1//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "DAGISelMatcher.h"
11#include "CodeGenDAGPatterns.h"
12#include "CodeGenRegisters.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringMap.h"
15#include "llvm/TableGen/Error.h"
16#include "llvm/TableGen/Record.h"
17#include <utility>
18using namespace llvm;
19
20
21/// getRegisterValueType - Look up and return the ValueType of the specified
22/// register. If the register is a member of multiple register classes which
23/// have different associated types, return MVT::Other.
24static MVT::SimpleValueType getRegisterValueType(Record *R,
25                                                 const CodeGenTarget &T) {
26  bool FoundRC = false;
27  MVT::SimpleValueType VT = MVT::Other;
28  const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29
30  for (const auto &RC : T.getRegBank().getRegClasses()) {
31    if (!RC.contains(Reg))
32      continue;
33
34    if (!FoundRC) {
35      FoundRC = true;
36      VT = RC.getValueTypeNum(0);
37      continue;
38    }
39
40    // If this occurs in multiple register classes, they all have to agree.
41    assert(VT == RC.getValueTypeNum(0));
42  }
43  return VT;
44}
45
46
47namespace {
48  class MatcherGen {
49    const PatternToMatch &Pattern;
50    const CodeGenDAGPatterns &CGP;
51
52    /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53    /// out with all of the types removed.  This allows us to insert type checks
54    /// as we scan the tree.
55    TreePatternNode *PatWithNoTypes;
56
57    /// VariableMap - A map from variable names ('$dst') to the recorded operand
58    /// number that they were captured as.  These are biased by 1 to make
59    /// insertion easier.
60    StringMap<unsigned> VariableMap;
61
62    /// This maintains the recorded operand number that OPC_CheckComplexPattern
63    /// drops each sub-operand into. We don't want to insert these into
64    /// VariableMap because that leads to identity checking if they are
65    /// encountered multiple times. Biased by 1 like VariableMap for
66    /// consistency.
67    StringMap<unsigned> NamedComplexPatternOperands;
68
69    /// NextRecordedOperandNo - As we emit opcodes to record matched values in
70    /// the RecordedNodes array, this keeps track of which slot will be next to
71    /// record into.
72    unsigned NextRecordedOperandNo;
73
74    /// MatchedChainNodes - This maintains the position in the recorded nodes
75    /// array of all of the recorded input nodes that have chains.
76    SmallVector<unsigned, 2> MatchedChainNodes;
77
78    /// MatchedComplexPatterns - This maintains a list of all of the
79    /// ComplexPatterns that we need to check. The second element of each pair
80    /// is the recorded operand number of the input node.
81    SmallVector<std::pair<const TreePatternNode*,
82                          unsigned>, 2> MatchedComplexPatterns;
83
84    /// PhysRegInputs - List list has an entry for each explicitly specified
85    /// physreg input to the pattern.  The first elt is the Register node, the
86    /// second is the recorded slot number the input pattern match saved it in.
87    SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
88
89    /// Matcher - This is the top level of the generated matcher, the result.
90    Matcher *TheMatcher;
91
92    /// CurPredicate - As we emit matcher nodes, this points to the latest check
93    /// which should have future checks stuck into its Next position.
94    Matcher *CurPredicate;
95  public:
96    MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
97
98    ~MatcherGen() {
99      delete PatWithNoTypes;
100    }
101
102    bool EmitMatcherCode(unsigned Variant);
103    void EmitResultCode();
104
105    Matcher *GetMatcher() const { return TheMatcher; }
106  private:
107    void AddMatcher(Matcher *NewNode);
108    void InferPossibleTypes();
109
110    // Matcher Generation.
111    void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
112    void EmitLeafMatchCode(const TreePatternNode *N);
113    void EmitOperatorMatchCode(const TreePatternNode *N,
114                               TreePatternNode *NodeNoTypes);
115
116    /// If this is the first time a node with unique identifier Name has been
117    /// seen, record it. Otherwise, emit a check to make sure this is the same
118    /// node. Returns true if this is the first encounter.
119    bool recordUniqueNode(const std::string &Name);
120
121    // Result Code Generation.
122    unsigned getNamedArgumentSlot(StringRef Name) {
123      unsigned VarMapEntry = VariableMap[Name];
124      assert(VarMapEntry != 0 &&
125             "Variable referenced but not defined and not caught earlier!");
126      return VarMapEntry-1;
127    }
128
129    /// GetInstPatternNode - Get the pattern for an instruction.
130    const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
131                                              const TreePatternNode *N);
132
133    void EmitResultOperand(const TreePatternNode *N,
134                           SmallVectorImpl<unsigned> &ResultOps);
135    void EmitResultOfNamedOperand(const TreePatternNode *N,
136                                  SmallVectorImpl<unsigned> &ResultOps);
137    void EmitResultLeafAsOperand(const TreePatternNode *N,
138                                 SmallVectorImpl<unsigned> &ResultOps);
139    void EmitResultInstructionAsOperand(const TreePatternNode *N,
140                                        SmallVectorImpl<unsigned> &ResultOps);
141    void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
142                                        SmallVectorImpl<unsigned> &ResultOps);
143    };
144
145} // end anon namespace.
146
147MatcherGen::MatcherGen(const PatternToMatch &pattern,
148                       const CodeGenDAGPatterns &cgp)
149: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
150  TheMatcher(nullptr), CurPredicate(nullptr) {
151  // We need to produce the matcher tree for the patterns source pattern.  To do
152  // this we need to match the structure as well as the types.  To do the type
153  // matching, we want to figure out the fewest number of type checks we need to
154  // emit.  For example, if there is only one integer type supported by a
155  // target, there should be no type comparisons at all for integer patterns!
156  //
157  // To figure out the fewest number of type checks needed, clone the pattern,
158  // remove the types, then perform type inference on the pattern as a whole.
159  // If there are unresolved types, emit an explicit check for those types,
160  // apply the type to the tree, then rerun type inference.  Iterate until all
161  // types are resolved.
162  //
163  PatWithNoTypes = Pattern.getSrcPattern()->clone();
164  PatWithNoTypes->RemoveAllTypes();
165
166  // If there are types that are manifestly known, infer them.
167  InferPossibleTypes();
168}
169
170/// InferPossibleTypes - As we emit the pattern, we end up generating type
171/// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
172/// want to propagate implied types as far throughout the tree as possible so
173/// that we avoid doing redundant type checks.  This does the type propagation.
174void MatcherGen::InferPossibleTypes() {
175  // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
176  // diagnostics, which we know are impossible at this point.
177  TreePattern &TP = *CGP.pf_begin()->second;
178
179  bool MadeChange = true;
180  while (MadeChange)
181    MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
182                                              true/*Ignore reg constraints*/);
183}
184
185
186/// AddMatcher - Add a matcher node to the current graph we're building.
187void MatcherGen::AddMatcher(Matcher *NewNode) {
188  if (CurPredicate)
189    CurPredicate->setNext(NewNode);
190  else
191    TheMatcher = NewNode;
192  CurPredicate = NewNode;
193}
194
195
196//===----------------------------------------------------------------------===//
197// Pattern Match Generation
198//===----------------------------------------------------------------------===//
199
200/// EmitLeafMatchCode - Generate matching code for leaf nodes.
201void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
202  assert(N->isLeaf() && "Not a leaf?");
203
204  // Direct match against an integer constant.
205  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
206    // If this is the root of the dag we're matching, we emit a redundant opcode
207    // check to ensure that this gets folded into the normal top-level
208    // OpcodeSwitch.
209    if (N == Pattern.getSrcPattern()) {
210      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211      AddMatcher(new CheckOpcodeMatcher(NI));
212    }
213
214    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
215  }
216
217  // An UnsetInit represents a named node without any constraints.
218  if (isa<UnsetInit>(N->getLeafValue())) {
219    assert(N->hasName() && "Unnamed ? leaf");
220    return;
221  }
222
223  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
224  if (!DI) {
225    errs() << "Unknown leaf kind: " << *N << "\n";
226    abort();
227  }
228
229  Record *LeafRec = DI->getDef();
230
231  // A ValueType leaf node can represent a register when named, or itself when
232  // unnamed.
233  if (LeafRec->isSubClassOf("ValueType")) {
234    // A named ValueType leaf always matches: (add i32:$a, i32:$b).
235    if (N->hasName())
236      return;
237    // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
238    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
239  }
240
241  if (// Handle register references.  Nothing to do here, they always match.
242      LeafRec->isSubClassOf("RegisterClass") ||
243      LeafRec->isSubClassOf("RegisterOperand") ||
244      LeafRec->isSubClassOf("PointerLikeRegClass") ||
245      LeafRec->isSubClassOf("SubRegIndex") ||
246      // Place holder for SRCVALUE nodes. Nothing to do here.
247      LeafRec->getName() == "srcvalue")
248    return;
249
250  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
251  // record the register
252  if (LeafRec->isSubClassOf("Register")) {
253    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
254                                 NextRecordedOperandNo));
255    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
256    return;
257  }
258
259  if (LeafRec->isSubClassOf("CondCode"))
260    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
261
262  if (LeafRec->isSubClassOf("ComplexPattern")) {
263    // We can't model ComplexPattern uses that don't have their name taken yet.
264    // The OPC_CheckComplexPattern operation implicitly records the results.
265    if (N->getName().empty()) {
266      std::string S;
267      raw_string_ostream OS(S);
268      OS << "We expect complex pattern uses to have names: " << *N;
269      PrintFatalError(OS.str());
270    }
271
272    // Remember this ComplexPattern so that we can emit it after all the other
273    // structural matches are done.
274    unsigned InputOperand = VariableMap[N->getName()] - 1;
275    MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
276    return;
277  }
278
279  errs() << "Unknown leaf kind: " << *N << "\n";
280  abort();
281}
282
283void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
284                                       TreePatternNode *NodeNoTypes) {
285  assert(!N->isLeaf() && "Not an operator?");
286
287  if (N->getOperator()->isSubClassOf("ComplexPattern")) {
288    // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
289    // "MY_PAT:op1:op2". We should already have validated that the uses are
290    // consistent.
291    std::string PatternName = N->getOperator()->getName();
292    for (unsigned i = 0; i < N->getNumChildren(); ++i) {
293      PatternName += ":";
294      PatternName += N->getChild(i)->getName();
295    }
296
297    if (recordUniqueNode(PatternName)) {
298      auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
299      MatchedComplexPatterns.push_back(NodeAndOpNum);
300    }
301
302    return;
303  }
304
305  const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
306
307  // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
308  // a constant without a predicate fn that has more that one bit set, handle
309  // this as a special case.  This is usually for targets that have special
310  // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
311  // handling stuff).  Using these instructions is often far more efficient
312  // than materializing the constant.  Unfortunately, both the instcombiner
313  // and the dag combiner can often infer that bits are dead, and thus drop
314  // them from the mask in the dag.  For example, it might turn 'AND X, 255'
315  // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
316  // to handle this.
317  if ((N->getOperator()->getName() == "and" ||
318       N->getOperator()->getName() == "or") &&
319      N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
320      N->getPredicateFns().empty()) {
321    if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
322      if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
323        // If this is at the root of the pattern, we emit a redundant
324        // CheckOpcode so that the following checks get factored properly under
325        // a single opcode check.
326        if (N == Pattern.getSrcPattern())
327          AddMatcher(new CheckOpcodeMatcher(CInfo));
328
329        // Emit the CheckAndImm/CheckOrImm node.
330        if (N->getOperator()->getName() == "and")
331          AddMatcher(new CheckAndImmMatcher(II->getValue()));
332        else
333          AddMatcher(new CheckOrImmMatcher(II->getValue()));
334
335        // Match the LHS of the AND as appropriate.
336        AddMatcher(new MoveChildMatcher(0));
337        EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
338        AddMatcher(new MoveParentMatcher());
339        return;
340      }
341    }
342  }
343
344  // Check that the current opcode lines up.
345  AddMatcher(new CheckOpcodeMatcher(CInfo));
346
347  // If this node has memory references (i.e. is a load or store), tell the
348  // interpreter to capture them in the memref array.
349  if (N->NodeHasProperty(SDNPMemOperand, CGP))
350    AddMatcher(new RecordMemRefMatcher());
351
352  // If this node has a chain, then the chain is operand #0 is the SDNode, and
353  // the child numbers of the node are all offset by one.
354  unsigned OpNo = 0;
355  if (N->NodeHasProperty(SDNPHasChain, CGP)) {
356    // Record the node and remember it in our chained nodes list.
357    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
358                                         "' chained node",
359                                 NextRecordedOperandNo));
360    // Remember all of the input chains our pattern will match.
361    MatchedChainNodes.push_back(NextRecordedOperandNo++);
362
363    // Don't look at the input chain when matching the tree pattern to the
364    // SDNode.
365    OpNo = 1;
366
367    // If this node is not the root and the subtree underneath it produces a
368    // chain, then the result of matching the node is also produce a chain.
369    // Beyond that, this means that we're also folding (at least) the root node
370    // into the node that produce the chain (for example, matching
371    // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
372    // problematic, if the 'reg' node also uses the load (say, its chain).
373    // Graphically:
374    //
375    //         [LD]
376    //         ^  ^
377    //         |  \                              DAG's like cheese.
378    //        /    |
379    //       /    [YY]
380    //       |     ^
381    //      [XX]--/
382    //
383    // It would be invalid to fold XX and LD.  In this case, folding the two
384    // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
385    // To prevent this, we emit a dynamic check for legality before allowing
386    // this to be folded.
387    //
388    const TreePatternNode *Root = Pattern.getSrcPattern();
389    if (N != Root) {                             // Not the root of the pattern.
390      // If there is a node between the root and this node, then we definitely
391      // need to emit the check.
392      bool NeedCheck = !Root->hasChild(N);
393
394      // If it *is* an immediate child of the root, we can still need a check if
395      // the root SDNode has multiple inputs.  For us, this means that it is an
396      // intrinsic, has multiple operands, or has other inputs like chain or
397      // glue).
398      if (!NeedCheck) {
399        const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
400        NeedCheck =
401          Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
402          Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
403          Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
404          PInfo.getNumOperands() > 1 ||
405          PInfo.hasProperty(SDNPHasChain) ||
406          PInfo.hasProperty(SDNPInGlue) ||
407          PInfo.hasProperty(SDNPOptInGlue);
408      }
409
410      if (NeedCheck)
411        AddMatcher(new CheckFoldableChainNodeMatcher());
412    }
413  }
414
415  // If this node has an output glue and isn't the root, remember it.
416  if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
417      N != Pattern.getSrcPattern()) {
418    // TODO: This redundantly records nodes with both glues and chains.
419
420    // Record the node and remember it in our chained nodes list.
421    AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
422                                         "' glue output node",
423                                 NextRecordedOperandNo));
424  }
425
426  // If this node is known to have an input glue or if it *might* have an input
427  // glue, capture it as the glue input of the pattern.
428  if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
429      N->NodeHasProperty(SDNPInGlue, CGP))
430    AddMatcher(new CaptureGlueInputMatcher());
431
432  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
433    // Get the code suitable for matching this child.  Move to the child, check
434    // it then move back to the parent.
435    AddMatcher(new MoveChildMatcher(OpNo));
436    EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
437    AddMatcher(new MoveParentMatcher());
438  }
439}
440
441bool MatcherGen::recordUniqueNode(const std::string &Name) {
442  unsigned &VarMapEntry = VariableMap[Name];
443  if (VarMapEntry == 0) {
444    // If it is a named node, we must emit a 'