1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines structures to encapsulate information gleaned from the 11// target register and register class definitions. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CodeGenRegisters.h" 16#include "CodeGenTarget.h" 17#include "llvm/ADT/IntEqClasses.h" 18#include "llvm/ADT/STLExtras.h" 19#include "llvm/ADT/SmallVector.h" 20#include "llvm/ADT/StringExtras.h" 21#include "llvm/ADT/Twine.h" 22#include "llvm/Support/Debug.h" 23#include "llvm/TableGen/Error.h" 24 25using namespace llvm; 26 27#define DEBUG_TYPE "regalloc-emitter" 28 29//===----------------------------------------------------------------------===// 30// CodeGenSubRegIndex 31//===----------------------------------------------------------------------===// 32 33CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40} 41 42CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46} 47 48std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54} 55 56void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83} 84 85unsigned CodeGenSubRegIndex::computeLaneMask() const { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (const auto &C : Composed) 96 M |= C.second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100} 101 102//===----------------------------------------------------------------------===// 103// CodeGenRegister 104//===----------------------------------------------------------------------===// 105 106CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 HasDisjunctSubRegs(false), 112 SubRegsComplete(false), 113 SuperRegsComplete(false), 114 TopoSig(~0u) 115{} 116 117void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 120 121 if (SRIs.size() != SRs.size()) 122 PrintFatalError(TheDef->getLoc(), 123 "SubRegs and SubRegIndices must have the same size"); 124 125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 128 } 129 130 // Also compute leading super-registers. Each register has a list of 131 // covered-by-subregs super-registers where it appears as the first explicit 132 // sub-register. 133 // 134 // This is used by computeSecondarySubRegs() to find candidates. 135 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 137 138 // Add ad hoc alias links. This is a symmetric relationship between two 139 // registers, so build a symmetric graph by adding links in both ends. 140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 143 ExplicitAliases.push_back(Reg); 144 Reg->ExplicitAliases.push_back(this); 145 } 146} 147 148const std::string &CodeGenRegister::getName() const { 149 assert(TheDef && "no def"); 150 return TheDef->getName(); 151} 152 153namespace { 154// Iterate over all register units in a set of registers. 155class RegUnitIterator { 156 CodeGenRegister::Vec::const_iterator RegI, RegE; 157 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 158 159public: 160 RegUnitIterator(const CodeGenRegister::Vec &Regs): 161 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 162 163 if (RegI != RegE) { 164 UnitI = (*RegI)->getRegUnits().begin(); 165 UnitE = (*RegI)->getRegUnits().end(); 166 advance(); 167 } 168 } 169 170 bool isValid() const { return UnitI != UnitE; } 171 172 unsigned operator* () const { assert(isValid()); return *UnitI; } 173 174 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 175 176 /// Preincrement. Move to the next unit. 177 void operator++() { 178 assert(isValid() && "Cannot advance beyond the last operand"); 179 ++UnitI; 180 advance(); 181 } 182 183protected: 184 void advance() { 185 while (UnitI == UnitE) { 186 if (++RegI == RegE) 187 break; 188 UnitI = (*RegI)->getRegUnits().begin(); 189 UnitE = (*RegI)->getRegUnits().end(); 190 } 191 } 192}; 193} // namespace 194 195// Return true of this unit appears in RegUnits. 196static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 197 return RegUnits.test(Unit); 198} 199 200// Inherit register units from subregisters. 201// Return true if the RegUnits changed. 202bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 203 bool changed = false; 204 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 205 I != E; ++I) { 206 CodeGenRegister *SR = I->second; 207 // Merge the subregister's units into this register's RegUnits. 208 changed |= (RegUnits |= SR->RegUnits); 209 } 210 211 return changed; 212} 213 214const CodeGenRegister::SubRegMap & 215CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 216 // Only compute this map once. 217 if (SubRegsComplete) 218 return SubRegs; 219 SubRegsComplete = true; 220 221 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 222 223 // First insert the explicit subregs and make sure they are fully indexed. 224 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 225 CodeGenRegister *SR = ExplicitSubRegs[i]; 226 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 227 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 228 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 229 " appears twice in Register " + getName()); 230 // Map explicit sub-registers first, so the names take precedence. 231 // The inherited sub-registers are mapped below. 232 SubReg2Idx.insert(std::make_pair(SR, Idx)); 233 } 234 235 // Keep track of inherited subregs and how they can be reached. 236 SmallPtrSet<CodeGenRegister*, 8> Orphans; 237 238 // Clone inherited subregs and place duplicate entries in Orphans. 239 // Here the order is important - earlier subregs take precedence. 240 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 241 CodeGenRegister *SR = ExplicitSubRegs[i]; 242 const SubRegMap &Map = SR->computeSubRegs(RegBank); 243 HasDisjunctSubRegs |= SR->HasDisjunctSubRegs; 244 245 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 246 ++SI) { 247 if (!SubRegs.insert(*SI).second) 248 Orphans.insert(SI->second); 249 } 250 } 251 252 // Expand any composed subreg indices. 253 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 254 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 255 // expanded subreg indices recursively. 256 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 257 for (unsigned i = 0; i != Indices.size(); ++i) { 258 CodeGenSubRegIndex *Idx = Indices[i]; 259 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 260 CodeGenRegister *SR = SubRegs[Idx]; 261 const SubRegMap &Map = SR->computeSubRegs(RegBank); 262 263 // Look at the possible compositions of Idx. 264 // They may not all be supported by SR. 265 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 266 E = Comps.end(); I != E; ++I) { 267 SubRegMap::const_iterator SRI = Map.find(I->first); 268 if (SRI == Map.end()) 269 continue; // Idx + I->first doesn't exist in SR. 270 // Add I->second as a name for the subreg SRI->second, assuming it is 271 // orphaned, and the name isn't already used for something else. 272 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 273 continue; 274 // We found a new name for the orphaned sub-register. 275 SubRegs.insert(std::make_pair(I->second, SRI->second)); 276 Indices.push_back(I->second); 277 } 278 } 279 280 // Now Orphans contains the inherited subregisters without a direct index. 281 // Create inferred indexes for all missing entries. 282 // Work backwards in the Indices vector in order to compose subregs bottom-up. 283 // Consider this subreg sequence: 284 // 285 // qsub_1 -> dsub_0 -> ssub_0 286 // 287 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 288 // can be reached in two different ways: 289 // 290 // qsub_1 -> ssub_0 291 // dsub_2 -> ssub_0 292 // 293 // We pick the latter composition because another register may have [dsub_0, 294 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 295 // dsub_2 -> ssub_0 composition can be shared. 296 while (!Indices.empty() && !Orphans.empty()) { 297 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 298 CodeGenRegister *SR = SubRegs[Idx]; 299 const SubRegMap &Map = SR->computeSubRegs(RegBank); 300 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 301 ++SI) 302 if (Orphans.erase(SI->second)) 303 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 304 } 305 306 // Compute the inverse SubReg -> Idx map. 307 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 308 SI != SE; ++SI) { 309 if (SI->second == this) { 310 ArrayRef<SMLoc> Loc; 311 if (TheDef) 312 Loc = TheDef->getLoc(); 313 PrintFatalError(Loc, "Register " + getName() + 314 " has itself as a sub-register"); 315 } 316 317 // Compute AllSuperRegsCovered. 318 if (!CoveredBySubRegs) 319 SI->first->AllSuperRegsCovered = false; 320 321 // Ensure that every sub-register has a unique name. 322 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 323 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 324 if (Ins->second == SI->first) 325 continue; 326 // Trouble: Two different names for SI->second. 327 ArrayRef<SMLoc> Loc; 328 if (TheDef) 329 Loc = TheDef->getLoc(); 330 PrintFatalError(Loc, "Sub-register can't have two names: " + 331 SI->second->getName() + " available as " + 332 SI->first->getName() + " and " + Ins->second->getName()); 333 } 334 335 // Derive possible names for sub-register concatenations from any explicit 336 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 337 // that getConcatSubRegIndex() won't invent any concatenated indices that the 338 // user already specified. 339 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 340 CodeGenRegister *SR = ExplicitSubRegs[i]; 341 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 342 continue; 343 344 // SR is composed of multiple sub-regs. Find their names in this register. 345 SmallVector<CodeGenSubRegIndex*, 8> Parts; 346 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 347 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 348 349 // Offer this as an existing spelling for the concatenation of Parts. 350 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 351 } 352 353 // Initialize RegUnitList. Because getSubRegs is called recursively, this 354 // processes the register hierarchy in postorder. 355 // 356 // Inherit all sub-register units. It is good enough to look at the explicit 357 // sub-registers, the other registers won't contribute any more units. 358 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 359 CodeGenRegister *SR = ExplicitSubRegs[i]; 360 RegUnits |= SR->RegUnits; 361 } 362 363 // Absent any ad hoc aliasing, we create one register unit per leaf register. 364 // These units correspond to the maximal cliques in the register overlap 365 // graph which is optimal. 366 // 367 // When there is ad hoc aliasing, we simply create one unit per edge in the 368 // undirected ad hoc aliasing graph. Technically, we could do better by 369 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 370 // are extremely rare anyway (I've never seen one), so we don't bother with 371 // the added complexity. 372 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 373 CodeGenRegister *AR = ExplicitAliases[i]; 374 // Only visit each edge once. 375 if (AR->SubRegsComplete) 376 continue; 377 // Create a RegUnit representing this alias edge, and add it to both 378 // registers. 379 unsigned Unit = RegBank.newRegUnit(this, AR); 380 RegUnits.set(Unit); 381 AR->RegUnits.set(Unit); 382 } 383 384 // Finally, create units for leaf registers without ad hoc aliases. Note that 385 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 386 // necessary. This means the aliasing leaf registers can share a single unit. 387 if (RegUnits.empty()) 388 RegUnits.set(RegBank.newRegUnit(this)); 389 390 // We have now computed the native register units. More may be adopted later 391 // for balancing purposes. 392 NativeRegUnits = RegUnits; 393 394 return SubRegs; 395} 396 397// In a register that is covered by its sub-registers, try to find redundant 398// sub-registers. For example: 399// 400// QQ0 = {Q0, Q1} 401// Q0 = {D0, D1} 402// Q1 = {D2, D3} 403// 404// We can infer that D1_D2 is also a sub-register, even if it wasn't named in 405// the register definition. 406// 407// The explicitly specified registers form a tree. This function discovers 408// sub-register relationships that would force a DAG. 409// 410void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 411 // Collect new sub-registers first, add them later. 412 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 413 414 // Look at the leading super-registers of each sub-register. Those are the 415 // candidates for new sub-registers, assuming they are fully contained in 416 // this register. 417 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 418 const CodeGenRegister *SubReg = I->second; 419 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 420 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 421 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 422 // Already got this sub-register? 423 if (Cand == this || getSubRegIndex(Cand)) 424 continue; 425 // Check if each component of Cand is already a sub-register. 426 // We know that the first component is I->second, and is present with the 427 // name I->first. 428 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 429 assert(!Cand->ExplicitSubRegs.empty() && 430 "Super-register has no sub-registers"); 431 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 432 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 433 Parts.push_back(Idx); 434 else { 435 // Sub-register doesn't exist. 436 Parts.clear(); 437 break; 438 } 439 } 440 // If some Cand sub-register is not part of this register, or if Cand only 441 // has one sub-register, there is nothing to do. 442 if (Parts.size() <= 1) 443 continue; 444 445 // Each part of Cand is a sub-register of this. Make the full Cand also 446 // a sub-register with a concatenated sub-register index. 447 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 448 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 449 } 450 } 451 452 // Now add all the new sub-registers. 453 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 454 // Don't add Cand if another sub-register is already using the index. 455 if (!SubRegs.insert(NewSubRegs[i]).second) 456 continue; 457 458 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 459 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 460 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 461 } 462 463 // Create sub-register index composition maps for the synthesized indices. 464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 465 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 466 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 467 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 468 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 469 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 470 if (!SubIdx) 471 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 472 SI->second->getName() + " in " + getName()); 473 NewIdx->addComposite(SI->first, SubIdx); 474 } 475 } 476} 477 478void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 479 // Only visit each register once. 480 if (SuperRegsComplete) 481 return; 482 SuperRegsComplete = true; 483 484 // Make sure all sub-registers have been visited first, so the super-reg 485 // lists will be topologically ordered. 486 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 487 I != E; ++I) 488 I->second->computeSuperRegs(RegBank); 489 490 // Now add this as a super-register on all sub-registers. 491 // Also compute the TopoSigId in post-order. 492 TopoSigId Id; 493 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 494 I != E; ++I) { 495 // Topological signature computed from SubIdx, TopoId(SubReg). 496 // Loops and idempotent indices have TopoSig = ~0u. 497 Id.push_back(I->first->EnumValue); 498 Id.push_back(I->second->TopoSig); 499 500 // Don't add duplicate entries. 501 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 502 continue; 503 I->second->SuperRegs.push_back(this); 504 } 505 TopoSig = RegBank.getTopoSig(Id); 506} 507 508void 509CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 510 CodeGenRegBank &RegBank) const { 511 assert(SubRegsComplete && "Must precompute sub-registers"); 512 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 513 CodeGenRegister *SR = ExplicitSubRegs[i]; 514 if (OSet.insert(SR)) 515 SR->addSubRegsPreOrder(OSet, RegBank); 516 } 517 // Add any secondary sub-registers that weren't part of the explicit tree. 518 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 519 I != E; ++I) 520 OSet.insert(I->second); 521} 522 523// Get the sum of this register's unit weights. 524unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 525 unsigned Weight = 0; 526 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 527 I != E; ++I) { 528 Weight += RegBank.getRegUnit(*I).Weight; 529 } 530 return Weight; 531} 532 533//===----------------------------------------------------------------------===// 534// RegisterTuples 535//===----------------------------------------------------------------------===// 536 537// A RegisterTuples def is used to generate pseudo-registers from lists of 538// sub-registers. We provide a SetTheory expander class that returns the new 539// registers. 540namespace { 541struct TupleExpander : SetTheory::Expander { 542 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 543 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 544 unsigned Dim = Indices.size(); 545 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 546 if (Dim != SubRegs->size()) 547 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 548 if (Dim < 2) 549 PrintFatalError(Def->getLoc(), 550 "Tuples must have at least 2 sub-registers"); 551 552 // Evaluate the sub-register lists to be zipped. 553 unsigned Length = ~0u; 554 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 555 for (unsigned i = 0; i != Dim; ++i) { 556 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 557 Length = std::min(Length, unsigned(Lists[i].size())); 558 } 559 560 if (Length == 0) 561 return; 562 563 // Precompute some types. 564 Record *RegisterCl = Def->getRecords().getClass("Register"); 565 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 566 StringInit *BlankName = StringInit::get(""); 567 568 // Zip them up. 569 for (unsigned n = 0; n != Length; ++n) { 570 std::string Name; 571 Record *Proto = Lists[0][n]; 572 std::vector<Init*> Tuple; 573 unsigned CostPerUse = 0; 574 for (unsigned i = 0; i != Dim; ++i) { 575 Record *Reg = Lists[i][n]; 576 if (i) Name += '_'; 577 Name += Reg->getName(); 578 Tuple.push_back(DefInit::get(Reg)); 579 CostPerUse = std::max(CostPerUse, 580 unsigned(Reg->getValueAsInt("CostPerUse"))); 581 } 582 583 // Create a new Record representing the synthesized register. This record 584 // is only for consumption by CodeGenRegister, it is not added to the 585 // RecordKeeper. 586 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 587 Elts.insert(NewReg); 588 589 // Copy Proto super-classes. 590 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 591 for (const auto &SuperPair : Supers) 592 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 593 594 // Copy Proto fields. 595 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 596 RecordVal RV = Proto->getValues()[i]; 597 598 // Skip existing fields, like NAME. 599 if (NewReg->getValue(RV.getNameInit())) 600 continue; 601 602 StringRef Field = RV.getName(); 603 604 // Replace the sub-register list with Tuple. 605 if (Field == "SubRegs") 606 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 607 608 // Provide a blank AsmName. MC hacks are required anyway. 609 if (Field == "AsmName") 610 RV.setValue(BlankName); 611 612 // CostPerUse is aggregated from all Tuple members. 613 if (Field == "CostPerUse") 614 RV.setValue(IntInit::get(CostPerUse)); 615 616 // Composite registers are always covered by sub-registers. 617 if (Field == "CoveredBySubRegs") 618 RV.setValue(BitInit::get(true)); 619 620 // Copy fields from the RegisterTuples def. 621 if (Field == "SubRegIndices" || 622 Field == "CompositeIndices") { 623 NewReg->addValue(*Def->getValue(Field)); 624 continue; 625 } 626 627 // Some fields get their default uninitialized value. 628 if (Field == "DwarfNumbers" || 629 Field == "DwarfAlias" || 630 Field == "Aliases") { 631 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 632 NewReg->addValue(*DefRV); 633 continue; 634 } 635 636 // Everything else is copied from Proto. 637 NewReg->addValue(RV); 638 } 639 } 640 } 641}; 642} 643 644//===----------------------------------------------------------------------===// 645// CodeGenRegisterClass 646//===----------------------------------------------------------------------===// 647 648static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 649 std::sort(M.begin(), M.end(), deref<llvm::less>()); 650 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 651} 652 653CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 654 : TheDef(R), 655 Name(R->getName()), 656 TopoSigs(RegBank.getNumTopoSigs()), 657 EnumValue(-1), 658 LaneMask(0) { 659 // Rename anonymous register classes. 660 if (R->getName().size() > 9 && R->getName()[9] == '.') { 661 static unsigned AnonCounter = 0; 662 R->setName("AnonRegClass_" + utostr(AnonCounter++)); 663 } 664 665 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 666 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 667 Record *Type = TypeList[i]; 668 if (!Type->isSubClassOf("ValueType")) 669 PrintFatalError("RegTypes list member '" + Type->getName() + 670 "' does not derive from the ValueType class!"); 671 VTs.push_back(getValueType(Type)); 672 } 673 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 674 675 // Allocation order 0 is the full set. AltOrders provides others. 676 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 677 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 678 Orders.resize(1 + AltOrders->size()); 679 680 // Default allocation order always contains all registers. 681 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 682 Orders[0].push_back((*Elements)[i]); 683 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 684 Members.push_back(Reg); 685 TopoSigs.set(Reg->getTopoSig()); 686 } 687 sortAndUniqueRegisters(Members); 688 689 // Alternative allocation orders may be subsets. 690 SetTheory::RecSet Order; 691 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 692 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 693 Orders[1 + i].append(Order.begin(), Order.end()); 694 // Verify that all altorder members are regclass members. 695 while (!Order.empty()) { 696 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 697 Order.pop_back(); 698 if (!contains(Reg)) 699 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 700 " is not a class member"); 701 } 702 } 703 704 // Allow targets to override the size in bits of the RegisterClass. 705 unsigned Size = R->getValueAsInt("Size"); 706 707 Namespace = R->getValueAsString("Namespace"); 708 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 709 SpillAlignment = R->getValueAsInt("Alignment"); 710 CopyCost = R->getValueAsInt("CopyCost"); 711 Allocatable = R->getValueAsBit("isAllocatable"); 712 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 713 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 714 if (AllocationPriority < 0 || AllocationPriority > 63) 715 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 716 this->AllocationPriority = AllocationPriority; 717} 718 719// Create an inferred register class that was missing from the .td files. 720// Most properties will be inherited from the closest super-class after the 721// class structure has been computed. 722CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 723 StringRef Name, Key Props) 724 : Members(*Props.Members), 725 TheDef(nullptr), 726 Name(Name), 727 TopoSigs(RegBank.getNumTopoSigs()), 728 EnumValue(-1), 729 SpillSize(Props.SpillSize), 730 SpillAlignment(Props.SpillAlignment), 731 CopyCost(0), 732 Allocatable(true), 733 AllocationPriority(0) { 734 for (const auto R : Members) 735 TopoSigs.set(R->getTopoSig()); 736} 737 738// Compute inherited propertied for a synthesized register class. 739void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 740 assert(!getDef() && "Only synthesized classes can inherit properties"); 741 assert(!SuperClasses.empty() && "Synthesized class without super class"); 742 743 // The last super-class is the smallest one. 744 CodeGenRegisterClass &Super = *SuperClasses.back(); 745 746 // Most properties are copied directly. 747 // Exceptions are members, size, and alignment 748 Namespace = Super.Namespace; 749 VTs = Super.VTs; 750 CopyCost = Super.CopyCost; 751 Allocatable = Super.Allocatable; 752 AltOrderSelect = Super.AltOrderSelect; 753 AllocationPriority = Super.AllocationPriority; 754 755 // Copy all allocation orders, filter out foreign registers from the larger 756 // super-class. 757 Orders.resize(Super.Orders.size()); 758 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 759 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 760 if (contains(RegBank.getReg(Super.Orders[i][j]))) 761 Orders[i].push_back(Super.Orders[i][j]); 762} 763 764bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 765 return std::binary_search(Members.begin(), Members.end(), Reg, 766 deref<llvm::less>()); 767} 768 769namespace llvm { 770 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 771 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 772 for (const auto R : *K.Members) 773 OS << ", " << R->getName(); 774 return OS << " }"; 775 } 776} 777 778// This is a simple lexicographical order that can be used to search for sets. 779// It is not the same as the topological order provided by TopoOrderRC. 780bool CodeGenRegisterClass::Key:: 781operator<(const CodeGenRegisterClass::Key &B) const { 782 assert(Members && B.Members); 783 return std::tie(*Members, SpillSize, SpillAlignment) < 784 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 785} 786 787// Returns true if RC is a strict subclass. 788// RC is a sub-class of this class if it is a valid replacement for any 789// instruction operand where a register of this classis required. It must 790// satisfy these conditions: 791// 792// 1. All RC registers are also in this. 793// 2. The RC spill size must not be smaller than our spill size. 794// 3. RC spill alignment must be compatible with ours. 795// 796static bool testSubClass(const CodeGenRegisterClass *A, 797 const CodeGenRegisterClass *B) { 798 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 799 A->SpillSize <= B->SpillSize && 800 std::includes(A->getMembers().begin(), A->getMembers().end(), 801 B->getMembers().begin(), B->getMembers().end(), 802 deref<llvm::less>()); 803} 804 805/// Sorting predicate for register classes. This provides a topological 806/// ordering that arranges all register classes before their sub-classes. 807/// 808/// Register classes with the same registers, spill size, and alignment form a 809/// clique. They will be ordered alphabetically. 810/// 811static bool TopoOrderRC(const CodeGenRegisterClass &PA, 812 const CodeGenRegisterClass &PB) { 813 auto *A = &PA; 814 auto *B = &PB; 815 if (A == B) 816 return 0; 817 818 // Order by ascending spill size. 819 if (A->SpillSize < B->SpillSize) 820 return true; 821 if (A->SpillSize > B->SpillSize) 822 return false; 823 824 // Order by ascending spill alignment. 825 if (A->SpillAlignment < B->SpillAlignment) 826 return true; 827 if (A->SpillAlignment > B->SpillAlignment) 828 return false; 829 830 // Order by descending set size. Note that the classes' allocation order may 831 // not have been computed yet. The Members set is always vaild. 832 if (A->getMembers().size() > B->getMembers().size()) 833 return true; 834 if (A->getMembers().size() < B->getMembers().size()) 835 return false; 836 837 // Finally order by name as a tie breaker. 838 return StringRef(A->getName()) < B->getName(); 839} 840 841std::string CodeGenRegisterClass::getQualifiedName() const { 842 if (Namespace.empty()) 843 return getName(); 844 else 845 return Namespace + "::" + getName(); 846} 847 848// Compute sub-classes of all register classes. 849// Assume the classes are ordered topologically. 850void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 851 auto &RegClasses = RegBank.getRegClasses(); 852 853 // Visit backwards so sub-classes are seen first. 854 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 855 CodeGenRegisterClass &RC = *I; 856 RC.SubClasses.resize(RegClasses.size()); 857 RC.SubClasses.set(RC.EnumValue); 858 859 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 860 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 861 CodeGenRegisterClass &SubRC = *I2; 862 if (RC.SubClasses.test(SubRC.EnumValue)) 863 continue; 864 if (!testSubClass(&RC, &SubRC)) 865 continue; 866 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 867 // check them again. 868 RC.SubClasses |= SubRC.SubClasses; 869 } 870 871 // Sweep up missed clique members. They will be immediately preceding RC. 872 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 873 RC.SubClasses.set(I2->EnumValue); 874 } 875 876 // Compute the SuperClasses lists from the SubClasses vectors. 877 for (auto &RC : RegClasses) { 878 const BitVector &SC = RC.getSubClasses(); 879 auto I = RegClasses.begin(); 880 for (int s = 0, next_s = SC.find_first(); next_s != -1; 881 next_s = SC.find_next(s)) { 882 std::advance(I, next_s - s); 883 s = next_s; 884 if (&*I == &RC) 885 continue; 886 I->SuperClasses.push_back(&RC); 887 } 888 } 889 890 // With the class hierarchy in place, let synthesized register classes inherit 891 // properties from their closest super-class. The iteration order here can 892 // propagate properties down multiple levels. 893 for (auto &RC : RegClasses) 894 if (!RC.getDef()) 895 RC.inheritProperties(RegBank); 896} 897 898void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 899 BitVector &Out) const { 900 auto FindI = SuperRegClasses.find(SubIdx); 901 if (FindI == SuperRegClasses.end()) 902 return; 903 for (CodeGenRegisterClass *RC : FindI->second) 904 Out.set(RC->EnumValue); 905} 906 907// Populate a unique sorted list of units from a register set. 908void CodeGenRegisterClass::buildRegUnitSet( 909 std::vector<unsigned> &RegUnits) const { 910 std::vector<unsigned> TmpUnits; 911 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 912 TmpUnits.push_back(*UnitI); 913 std::sort(TmpUnits.begin(), TmpUnits.end()); 914 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 915 std::back_inserter(RegUnits)); 916} 917 918//===----------------------------------------------------------------------===// 919// CodeGenRegBank 920//===----------------------------------------------------------------------===// 921 922CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 923 // Configure register Sets to understand register classes and tuples. 924 Sets.addFieldExpander("RegisterClass", "MemberList"); 925 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 926 Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>()); 927 928 // Read in the user-defined (named) sub-register indices. 929 // More indices will be synthesized later. 930 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 931 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 932 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 933 getSubRegIdx(SRIs[i]); 934 // Build composite maps from ComposedOf fields. 935 for (auto &Idx : SubRegIndices) 936 Idx.updateComponents(*this); 937 938 // Read in the register definitions. 939 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 940 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 941 // Assign the enumeration values. 942 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 943 getReg(Regs[i]); 944 945 // Expand tuples and number the new registers. 946 std::vector<Record*> Tups = 947 Records.getAllDerivedDefinitions("RegisterTuples"); 948 949 for (Record *R : Tups) { 950 std::vector<Record *> TupRegs = *Sets.expand(R); 951 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 952 for (Record *RC : TupRegs) 953 getReg(RC); 954 } 955 956 // Now all the registers are known. Build the object graph of explicit 957 // register-register references. 958 for (auto &Reg : Registers) 959 Reg.buildObjectGraph(*this); 960 961 // Compute register name map. 962 for (auto &Reg : Registers) 963 // FIXME: This could just be RegistersByName[name] = register, except that 964 // causes some failures in MIPS - perhaps they have duplicate register name 965 // entries? (or maybe there's a reason for it - I don't know much about this 966 // code, just drive-by refactoring) 967 RegistersByName.insert( 968 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 969 970 // Precompute all sub-register maps. 971 // This will create Composite entries for all inferred sub-register indices. 972 for (auto &Reg : Registers) 973 Reg.computeSubRegs(*this); 974 975 // Infer even more sub-registers by combining leading super-registers. 976 for (auto &Reg : Registers) 977 if (Reg.CoveredBySubRegs) 978 Reg.computeSecondarySubRegs(*this); 979 980 // After the sub-register graph is complete, compute the topologically 981 // ordered SuperRegs list. 982 for (auto &Reg : Registers) 983 Reg.computeSuperRegs(*this); 984 985 // Native register units are associated with a leaf register. They've all been 986 // discovered now. 987 NumNativeRegUnits = RegUnits.size(); 988 989 // Read in register class definitions. 990 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 991 if (RCs.empty()) 992 PrintFatalError("No 'RegisterClass' subclasses defined!"); 993 994 // Allocate user-defined register classes. 995 for (auto *RC : RCs) { 996 RegClasses.emplace_back(*this, RC); 997 addToMaps(&RegClasses.back()); 998 } 999 1000 // Infer missing classes to create a full algebra. 1001 computeInferredRegisterClasses(); 1002 1003 // Order register classes topologically and assign enum values. 1004 RegClasses.sort(TopoOrderRC); 1005 unsigned i = 0; 1006 for (auto &RC : RegClasses) 1007 RC.EnumValue = i++; 1008 CodeGenRegisterClass::computeSubClasses(*this); 1009} 1010 1011// Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1012CodeGenSubRegIndex* 1013CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1014 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1015 return &SubRegIndices.back(); 1016} 1017 1018CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1019 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1020 if (Idx) 1021 return Idx; 1022 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1023 Idx = &SubRegIndices.back(); 1024 return Idx; 1025} 1026 1027CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1028 CodeGenRegister *&Reg = Def2Reg[Def]; 1029 if (Reg) 1030 return Reg; 1031 Registers.emplace_back(Def, Registers.size() + 1); 1032 Reg = &Registers.back(); 1033 return Reg; 1034} 1035 1036void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1037 if (Record *Def = RC->getDef()) 1038 Def2RC.insert(std::make_pair(Def, RC)); 1039 1040 // Duplicate classes are rejected by insert(). 1041 // That's OK, we only care about the properties handled by CGRC::Key. 1042 CodeGenRegisterClass::Key K(*RC); 1043 Key2RC.insert(std::make_pair(K, RC)); 1044} 1045 1046// Create a synthetic sub-class if it is missing. 1047CodeGenRegisterClass* 1048CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1049 const CodeGenRegister::Vec *Members, 1050 StringRef Name) { 1051 // Synthetic sub-class has the same size and alignment as RC. 1052 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1053 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1054 if (FoundI != Key2RC.end()) 1055 return FoundI->second; 1056 1057 // Sub-class doesn't exist, create a new one. 1058 RegClasses.emplace_back(*this, Name, K); 1059 addToMaps(&RegClasses.back()); 1060 return &RegClasses.back(); 1061} 1062 1063CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1064 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1065 return RC; 1066 1067 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1068} 1069 1070CodeGenSubRegIndex* 1071CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1072 CodeGenSubRegIndex *B) { 1073 // Look for an existing entry. 1074 CodeGenSubRegIndex *Comp = A->compose(B); 1075 if (Comp) 1076 return Comp; 1077 1078 // None exists, synthesize one. 1079 std::string Name = A->getName() + "_then_" + B->getName(); 1080 Comp = createSubRegIndex(Name, A->getNamespace()); 1081 A->addComposite(B, Comp); 1082 return Comp; 1083} 1084 1085CodeGenSubRegIndex *CodeGenRegBank:: 1086getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1087 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1088 1089 // Look for an existing entry. 1090 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1091 if (Idx) 1092 return Idx; 1093 1094 // None exists, synthesize one. 1095 std::string Name = Parts.front()->getName(); 1096 // Determine whether all parts are contiguous. 1097 bool isContinuous = true; 1098 unsigned Size = Parts.front()->Size; 1099 unsigned LastOffset = Parts.front()->Offset; 1100 unsigned LastSize = Parts.front()->Size; 1101 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1102 Name += '_'; 1103 Name += Parts[i]->getName(); 1104 Size += Parts[i]->Size; 1105 if (Parts[i]->Offset != (LastOffset + LastSize)) 1106 isContinuous = false; 1107 LastOffset = Parts[i]->Offset; 1108 LastSize = Parts[i]->Size; 1109 } 1110 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1111 Idx->Size = Size; 1112 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1113 return Idx; 1114} 1115 1116void CodeGenRegBank::computeComposites() { 1117 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1118 // and many registers will share TopoSigs on regular architectures. 1119 BitVector TopoSigs(getNumTopoSigs()); 1120 1121 for (const auto &Reg1 : Registers) { 1122 // Skip identical subreg structures already processed. 1123 if (TopoSigs.test(Reg1.getTopoSig())) 1124 continue; 1125 TopoSigs.set(Reg1.getTopoSig()); 1126 1127 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1128 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1129 e1 = SRM1.end(); i1 != e1; ++i1) { 1130 CodeGenSubRegIndex *Idx1 = i1->first; 1131 CodeGenRegister *Reg2 = i1->second; 1132 // Ignore identity compositions. 1133 if (&Reg1 == Reg2) 1134 continue; 1135 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1136 // Try composing Idx1 with another SubRegIndex. 1137 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1138 e2 = SRM2.end(); i2 != e2; ++i2) { 1139 CodeGenSubRegIndex *Idx2 = i2->first; 1140 CodeGenRegister *Reg3 = i2->second; 1141 // Ignore identity compositions. 1142 if (Reg2 == Reg3) 1143 continue; 1144 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1145 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1146 assert(Idx3 && "Sub-register doesn't have an index"); 1147 1148 // Conflicting composition? Emit a warning but allow it. 1149 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1150 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1151 " and " + Idx2->getQualifiedName() + 1152 " compose ambiguously as " + Prev->getQualifiedName() + 1153 " or " + Idx3->getQualifiedName()); 1154 } 1155 } 1156 } 1157} 1158 1159// Compute lane masks. This is similar to register units, but at the 1160// sub-register index level. Each bit in the lane mask is like a register unit 1161// class, and two lane masks will have a bit in common if two sub-register 1162// indices overlap in some register. 1163// 1164// Conservatively share a lane mask bit if two sub-register indices overlap in 1165// some registers, but not in others. That shouldn't happen a lot. 1166void CodeGenRegBank::computeSubRegLaneMasks() { 1167 // First assign individual bits to all the leaf indices. 1168 unsigned Bit = 0; 1169 // Determine mask of lanes that cover their registers. 1170 CoveringLanes = ~0u; 1171 for (auto &Idx : SubRegIndices) { 1172 if (Idx.getComposites().empty()) { 1173 if (Bit > 32) { 1174 PrintFatalError( 1175 Twine("Ran out of lanemask bits to represent subregister ") 1176 + Idx.getName()); 1177 } 1178 Idx.LaneMask = 1u << Bit; 1179 ++Bit; 1180 } else { 1181 Idx.LaneMask = 0; 1182 } 1183 } 1184 1185 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1186 // here is that for each possible target subregister we look at the leafs 1187 // in the subregister graph that compose for this target and create 1188 // transformation sequences for the lanemasks. Each step in the sequence 1189 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1190 // are usually the same for many subregisters we can easily combine the steps 1191 // by combining the masks. 1192 for (const auto &Idx : SubRegIndices) { 1193 const auto &Composites = Idx.getComposites(); 1194 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1195 1196 if (Composites.empty()) { 1197 // Moving from a class with no subregisters we just had a single lane: 1198 // The subregister must be a leaf subregister and only occupies 1 bit. 1199 // Move the bit from the class without subregisters into that position. 1200 unsigned DstBit = Log2_32(Idx.LaneMask); 1201 assert(Idx.LaneMask == 1u << DstBit && "Must be a leaf subregister"); 1202 MaskRolPair MaskRol = { 1, (uint8_t)DstBit }; 1203 LaneTransforms.push_back(MaskRol); 1204 } else { 1205 // Go through all leaf subregisters and find the ones that compose with 1206 // Idx. These make out all possible valid bits in the lane mask we want to 1207 // transform. Looking only at the leafs ensure that only a single bit in 1208 // the mask is set. 1209 unsigned NextBit = 0; 1210 for (auto &Idx2 : SubRegIndices) { 1211 // Skip non-leaf subregisters. 1212 if (!Idx2.getComposites().empty()) 1213 continue; 1214 // Replicate the behaviour from the lane mask generation loop above. 1215 unsigned SrcBit = NextBit; 1216 unsigned SrcMask = 1u << SrcBit; 1217 if (NextBit < 31) 1218 ++NextBit; 1219 assert(Idx2.LaneMask == SrcMask); 1220 1221 // Get the composed subregister if there is any. 1222 auto C = Composites.find(&Idx2); 1223 if (C == Composites.end()) 1224 continue; 1225 const CodeGenSubRegIndex *Composite = C->second; 1226 // The Composed subreg should be a leaf subreg too 1227 assert(Composite->getComposites().empty()); 1228 1229 // Create Mask+Rotate operation and merge with existing ops if possible. 1230 unsigned DstBit = Log2_32(Composite->LaneMask); 1231 int Shift = DstBit - SrcBit; 1232 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; 1233 for (auto &I : LaneTransforms) { 1234 if (I.RotateLeft == RotateLeft) { 1235 I.Mask |= SrcMask; 1236 SrcMask = 0; 1237 } 1238 } 1239 if (SrcMask != 0) { 1240 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1241 LaneTransforms.push_back(MaskRol); 1242 } 1243 } 1244 } 1245 1246 // Optimize if the transformation consists of one step only: Set mask to 1247 // 0xffffffff (including some irrelevant invalid bits) so that it should 1248 // merge with more entries later while compressing the table. 1249 if (LaneTransforms.size() == 1) 1250 LaneTransforms[0].Mask = ~0u; 1251 1252 // Further compression optimization: For invalid compositions resulting 1253 // in a sequence with 0 entries we can just pick any other. Choose 1254 // Mask 0xffffffff with Rotation 0. 1255 if (LaneTransforms.size() == 0) { 1256 MaskRolPair P = { ~0u, 0 }; 1257 LaneTransforms.push_back(P); 1258 } 1259 } 1260 1261 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1262 // by the sub-register graph? This doesn't occur in any known targets. 1263 1264 // Inherit lanes from composites. 1265 for (const auto &Idx : SubRegIndices) { 1266 unsigned Mask = Idx.computeLaneMask(); 1267 // If some super-registers without CoveredBySubRegs use this index, we can 1268 // no longer assume that the lanes are covering their registers. 1269 if (!Idx.AllSuperRegsCovered) 1270 CoveringLanes &= ~Mask; 1271 } 1272 1273 // Compute lane mask combinations for register classes. 1274 for (auto &RegClass : RegClasses) { 1275 unsigned LaneMask = 0; 1276 for (const auto &SubRegIndex : SubRegIndices) { 1277 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1278 continue; 1279 LaneMask |= SubRegIndex.LaneMask; 1280 } 1281 1282 // For classes without any subregisters set LaneMask to 1 instead of 0. 1283 // This makes it easier for client code to handle classes uniformly. 1284 if (LaneMask == 0) 1285 LaneMask = 1; 1286 1287 RegClass.LaneMask = LaneMask; 1288 } 1289} 1290 1291namespace { 1292// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1293// the transitive closure of the union of overlapping register 1294// classes. Together, the UberRegSets form a partition of the registers. If we 1295// consider overlapping register classes to be connected, then each UberRegSet 1296// is a set of connected components. 1297// 1298// An UberRegSet will likely be a horizontal slice of register names of 1299// the same width. Nontrivial subregisters should then be in a separate 1300// UberRegSet. But this property isn't required for valid computation of 1301// register unit weights. 1302// 1303// A Weight field caches the max per-register unit weight in each UberRegSet. 1304// 1305// A set of SingularDeterminants flags single units of some register in this set 1306// for which the unit weight equals the set weight. These units should not have 1307// their weight increased. 1308struct UberRegSet { 1309 CodeGenRegister::Vec Regs; 1310 unsigned Weight; 1311 CodeGenRegister::RegUnitList SingularDeterminants; 1312 1313 UberRegSet(): Weight(0) {} 1314}; 1315} // namespace 1316 1317// Partition registers into UberRegSets, where each set is the transitive 1318// closure of the union of overlapping register classes. 1319// 1320// UberRegSets[0] is a special non-allocatable set. 1321static void computeUberSets(std::vector<UberRegSet> &UberSets, 1322 std::vector<UberRegSet*> &RegSets, 1323 CodeGenRegBank &RegBank) { 1324 1325 const auto &Registers = RegBank.getRegisters(); 1326 1327 // The Register EnumValue is one greater than its index into Registers. 1328 assert(Registers.size() == Registers.back().EnumValue && 1329 "register enum value mismatch"); 1330 1331 // For simplicitly make the SetID the same as EnumValue. 1332 IntEqClasses UberSetIDs(Registers.size()+1); 1333 std::set<unsigned> AllocatableRegs; 1334 for (auto &RegClass : RegBank.getRegClasses()) { 1335 if (!RegClass.Allocatable) 1336 continue; 1337 1338 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1339 if (Regs.empty()) 1340 continue; 1341 1342 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1343 assert(USetID && "register number 0 is invalid"); 1344 1345 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1346 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1347 AllocatableRegs.insert((*I)->EnumValue); 1348 UberSetIDs.join(USetID, (*I)->EnumValue); 1349 } 1350 } 1351 // Combine non-allocatable regs. 1352 for (const auto &Reg : Registers) { 1353 unsigned RegNum = Reg.EnumValue; 1354 if (AllocatableRegs.count(RegNum)) 1355 continue; 1356 1357 UberSetIDs.join(0, RegNum); 1358 } 1359 UberSetIDs.compress(); 1360 1361 // Make the first UberSet a special unallocatable set. 1362 unsigned ZeroID = UberSetIDs[0]; 1363 1364 // Insert Registers into the UberSets formed by union-find. 1365 // Do not resize after this. 1366 UberSets.resize(UberSetIDs.getNumClasses()); 1367 unsigned i = 0; 1368 for (const CodeGenRegister &Reg : Registers) { 1369 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1370 if (!USetID) 1371 USetID = ZeroID; 1372 else if (USetID == ZeroID) 1373 USetID = 0; 1374 1375 UberRegSet *USet = &UberSets[USetID]; 1376 USet->Regs.push_back(&Reg); 1377 sortAndUniqueRegisters(USet->Regs); 1378 RegSets[i++] = USet; 1379 } 1380} 1381 1382// Recompute each UberSet weight after changing unit weights. 1383static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1384 CodeGenRegBank &RegBank) { 1385 // Skip the first unallocatable set. 1386 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1387 E = UberSets.end(); I != E; ++I) { 1388 1389 // Initialize all unit weights in this set, and remember the max units/reg. 1390 const CodeGenRegister *Reg = nullptr; 1391 unsigned MaxWeight = 0, Weight = 0; 1392 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1393 if (Reg != UnitI.getReg()) { 1394 if (Weight > MaxWeight) 1395 MaxWeight = Weight; 1396 Reg = UnitI.getReg(); 1397 Weight = 0; 1398 } 1399 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1400 if (!UWeight) { 1401 UWeight = 1; 1402 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1403 } 1404 Weight += UWeight; 1405 } 1406 if (Weight > MaxWeight) 1407 MaxWeight = Weight; 1408 if (I->Weight != MaxWeight) { 1409 DEBUG( 1410 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1411 for (auto &Unit : I->Regs) 1412 dbgs() << " " << Unit->getName(); 1413 dbgs() << "\n"); 1414 // Update the set weight. 1415 I->Weight = MaxWeight; 1416 } 1417 1418 // Find singular determinants. 1419 for (const auto R : I->Regs) { 1420 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1421 I->SingularDeterminants |= R->getRegUnits(); 1422 } 1423 } 1424 } 1425} 1426 1427// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1428// a register and its subregisters so that they have the same weight as their 1429// UberSet. Self-recursion processes the subregister tree in postorder so 1430// subregisters are normalized first. 1431// 1432// Side effects: 1433// - creates new adopted register units 1434// - causes superregisters to inherit adopted units 1435// - increases the weight of "singular" units 1436// - induces recomputation of UberWeights. 1437static bool normalizeWeight(CodeGenRegister *Reg, 1438 std::vector<UberRegSet> &UberSets, 1439 std::vector<UberRegSet*> &RegSets, 1440 SparseBitVector<> &NormalRegs, 1441 CodeGenRegister::RegUnitList &NormalUnits, 1442 CodeGenRegBank &RegBank) { 1443 if (NormalRegs.test(Reg->EnumValue)) 1444 return false; 1445 NormalRegs.set(Reg->EnumValue); 1446 1447 bool Changed = false; 1448 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1449 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1450 SRE = SRM.end(); SRI != SRE; ++SRI) { 1451 if (SRI->second == Reg) 1452 continue; // self-cycles happen 1453 1454 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1455 NormalRegs, NormalUnits, RegBank); 1456 } 1457 // Postorder register normalization. 1458 1459 // Inherit register units newly adopted by subregisters. 1460 if (Reg->inheritRegUnits(RegBank)) 1461 computeUberWeights(UberSets, RegBank); 1462 1463 // Check if this register is too skinny for its UberRegSet. 1464 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1465 1466 unsigned RegWeight = Reg->getWeight(RegBank); 1467 if (UberSet->Weight > RegWeight) { 1468 // A register unit's weight can be adjusted only if it is the singular unit 1469 // for this register, has not been used to normalize a subregister's set, 1470 // and has not already been used to singularly determine this UberRegSet. 1471 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1472 if (Reg->getRegUnits().count() != 1 1473 || hasRegUnit(NormalUnits, AdjustUnit) 1474 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1475 // We don't have an adjustable unit, so adopt a new one. 1476 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1477 Reg->adoptRegUnit(AdjustUnit); 1478 // Adopting a unit does not immediately require recomputing set weights. 1479 } 1480 else { 1481 // Adjust the existing single unit. 1482 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1483 // The unit may be shared among sets and registers within this set. 1484 computeUberWeights(UberSets, RegBank); 1485 } 1486 Changed = true; 1487 } 1488 1489 // Mark these units normalized so superregisters can't change their weights. 1490 NormalUnits |= Reg->getRegUnits(); 1491 1492 return Changed; 1493} 1494 1495// Compute a weight for each register unit created during getSubRegs. 1496// 1497// The goal is that two registers in the same class will have the same weight, 1498// where each register's weight is defined as sum of its units' weights. 1499void CodeGenRegBank::computeRegUnitWeights() { 1500 std::vector<UberRegSet> UberSets; 1501 std::vector<UberRegSet*> RegSets(Registers.size()); 1502 computeUberSets(UberSets, RegSets, *this); 1503 // UberSets and RegSets are now immutable. 1504 1505 computeUberWeights(UberSets, *this); 1506 1507 // Iterate over each Register, normalizing the unit weights until reaching 1508 // a fix point. 1509 unsigned NumIters = 0; 1510 for (bool Changed = true; Changed; ++NumIters) { 1511 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1512 Changed = false; 1513 for (auto &Reg : Registers) { 1514 CodeGenRegister::RegUnitList NormalUnits; 1515 SparseBitVector<> NormalRegs; 1516 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1517 NormalUnits, *this); 1518 } 1519 } 1520} 1521 1522// Find a set in UniqueSets with the same elements as Set. 1523// Return an iterator into UniqueSets. 1524static std::vector<RegUnitSet>::const_iterator 1525findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1526 const RegUnitSet &Set) { 1527 std::vector<RegUnitSet>::const_iterator 1528 I = UniqueSets.begin(), E = UniqueSets.end(); 1529 for(;I != E; ++I) { 1530 if (I->Units == Set.Units) 1531 break; 1532 } 1533 return I; 1534} 1535 1536// Return true if the RUSubSet is a subset of RUSuperSet. 1537static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1538 const std::vector<unsigned> &RUSuperSet) { 1539 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1540 RUSubSet.begin(), RUSubSet.end()); 1541} 1542 1543/// Iteratively prune unit sets. Prune subsets that are close to the superset, 1544/// but with one or two registers removed. We occasionally have registers like 1545/// APSR and PC thrown in with the general registers. We also see many 1546/// special-purpose register subsets, such as tail-call and Thumb 1547/// encodings. Generating all possible overlapping sets is combinatorial and 1548/// overkill for modeling pressure. Ideally we could fix this statically in 1549/// tablegen by (1) having the target define register classes that only include 1550/// the allocatable registers and marking other classes as non-allocatable and 1551/// (2) having a way to mark special purpose classes as "don't-care" classes for 1552/// the purpose of pressure. However, we make an attempt to handle targets that 1553/// are not nicely defined by merging nearly identical register unit sets 1554/// statically. This generates smaller tables. Then, dynamically, we adjust the 1555/// set limit by filtering the reserved registers. 1556/// 1557/// Merge sets only if the units have the same weight. For example, on ARM, 1558/// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1559/// should not expand the S set to include D regs. 1560void CodeGenRegBank::pruneUnitSets() { 1561 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1562 1563 // Form an equivalence class of UnitSets with no significant difference. 1564 std::vector<unsigned> SuperSetIDs; 1565 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1566 SubIdx != EndIdx; ++SubIdx) { 1567 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1568 unsigned SuperIdx = 0; 1569 for (; SuperIdx != EndIdx; ++SuperIdx) { 1570 if (SuperIdx == SubIdx) 1571 continue; 1572 1573 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1574 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1575 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1576 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1577 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1578 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1579 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1580 << "\n"); 1581 // We can pick any of the set names for the merged set. Go for the 1582 // shortest one to avoid picking the name of one of the classes that are 1583 // artificially created by tablegen. So "FPR128_lo" instead of 1584 // "QQQQ_with_qsub3_in_FPR128_lo". 1585 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1586 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1587 break; 1588 } 1589 } 1590 if (SuperIdx == EndIdx) 1591 SuperSetIDs.push_back(SubIdx); 1592 } 1593 // Populate PrunedUnitSets with each equivalence class's superset. 1594 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1595 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1596 unsigned SuperIdx = SuperSetIDs[i]; 1597 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1598 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1599 } 1600 RegUnitSets.swap(PrunedUnitSets); 1601} 1602 1603// Create a RegUnitSet for each RegClass that contains all units in the class 1604// including adopted units that are necessary to model register pressure. Then 1605// iteratively compute RegUnitSets such that the union of any two overlapping 1606// RegUnitSets is repreresented. 1607// 1608// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1609// RegUnitSet that is a superset of that RegUnitClass. 1610void CodeGenRegBank::computeRegUnitSets() { 1611 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1612 1613 // Compute a unique RegUnitSet for each RegClass. 1614 auto &RegClasses = getRegClasses(); 1615 for (auto &RC : RegClasses) { 1616 if (!RC.Allocatable) 1617 continue; 1618 1619 // Speculatively grow the RegUnitSets to hold the new set. 1620 RegUnitSets.resize(RegUnitSets.size() + 1); 1621 RegUnitSets.back().Name = RC.getName(); 1622 1623 // Compute a sorted list of units in this class. 1624 RC.buildRegUnitSet(RegUnitSets.back().Units); 1625 1626 // Find an existing RegUnitSet. 1627 std::vector<RegUnitSet>::const_iterator SetI = 1628 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1629 if (SetI != std::prev(RegUnitSets.end())) 1630 RegUnitSets.pop_back(); 1631 } 1632 1633 DEBUG(dbgs() << "\nBefore pruning:\n"; 1634 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1635 USIdx < USEnd; ++USIdx) { 1636 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1637 << ":"; 1638 for (auto &U : RegUnitSets[USIdx].Units) 1639 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1640 dbgs() << "\n"; 1641 }); 1642 1643 // Iteratively prune unit sets. 1644 pruneUnitSets(); 1645 1646 DEBUG(dbgs() << "\nBefore union:\n"; 1647 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1648 USIdx < USEnd; ++USIdx) { 1649 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1650 << ":"; 1651 for (auto &U : RegUnitSets[USIdx].Units) 1652 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1653 dbgs() << "\n"; 1654 } 1655 dbgs() << "\nUnion sets:\n"); 1656 1657 // Iterate over all unit sets, including new ones added by this loop. 1658 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1659 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1660 // In theory, this is combinatorial. In practice, it needs to be bounded 1661 // by a small number of sets for regpressure to be efficient. 1662 // If the assert is hit, we need to implement pruning. 1663 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1664 1665 // Compare new sets with all original classes. 1666 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1667 SearchIdx != EndIdx; ++SearchIdx) { 1668 std::set<unsigned> Intersection; 1669 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1670 RegUnitSets[Idx].Units.end(), 1671 RegUnitSets[SearchIdx].Units.begin(), 1672 RegUnitSets[SearchIdx].Units.end(), 1673 std::inserter(Intersection, Intersection.begin())); 1674 if (Intersection.empty()) 1675 continue; 1676 1677 // Speculatively grow the RegUnitSets to hold the new set. 1678 RegUnitSets.resize(RegUnitSets.size() + 1); 1679 RegUnitSets.back().Name = 1680 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1681 1682 std::set_union(RegUnitSets[Idx].Units.begin(), 1683 RegUnitSets[Idx].Units.end(), 1684 RegUnitSets[SearchIdx].Units.begin(), 1685 RegUnitSets[SearchIdx].Units.end(), 1686 std::inserter(RegUnitSets.back().Units, 1687 RegUnitSets.back().Units.begin())); 1688 1689 // Find an existing RegUnitSet, or add the union to the unique sets. 1690 std::vector<RegUnitSet>::const_iterator SetI = 1691 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1692 if (SetI != std::prev(RegUnitSets.end())) 1693 RegUnitSets.pop_back(); 1694 else { 1695 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1696 << " " << RegUnitSets.back().Name << ":"; 1697 for (auto &U : RegUnitSets.back().Units) 1698 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1699 dbgs() << "\n";); 1700 } 1701 } 1702 } 1703 1704 // Iteratively prune unit sets after inferring supersets. 1705 pruneUnitSets(); 1706 1707 DEBUG(dbgs() << "\n"; 1708 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1709 USIdx < USEnd; ++USIdx) { 1710 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1711 << ":"; 1712 for (auto &U : RegUnitSets[USIdx].Units) 1713 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1714 dbgs() << "\n"; 1715 }); 1716 1717 // For each register class, list the UnitSets that are supersets. 1718 RegClassUnitSets.resize(RegClasses.size()); 1719 int RCIdx = -1; 1720 for (auto &RC : RegClasses) { 1721 ++RCIdx; 1722 if (!RC.Allocatable) 1723 continue; 1724 1725 // Recompute the sorted list of units in this class. 1726 std::vector<unsigned> RCRegUnits; 1727 RC.buildRegUnitSet(RCRegUnits); 1728 1729 // Don't increase pressure for unallocatable regclasses. 1730 if (RCRegUnits.empty()) 1731 continue; 1732 1733 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1734 for (auto &U : RCRegUnits) 1735 dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; 1736 dbgs() << "\n UnitSetIDs:"); 1737 1738 // Find all supersets. 1739 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1740 USIdx != USEnd; ++USIdx) { 1741 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1742 DEBUG(dbgs() << " " << USIdx); 1743 RegClassUnitSets[RCIdx].push_back(USIdx); 1744 } 1745 } 1746 DEBUG(dbgs() << "\n"); 1747 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1748 } 1749 1750 // For each register unit, ensure that we have the list of UnitSets that 1751 // contain the unit. Normally, this matches an existing list of UnitSets for a 1752 // register class. If not, we create a new entry in RegClassUnitSets as a 1753 // "fake" register class. 1754 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1755 UnitIdx < UnitEnd; ++UnitIdx) { 1756 std::vector<unsigned> RUSets; 1757 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1758 RegUnitSet &RUSet = RegUnitSets[i]; 1759 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1760 == RUSet.Units.end()) 1761 continue; 1762 RUSets.push_back(i); 1763 } 1764 unsigned RCUnitSetsIdx = 0; 1765 for (unsigned e = RegClassUnitSets.size(); 1766 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1767 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1768 break; 1769 } 1770 } 1771 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1772 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1773 // Create a new list of UnitSets as a "fake" register class. 1774 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1775 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1776 } 1777 } 1778} 1779 1780void CodeGenRegBank::computeRegUnitLaneMasks() { 1781 for (auto &Register : Registers) { 1782 // Create an initial lane mask for all register units. 1783 const auto &RegUnits = Register.getRegUnits(); 1784 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0); 1785 // Iterate through SubRegisters. 1786 typedef CodeGenRegister::SubRegMap SubRegMap; 1787 const SubRegMap &SubRegs = Register.getSubRegs(); 1788 for (SubRegMap::const_iterator S = SubRegs.begin(), 1789 SE = SubRegs.end(); S != SE; ++S) { 1790 CodeGenRegister *SubReg = S->second; 1791 // Ignore non-leaf subregisters, their lane masks are fully covered by 1792 // the leaf subregisters anyway. 1793 if (SubReg->getSubRegs().size() != 0) 1794 continue; 1795 CodeGenSubRegIndex *SubRegIndex = S->first; 1796 const CodeGenRegister *SubRegister = S->second; 1797 unsigned LaneMask = SubRegIndex->LaneMask; 1798 // Distribute LaneMask to Register Units touched. 1799 for (unsigned SUI : SubRegister->getRegUnits()) { 1800 bool Found = false; 1801 unsigned u = 0; 1802 for (unsigned RU : RegUnits) { 1803 if (SUI == RU) { 1804 RegUnitLaneMasks[u] |= LaneMask; 1805 assert(!Found); 1806 Found = true; 1807 } 1808 ++u; 1809 } 1810 (void)Found; 1811 assert(Found); 1812 } 1813 } 1814 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1815 } 1816} 1817 1818void CodeGenRegBank::computeDerivedInfo() { 1819 computeComposites(); 1820 computeSubRegLaneMasks(); 1821 1822 // Compute a weight for each register unit created during getSubRegs. 1823 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1824 computeRegUnitWeights(); 1825 1826 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1827 // supersets for the union of overlapping sets. 1828 computeRegUnitSets(); 1829 1830 computeRegUnitLaneMasks(); 1831 1832 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 1833 for (CodeGenRegisterClass &RC : RegClasses) { 1834 RC.HasDisjunctSubRegs = false; 1835 RC.CoveredBySubRegs = true; 1836 for (const CodeGenRegister *Reg : RC.getMembers()) { 1837 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 1838 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 1839 } 1840 } 1841 1842 // Get the weight of each set. 1843 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1844 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1845 1846 // Find the order of each set. 1847 RegUnitSetOrder.reserve(RegUnitSets.size()); 1848 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1849 RegUnitSetOrder.push_back(Idx); 1850 1851 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1852 [this](unsigned ID1, unsigned ID2) { 1853 return getRegPressureSet(ID1).Units.size() < 1854 getRegPressureSet(ID2).Units.size(); 1855 }); 1856 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1857 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1858 } 1859} 1860 1861// 1862// Synthesize missing register class intersections. 1863// 1864// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1865// returns a maximal register class for all X. 1866// 1867void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1868 assert(!RegClasses.empty()); 1869 // Stash the iterator to the last element so that this loop doesn't visit 1870 // elements added by the getOrCreateSubClass call within it. 1871 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1872 I != std::next(E); ++I) { 1873 CodeGenRegisterClass *RC1 = RC; 1874 CodeGenRegisterClass *RC2 = &*I; 1875 if (RC1 == RC2) 1876 continue; 1877 1878 // Compute the set intersection of RC1 and RC2. 1879 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 1880 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 1881 CodeGenRegister::Vec Intersection; 1882 std::set_intersection( 1883 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 1884 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 1885 1886 // Skip disjoint class pairs. 1887 if (Intersection.empty()) 1888 continue; 1889 1890 // If RC1 and RC2 have different spill sizes or alignments, use the 1891 // larger size for sub-classing. If they are equal, prefer RC1. 1892 if (RC2->SpillSize > RC1->SpillSize || 1893 (RC2->SpillSize == RC1->SpillSize && 1894 RC2->SpillAlignment > RC1->SpillAlignment)) 1895 std::swap(RC1, RC2); 1896 1897 getOrCreateSubClass(RC1, &Intersection, 1898 RC1->getName() + "_and_" + RC2->getName()); 1899 } 1900} 1901 1902// 1903// Synthesize missing sub-classes for getSubClassWithSubReg(). 1904// 1905// Make sure that the set of registers in RC with a given SubIdx sub-register 1906// form a register class. Update RC->SubClassWithSubReg. 1907// 1908void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1909 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1910 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 1911 deref<llvm::less>> SubReg2SetMap; 1912 1913 // Compute the set of registers supporting each SubRegIndex. 1914 SubReg2SetMap SRSets; 1915 for (const auto R : RC->getMembers()) { 1916 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 1917 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1918 E = SRM.end(); I != E; ++I) 1919 SRSets[I->first].push_back(R); 1920 } 1921 1922 for (auto I : SRSets) 1923 sortAndUniqueRegisters(I.second); 1924 1925 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1926 // numerical order to visit synthetic indices last. 1927 for (const auto &SubIdx : SubRegIndices) { 1928 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1929 // Unsupported SubRegIndex. Skip it. 1930 if (I == SRSets.end()) 1931 continue; 1932 // In most cases, all RC registers support the SubRegIndex. 1933 if (I->second.size() == RC->getMembers().size()) { 1934 RC->setSubClassWithSubReg(&SubIdx, RC); 1935 continue; 1936 } 1937 // This is a real subset. See if we have a matching class. 1938 CodeGenRegisterClass *SubRC = 1939 getOrCreateSubClass(RC, &I->second, 1940 RC->getName() + "_with_" + I->first->getName()); 1941 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1942 } 1943} 1944 1945// 1946// Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1947// 1948// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1949// has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1950// 1951 1952void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1953 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1954 SmallVector<std::pair<const CodeGenRegister*, 1955 const CodeGenRegister*>, 16> SSPairs; 1956 BitVector TopoSigs(getNumTopoSigs()); 1957 1958 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1959 for (auto &SubIdx : SubRegIndices) { 1960 // Skip indexes that aren't fully supported by RC's registers. This was 1961 // computed by inferSubClassWithSubReg() above which should have been 1962 // called first. 1963 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1964 continue; 1965 1966 // Build list of (Super, Sub) pairs for this SubIdx. 1967 SSPairs.clear(); 1968 TopoSigs.reset(); 1969 for (const auto Super : RC->getMembers()) { 1970 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1971 assert(Sub && "Missing sub-register"); 1972 SSPairs.push_back(std::make_pair(Super, Sub)); 1973 TopoSigs.set(Sub->getTopoSig()); 1974 } 1975 1976 // Iterate over sub-register class candidates. Ignore classes created by 1977 // this loop. They will never be useful. 1978 // Store an iterator to the last element (not end) so that this loop doesn't 1979 // visit newly inserted elements. 1980 assert(!RegClasses.empty()); 1981 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 1982 I != std::next(E); ++I) { 1983 CodeGenRegisterClass &SubRC = *I; 1984 // Topological shortcut: SubRC members have the wrong shape. 1985 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 1986 continue; 1987 // Compute the subset of RC that maps into SubRC. 1988 CodeGenRegister::Vec SubSetVec; 1989 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1990 if (SubRC.contains(SSPairs[i].second)) 1991 SubSetVec.push_back(SSPairs[i].first); 1992 1993 if (SubSetVec.empty()) 1994 continue; 1995 1996 // RC injects completely into SubRC. 1997 sortAndUniqueRegisters(SubSetVec); 1998 if (SubSetVec.size() == SSPairs.size()) { 1999 SubRC.addSuperRegClass(&SubIdx, RC); 2000 continue; 2001 } 2002 2003 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2004 // class. 2005 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2006 SubIdx.getName() + "_in_" + 2007 SubRC.getName()); 2008 } 2009 } 2010} 2011 2012 2013// 2014// Infer missing register classes. 2015// 2016void CodeGenRegBank::computeInferredRegisterClasses() { 2017 assert(!RegClasses.empty()); 2018 // When this function is called, the register classes have not been sorted 2019 // and assigned EnumValues yet. That means getSubClasses(), 2020 // getSuperClasses(), and hasSubClass() functions are defunct. 2021 2022 // Use one-before-the-end so it doesn't move forward when new elements are 2023 // added. 2024 auto FirstNewRC = std::prev(RegClasses.end()); 2025 2026 // Visit all register classes, including the ones being added by the loop. 2027 // Watch out for iterator invalidation here. 2028 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2029 CodeGenRegisterClass *RC = &*I; 2030 2031 // Synthesize answers for getSubClassWithSubReg(). 2032 inferSubClassWithSubReg(RC); 2033 2034 // Synthesize answers for getCommonSubClass(). 2035 inferCommonSubClass(RC); 2036 2037 // Synthesize answers for getMatchingSuperRegClass(). 2038 inferMatchingSuperRegClass(RC); 2039 2040 // New register classes are created while this loop is running, and we need 2041 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2042 // to match old super-register classes with sub-register classes created 2043 // after inferMatchingSuperRegClass was called. At this point, 2044 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2045 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2046 if (I == FirstNewRC) { 2047 auto NextNewRC = std::prev(RegClasses.end()); 2048 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2049 ++I2) 2050 inferMatchingSuperRegClass(&*I2, E2); 2051 FirstNewRC = NextNewRC; 2052 } 2053 } 2054} 2055 2056/// getRegisterClassForRegister - Find the register class that contains the 2057/// specified physical register. If the register is not in a register class, 2058/// return null. If the register is in multiple classes, and the classes have a 2059/// superset-subset relationship and the same set of types, return the 2060/// superclass. Otherwise return null. 2061const CodeGenRegisterClass* 2062CodeGenRegBank::getRegClassForRegister(Record *R) { 2063 const CodeGenRegister *Reg = getReg(R); 2064 const CodeGenRegisterClass *FoundRC = nullptr; 2065 for (const auto &RC : getRegClasses()) { 2066 if (!RC.contains(Reg)) 2067 continue; 2068 2069 // If this is the first class that contains the register, 2070 // make a note of it and go on to the next class. 2071 if (!FoundRC) { 2072 FoundRC = &RC; 2073 continue; 2074 } 2075 2076 // If a register's classes have different types, return null. 2077 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2078 return nullptr; 2079 2080 // Check to see if the previously found class that contains 2081 // the register is a subclass of the current class. If so, 2082 // prefer the superclass. 2083 if (RC.hasSubClass(FoundRC)) { 2084 FoundRC = &RC; 2085 continue; 2086 } 2087 2088 // Check to see if the previously found class that contains 2089 // the register is a superclass of the current class. If so, 2090 // prefer the superclass. 2091 if (FoundRC->hasSubClass(&RC)) 2092 continue; 2093 2094 // Multiple classes, and neither is a superclass of the other. 2095 // Return null. 2096 return nullptr; 2097 } 2098 return FoundRC; 2099} 2100 2101BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2102 SetVector<const CodeGenRegister*> Set; 2103 2104 // First add Regs with all sub-registers. 2105 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2106 CodeGenRegister *Reg = getReg(Regs[i]); 2107 if (Set.insert(Reg)) 2108 // Reg is new, add all sub-registers. 2109 // The pre-ordering is not important here. 2110 Reg->addSubRegsPreOrder(Set, *this); 2111 } 2112 2113 // Second, find all super-registers that are completely covered by the set. 2114 for (unsigned i = 0; i != Set.size(); ++i) { 2115 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2116 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2117 const CodeGenRegister *Super = SR[j]; 2118 if (!Super->CoveredBySubRegs || Set.count(Super)) 2119 continue; 2120 // This new super-register is covered by its sub-registers. 2121 bool AllSubsInSet = true; 2122 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2123 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2124 E = SRM.end(); I != E; ++I) 2125 if (!Set.count(I->second)) { 2126 AllSubsInSet = false; 2127 break; 2128 } 2129 // All sub-registers in Set, add Super as well. 2130 // We will visit Super later to recheck its super-registers. 2131 if (AllSubsInSet) 2132 Set.insert(Super); 2133 } 2134 } 2135 2136 // Convert to BitVector. 2137 BitVector BV(Registers.size() + 1); 2138 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2139 BV.set(Set[i]->EnumValue); 2140 return BV; 2141} 2142