1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "DAGISelMatcher.h" 11#include "CodeGenDAGPatterns.h" 12#include "CodeGenRegisters.h" 13#include "llvm/ADT/SmallVector.h" 14#include "llvm/ADT/StringMap.h" 15#include "llvm/TableGen/Error.h" 16#include "llvm/TableGen/Record.h" 17#include <utility> 18using namespace llvm; 19 20 21/// getRegisterValueType - Look up and return the ValueType of the specified 22/// register. If the register is a member of multiple register classes which 23/// have different associated types, return MVT::Other. 24static MVT::SimpleValueType getRegisterValueType(Record *R, 25 const CodeGenTarget &T) { 26 bool FoundRC = false; 27 MVT::SimpleValueType VT = MVT::Other; 28 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 29 30 for (const auto &RC : T.getRegBank().getRegClasses()) { 31 if (!RC.contains(Reg)) 32 continue; 33 34 if (!FoundRC) { 35 FoundRC = true; 36 VT = RC.getValueTypeNum(0); 37 continue; 38 } 39 40 // If this occurs in multiple register classes, they all have to agree. 41 assert(VT == RC.getValueTypeNum(0)); 42 } 43 return VT; 44} 45 46 47namespace { 48 class MatcherGen { 49 const PatternToMatch &Pattern; 50 const CodeGenDAGPatterns &CGP; 51 52 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 53 /// out with all of the types removed. This allows us to insert type checks 54 /// as we scan the tree. 55 TreePatternNode *PatWithNoTypes; 56 57 /// VariableMap - A map from variable names ('$dst') to the recorded operand 58 /// number that they were captured as. These are biased by 1 to make 59 /// insertion easier. 60 StringMap<unsigned> VariableMap; 61 62 /// This maintains the recorded operand number that OPC_CheckComplexPattern 63 /// drops each sub-operand into. We don't want to insert these into 64 /// VariableMap because that leads to identity checking if they are 65 /// encountered multiple times. Biased by 1 like VariableMap for 66 /// consistency. 67 StringMap<unsigned> NamedComplexPatternOperands; 68 69 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 70 /// the RecordedNodes array, this keeps track of which slot will be next to 71 /// record into. 72 unsigned NextRecordedOperandNo; 73 74 /// MatchedChainNodes - This maintains the position in the recorded nodes 75 /// array of all of the recorded input nodes that have chains. 76 SmallVector<unsigned, 2> MatchedChainNodes; 77 78 /// MatchedComplexPatterns - This maintains a list of all of the 79 /// ComplexPatterns that we need to check. The second element of each pair 80 /// is the recorded operand number of the input node. 81 SmallVector<std::pair<const TreePatternNode*, 82 unsigned>, 2> MatchedComplexPatterns; 83 84 /// PhysRegInputs - List list has an entry for each explicitly specified 85 /// physreg input to the pattern. The first elt is the Register node, the 86 /// second is the recorded slot number the input pattern match saved it in. 87 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 88 89 /// Matcher - This is the top level of the generated matcher, the result. 90 Matcher *TheMatcher; 91 92 /// CurPredicate - As we emit matcher nodes, this points to the latest check 93 /// which should have future checks stuck into its Next position. 94 Matcher *CurPredicate; 95 public: 96 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 97 98 ~MatcherGen() { 99 delete PatWithNoTypes; 100 } 101 102 bool EmitMatcherCode(unsigned Variant); 103 void EmitResultCode(); 104 105 Matcher *GetMatcher() const { return TheMatcher; } 106 private: 107 void AddMatcher(Matcher *NewNode); 108 void InferPossibleTypes(); 109 110 // Matcher Generation. 111 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); 112 void EmitLeafMatchCode(const TreePatternNode *N); 113 void EmitOperatorMatchCode(const TreePatternNode *N, 114 TreePatternNode *NodeNoTypes); 115 116 /// If this is the first time a node with unique identifier Name has been 117 /// seen, record it. Otherwise, emit a check to make sure this is the same 118 /// node. Returns true if this is the first encounter. 119 bool recordUniqueNode(const std::string &Name); 120 121 // Result Code Generation. 122 unsigned getNamedArgumentSlot(StringRef Name) { 123 unsigned VarMapEntry = VariableMap[Name]; 124 assert(VarMapEntry != 0 && 125 "Variable referenced but not defined and not caught earlier!"); 126 return VarMapEntry-1; 127 } 128 129 /// GetInstPatternNode - Get the pattern for an instruction. 130 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, 131 const TreePatternNode *N); 132 133 void EmitResultOperand(const TreePatternNode *N, 134 SmallVectorImpl<unsigned> &ResultOps); 135 void EmitResultOfNamedOperand(const TreePatternNode *N, 136 SmallVectorImpl<unsigned> &ResultOps); 137 void EmitResultLeafAsOperand(const TreePatternNode *N, 138 SmallVectorImpl<unsigned> &ResultOps); 139 void EmitResultInstructionAsOperand(const TreePatternNode *N, 140 SmallVectorImpl<unsigned> &ResultOps); 141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 142 SmallVectorImpl<unsigned> &ResultOps); 143 }; 144 145} // end anon namespace. 146 147MatcherGen::MatcherGen(const PatternToMatch &pattern, 148 const CodeGenDAGPatterns &cgp) 149: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), 150 TheMatcher(nullptr), CurPredicate(nullptr) { 151 // We need to produce the matcher tree for the patterns source pattern. To do 152 // this we need to match the structure as well as the types. To do the type 153 // matching, we want to figure out the fewest number of type checks we need to 154 // emit. For example, if there is only one integer type supported by a 155 // target, there should be no type comparisons at all for integer patterns! 156 // 157 // To figure out the fewest number of type checks needed, clone the pattern, 158 // remove the types, then perform type inference on the pattern as a whole. 159 // If there are unresolved types, emit an explicit check for those types, 160 // apply the type to the tree, then rerun type inference. Iterate until all 161 // types are resolved. 162 // 163 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 164 PatWithNoTypes->RemoveAllTypes(); 165 166 // If there are types that are manifestly known, infer them. 167 InferPossibleTypes(); 168} 169 170/// InferPossibleTypes - As we emit the pattern, we end up generating type 171/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 172/// want to propagate implied types as far throughout the tree as possible so 173/// that we avoid doing redundant type checks. This does the type propagation. 174void MatcherGen::InferPossibleTypes() { 175 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 176 // diagnostics, which we know are impossible at this point. 177 TreePattern &TP = *CGP.pf_begin()->second; 178 179 bool MadeChange = true; 180 while (MadeChange) 181 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 182 true/*Ignore reg constraints*/); 183} 184 185 186/// AddMatcher - Add a matcher node to the current graph we're building. 187void MatcherGen::AddMatcher(Matcher *NewNode) { 188 if (CurPredicate) 189 CurPredicate->setNext(NewNode); 190 else 191 TheMatcher = NewNode; 192 CurPredicate = NewNode; 193} 194 195 196//===----------------------------------------------------------------------===// 197// Pattern Match Generation 198//===----------------------------------------------------------------------===// 199 200/// EmitLeafMatchCode - Generate matching code for leaf nodes. 201void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 202 assert(N->isLeaf() && "Not a leaf?"); 203 204 // Direct match against an integer constant. 205 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 206 // If this is the root of the dag we're matching, we emit a redundant opcode 207 // check to ensure that this gets folded into the normal top-level 208 // OpcodeSwitch. 209 if (N == Pattern.getSrcPattern()) { 210 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 211 AddMatcher(new CheckOpcodeMatcher(NI)); 212 } 213 214 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 215 } 216 217 // An UnsetInit represents a named node without any constraints. 218 if (isa<UnsetInit>(N->getLeafValue())) { 219 assert(N->hasName() && "Unnamed ? leaf"); 220 return; 221 } 222 223 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 224 if (!DI) { 225 errs() << "Unknown leaf kind: " << *N << "\n"; 226 abort(); 227 } 228 229 Record *LeafRec = DI->getDef(); 230 231 // A ValueType leaf node can represent a register when named, or itself when 232 // unnamed. 233 if (LeafRec->isSubClassOf("ValueType")) { 234 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 235 if (N->hasName()) 236 return; 237 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 238 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 239 } 240 241 if (// Handle register references. Nothing to do here, they always match. 242 LeafRec->isSubClassOf("RegisterClass") || 243 LeafRec->isSubClassOf("RegisterOperand") || 244 LeafRec->isSubClassOf("PointerLikeRegClass") || 245 LeafRec->isSubClassOf("SubRegIndex") || 246 // Place holder for SRCVALUE nodes. Nothing to do here. 247 LeafRec->getName() == "srcvalue") 248 return; 249 250 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 251 // record the register 252 if (LeafRec->isSubClassOf("Register")) { 253 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), 254 NextRecordedOperandNo)); 255 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 256 return; 257 } 258 259 if (LeafRec->isSubClassOf("CondCode")) 260 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 261 262 if (LeafRec->isSubClassOf("ComplexPattern")) { 263 // We can't model ComplexPattern uses that don't have their name taken yet. 264 // The OPC_CheckComplexPattern operation implicitly records the results. 