs.set(Reg->getTopoSig());
686  }
687  sortAndUniqueRegisters(Members);
688
689  // Alternative allocation orders may be subsets.
690  SetTheory::RecSet Order;
691  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
692    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
693    Orders[1 + i].append(Order.begin(), Order.end());
694    // Verify that all altorder members are regclass members.
695    while (!Order.empty()) {
696      CodeGenRegister *Reg = RegBank.getReg(Order.back());
697      Order.pop_back();
698      if (!contains(Reg))
699        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
700                      " is not a class member");
701    }
702  }
703
704  // Allow targets to override the size in bits of the RegisterClass.
705  unsigned Size = R->getValueAsInt("Size");
706
707  Namespace = R->getValueAsString("Namespace");
708  SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
709  SpillAlignment = R->getValueAsInt("Alignment");
710  CopyCost = R->getValueAsInt("CopyCost");
711  Allocatable = R->getValueAsBit("isAllocatable");
712  AltOrderSelect = R->getValueAsString("AltOrderSelect");
713  int AllocationPriority = R->getValueAsInt("AllocationPriority");
714  if (AllocationPriority < 0 || AllocationPriority > 63)
715    PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
716  this->AllocationPriority = AllocationPriority;
717}
718
719// Create an inferred register class that was missing from the .td files.
720// Most properties will be inherited from the closest super-class after the
721// class structure has been computed.
722CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
723                                           StringRef Name, Key Props)
724  : Members(*Props.Members),
725    TheDef(nullptr),
726    Name(Name),
727    TopoSigs(RegBank.getNumTopoSigs()),
728    EnumValue(-1),
729    SpillSize(Props.SpillSize),
730    SpillAlignment(Props.SpillAlignment),
731    CopyCost(0),
732    Allocatable(true),
733    AllocationPriority(0) {
734  for (const auto R : Members)
735    TopoSigs.set(R->getTopoSig());
736}
737
738// Compute inherited propertied for a synthesized register class.
739void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
740  assert(!getDef() && "Only synthesized classes can inherit properties");
741  assert(!SuperClasses.empty() && "Synthesized class without super class");
742
743  // The last super-class is the smallest one.
744  CodeGenRegisterClass &Super = *SuperClasses.back();
745
746  // Most properties are copied directly.
747  // Exceptions are members, size, and alignment
748  Namespace = Super.Namespace;
749  VTs = Super.VTs;
750  CopyCost = Super.CopyCost;
751  Allocatable = Super.Allocatable;
752  AltOrderSelect = Super.AltOrderSelect;
753  AllocationPriority = Super.AllocationPriority;
754
755  // Copy all allocation orders, filter out foreign registers from the larger
756  // super-class.
757  Orders.resize(Super.Orders.size());
758  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
759    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
760      if (contains(RegBank.getReg(Super.Orders[i][j])))
761        Orders[i].push_back(Super.Orders[i][j]);
762}
763
764bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
765  return std::binary_search(Members.begin(), Members.end(), Reg,
766                            deref<llvm::less>());
767}
768
769namespace llvm {
770  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
771    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
772    for (const auto R : *K.Members)
773      OS << ", " << R->getName();
774    return OS << " }";
775  }
776}
777
778// This is a simple lexicographical order that can be used to search for sets.
779// It is not the same as the topological order provided by TopoOrderRC.
780bool CodeGenRegisterClass::Key::
781operator<(const CodeGenRegisterClass::Key &B) const {
782  assert(Members && B.Members);
783  return std::tie(*Members, SpillSize, SpillAlignment) <
784         std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
785}
786
787// Returns true if RC is a strict subclass.
788// RC is a sub-class of this class if it is a valid replacement for any
789// instruction operand where a register of this classis required. It must
790// satisfy these conditions:
791//
792// 1. All RC registers are also in this.
793// 2. The RC spill size must not be smaller than our spill size.
794// 3. RC spill alignment must be compatible with ours.
795//
796static bool testSubClass(const CodeGenRegisterClass *A,
797                         const CodeGenRegisterClass *B) {
798  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
799         A->SpillSize <= B->SpillSize &&
800         std::includes(A->getMembers().begin(), A->getMembers().end(),
801                       B->getMembers().begin(), B->getMembers().end(),
802                       deref<llvm::less>());
803}
804
805/// Sorting predicate for register classes.  This provides a topological
806/// ordering that arranges all register classes before their sub-classes.
807///
808/// Register classes with the same registers, spill size, and alignment form a
809/// clique.  They will be ordered alphabetically.
810///
811static bool TopoOrderRC(const CodeGenRegisterClass &PA,
812                        const CodeGenRegisterClass &PB) {
813  auto *A = &PA;
814  auto *B = &PB;
815  if (A == B)
816    return 0;
817
818  // Order by ascending spill size.
819  if (A->SpillSize < B->SpillSize)
820    return true;
821  if (A->SpillSize > B->SpillSize)
822    return false;
823
824  // Order by ascending spill alignment.
825  if (A->SpillAlignment < B->SpillAlignment)
826    return true;
827  if (A->SpillAlignment > B->SpillAlignment)
828    return false;
829
830  // Order by descending set size.  Note that the classes' allocation order may
831  // not have been computed yet.  The Members set is always vaild.
832  if (A->getMembers().size() > B->getMembers().size())
833    return true;
834  if (A->getMembers().size() < B->getMembers().size())
835    return false;
836
837  // Finally order by name as a tie breaker.
838  return StringRef(A->getName()) < B->getName();
839}
840
841std::string CodeGenRegisterClass::getQualifiedName() const {
842  if (Namespace.empty())
843    return getName();
844  else
845    return Namespace + "::" + getName();
846}
847
848// Compute sub-classes of all register classes.
849// Assume the classes are ordered topologically.
850void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
851  auto &RegClasses = RegBank.getRegClasses();
852
853  // Visit backwards so sub-classes are seen first.
854  for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
855    CodeGenRegisterClass &RC = *I;
856    RC.SubClasses.resize(RegClasses.size());
857    RC.SubClasses.set(RC.EnumValue);
858
859    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
860    for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
861      CodeGenRegisterClass &SubRC = *I2;
862      if (RC.SubClasses.test(SubRC.EnumValue))
863        continue;
864      if (!testSubClass(&RC, &SubRC))
865        continue;
866      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
867      // check them again.
868      RC.SubClasses |= SubRC.SubClasses;
869    }
870
871    // Sweep up missed clique members.  They will be immediately preceding RC.
