1//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This class wraps target description classes used by the various code
11// generation TableGen backends.  This makes it easier to access the data and
12// provides a single place that needs to check it for validity.  All of these
13// classes abort on error conditions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CodeGenTarget.h"
18#include "CodeGenIntrinsics.h"
19#include "CodeGenSchedule.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/TableGen/Error.h"
24#include "llvm/TableGen/Record.h"
25#include <algorithm>
26using namespace llvm;
27
28static cl::opt<unsigned>
29AsmParserNum("asmparsernum", cl::init(0),
30             cl::desc("Make -gen-asm-parser emit assembly parser #N"));
31
32static cl::opt<unsigned>
33AsmWriterNum("asmwriternum", cl::init(0),
34             cl::desc("Make -gen-asm-writer emit assembly writer #N"));
35
36/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
37/// record corresponds to.
38MVT::SimpleValueType llvm::getValueType(Record *Rec) {
39  return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
40}
41
42StringRef llvm::getName(MVT::SimpleValueType T) {
43  switch (T) {
44  case MVT::Other:   return "UNKNOWN";
45  case MVT::iPTR:    return "TLI.getPointerTy()";
46  case MVT::iPTRAny: return "TLI.getPointerTy()";
47  default: return getEnumName(T);
48  }
49}
50
51StringRef llvm::getEnumName(MVT::SimpleValueType T) {
52  switch (T) {
53  case MVT::Other:    return "MVT::Other";
54  case MVT::i1:       return "MVT::i1";
55  case MVT::i8:       return "MVT::i8";
56  case MVT::i16:      return "MVT::i16";
57  case MVT::i32:      return "MVT::i32";
58  case MVT::i64:      return "MVT::i64";
59  case MVT::i128:     return "MVT::i128";
60  case MVT::Any:      return "MVT::Any";
61  case MVT::iAny:     return "MVT::iAny";
62  case MVT::fAny:     return "MVT::fAny";
63  case MVT::vAny:     return "MVT::vAny";
64  case MVT::f16:      return "MVT::f16";
65  case MVT::f32:      return "MVT::f32";
66  case MVT::f64:      return "MVT::f64";
67  case MVT::f80:      return "MVT::f80";
68  case MVT::f128:     return "MVT::f128";
69  case MVT::ppcf128:  return "MVT::ppcf128";
70  case MVT::x86mmx:   return "MVT::x86mmx";
71  case MVT::Glue:     return "MVT::Glue";
72  case MVT::isVoid:   return "MVT::isVoid";
73  case MVT::v2i1:     return "MVT::v2i1";
74  case MVT::v4i1:     return "MVT::v4i1";
75  case MVT::v8i1:     return "MVT::v8i1";
76  case MVT::v16i1:    return "MVT::v16i1";
77  case MVT::v32i1:    return "MVT::v32i1";
78  case MVT::v64i1:    return "MVT::v64i1";
79  case MVT::v512i1:   return "MVT::v512i1";
80  case MVT::v1024i1:  return "MVT::v1024i1";
81  case MVT::v1i8:     return "MVT::v1i8";
82  case MVT::v2i8:     return "MVT::v2i8";
83  case MVT::v4i8:     return "MVT::v4i8";
84  case MVT::v8i8:     return "MVT::v8i8";
85  case MVT::v16i8:    return "MVT::v16i8";
86  case MVT::v32i8:    return "MVT::v32i8";
87  case MVT::v64i8:    return "MVT::v64i8";
88  case MVT::v128i8:   return "MVT::v128i8";
89  case MVT::v256i8:   return "MVT::v256i8";
90  case MVT::v1i16:    return "MVT::v1i16";
91  case MVT::v2i16:    return "MVT::v2i16";
92  case MVT::v4i16:    return "MVT::v4i16";
93  case MVT::v8i16:    return "MVT::v8i16";
94  case MVT::v16i16:   return "MVT::v16i16";
95  case MVT::v32i16:   return "MVT::v32i16";
96  case MVT::v64i16:   return "MVT::v64i16";
97  case MVT::v128i16:  return "MVT::v128i16";
98  case MVT::v1i32:    return "MVT::v1i32";
99  case MVT::v2i32:    return "MVT::v2i32";
100  case MVT::v4i32:    return "MVT::v4i32";
101  case MVT::v8i32:    return "MVT::v8i32";
102  case MVT::v16i32:   return "MVT::v16i32";
103  case MVT::v32i32:   return "MVT::v32i32";
104  case MVT::v64i32:   return "MVT::v64i32";
105  case MVT::v1i64:    return "MVT::v1i64";
106  case MVT::v2i64:    return "MVT::v2i64";
107  case MVT::v4i64:    return "MVT::v4i64";
108  case MVT::v8i64:    return "MVT::v8i64";
109  case MVT::v16i64:   return "MVT::v16i64";
110  case MVT::v32i64:   return "MVT::v32i64";
111  case MVT::v1i128:   return "MVT::v1i128";
112  case MVT::v2f16:    return "MVT::v2f16";
113  case MVT::v4f16:    return "MVT::v4f16";
114  case MVT::v8f16:    return "MVT::v8f16";
115  case MVT::v1f32:    return "MVT::v1f32";
116  case MVT::v2f32:    return "MVT::v2f32";
117  case MVT::v4f32:    return "MVT::v4f32";
118  case MVT::v8f32:    return "MVT::v8f32";
119  case MVT::v16f32:   return "MVT::v16f32";
120  case MVT::v1f64:    return "MVT::v1f64";
121  case MVT::v2f64:    return "MVT::v2f64";
122  case MVT::v4f64:    return "MVT::v4f64";
123  case MVT::v8f64:    return "MVT::v8f64";
124  case MVT::token:    return "MVT::token";
125  case MVT::Metadata: return "MVT::Metadata";
126  case MVT::iPTR:     return "MVT::iPTR";
127  case MVT::iPTRAny:  return "MVT::iPTRAny";
128  case MVT::Untyped:  return "MVT::Untyped";
129  default: llvm_unreachable("ILLEGAL VALUE TYPE!");
130  }
131}
132
133/// getQualifiedName - Return the name of the specified record, with a
134/// namespace qualifier if the record contains one.
135///
136std::string llvm::getQualifiedName(const Record *R) {
137  std::string Namespace;
138  if (R->getValue("Namespace"))
139     Namespace = R->getValueAsString("Namespace");
140  if (Namespace.empty()) return R->getName();
141  return Namespace + "::" + R->getName();
142}
143
144
145/// getTarget - Return the current instance of the Target class.
146///
147CodeGenTarget::CodeGenTarget(RecordKeeper &records)
148  : Records(records) {
149  std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
150  if (Targets.size() == 0)
151    PrintFatalError("ERROR: No 'Target' subclasses defined!");
152  if (Targets.size() != 1)
153    PrintFatalError("ERROR: Multiple subclasses of Target defined!");
154  TargetRec = Targets[0];
155}
156
157CodeGenTarget::~CodeGenTarget() {
158}
159
160const std::string &CodeGenTarget::getName() const {
161  return TargetRec->getName();
162}
163
164std::string CodeGenTarget::getInstNamespace() const {
165  for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
166    // Make sure not to pick up "TargetOpcode" by accidentally getting
167    // the namespace off the PHI instruction or something.
168    if (Inst->Namespace != "TargetOpcode")
169      return Inst->Namespace;
170  }
171
172  return "";
173}
174
175Record *CodeGenTarget::getInstructionSet() const {
176  return TargetRec->getValueAsDef("InstructionSet");
177}
178
179
180/// getAsmParser - Return the AssemblyParser definition for this target.
181///
182Record *CodeGenTarget::getAsmParser() const {
183  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
184  if (AsmParserNum >= LI.size())
185    PrintFatalError("Target does not have an AsmParser #" +
186                    Twine(AsmParserNum) + "!");
187  return LI[AsmParserNum];
188}
189
190/// getAsmParserVariant - Return the AssmblyParserVariant definition for
191/// this target.
192///
193Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
194  std::vector<Record*> LI =
195    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
196  if (i >= LI.size())
197    PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
198                    "!");
199  return LI[i];
200}
201
202/// getAsmParserVariantCount - Return the AssmblyParserVariant definition
203/// available for this target.
204///
205unsigned CodeGenTarget::getAsmParserVariantCount() const {
206  std::vector<Record*> LI =
207    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
208  return LI.size();
209}
210
211/// getAsmWriter - Return the AssemblyWriter definition for this target.
212///
213Record *CodeGenTarget::getAsmWriter() const {
214  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
215  if (AsmWriterNum >= LI.size())
216    PrintFatalError("Target does not have an AsmWriter #" +
217                    Twine(AsmWriterNum) + "!");
218  return LI[AsmWriterNum];
219}
220
221CodeGenRegBank &CodeGenTarget::getRegBank() const {
222  if (!RegBank)
223    RegBank = llvm::make_unique<CodeGenRegBank>(Records);
224  return *RegBank;
225}
226
227void CodeGenTarget::ReadRegAltNameIndices() const {
228  RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
229  std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord());
230}
231
232/// getRegisterByName - If there is a register with the specific AsmName,
233/// return it.
234const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
235  const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
236  StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
237  if (I == Regs.end())
238    return nullptr;
239  return I->second;
240}
241
242std::vector<MVT::SimpleValueType> CodeGenTarget::
243getRegisterVTs(Record *R) const {
244  const CodeGenRegister *Reg = getRegBank().getReg(R);
245  std::vector<MVT::SimpleValueType> Result;
246  for (const auto &RC : getRegBank().getRegClasses()) {
247    if (RC.contains(Reg)) {
248      ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes();
249      Result.insert(Result.end(), InVTs.begin(), InVTs.end());
250    }
251  }
252
253  // Remove duplicates.
254  array_pod_sort(Result.begin(), Result.end());
255  Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
256  return Result;
257}
258
259
260void CodeGenTarget::ReadLegalValueTypes() const {
261  for (const auto &RC : getRegBank().getRegClasses())
262    LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
263
264  // Remove duplicates.
265  array_pod_sort(LegalValueTypes.begin(), LegalValueTypes.end());
266  LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
267                                    LegalValueTypes.end()),
268                        LegalValueTypes.end());
269}
270
271CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
272  if (!SchedModels)
273    SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this);
274  return *SchedModels;
275}
276
277void CodeGenTarget::ReadInstructions() const {
278  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
279  if (Insts.size() <= 2)
280    PrintFatalError("No 'Instruction' subclasses defined!");
281
282  // Parse the instructions defined in the .td file.
283  for (unsigned i = 0, e = Insts.size(); i != e; ++i)
284    Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]);
285}
286
287static const CodeGenInstruction *
288GetInstByName(const char *Name,
289              const DenseMap<const Record*,
290                             std::unique_ptr<CodeGenInstruction>> &Insts,
291              RecordKeeper &Records) {
292  const Record *Rec = Records.getDef(Name);
293
294  const auto I = Insts.find(Rec);
295  if (!Rec || I == Insts.end())
296    PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
297  return I->second.get();
298}
299
300/// \brief Return all of the instructions defined by the target, ordered by
301/// their enum value.
302void CodeGenTarget::ComputeInstrsByEnum() const {
303  static const char *const FixedInstrs[] = {
304#define HANDLE_TARGET_OPCODE(OPC, NUM) #OPC,
305#include "llvm/Target/TargetOpcodes.def"
306      nullptr};
307  const auto &Insts = getInstructions();
308  for (const char *const *p = FixedInstrs; *p; ++p) {
309    const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
310    assert(Instr && "Missing target independent instruction");
311    assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
312    InstrsByEnum.push_back(Instr);
313  }
314  unsigned EndOfPredefines = InstrsByEnum.size();
315
316  for (const auto &I : Insts) {
317    const CodeGenInstruction *CGI = I.second.get();
318    if (CGI->Namespace != "TargetOpcode")
319      InstrsByEnum.push_back(CGI);
320  }
321
322  assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
323
324  // All of the instructions are now in random order based on the map iteration.
325  // Sort them by name.
326  std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
327            [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
328    return Rec1->TheDef->getName() < Rec2->TheDef->getName();
329  });
330}
331
332
333/// isLittleEndianEncoding - Return whether this target encodes its instruction
334/// in little-endian format, i.e. bits laid out in the order [0..n]
335///
336bool CodeGenTarget::isLittleEndianEncoding() const {
337  return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
338}
339
340/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
341/// encodings, reverse the bit order of all instructions.
342void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
343  if (!isLittleEndianEncoding())
344    return;
345
346  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
347  for (Record *R : Insts) {
348    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
349        R->getValueAsBit("isPseudo"))
350      continue;
351
352    BitsInit *BI = R->getValueAsBitsInit("Inst");
353
354    unsigned numBits = BI->getNumBits();
355
356    SmallVector<Init *, 16> NewBits(numBits);
357
358    for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
359      unsigned bitSwapIdx = numBits - bit - 1;
360      Init *OrigBit = BI->getBit(bit);
361      Init *BitSwap = BI->getBit(bitSwapIdx);
362      NewBits[bit]        = BitSwap;
363      NewBits[bitSwapIdx] = OrigBit;
364    }
365    if (numBits % 2) {
366      unsigned middle = (numBits + 1) / 2;
367      NewBits[middle] = BI->getBit(middle);
368    }
369
370    BitsInit *NewBI = BitsInit::get(NewBits);
371
372    // Update the bits in reversed order so that emitInstrOpBits will get the
373    // correct endianness.
374    R->getValue("Inst")->setValue(NewBI);
375  }
376}
377
378/// guessInstructionProperties - Return true if it's OK to guess instruction
379/// properties instead of raising an error.
380///
381/// This is configurable as a temporary migration aid. It will eventually be
382/// permanently false.
383bool CodeGenTarget::guessInstructionProperties() const {
384  return getInstructionSet()->getValueAsBit("guessInstructionProperties");
385}
386
387//===----------------------------------------------------------------------===//
388// ComplexPattern implementation
389//
390ComplexPattern::ComplexPattern(Record *R) {
391  Ty          = ::getValueType(R->getValueAsDef("Ty"));
392  NumOperands = R->getValueAsInt("NumOperands");
393  SelectFunc  = R->getValueAsString("SelectFunc");
394  RootNodes   = R->getValueAsListOfDefs("RootNodes");
395
396  // Parse the properties.