265 if (N->getName().empty()) { 266 std::string S; 267 raw_string_ostream OS(S); 268 OS << "We expect complex pattern uses to have names: " << *N; 269 PrintFatalError(OS.str()); 270 } 271 272 // Remember this ComplexPattern so that we can emit it after all the other 273 // structural matches are done. 274 unsigned InputOperand = VariableMap[N->getName()] - 1; 275 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); 276 return; 277 } 278 279 errs() << "Unknown leaf kind: " << *N << "\n"; 280 abort(); 281} 282 283void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 284 TreePatternNode *NodeNoTypes) { 285 assert(!N->isLeaf() && "Not an operator?"); 286 287 if (N->getOperator()->isSubClassOf("ComplexPattern")) { 288 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 289 // "MY_PAT:op1:op2". We should already have validated that the uses are 290 // consistent. 291 std::string PatternName = N->getOperator()->getName(); 292 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 293 PatternName += ":"; 294 PatternName += N->getChild(i)->getName(); 295 } 296 297 if (recordUniqueNode(PatternName)) { 298 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); 299 MatchedComplexPatterns.push_back(NodeAndOpNum); 300 } 301 302 return; 303 } 304 305 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 306 307 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 308 // a constant without a predicate fn that has more that one bit set, handle 309 // this as a special case. This is usually for targets that have special 310 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 311 // handling stuff). Using these instructions is often far more efficient 312 // than materializing the constant. Unfortunately, both the instcombiner 313 // and the dag combiner can often infer that bits are dead, and thus drop 314 // them from the mask in the dag. For example, it might turn 'AND X, 255' 315 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 316 // to handle this. 317 if ((N->getOperator()->getName() == "and" || 318 N->getOperator()->getName() == "or") && 319 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && 320 N->getPredicateFns().empty()) { 321 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 322 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. 323 // If this is at the root of the pattern, we emit a redundant 324 // CheckOpcode so that the following checks get factored properly under 325 // a single opcode check. 326 if (N == Pattern.getSrcPattern()) 327 AddMatcher(new CheckOpcodeMatcher(CInfo)); 328 329 // Emit the CheckAndImm/CheckOrImm node. 330 if (N->getOperator()->getName() == "and") 331 AddMatcher(new CheckAndImmMatcher(II->getValue())); 332 else 333 AddMatcher(new CheckOrImmMatcher(II->getValue())); 334 335 // Match the LHS of the AND as appropriate. 336 AddMatcher(new MoveChildMatcher(0)); 337 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); 338 AddMatcher(new MoveParentMatcher()); 339 return; 340 } 341 } 342 } 343 344 // Check that the current opcode lines up. 345 AddMatcher(new CheckOpcodeMatcher(CInfo)); 346 347 // If this node has memory references (i.e. is a load or store), tell the 348 // interpreter to capture them in the memref array. 349 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 350 AddMatcher(new RecordMemRefMatcher()); 351 352 // If this node has a chain, then the chain is operand #0 is the SDNode, and 353 // the child numbers of the node are all offset by one. 354 unsigned OpNo = 0; 355 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 356 // Record the node and remember it in our chained nodes list. 357 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + 358 "' chained node", 359 NextRecordedOperandNo)); 360 // Remember all of the input chains our pattern will match. 361 MatchedChainNodes.push_back(NextRecordedOperandNo++); 362 363 // Don't look at the input chain when matching the tree pattern to the 364 // SDNode. 365 OpNo = 1; 366 367 // If this node is not the root and the subtree underneath it produces a 368 // chain, then the result of matching the node is also produce a chain. 369 // Beyond that, this means that we're also folding (at least) the root node 370 // into the node that produce the chain (for example, matching 371 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 372 // problematic, if the 'reg' node also uses the load (say, its chain). 373 // Graphically: 374 // 375 // [LD] 376 // ^ ^ 377 // | \ DAG's like cheese. 378 // / | 379 // / [YY] 380 // | ^ 381 // [XX]--/ 382 // 383 // It would be invalid to fold XX and LD. In this case, folding the two 384 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 385 // To prevent this, we emit a dynamic check for legality before allowing 386 // this to be folded. 387 // 388 const TreePatternNode *Root = Pattern.getSrcPattern(); 389 if (N != Root) { // Not the root of the pattern. 390 // If there is a node between the root and this node, then we definitely 391 // need to emit the check. 392 bool NeedCheck = !Root->hasChild(N); 393 394 // If it *is* an immediate child of the root, we can still need a check if 395 // the root SDNode has multiple inputs. For us, this means that it is an 396 // intrinsic, has multiple operands, or has other inputs like chain or 397 // glue). 398 if (!NeedCheck) { 399 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 400 NeedCheck = 401 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 402 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 403 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 404 PInfo.getNumOperands() > 1 || 405 PInfo.hasProperty(SDNPHasChain) || 406 PInfo.hasProperty(SDNPInGlue) || 407 PInfo.hasProperty(SDNPOptInGlue); 408 } 409 410 if (NeedCheck) 411 AddMatcher(new CheckFoldableChainNodeMatcher()); 412 } 413 } 414 415 // If this node has an output glue and isn't the root, remember it. 416 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 417 N != Pattern.getSrcPattern()) { 418 // TODO: This redundantly records nodes with both glues and chains. 419 420 // Record the node and remember it in our chained nodes list. 421 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + 422 "' glue output node", 423 NextRecordedOperandNo)); 424 } 425 426 // If this node is known to have an input glue or if it *might* have an input 427 // glue, capture it as the glue input of the pattern. 428 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 429 N->NodeHasProperty(SDNPInGlue, CGP)) 430 AddMatcher(new CaptureGlueInputMatcher()); 431 432 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 433 // Get the code suitable for matching this child. Move to the child, check 434 // it then move back to the parent. 435 AddMatcher(new MoveChildMatcher(OpNo)); 436 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); 437 AddMatcher(new MoveParentMatcher()); 438 } 439} 440 441bool MatcherGen::recordUniqueNode(const std::string &Name) { 442 unsigned &VarMapEntry = VariableMap[Name]; 443 if (VarMapEntry == 0) { 444 // If it is a named node, we must emit a 'Record' opcode. 445 AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo)); 446 VarMapEntry = ++NextRecordedOperandNo; 447 return true; 448 } 449 450 // If we get here, this is a second reference to a specific name. Since 451 // we already have checked that the first reference is valid, we don't 452 // have to recursively match it, just check that it's the same as the 453 // previously named thing. 454 AddMatcher(new CheckSameMatcher(VarMapEntry-1)); 455 return false; 456} 457 458void MatcherGen::EmitMatchCode(const TreePatternNode *N, 459 TreePatternNode *NodeNoTypes) { 460 // If N and NodeNoTypes don't agree on a type, then this is a case where we 461 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 462 // reinfer any correlated types. 463 SmallVector<unsigned, 2> ResultsToTypeCheck; 464 465 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 466 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 467 NodeNoTypes->setType(i, N->getExtType(i)); 468 InferPossibleTypes(); 469 ResultsToTypeCheck.push_back(i); 470 } 471 472 // If this node has a name associated with it, capture it in VariableMap. If 473 // we already saw this in the pattern, emit code to verify dagness. 474 if (!N->getName().empty()) 475 if (!recordUniqueNode(N->getName())) 476 return; 477 478 if (N->isLeaf()) 479 EmitLeafMatchCode(N); 480 else 481 EmitOperatorMatchCode(N, NodeNoTypes); 482 483 // If there are node predicates for this node, generate their checks. 484 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) 485 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); 486 487 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 488 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), 489 ResultsToTypeCheck[i])); 490} 491 492/// EmitMatcherCode - Generate the code that matches the predicate of this 493/// pattern for the specified Variant. If the variant is invalid this returns 494/// true and does not generate code, if it is valid, it returns false. 495bool MatcherGen::EmitMatcherCode(unsigned Variant) { 496 // If the root of the pattern is a ComplexPattern and if it is specified to 497 // match some number of root opcodes, these are considered to be our variants. 498 // Depending on which variant we're generating code for, emit the root opcode 499 // check. 500 if (const ComplexPattern *CP = 501 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 502 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 503 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 504 if (Variant >= OpNodes.size()) return true; 505 506 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 507 } else { 508 if (Variant != 0) return true; 509 } 510 511 // Emit the matcher for the pattern structure and types. 512 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); 513 514 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 515 // feature is around, do the check). 516 if (!Pattern.getPredicateCheck().empty()) 517 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); 518 519 // Now that we've completed the structural type match, emit any ComplexPattern 520 // checks (e.g. addrmode matches). We emit this after the structural match 521 // because they are generally more expensive to evaluate and more difficult to 522 // factor. 523 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 524 const TreePatternNode *N = MatchedComplexPatterns[i].first; 525 526 // Remember where the results of this match get stuck. 527 if (N->isLeaf()) { 528 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; 529 } else { 530 unsigned CurOp = NextRecordedOperandNo; 531 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 532 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; 533 CurOp += N->getChild(i)->getNumMIResults(CGP); 534 } 535 } 536 537 // Get the slot we recorded the value in from the name on the node. 538 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 539 540 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); 541 542 // Emit a CheckComplexPat operation, which does the match (aborting if it 543 // fails) and pushes the matched operands onto the recorded nodes list. 544 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, 545 N->getName(), NextRecordedOperandNo)); 546 547 // Record the right number of operands. 548 NextRecordedOperandNo += CP.getNumOperands(); 549 if (CP.hasProperty(SDNPHasChain)) { 550 // If the complex pattern has a chain, then we need to keep track of the 551 // fact that we just recorded a chain input. The chain input will be 552 // matched as the last operand of the predicate if it was successful. 553 ++NextRecordedOperandNo; // Chained node operand. 554 555 // It is the last operand recorded. 556 assert(NextRecordedOperandNo > 1 && 557 "Should have recorded input/result chains at least!"); 558 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 559 } 560 561 // TODO: Complex patterns can't have output glues, if they did, we'd want 562 // to record them. 563 } 564 565 return false; 566} 567 568 569//===----------------------------------------------------------------------===// 570// Node Result Generation 571//===----------------------------------------------------------------------===// 572 573void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 574 SmallVectorImpl<unsigned> &ResultOps){ 575 assert(!N->getName().empty() && "Operand not named!"); 576 577 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { 578 // Complex operands have already been completely selected, just find the 579 // right slot ant add the arguments directly. 580 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 581 ResultOps.push_back(SlotNo - 1 + i); 582 583 return; 584 } 585 586 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 587 588 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 589 // version of the immediate so that it doesn't get selected due to some other 590 // node use. 591 if (!N->isLeaf()) { 592 StringRef OperatorName = N->getOperator()->getName(); 593 if (OperatorName == "imm" || OperatorName == "fpimm") { 594 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 595 ResultOps.push_back(NextRecordedOperandNo++); 596 return; 597 } 598 } 599 600 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 601 ResultOps.push_back(SlotNo + i); 602} 603 604void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 605 SmallVectorImpl<unsigned> &ResultOps) { 606 assert(N->isLeaf() && "Must be a leaf"); 607 608 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 609 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); 610 ResultOps.push_back(NextRecordedOperandNo++); 611 return; 612 } 613 614 // If this is an explicit register reference, handle it. 615 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 616 Record *Def = DI->getDef(); 617 if (Def->isSubClassOf("Register")) { 618 const CodeGenRegister *Reg = 619 CGP.getTargetInfo().getRegBank().getReg(Def); 620 AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); 621 ResultOps.push_back(NextRecordedOperandNo++); 622 return; 623 } 624 625 if (Def->getName() == "zero_reg") { 626 AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0))); 627 ResultOps.push_back(NextRecordedOperandNo++); 628 return; 629 } 630 631 // Handle a reference to a register class. This is used 632 // in COPY_TO_SUBREG instructions. 633 if (Def->isSubClassOf("RegisterOperand")) 634 Def = Def->getValueAsDef("RegClass"); 635 if (Def->isSubClassOf("RegisterClass")) { 636 std::string Value = getQualifiedName(Def) + "RegClassID"; 637 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 638 ResultOps.push_back(NextRecordedOperandNo++); 639 return; 640 } 641 642 // Handle a subregister index. This is used for INSERT_SUBREG etc. 643 if (Def->isSubClassOf("SubRegIndex")) { 644 std::string Value = getQualifiedName(Def); 645 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 646 ResultOps.push_back(NextRecordedOperandNo++); 647 return; 648 } 649 } 650 651 errs() << "unhandled leaf node: \n"; 652 N->dump(); 653} 654 655/// GetInstPatternNode - Get the pattern for an instruction. 656/// 657const TreePatternNode *MatcherGen:: 658GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { 659 const TreePattern *InstPat = Inst.getPattern(); 660 661 // FIXME2?: Assume actual pattern comes before "implicit". 662 TreePatternNode *InstPatNode; 663 if (InstPat) 664 InstPatNode = InstPat->getTree(0); 665 else if (/*isRoot*/ N == Pattern.getDstPattern()) 666 InstPatNode = Pattern.getSrcPattern(); 667 else 668 return nullptr; 669 670 if (InstPatNode && !InstPatNode->isLeaf() && 671 InstPatNode->getOperator()->getName() == "set") 672 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); 673 674 return InstPatNode; 675} 676 677static bool 678mayInstNodeLoadOrStore(const TreePatternNode *N, 679 const CodeGenDAGPatterns &CGP) { 680 Record *Op = N->getOperator(); 681 const CodeGenTarget &CGT = CGP.getTargetInfo(); 682 CodeGenInstruction &II = CGT.getInstruction(Op); 683 return II.mayLoad || II.mayStore; 684} 685 686static unsigned 687numNodesThatMayLoadOrStore(const TreePatternNode *N, 688 const CodeGenDAGPatterns &CGP) { 689 if (N->isLeaf()) 690 return 0; 691 692 Record *OpRec = N->getOperator(); 693 if (!OpRec->isSubClassOf("Instruction")) 694 return 0; 695 696 unsigned Count = 0; 697 if (mayInstNodeLoadOrStore(N, CGP)) 698 ++Count; 699 700 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 701 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 702 703 return Count; 704} 705 706void MatcherGen:: 707EmitResultInstructionAsOperand(const TreePatternNode *N, 708 SmallVectorImpl<unsigned> &OutputOps) { 709 Record *Op = N->getOperator(); 710 const CodeGenTarget &CGT = CGP.getTargetInfo(); 711 CodeGenInstruction &II = CGT.getInstruction(Op); 712 const DAGInstruction &Inst = CGP.getInstruction(Op); 713 714 // If we can, get the pattern for the instruction we're generating. We derive 715 // a variety of information from this pattern, such as whether it has a chain. 716 // 717 // FIXME2: This is extremely dubious for several reasons, not the least of 718 // which it gives special status to instructions with patterns that Pat<> 719 // nodes can't duplicate. 720 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); 721 722 // NodeHasChain - Whether the instruction node we're creating takes chains. 723 bool NodeHasChain = InstPatNode && 724 InstPatNode->TreeHasProperty(SDNPHasChain, CGP); 725 726 // Instructions which load and store from memory should have a chain, 727 // regardless of whether they happen to have an internal pattern saying so. 728 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) 729 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 730 II.hasSideEffects)) 731 NodeHasChain = true; 732 733 bool isRoot = N == Pattern.getDstPattern(); 734 735 // TreeHasOutGlue - True if this tree has glue. 736 bool TreeHasInGlue = false, TreeHasOutGlue = false; 737 if (isRoot) { 738 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 739 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 740 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 741 742 // FIXME2: this is checking the entire pattern, not just the node in 743 // question, doing this just for the root seems like a total hack. 744 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 745 } 746 747 // NumResults - This is the number of results produced by the instruction in 748 // the "outs" list. 749 unsigned NumResults = Inst.getNumResults(); 750 751 // Number of operands we know the output instruction must have. If it is 752 // variadic, we could have more operands. 753 unsigned NumFixedOperands = II.Operands.size(); 754 755 SmallVector<unsigned, 8> InstOps; 756 757 // Loop over all of the fixed operands of the instruction pattern, emitting 758 // code to fill them all in. The node 'N' usually has number children equal to 759 // the number of input operands of the instruction. However, in cases where 760 // there are predicate operands for an instruction, we need to fill in the 761 // 'execute always' values. Match up the node operands to the instruction 762 // operands to do this. 763 unsigned ChildNo = 0; 764 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; 765 InstOpNo != e; ++InstOpNo) { 766 // Determine what to emit for this operand. 767 Record *OperandNode = II.Operands[InstOpNo].Rec; 768 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 769 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { 770 // This is a predicate or optional def operand; emit the 771 // 'default ops' operands. 772 const DAGDefaultOperand &DefaultOp 773 = CGP.getDefaultOperand(OperandNode); 774 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 775 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); 776 continue; 777 } 778 779 // Otherwise this is a normal operand or a predicate operand without 780 // 'execute always'; emit it. 781 782 // For operands with multiple sub-operands we may need to emit 783 // multiple child patterns to cover them all. However, ComplexPattern 784 // children may themselves emit multiple MI operands. 785 unsigned NumSubOps = 1; 786 if (OperandNode->isSubClassOf("Operand")) { 787 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 788 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 789 NumSubOps = NumArgs; 790 } 791 792 unsigned FinalNumOps = InstOps.size() + NumSubOps; 793 while (InstOps.size() < FinalNumOps) { 794 const TreePatternNode *Child = N->getChild(ChildNo); 795 unsigned BeforeAddingNumOps = InstOps.size(); 796 EmitResultOperand(Child, InstOps); 797 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 798 799 // If the operand is an instruction and it produced multiple results, just 800 // take the first one. 801 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 802 InstOps.resize(BeforeAddingNumOps+1); 803 804 ++ChildNo; 805 } 806 } 807 808 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 809 // expand suboperands, use default operands, or other features determined from 810 // the CodeGenInstruction after the fixed operands, which were handled 811 // above. Emit the remaining instructions implicitly added by the use for 812 // variable_ops. 813 if (II.Operands.isVariadic) { 814 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) 815 EmitResultOperand(N->getChild(I), InstOps); 816 } 817 818 // If this node has input glue or explicitly specified input physregs, we 819 // need to add chained and glued copyfromreg nodes and materialize the glue 820 // input. 821 if (isRoot && !PhysRegInputs.empty()) { 822 // Emit all of the CopyToReg nodes for the input physical registers. These 823 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 824 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) 825 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 826 PhysRegInputs[i].first)); 827 // Even if the node has no other glue inputs, the resultant node must be 828 // glued to the CopyFromReg nodes we just generated. 829 TreeHasInGlue = true; 830 } 831 832 // Result order: node results, chain, glue 833 834 // Determine the result types. 835 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 836 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 837 ResultVTs.push_back(N->getType(i)); 838 839 // If this is the root instruction of a pattern that has physical registers in 840 // its result pattern, add output VTs for them. For example, X86 has: 841 // (set AL, (mul ...)) 842 // This also handles implicit results like: 843 // (implicit EFLAGS) 844 if (isRoot && !Pattern.getDstRegs().empty()) { 845 // If the root came from an implicit def in the instruction handling stuff, 846 // don't re-add it. 847 Record *HandledReg = nullptr; 848 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 849 HandledReg = II.ImplicitDefs[0]; 850 851 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { 852 Record *Reg = Pattern.getDstRegs()[i]; 853 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 854 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 855 } 856 } 857 858 // If this is the root of the pattern and the pattern we're matching includes 859 // a node that is variadic, mark the generated node as variadic so that it 860 // gets the excess operands from the input DAG. 861 int NumFixedArityOperands = -1; 862 if (isRoot && 863 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) 864 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 865 866 // If this is the root node and multiple matched nodes in the input pattern 867 // have MemRefs in them, have the interpreter collect them and plop them onto 868 // this node. If there is just one node with MemRefs, leave them on that node 869 // even if it is not the root. 870 // 871 // FIXME3: This is actively incorrect for result patterns with multiple 872 // memory-referencing instructions. 873 bool PatternHasMemOperands = 874 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 875 876 bool NodeHasMemRefs = false; 877 if (PatternHasMemOperands) { 878 unsigned NumNodesThatLoadOrStore = 879 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 880 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 881 NumNodesThatLoadOrStore == 1; 882 NodeHasMemRefs = 883 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 884 NumNodesThatLoadOrStore != 1)); 885 } 886 887 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 888 "Node has no result"); 889 890 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), 891 ResultVTs, InstOps, 892 NodeHasChain, TreeHasInGlue, TreeHasOutGlue, 893 NodeHasMemRefs, NumFixedArityOperands, 894 NextRecordedOperandNo)); 895 896 // The non-chain and non-glue results of the newly emitted node get recorded. 897 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 898 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 899 OutputOps.push_back(NextRecordedOperandNo++); 900 } 901} 902 903void MatcherGen:: 904EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 905 SmallVectorImpl<unsigned> &ResultOps) { 906 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 907 908 // Emit the operand. 909 SmallVector<unsigned, 8> InputOps; 910 911 // FIXME2: Could easily generalize this to support multiple inputs and outputs 912 // to the SDNodeXForm. For now we just support one input and one output like 913 // the old instruction selector. 914 assert(N->getNumChildren() == 1); 915 EmitResultOperand(N->getChild(0), InputOps); 916 917 // The input currently must have produced exactly one result. 918 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 919 920 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 921 ResultOps.push_back(NextRecordedOperandNo++); 922} 923 924void MatcherGen::EmitResultOperand(const TreePatternNode *N, 925 SmallVectorImpl<unsigned> &ResultOps) { 926 // This is something selected from the pattern we matched. 927 if (!N->getName().empty()) 928 return EmitResultOfNamedOperand(N, ResultOps); 929 930 if (N->isLeaf()) 931 return EmitResultLeafAsOperand(N, ResultOps); 932 933 Record *OpRec = N->getOperator(); 934 if (OpRec->isSubClassOf("Instruction")) 935 return EmitResultInstructionAsOperand(N, ResultOps); 936 if (OpRec->isSubClassOf("SDNodeXForm")) 937 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 938 errs() << "Unknown result node to emit code for: " << *N << '\n'; 939 PrintFatalError("Unknown node in result pattern!"); 940} 941 942void MatcherGen::EmitResultCode() { 943 // Patterns that match nodes with (potentially multiple) chain inputs have to 944 // merge them together into a token factor. This informs the generated code 945 // what all the chained nodes are. 946 if (!MatchedChainNodes.empty()) 947 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 948 949 // Codegen the root of the result pattern, capturing the resulting values. 950 SmallVector<unsigned, 8> Ops; 951 EmitResultOperand(Pattern.getDstPattern(), Ops); 952 953 // At this point, we have however many values the result pattern produces. 954 // However, the input pattern might not need all of these. If there are 955 // excess values at the end (such as implicit defs of condition codes etc) 956 // just lop them off. This doesn't need to worry about glue or chains, just 957 // explicit results. 958 // 959 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 960 961 // If the pattern also has (implicit) results, count them as well. 962 if (!Pattern.getDstRegs().empty()) { 963 // If the root came from an implicit def in the instruction handling stuff, 964 // don't re-add it. 965 Record *HandledReg = nullptr; 966 const TreePatternNode *DstPat = Pattern.getDstPattern(); 967 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 968 const CodeGenTarget &CGT = CGP.getTargetInfo(); 969 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 970 971 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 972 HandledReg = II.ImplicitDefs[0]; 973 } 974 975 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { 976 Record *Reg = Pattern.getDstRegs()[i]; 977 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 978 ++NumSrcResults; 979 } 980 } 981 982 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); 983 Ops.resize(NumSrcResults); 984 985 AddMatcher(new CompleteMatchMatcher(Ops, Pattern)); 986} 987 988 989/// ConvertPatternToMatcher - Create the matcher for the specified pattern with 990/// the specified variant. If the variant number is invalid, this returns null. 991Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 992 unsigned Variant, 993 const CodeGenDAGPatterns &CGP) { 994 MatcherGen Gen(Pattern, CGP); 995 996 // Generate the code for the matcher. 997 if (Gen.EmitMatcherCode(Variant)) 998 return nullptr; 999 1000 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1001 // FIXME2: Split result code out to another table, and make the matcher end 1002 // with an "Emit <index>" command. This allows result generation stuff to be 1003 // shared and factored? 1004 1005 // If the match succeeds, then we generate Pattern. 1006 Gen.EmitResultCode(); 1007 1008 // Unconditional match. 1009 return Gen.GetMatcher(); 1010} 1011