872    for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
873      RC.SubClasses.set(I2->EnumValue);
874  }
875
876  // Compute the SuperClasses lists from the SubClasses vectors.
877  for (auto &RC : RegClasses) {
878    const BitVector &SC = RC.getSubClasses();
879    auto I = RegClasses.begin();
880    for (int s = 0, next_s = SC.find_first(); next_s != -1;
881         next_s = SC.find_next(s)) {
882      std::advance(I, next_s - s);
883      s = next_s;
884      if (&*I == &RC)
885        continue;
886      I->SuperClasses.push_back(&RC);
887    }
888  }
889
890  // With the class hierarchy in place, let synthesized register classes inherit
891  // properties from their closest super-class. The iteration order here can
892  // propagate properties down multiple levels.
893  for (auto &RC : RegClasses)
894    if (!RC.getDef())
895      RC.inheritProperties(RegBank);
896}
897
898void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
899                                              BitVector &Out) const {
900  auto FindI = SuperRegClasses.find(SubIdx);
901  if (FindI == SuperRegClasses.end())
902    return;
903  for (CodeGenRegisterClass *RC : FindI->second)
904    Out.set(RC->EnumValue);
905}
906
907// Populate a unique sorted list of units from a register set.
908void CodeGenRegisterClass::buildRegUnitSet(
909  std::vector<unsigned> &RegUnits) const {
910  std::vector<unsigned> TmpUnits;
911  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
912    TmpUnits.push_back(*UnitI);
913  std::sort(TmpUnits.begin(), TmpUnits.end());
914  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
915                   std::back_inserter(RegUnits));
916}
917
918//===----------------------------------------------------------------------===//
919//                               CodeGenRegBank
920//===----------------------------------------------------------------------===//
921
922CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
923  // Configure register Sets to understand register classes and tuples.
924  Sets.addFieldExpander("RegisterClass", "MemberList");
925  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
926  Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
927
928  // Read in the user-defined (named) sub-register indices.
929  // More indices will be synthesized later.
930  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
931  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
932  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
933    getSubRegIdx(SRIs[i]);
934  // Build composite maps from ComposedOf fields.
935  for (auto &Idx : SubRegIndices)
936    Idx.updateComponents(*this);
937
938  // Read in the register definitions.
939  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
940  std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
941  // Assign the enumeration values.
942  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
943    getReg(Regs[i]);
944
945  // Expand tuples and number the new registers.
946  std::vector<Record*> Tups =
947    Records.getAllDerivedDefinitions("RegisterTuples");
948
949  for (Record *R : Tups) {
950    std::vector<Record *> TupRegs = *Sets.expand(R);
951    std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
952    for (Record *RC : TupRegs)
953      getReg(RC);
954  }
955
956  // Now all the registers are known. Build the object graph of explicit
957  // register-register references.
958  for (auto &Reg : Registers)
959    Reg.buildObjectGraph(*this);
960
961  // Compute register name map.
962  for (auto &Reg : Registers)
963    // FIXME: This could just be RegistersByName[name] = register, except that
964    // causes some failures in MIPS - perhaps they have duplicate register name
965    // entries? (or maybe there's a reason for it - I don't know much about this
966    // code, just drive-by refactoring)
967    RegistersByName.insert(
968        std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
969
970  // Precompute all sub-register maps.
971  // This will create Composite entries for all inferred sub-register indices.
972  for (auto &Reg : Registers)
973    Reg.computeSubRegs(*this);
974
975  // Infer even more sub-registers by combining leading super-registers.
976  for (auto &Reg : Registers)
977    if (Reg.CoveredBySubRegs)
978      Reg.computeSecondarySubRegs(*this);
979
980  // After the sub-register graph is complete, compute the topologically
981  // ordered SuperRegs list.
982  for (auto &Reg : Registers)
983    Reg.computeSuperRegs(*this);
984
985  // Native register units are associated with a leaf register. They've all been
986  // discovered now.
987  NumNativeRegUnits = RegUnits.size();
988
989  // Read in register class definitions.
990  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
991  if (RCs.empty())
992    PrintFatalError("No 'RegisterClass' subclasses defined!");
993
994  // Allocate user-defined register classes.
995  for (auto *RC : RCs) {
996    RegClasses.emplace_back(*this, RC);
997    addToMaps(&RegClasses.back());
998  }
999
1000  // Infer missing classes to create a full algebra.
1001  computeInferredRegisterClasses();
1002
1003  // Order register classes topologically and assign enum values.
1004  RegClasses.sort(TopoOrderRC);
1005  unsigned i = 0;
1006  for (auto &RC : RegClasses)
1007    RC.EnumValue = i++;
1008  CodeGenRegisterClass::computeSubClasses(*this);
1009}
1010
1011// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1012CodeGenSubRegIndex*
1013CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1014  SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1015  return &SubRegIndices.back();
1016}
1017
1018CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1019  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1020  if (Idx)
1021    return Idx;
1022  SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1023  Idx = &SubRegIndices.back();
1024  return Idx;
1025}
1026
1027CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1028  CodeGenRegister *&Reg = Def2Reg[Def];
1029  if (Reg)
1030    return Reg;
1031  Registers.emplace_back(Def, Registers.size() + 1);
1032  Reg = &Registers.back();
1033  return Reg;
1034}
1035
1036void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1037  if (Record *Def = RC->getDef())
1038    Def2RC.insert(std::make_pair(Def, RC));
1039
1040  // Duplicate classes are rejected by insert().
1041  // That's OK, we only care about the properties handled by CGRC::Key.
1042  CodeGenRegisterClass::Key K(*RC);
1043  Key2RC.insert(std::make_pair(K, RC));
1044}
1045
1046// Create a synthetic sub-class if it is missing.
1047CodeGenRegisterClass*
1048CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1049                                    const CodeGenRegister::Vec *Members,
1050                                    StringRef Name) {
1051  // Synthetic sub-class has the same size and alignment as RC.
1052  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1053  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1054  if (FoundI != Key2RC.end())
1055    return FoundI->second;
1056
1057  // Sub-class doesn't exist, create a new one.
1058  RegClasses.emplace_back(*this, Name, K);
1059  addToMaps(&RegClasses.back());
1060  return &RegClasses.back();
1061}
1062
1063CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1064  if (CodeGenRegisterClass *RC = Def2RC[Def])
1065    return RC;
1066
1067  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1068}
1069
1070CodeGenSubRegIndex*
1071CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1072                                        CodeGenSubRegIndex *B) {
1073  // Look for an existing entry.
1074  CodeGenSubRegIndex *Comp = A->compose(B);
1075  if (Comp)
1076    return Comp;
1077
1078  // None exists, synthesize one.
1079  std::string Name = A->getName() + "_then_" + B->getName();
1080  Comp = createSubRegIndex(Name, A->getNamespace());
1081  A->addComposite(B, Comp);
1082  return Comp;
1083}
1084
1085CodeGenSubRegIndex *CodeGenRegBank::
1086getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1087  assert(Parts.size() > 1 && "Need two parts to concatenate");
1088
1089  // Look for an existing entry.
1090  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1091  if (Idx)
1092    return Idx;
1093
1094  // None exists, synthesize one.
1095  std::string Name = Parts.front()->getName();
1096  // Determine whether all parts are contiguous.
1097  bool isContinuous = true;
1098  unsigned Size = Parts.front()->Size;
1099  unsigned LastOffset = Parts.front()->Offset;
1100  unsigned LastSize = Parts.front()->Size;
1101  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1102    Name += '_';
1103    Name += Parts[i]->getName();
1104    Size += Parts[i]->Size;
1105    if (Parts[i]->Offset != (LastOffset + LastSize))
1106      isContinuous = false;
1107    LastOffset = Parts[i]->Offset;
1108    LastSize = Parts[i]->Size;
1109  }
1110  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1111  Idx->Size = Size;
1112  Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1113  return Idx;
1114}
1115
1116void CodeGenRegBank::computeComposites() {
1117  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1118  // and many registers will share TopoSigs on regular architectures.
1119  BitVector TopoSigs(getNumTopoSigs());
1120
1121  for (const auto &Reg1 : Registers) {
1122    // Skip identical subreg structures already processed.
1123    if (TopoSigs.test(Reg1.getTopoSig()))
1124      continue;
1125    TopoSigs.set(Reg1.getTopoSig());
1126
1127    const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1128    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1129         e1 = SRM1.end(); i1 != e1; ++i1) {
1130      CodeGenSubRegIndex *Idx1 = i1->first;
1131      CodeGenRegister *Reg2 = i1->second;
1132      // Ignore identity compositions.
1133      if (&Reg1 == Reg2)
1134        continue;
1135      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1136      // Try composing Idx1 with another SubRegIndex.
1137      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1138           e2 = SRM2.end(); i2 != e2; ++i2) {
1139        CodeGenSubRegIndex *Idx2 = i2->first;
1140        CodeGenRegister *Reg3 = i2->second;
1141        // Ignore identity compositions.
1142        if (Reg2 == Reg3)
1143          continue;
1144        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1145        CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1146        assert(Idx3 && "Sub-register doesn't have an index");
1147
1148        // Conflicting composition? Emit a warning but allow it.
1149        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1150          PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1151                       " and " + Idx2->getQualifiedName() +
1152                       " compose ambiguously as " + Prev->getQualifiedName() +
1153                       " or " + Idx3->getQualifiedName());
1154      }
1155    }
1156  }
1157}
1158
1159// Compute lane masks. This is similar to register units, but at the
1160// sub-register index level. Each bit in the lane mask is like a register unit
1161// class, and two lane masks will have a bit in common if two sub-register
1162// indices overlap in some register.
1163//
1164// Conservatively share a lane mask bit if two sub-register indices overlap in
1165// some registers, but not in others. That shouldn't happen a lot.
1166void CodeGenRegBank::computeSubRegLaneMasks() {
1167  // First assign individual bits to all the leaf indices.
1168  unsigned Bit = 0;
1169  // Determine mask of lanes that cover their registers.
1170  CoveringLanes = ~0u;
1171  for (auto &Idx : SubRegIndices) {
1172    if (Idx.getComposites().empty()) {
1173      if (Bit > 32) {
1174        PrintFatalError(
1175          Twine("Ran out of lanemask bits to represent subregister ")
1176          + Idx.getName());
1177      }
1178      Idx.LaneMask = 1u << Bit;
1179      ++Bit;
1180    } else {
1181      Idx.LaneMask = 0;
1182    }
1183  }
1184
1185  // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1186  // here is that for each possible target subregister we look at the leafs
1187  // in the subregister graph that compose for this target and create
1188  // transformation sequences for the lanemasks. Each step in the sequence
1189  // consists of a bitmask and a bitrotate operation. As the rotation amounts
1190  // are usually the same for many subregisters we can easily combine the steps
1191  // by combining the masks.
1192  for (const auto &Idx : SubRegIndices) {
1193    const auto &Composites = Idx.getComposites();
1194    auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1195
1196    if (Composites.empty()) {
1197      // Moving from a class with no subregisters we just had a single lane:
1198      // The subregister must be a leaf subregister and only occupies 1 bit.
1199      // Move the bit from the class without subregisters into that position.
1200      unsigned DstBit = Log2_32(Idx.LaneMask);
1201      assert(Idx.LaneMask == 1u << DstBit && "Must be a leaf subregister");
1202      MaskRolPair MaskRol = { 1, (uint8_t)DstBit };
1203      LaneTransforms.push_back(MaskRol);
1204    } else {
1205      // Go through all leaf subregisters and find the ones that compose with
1206      // Idx. These make out all possible valid bits in the lane mask we want to
1207      // transform. Looking only at the leafs ensure that only a single bit in
1208      // the mask is set.
1209      unsigned NextBit = 0;
1210      for (auto &Idx2 : SubRegIndices) {
1211        // Skip non-leaf subregisters.
1212        if (!Idx2.getComposites().empty())
1213          continue;
1214        // Replicate the behaviour from the lane mask generation loop above.
1215        unsigned SrcBit = NextBit;
1216        unsigned SrcMask = 1u << SrcBit;
1217        if (NextBit < 31)
1218          ++NextBit;
1219        assert(Idx2.LaneMask == SrcMask);
1220
1221        // Get the composed subregister if there is any.
1222        auto C = Composites.find(&Idx2);
1223        if (C == Composites.end())
1224          continue;
1225        const CodeGenSubRegIndex *Composite = C->second;
1226        // The Composed subreg should be a leaf subreg too
1227        assert(Composite->getComposites().empty());
1228
1229        // Create Mask+Rotate operation and merge with existing ops if possible.
1230        unsigned DstBit = Log2_32(Composite->LaneMask);
1231        int Shift = DstBit - SrcBit;
1232        uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1233        for (auto &I : LaneTransforms) {
1234          if (I.RotateLeft == RotateLeft) {
1235            I.Mask |= SrcMask;
1236            SrcMask = 0;
1237          }
1238        }
1239        if (SrcMask != 0) {
1240          MaskRolPair MaskRol = { SrcMask, RotateLeft };
1241          LaneTransforms.push_back(MaskRol);
1242        }
1243      }
1244    }
1245
1246    // Optimize if the transformation consists of one step only: Set mask to
1247    // 0xffffffff (including some irrelevant invalid bits) so that it should
1248    // merge with more entries later while compressing the table.
1249    if (LaneTransforms.size() == 1)
1250      LaneTransforms[0].Mask = ~0u;
1251
1252    // Further compression optimization: For invalid compositions resulting
1253    // in a sequence with 0 entries we can just pick any other. Choose
1254    // Mask 0xffffffff with Rotation 0.
1255    if (LaneTransforms.size() == 0) {
1256      MaskRolPair P = { ~0u, 0 };
1257      LaneTransforms.push_back(P);
1258    }
1259  }
1260
1261  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1262  // by the sub-register graph? This doesn't occur in any known targets.
1263
1264  // Inherit lanes from composites.
1265  for (const auto &Idx : SubRegIndices) {
1266    unsigned Mask = Idx.computeLaneMask();
1267    // If some super-registers without CoveredBySubRegs use this index, we can
1268    // no longer assume that the lanes are covering their registers.
1269    if (!Idx.AllSuperRegsCovered)
1270      CoveringLanes &= ~Mask;
1271  }
1272
1273  // Compute lane mask combinations for register classes.
1274  for (auto &RegClass : RegClasses) {
1275    unsigned LaneMask = 0;
1276    for (const auto &SubRegIndex : SubRegIndices) {
1277      if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1278        continue;
1279      LaneMask |= SubRegIndex.LaneMask;
1280    }
1281
1282    // For classes without any subregisters set LaneMask to 1 instead of 0.
1283    // This makes it easier for client code to handle classes uniformly.
1284    if (LaneMask == 0)
1285      LaneMask = 1;
1286
1287    RegClass.LaneMask = LaneMask;
1288  }
1289}
1290
1291namespace {
1292// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1293// the transitive closure of the union of overlapping register
1294// classes. Together, the UberRegSets form a partition of the registers. If we
1295// consider overlapping register classes to be connected, then each UberRegSet
1296// is a set of connected components.
1297//
1298// An UberRegSet will likely be a horizontal slice of register names of
1299// the same width. Nontrivial subregisters should then be in a separate
1300// UberRegSet. But this property isn't required for valid computation of
1301// register unit weights.
1302//
1303// A Weight field caches the max per-register unit weight in each UberRegSet.
1304//
1305// A set of SingularDeterminants flags single units of some register in this set
1306// for which the unit weight equals the set weight. These units should not have
1307// their weight increased.
1308struct UberRegSet {
1309  CodeGenRegister::Vec Regs;
1310  unsigned Weight;
1311  CodeGenRegister::RegUnitList SingularDeterminants;
1312
1313  UberRegSet(): Weight(0) {}
1314};
1315} // namespace
1316
1317// Partition registers into UberRegSets, where each set is the transitive
1318// closure of the union of overlapping register classes.
1319//
1320// UberRegSets[0] is a special non-allocatable set.
1321static void computeUberSets(std::vector<UberRegSet> &UberSets,
1322                            std::vector<UberRegSet*> &RegSets,
1323                            CodeGenRegBank &RegBank) {
1324
1325  const auto &Registers = RegBank.getRegisters();
1326
1327  // The Register EnumValue is one greater than its index into Registers.
1328  assert(Registers.size() == Registers.back().EnumValue &&
1329         "register enum value mismatch");
1330
1331  // For simplicitly make the SetID the same as EnumValue.
1332  IntEqClasses UberSetIDs(Registers.size()+1);
1333  std::set<unsigned> AllocatableRegs;
1334  for (auto &RegClass : RegBank.getRegClasses()) {
1335    if (!RegClass.Allocatable)
1336      continue;
1337
1338    const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1339    if (Regs.empty())
1340      continue;
1341
1342    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1343    assert(USetID && "register number 0 is invalid");
1344
1345    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1346    for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1347      AllocatableRegs.insert((*I)->EnumValue);
1348      UberSetIDs.join(USetID, (*I)->EnumValue);
1349    }
1350  }
1351  // Combine non-allocatable regs.
1352  for (const auto &Reg : Registers) {
1353    unsigned RegNum = Reg.EnumValue;
1354    if (AllocatableRegs.count(RegNum))
1355      continue;
1356
1357    UberSetIDs.join(0, RegNum);
1358  }
1359  UberSetIDs.compress();
1360
1361  // Make the first UberSet a special unallocatable set.
1362  unsigned ZeroID = UberSetIDs[0];
1363
1364  // Insert Registers into the UberSets formed by union-find.
1365  // Do not resize after this.
1366  UberSets.resize(UberSetIDs.getNumClasses());
1367  unsigned i = 0;
1368  for (const CodeGenRegister &Reg : Registers) {
1369    unsigned USetID = UberSetIDs[Reg.EnumValue];
1370    if (!USetID)
1371      USetID = ZeroID;
1372    else if (USetID == ZeroID)
1373      USetID = 0;
1374
1375    UberRegSet *USet = &UberSets[USetID];
1376    USet->Regs.push_back(&Reg);
1377    sortAndUniqueRegisters(USet->Regs);
1378    RegSets[i++] = USet;
1379  }
1380}
1381
1382// Recompute each UberSet weight after changing unit weights.
1383static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1384                               CodeGenRegBank &RegBank) {
1385  // Skip the first unallocatable set.
1386  for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1387         E = UberSets.end(); I != E; ++I) {
1388
1389    // Initialize all unit weights in this set, and remember the max units/reg.
1390    const CodeGenRegister *Reg = nullptr;
1391    unsigned MaxWeight = 0, Weight = 0;
1392    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1393      if (Reg != UnitI.getReg()) {
1394        if (Weight > MaxWeight)
1395          MaxWeight = Weight;
1396        Reg = UnitI.getReg();
1397        Weight = 0;
1398      }
1399      unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1400      if (!UWeight) {
1401        UWeight = 1;
1402        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1403      }
1404      Weight += UWeight;
1405    }
1406    if (Weight > MaxWeight)
1407      MaxWeight = Weight;
1408    if (I->Weight != MaxWeight) {
1409      DEBUG(
1410        dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1411        for (auto &Unit : I->Regs)
1412          dbgs() << " " << Unit->getName();
1413        dbgs() << "\n");
1414      // Update the set weight.
1415      I->Weight = MaxWeight;
1416    }
1417
1418    // Find singular determinants.
1419    for (const auto R : I->Regs) {
1420      if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1421        I->SingularDeterminants |= R->getRegUnits();
1422      }
1423    }
1424  }
1425}
1426
1427// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1428// a register and its subregisters so that they have the same weight as their
1429// UberSet. Self-recursion processes the subregister tree in postorder so
1430// subregisters are normalized first.
1431//
1432// Side effects:
1433// - creates new adopted register units
1434// - causes superregisters to inherit adopted units
1435// - increases the weight of "singular" units
1436// - induces recomputation of UberWeights.
1437static bool normalizeWeight(CodeGenRegister *Reg,
1438                            std::vector<UberRegSet> &UberSets,
1439                            std::vector<UberRegSet*> &RegSets,
1440                            SparseBitVector<> &NormalRegs,
1441                            CodeGenRegister::RegUnitList &NormalUnits,
1442                            CodeGenRegBank &RegBank) {
1443  if (NormalRegs.test(Reg->EnumValue))
1444    return false;
1445  NormalRegs.set(Reg->EnumValue);
1446
1447  bool Changed = false;
1448  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1449  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1450         SRE = SRM.end(); SRI != SRE; ++SRI) {
1451    if (SRI->second == Reg)
1452      continue; // self-cycles happen
1453
1454    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1455                               NormalRegs, NormalUnits, RegBank);
1456  }
1457  // Postorder register normalization.
1458
1459  // Inherit register units newly adopted by subregisters.
1460  if (Reg->inheritRegUnits(RegBank))
1461    computeUberWeights(UberSets, RegBank);
1462
1463  // Check if this register is too skinny for its UberRegSet.
1464  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1465
1466  unsigned RegWeight = Reg->getWeight(RegBank);
1467  if (UberSet->Weight > RegWeight) {
1468    // A register unit's weight can be adjusted only if it is the singular unit
1469    // for this register, has not been used to normalize a subregister's set,
1470    // and has not already been used to singularly determine this UberRegSet.
1471    unsigned AdjustUnit = *Reg->getRegUnits().begin();
1472    if (Reg->getRegUnits().count() != 1
1473        || hasRegUnit(NormalUnits, AdjustUnit)
1474        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1475      // We don't have an adjustable unit, so adopt a new one.
1476      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1477      Reg->adoptRegUnit(AdjustUnit);
1478      // Adopting a unit does not immediately require recomputing set weights.
1479    }
1480    else {
1481      // Adjust the existing single unit.
1482      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1483      // The unit may be shared among sets and registers within this set.
1484      computeUberWeights(UberSets, RegBank);
1485    }
1486    Changed = true;
1487  }
1488
1489  // Mark these units normalized so superregisters can't change their weights.
1490  NormalUnits |= Reg->getRegUnits();
1491
1492  return Changed;
1493}
1494
1495// Compute a weight for each register unit created during getSubRegs.
1496//
1497// The goal is that two registers in the same class will have the same weight,
1498// where each register's weight is defined as sum of its units' weights.
1499void CodeGenRegBank::computeRegUnitWeights() {
1500  std::vector<UberRegSet> UberSets;
1501  std::vector<UberRegSet*> RegSets(Registers.size());
1502  computeUberSets(UberSets, RegSets, *this);
1503  // UberSets and RegSets are now immutable.
1504
1505  computeUberWeights(UberSets, *this);
1506
1507  // Iterate over each Register, normalizing the unit weights until reaching
1508  // a fix point.
1509  unsigned NumIters = 0;
1510  for (bool Changed = true; Changed; ++NumIters) {
1511    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1512    Changed = false;
1513    for (auto &Reg : Registers) {
1514      CodeGenRegister::RegUnitList NormalUnits;
1515      SparseBitVector<> NormalRegs;
1516      Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1517                                 NormalUnits, *this);
1518    }
1519  }
1520}
1521
1522// Find a set in UniqueSets with the same elements as Set.
1523// Return an iterator into UniqueSets.
1524static std::vector<RegUnitSet>::const_iterator
1525findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1526               const RegUnitSet &Set) {
1527  std::vector<RegUnitSet>::const_iterator
1528    I = UniqueSets.begin(), E = UniqueSets.end();
1529  for(;I != E; ++I) {
1530    if (I->Units == Set.Units)
1531      break;
1532  }
1533  return I;
1534}
1535
1536// Return true if the RUSubSet is a subset of RUSuperSet.
1537static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1538                            const std::vector<unsigned> &RUSuperSet) {
1539  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1540                       RUSubSet.begin(), RUSubSet.end());
1541}
1542
1543/// Iteratively prune unit sets. Prune subsets that are close to the superset,
1544/// but with one or two registers removed. We occasionally have registers like
1545/// APSR and PC thrown in with the general registers. We also see many
1546/// special-purpose register subsets, such as tail-call and Thumb
1547/// encodings. Generating all possible overlapping sets is combinatorial and
1548/// overkill for modeling pressure. Ideally we could fix this statically in
1549/// tablegen by (1) having the target define register classes that only include
1550/// the allocatable registers and marking other classes as non-allocatable and
1551/// (2) having a way to mark special purpose classes as "don't-care" classes for
1552/// the purpose of pressure.  However, we make an attempt to handle targets that
1553/// are not nicely defined by merging nearly identical register unit sets
1554/// statically. This generates smaller tables. Then, dynamically, we adjust the
1555/// set limit by filtering the reserved registers.
1556///
1557/// Merge sets only if the units have the same weight. For example, on ARM,
1558/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1559/// should not expand the S set to include D regs.
1560void CodeGenRegBank::pruneUnitSets() {
1561  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1562
1563  // Form an equivalence class of UnitSets with no significant difference.
1564  std::vector<unsigned> SuperSetIDs;
1565  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1566       SubIdx != EndIdx; ++SubIdx) {
1567    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1568    unsigned SuperIdx = 0;
1569    for (; SuperIdx != EndIdx; ++SuperIdx) {
1570      if (SuperIdx == SubIdx)
1571        continue;
1572
1573      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1574      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1575      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1576          && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1577          && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1578          && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1579        DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1580              << "\n");
1581        // We can pick any of the set names for the merged set. Go for the
1582        // shortest one to avoid picking the name of one of the classes that are
1583        // artificially created by tablegen. So "FPR128_lo" instead of
1584        // "QQQQ_with_qsub3_in_FPR128_lo".
1585        if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1586          RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1587        break;
1588      }
1589    }
1590    if (SuperIdx == EndIdx)
1591      SuperSetIDs.push_back(SubIdx);
1592  }
1593  // Populate PrunedUnitSets with each equivalence class's superset.
1594  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1595  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1596    unsigned SuperIdx = SuperSetIDs[i];
1597    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1598    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1599  }
1600  RegUnitSets.swap(PrunedUnitSets);
1601}
1602
1603// Create a RegUnitSet for each RegClass that contains all units in the class
1604// including adopted units that are necessary to model register pressure. Then
1605// iteratively compute RegUnitSets such that the union of any two overlapping
1606// RegUnitSets is repreresented.
1607//
1608// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1609// RegUnitSet that is a superset of that RegUnitClass.
1610void CodeGenRegBank::computeRegUnitSets() {
1611  assert(RegUnitSets.empty() && "dirty RegUnitSets");
1612
1613  // Compute a unique RegUnitSet for each RegClass.
1614  auto &RegClasses = getRegClasses();
1615  for (auto &RC : RegClasses) {
1616    if (!RC.Allocatable)
1617      continue;
1618
1619    // Speculatively grow the RegUnitSets to hold the new set.
1620    RegUnitSets.resize(RegUnitSets.size() + 1);
1621    RegUnitSets.back().Name = RC.getName();
1622
1623    // Compute a sorted list of units in this class.
1624    RC.buildRegUnitSet(RegUnitSets.back().Units);
1625
1626    // Find an existing RegUnitSet.
1627    std::vector<RegUnitSet>::const_iterator SetI =
1628      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1629    if (SetI != std::prev(RegUnitSets.end()))
1630      RegUnitSets.pop_back();
1631  }
1632
1633  DEBUG(dbgs() << "\nBefore pruning:\n";
1634        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1635             USIdx < USEnd; ++USIdx) {
1636          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1637                 << ":";
1638          for (auto &U : RegUnitSets[USIdx].Units)
1639            dbgs() << " " << RegUnits[U].Roots[0]->getName();
1640          dbgs() << "\n";
1641        });
1642
1643  // Iteratively prune unit sets.
1644  pruneUnitSets();
1645
1646  DEBUG(dbgs() << "\nBefore union:\n";
1647        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1648             USIdx < USEnd; ++USIdx) {
1649          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1650                 << ":";
1651          for (auto &U : RegUnitSets[USIdx].Units)
1652            dbgs() << " " << RegUnits[U].Roots[0]->getName();
1653          dbgs() << "\n";
1654        }
1655        dbgs() << "\nUnion sets:\n");
1656
1657  // Iterate over all unit sets, including new ones added by this loop.
1658  unsigned NumRegUnitSubSets = RegUnitSets.size();
1659  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1660    // In theory, this is combinatorial. In practice, it needs to be bounded
1661    // by a small number of sets for regpressure to be efficient.
1662    // If the assert is hit, we need to implement pruning.
1663    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1664
1665    // Compare new sets with all original classes.
1666    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1667         SearchIdx != EndIdx; ++SearchIdx) {
1668      std::set<unsigned> Intersection;
1669      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1670                            RegUnitSets[Idx].Units.end(),
1671                            RegUnitSets[SearchIdx].Units.begin(),
1672                            RegUnitSets[SearchIdx].Units.end(),
1673                            std::inserter(Intersection, Intersection.begin()));
1674      if (Intersection.empty())
1675        continue;
1676
1677      // Speculatively grow the RegUnitSets to hold the new set.
1678      RegUnitSets.resize(RegUnitSets.size() + 1);
1679      RegUnitSets.back().Name =
1680        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1681
1682      std::set_union(RegUnitSets[Idx].Units.begin(),
1683                     RegUnitSets[Idx].Units.end(),
1684                     RegUnitSets[SearchIdx].Units.begin(),
1685                     RegUnitSets[SearchIdx].Units.end(),
1686                     std::inserter(RegUnitSets.back().Units,
1687                                   RegUnitSets.back().Units.begin()));
1688
1689      // Find an existing RegUnitSet, or add the union to the unique sets.
1690      std::vector<RegUnitSet>::const_iterator SetI =
1691        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1692      if (SetI != std::prev(RegUnitSets.end()))
1693        RegUnitSets.pop_back();
1694      else {
1695        DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1696              << " " << RegUnitSets.back().Name << ":";
1697              for (auto &U : RegUnitSets.back().Units)
1698                dbgs() << " " << RegUnits[U].Roots[0]->getName();
1699              dbgs() << "\n";);
1700      }
1701    }
1702  }
1703
1704  // Iteratively prune unit sets after inferring supersets.
1705  pruneUnitSets();
1706
1707  DEBUG(dbgs() << "\n";
1708        for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1709             USIdx < USEnd; ++USIdx) {
1710          dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1711                 << ":";
1712          for (auto &U : RegUnitSets[USIdx].Units)
1713            dbgs() << " " << RegUnits[U].Roots[0]->getName();
1714          dbgs() << "\n";
1715        });
1716
1717  // For each register class, list the UnitSets that are supersets.
1718  RegClassUnitSets.resize(RegClasses.size());
1719  int RCIdx = -1;
1720  for (auto &RC : RegClasses) {
1721    ++RCIdx;
1722    if (!RC.Allocatable)
1723      continue;
1724
1725    // Recompute the sorted list of units in this class.
1726    std::vector<unsigned> RCRegUnits;
1727    RC.buildRegUnitSet(RCRegUnits);
1728
1729    // Don't increase pressure for unallocatable regclasses.
1730    if (RCRegUnits.empty())
1731      continue;
1732
1733    DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1734          for (auto &U : RCRegUnits)
1735            dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1736          dbgs() << "\n  UnitSetIDs:");
1737
1738    // Find all supersets.
1739    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1740         USIdx != USEnd; ++USIdx) {
1741      if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1742        DEBUG(dbgs() << " " << USIdx);
1743        RegClassUnitSets[RCIdx].push_back(USIdx);
1744      }
1745    }
1746    DEBUG(dbgs() << "\n");
1747    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1748  }
1749
1750  // For each register unit, ensure that we have the list of UnitSets that
1751  // contain the unit. Normally, this matches an existing list of UnitSets for a
1752  // register class. If not, we create a new entry in RegClassUnitSets as a
1753  // "fake" register class.
1754  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1755       UnitIdx < UnitEnd; ++UnitIdx) {
1756    std::vector<unsigned> RUSets;
1757    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1758      RegUnitSet &RUSet = RegUnitSets[i];
1759      if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1760          == RUSet.Units.end())
1761        continue;
1762      RUSets.push_back(i);
1763    }
1764    unsigned RCUnitSetsIdx = 0;
1765    for (unsigned e = RegClassUnitSets.size();
1766         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1767      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1768        break;
1769      }
1770    }
1771    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1772    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1773      // Create a new list of UnitSets as a "fake" register class.
1774      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1775      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1776    }
1777  }
1778}
1779
1780void CodeGenRegBank::computeRegUnitLaneMasks() {
1781  for (auto &Register : Registers) {
1782    // Create an initial lane mask for all register units.
1783    const auto &RegUnits = Register.getRegUnits();
1784    CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
1785    // Iterate through SubRegisters.
1786    typedef CodeGenRegister::SubRegMap SubRegMap;
1787    const SubRegMap &SubRegs = Register.getSubRegs();
1788    for (SubRegMap::const_iterator S = SubRegs.begin(),
1789         SE = SubRegs.end(); S != SE; ++S) {
1790      CodeGenRegister *SubReg = S->second;
1791      // Ignore non-leaf subregisters, their lane masks are fully covered by
1792      // the leaf subregisters anyway.
1793      if (SubReg->getSubRegs().size() != 0)
1794        continue;
1795      CodeGenSubRegIndex *SubRegIndex = S->first;
1796      const CodeGenRegister *SubRegister = S->second;
1797      unsigned LaneMask = SubRegIndex->LaneMask;
1798      // Distribute LaneMask to Register Units touched.
1799      for (unsigned SUI : SubRegister->getRegUnits()) {
1800        bool Found = false;
1801        unsigned u = 0;
1802        for (unsigned RU : RegUnits) {
1803          if (SUI == RU) {
1804            RegUnitLaneMasks[u] |= LaneMask;
1805            assert(!Found);
1806            Found = true;
1807          }
1808          ++u;
1809        }
1810        (void)Found;
1811        assert(Found);
1812      }
1813    }
1814    Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1815  }
1816}
1817
1818void CodeGenRegBank::computeDerivedInfo() {
1819  computeComposites();
1820  computeSubRegLaneMasks();
1821
1822  // Compute a weight for each register unit created during getSubRegs.
1823  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1824  computeRegUnitWeights();
1825
1826  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1827  // supersets for the union of overlapping sets.
1828  computeRegUnitSets();
1829
1830  computeRegUnitLaneMasks();
1831
1832  // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
1833  for (CodeGenRegisterClass &RC : RegClasses) {
1834    RC.HasDisjunctSubRegs = false;
1835    RC.CoveredBySubRegs = true;
1836    for (const CodeGenRegister *Reg : RC.getMembers()) {
1837      RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1838      RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
1839    }
1840  }
1841
1842  // Get the weight of each set.
1843  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1844    RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1845
1846  // Find the order of each set.
1847  RegUnitSetOrder.reserve(RegUnitSets.size());
1848  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1849    RegUnitSetOrder.push_back(Idx);
1850
1851  std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1852                   [this](unsigned ID1, unsigned ID2) {
1853    return getRegPressureSet(ID1).Units.size() <
1854           getRegPressureSet(ID2).Units.size();
1855  });
1856  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1857    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1858  }
1859}
1860
1861//
1862// Synthesize missing register class intersections.
1863//
1864// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1865// returns a maximal register class for all X.
1866//
1867void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1868  assert(!RegClasses.empty());
1869  // Stash the iterator to the last element so that this loop doesn't visit
1870  // elements added by the getOrCreateSubClass call within it.
1871  for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1872       I != std::next(E); ++I) {
1873    CodeGenRegisterClass *RC1 = RC;
1874    CodeGenRegisterClass *RC2 = &*I;
1875    if (RC1 == RC2)
1876      continue;
1877
1878    // Compute the set intersection of RC1 and RC2.
1879    const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1880    const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1881    CodeGenRegister::Vec Intersection;
1882    std::set_intersection(
1883        Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1884        std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1885
1886    // Skip disjoint class pairs.
1887    if (Intersection.empty())
1888      continue;
1889
1890    // If RC1 and RC2 have different spill sizes or alignments, use the
1891    // larger size for sub-classing.  If they are equal, prefer RC1.
1892    if (RC2->SpillSize > RC1->SpillSize ||
1893        (RC2->SpillSize == RC1->SpillSize &&
1894         RC2->SpillAlignment > RC1->SpillAlignment))
1895      std::swap(RC1, RC2);
1896
1897    getOrCreateSubClass(RC1, &Intersection,
1898                        RC1->getName() + "_and_" + RC2->getName());
1899  }
1900}
1901
1902//
1903// Synthesize missing sub-classes for getSubClassWithSubReg().
1904//
1905// Make sure that the set of registers in RC with a given SubIdx sub-register
1906// form a register class.  Update RC->SubClassWithSubReg.
1907//
1908void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1909  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1910  typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
1911                   deref<llvm::less>> SubReg2SetMap;
1912
1913  // Compute the set of registers supporting each SubRegIndex.
1914  SubReg2SetMap SRSets;
1915  for (const auto R : RC->getMembers()) {
1916    const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
1917    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1918         E = SRM.end(); I != E; ++I)
1919      SRSets[I->first].push_back(R);
1920  }
1921
1922  for (auto I : SRSets)
1923    sortAndUniqueRegisters(I.second);
1924
1925  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1926  // numerical order to visit synthetic indices last.
1927  for (const auto &SubIdx : SubRegIndices) {
1928    SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1929    // Unsupported SubRegIndex. Skip it.
1930    if (I == SRSets.end())
1931      continue;
1932    // In most cases, all RC registers support the SubRegIndex.
1933    if (I->second.size() == RC->getMembers().size()) {
1934      RC->setSubClassWithSubReg(&SubIdx, RC);
1935      continue;
1936    }
1937    // This is a real subset.  See if we have a matching class.
1938    CodeGenRegisterClass *SubRC =
1939      getOrCreateSubClass(RC, &I->second,
1940                          RC->getName() + "_with_" + I->first->getName());
1941    RC->setSubClassWithSubReg(&SubIdx, SubRC);
1942  }
1943}
1944
1945//
1946// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1947//
1948// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1949// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1950//
1951
1952void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1953                                                std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1954  SmallVector<std::pair<const CodeGenRegister*,
1955                        const CodeGenRegister*>, 16> SSPairs;
1956  BitVector TopoSigs(getNumTopoSigs());
1957
1958  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1959  for (auto &SubIdx : SubRegIndices) {
1960    // Skip indexes that aren't fully supported by RC's registers. This was
1961    // computed by inferSubClassWithSubReg() above which should have been
1962    // called first.
1963    if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1964      continue;
1965
1966    // Build list of (Super, Sub) pairs for this SubIdx.
1967    SSPairs.clear();
1968    TopoSigs.reset();
1969    for (const auto Super : RC->getMembers()) {
1970      const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1971      assert(Sub && "Missing sub-register");
1972      SSPairs.push_back(std::make_pair(Super, Sub));
1973      TopoSigs.set(Sub->getTopoSig());
1974    }
1975
1976    // Iterate over sub-register class candidates.  Ignore classes created by
1977    // this loop. They will never be useful.
1978    // Store an iterator to the last element (not end) so that this loop doesn't
1979    // visit newly inserted elements.
1980    assert(!RegClasses.empty());
1981    for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
1982         I != std::next(E); ++I) {
1983      CodeGenRegisterClass &SubRC = *I;
1984      // Topological shortcut: SubRC members have the wrong shape.
1985      if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
1986        continue;
1987      // Compute the subset of RC that maps into SubRC.
1988      CodeGenRegister::Vec SubSetVec;
1989      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1990        if (SubRC.contains(SSPairs[i].second))
1991          SubSetVec.push_back(SSPairs[i].first);
1992
1993      if (SubSetVec.empty())
1994        continue;
1995
1996      // RC injects completely into SubRC.
1997      sortAndUniqueRegisters(SubSetVec);
1998      if (SubSetVec.size() == SSPairs.size()) {
1999        SubRC.addSuperRegClass(&SubIdx, RC);
2000        continue;
2001      }
2002
2003      // Only a subset of RC maps into SubRC. Make sure it is represented by a
2004      // class.
2005      getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2006                                          SubIdx.getName() + "_in_" +
2007                                          SubRC.getName());
2008    }
2009  }
2010}
2011
2012
2013//
2014// Infer missing register classes.
2015//
2016void CodeGenRegBank::computeInferredRegisterClasses() {
2017  assert(!RegClasses.empty());
2018  // When this function is called, the register classes have not been sorted
2019  // and assigned EnumValues yet.  That means getSubClasses(),
2020  // getSuperClasses(), and hasSubClass() functions are defunct.
2021
2022  // Use one-before-the-end so it doesn't move forward when new elements are
2023  // added.
2024  auto FirstNewRC = std::prev(RegClasses.end());
2025
2026  // Visit all register classes, including the ones being added by the loop.
2027  // Watch out for iterator invalidation here.
2028  for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2029    CodeGenRegisterClass *RC = &*I;
2030
2031    // Synthesize answers for getSubClassWithSubReg().
2032    inferSubClassWithSubReg(RC);
2033
2034    // Synthesize answers for getCommonSubClass().
2035    inferCommonSubClass(RC);
2036
2037    // Synthesize answers for getMatchingSuperRegClass().
2038    inferMatchingSuperRegClass(RC);
2039
2040    // New register classes are created while this loop is running, and we need
2041    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2042    // to match old super-register classes with sub-register classes created
2043    // after inferMatchingSuperRegClass was called.  At this point,
2044    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2045    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2046    if (I == FirstNewRC) {
2047      auto NextNewRC = std::prev(RegClasses.end());
2048      for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2049           ++I2)
2050        inferMatchingSuperRegClass(&*I2, E2);
2051      FirstNewRC = NextNewRC;
2052    }
2053  }
2054}
2055
2056/// getRegisterClassForRegister - Find the register class that contains the
2057/// specified physical register.  If the register is not in a register class,
2058/// return null. If the register is in multiple classes, and the classes have a
2059/// superset-subset relationship and the same set of types, return the
2060/// superclass.  Otherwise return null.
2061const CodeGenRegisterClass*
2062CodeGenRegBank::getRegClassForRegister(Record *R) {
2063  const CodeGenRegister *Reg = getReg(R);
2064  const CodeGenRegisterClass *FoundRC = nullptr;
2065  for (const auto &RC : getRegClasses()) {
2066    if (!RC.contains(Reg))
2067      continue;
2068
2069    // If this is the first class that contains the register,
2070    // make a note of it and go on to the next class.
2071    if (!FoundRC) {
2072      FoundRC = &RC;
2073      continue;
2074    }
2075
2076    // If a register's classes have different types, return null.
2077    if (RC.getValueTypes() != FoundRC->getValueTypes())
2078      return nullptr;
2079
2080    // Check to see if the previously found class that contains
2081    // the register is a subclass of the current class. If so,
2082    // prefer the superclass.
2083    if (RC.hasSubClass(FoundRC)) {
2084      FoundRC = &RC;
2085      continue;
2086    }
2087
2088    // Check to see if the previously found class that contains
2089    // the register is a superclass of the current class. If so,
2090    // prefer the superclass.
2091    if (FoundRC->hasSubClass(&RC))
2092      continue;
2093
2094    // Multiple classes, and neither is a superclass of the other.
2095    // Return null.
2096    return nullptr;
2097  }
2098  return FoundRC;
2099}
2100
2101BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2102  SetVector<const CodeGenRegister*> Set;
2103
2104  // First add Regs with all sub-registers.
2105  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2106    CodeGenRegister *Reg = getReg(Regs[i]);
2107    if (Set.insert(Reg))
2108      // Reg is new, add all sub-registers.
2109      // The pre-ordering is not important here.
2110      Reg->addSubRegsPreOrder(Set, *this);
2111  }
2112
2113  // Second, find all super-registers that are completely covered by the set.
2114  for (unsigned i = 0; i != Set.size(); ++i) {
2115    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2116    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2117      const CodeGenRegister *Super = SR[j];
2118      if (!Super->CoveredBySubRegs || Set.count(Super))
2119        continue;
2120      // This new super-register is covered by its sub-registers.
2121      bool AllSubsInSet = true;
2122      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2123      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2124             E = SRM.end(); I != E; ++I)
2125        if (!Set.count(I->second)) {
2126          AllSubsInSet = false;
2127          break;
2128        }
2129      // All sub-registers in Set, add Super as well.
2130      // We will visit Super later to recheck its super-registers.
2131      if (AllSubsInSet)
2132        Set.insert(Super);
2133    }
2134  }
2135
2136  // Convert to BitVector.
2137  BitVector BV(Registers.size() + 1);
2138  for (unsigned i = 0, e = Set.size(); i != e; ++i)
2139    BV.set(Set[i]->EnumValue);
2140  return BV;
2141}
2142