397  Properties = 0;
398  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
399  for (unsigned i = 0, e = PropList.size(); i != e; ++i)
400    if (PropList[i]->getName() == "SDNPHasChain") {
401      Properties |= 1 << SDNPHasChain;
402    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
403      Properties |= 1 << SDNPOptInGlue;
404    } else if (PropList[i]->getName() == "SDNPMayStore") {
405      Properties |= 1 << SDNPMayStore;
406    } else if (PropList[i]->getName() == "SDNPMayLoad") {
407      Properties |= 1 << SDNPMayLoad;
408    } else if (PropList[i]->getName() == "SDNPSideEffect") {
409      Properties |= 1 << SDNPSideEffect;
410    } else if (PropList[i]->getName() == "SDNPMemOperand") {
411      Properties |= 1 << SDNPMemOperand;
412    } else if (PropList[i]->getName() == "SDNPVariadic") {
413      Properties |= 1 << SDNPVariadic;
414    } else if (PropList[i]->getName() == "SDNPWantRoot") {
415      Properties |= 1 << SDNPWantRoot;
416    } else if (PropList[i]->getName() == "SDNPWantParent") {
417      Properties |= 1 << SDNPWantParent;
418    } else {
419      PrintFatalError("Unsupported SD Node property '" +
420                      PropList[i]->getName() + "' on ComplexPattern '" +
421                      R->getName() + "'!");
422    }
423}
424
425//===----------------------------------------------------------------------===//
426// CodeGenIntrinsic Implementation
427//===----------------------------------------------------------------------===//
428
429std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
430                                                   bool TargetOnly) {
431  std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
432
433  std::vector<CodeGenIntrinsic> Result;
434  Result.reserve(Defs.size());
435
436  for (unsigned I = 0, e = Defs.size(); I != e; ++I) {
437    bool isTarget = Defs[I]->getValueAsBit("isTarget");
438    if (isTarget == TargetOnly)
439      Result.push_back(CodeGenIntrinsic(Defs[I]));
440  }
441  std::sort(Result.begin(), Result.end(),
442            [](const CodeGenIntrinsic& LHS, const CodeGenIntrinsic& RHS) {
443              return LHS.Name < RHS.Name;
444            });
445  return Result;
446}
447
448CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
449  TheDef = R;
450  std::string DefName = R->getName();
451  ModRef = ReadWriteMem;
452  isOverloaded = false;
453  isCommutative = false;
454  canThrow = false;
455  isNoReturn = false;
456  isNoDuplicate = false;
457  isConvergent = false;
458
459  if (DefName.size() <= 4 ||
460      std::string(DefName.begin(), DefName.begin() + 4) != "int_")
461    PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!");
462
463  EnumName = std::string(DefName.begin()+4, DefName.end());
464
465  if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
466    GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
467  if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
468    MSBuiltinName = R->getValueAsString("MSBuiltinName");
469
470  TargetPrefix = R->getValueAsString("TargetPrefix");
471  Name = R->getValueAsString("LLVMName");
472
473  if (Name == "") {
474    // If an explicit name isn't specified, derive one from the DefName.
475    Name = "llvm.";
476
477    for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
478      Name += (EnumName[i] == '_') ? '.' : EnumName[i];
479  } else {
480    // Verify it starts with "llvm.".
481    if (Name.size() <= 5 ||
482        std::string(Name.begin(), Name.begin() + 5) != "llvm.")
483      PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!");
484  }
485
486  // If TargetPrefix is specified, make sure that Name starts with
487  // "llvm.<targetprefix>.".
488  if (!TargetPrefix.empty()) {
489    if (Name.size() < 6+TargetPrefix.size() ||
490        std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
491        != (TargetPrefix + "."))
492      PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." +
493        TargetPrefix + ".'!");
494  }
495
496  // Parse the list of return types.
497  std::vector<MVT::SimpleValueType> OverloadedVTs;
498  ListInit *TypeList = R->getValueAsListInit("RetTypes");
499  for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
500    Record *TyEl = TypeList->getElementAsRecord(i);
501    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
502    MVT::SimpleValueType VT;
503    if (TyEl->isSubClassOf("LLVMMatchType")) {
504      unsigned MatchTy = TyEl->getValueAsInt("Number");
505      assert(MatchTy < OverloadedVTs.size() &&
506             "Invalid matching number!");
507      VT = OverloadedVTs[MatchTy];
508      // It only makes sense to use the extended and truncated vector element
509      // variants with iAny types; otherwise, if the intrinsic is not
510      // overloaded, all the types can be specified directly.
511      assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
512               !TyEl->isSubClassOf("LLVMTruncatedType")) ||
513              VT == MVT::iAny || VT == MVT::vAny) &&
514             "Expected iAny or vAny type");
515    } else {
516      VT = getValueType(TyEl->getValueAsDef("VT"));
517    }
518    if (MVT(VT).isOverloaded()) {
519      OverloadedVTs.push_back(VT);
520      isOverloaded = true;
521    }
522
523    // Reject invalid types.
524    if (VT == MVT::isVoid)
525      PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
526
527    IS.RetVTs.push_back(VT);
528    IS.RetTypeDefs.push_back(TyEl);
529  }
530
531  // Parse the list of parameter types.
532  TypeList = R->getValueAsListInit("ParamTypes");
533  for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
534    Record *TyEl = TypeList->getElementAsRecord(i);
535    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
536    MVT::SimpleValueType VT;
537    if (TyEl->isSubClassOf("LLVMMatchType")) {
538      unsigned MatchTy = TyEl->getValueAsInt("Number");
539      assert(MatchTy < OverloadedVTs.size() &&
540             "Invalid matching number!");
541      VT = OverloadedVTs[MatchTy];
542      // It only makes sense to use the extended and truncated vector element
543      // variants with iAny types; otherwise, if the intrinsic is not
544      // overloaded, all the types can be specified directly.
545      assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
546               !TyEl->isSubClassOf("LLVMTruncatedType") &&
547               !TyEl->isSubClassOf("LLVMVectorSameWidth") &&
548               !TyEl->isSubClassOf("LLVMPointerToElt")) ||
549              VT == MVT::iAny || VT == MVT::vAny) &&
550             "Expected iAny or vAny type");
551    } else
552      VT = getValueType(TyEl->getValueAsDef("VT"));
553
554    if (MVT(VT).isOverloaded()) {
555      OverloadedVTs.push_back(VT);
556      isOverloaded = true;
557    }
558
559    // Reject invalid types.
560    if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
561      PrintFatalError("Intrinsic '" + DefName + " has void in result type list!");
562
563    IS.ParamVTs.push_back(VT);
564    IS.ParamTypeDefs.push_back(TyEl);
565  }
566
567  // Parse the intrinsic properties.
568  ListInit *PropList = R->getValueAsListInit("IntrProperties");
569  for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
570    Record *Property = PropList->getElementAsRecord(i);
571    assert(Property->isSubClassOf("IntrinsicProperty") &&
572           "Expected a property!");
573
574    if (Property->getName() == "IntrNoMem")
575      ModRef = NoMem;
576    else if (Property->getName() == "IntrReadMem")
577      ModRef = ModRefBehavior(ModRef & ~MR_Mod);
578    else if (Property->getName() == "IntrWriteMem")
579      ModRef = ModRefBehavior(ModRef & ~MR_Ref);
580    else if (Property->getName() == "IntrArgMemOnly")
581      ModRef = ModRefBehavior(ModRef & ~MR_Anywhere);
582    else if (Property->getName() == "Commutative")
583      isCommutative = true;
584    else if (Property->getName() == "Throws")
585      canThrow = true;
586    else if (Property->getName() == "IntrNoDuplicate")
587      isNoDuplicate = true;
588    else if (Property->getName() == "IntrConvergent")
589      isConvergent = true;
590    else if (Property->getName() == "IntrNoReturn")
591      isNoReturn = true;
592    else if (Property->isSubClassOf("NoCapture")) {
593      unsigned ArgNo = Property->getValueAsInt("ArgNo");
594      ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
595    } else if (Property->isSubClassOf("Returned")) {
596      unsigned ArgNo = Property->getValueAsInt("ArgNo");
597      ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
598    } else if (Property->isSubClassOf("ReadOnly")) {
599      unsigned ArgNo = Property->getValueAsInt("ArgNo");
600      ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
601    } else if (Property->isSubClassOf("WriteOnly")) {
602      unsigned ArgNo = Property->getValueAsInt("ArgNo");
603      ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
604    } else if (Property->isSubClassOf("ReadNone")) {
605      unsigned ArgNo = Property->getValueAsInt("ArgNo");
606      ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
607    } else
608      llvm_unreachable("Unknown property!");
609  }
610
611  // Sort the argument attributes for later benefit.
612  std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end());
613}
614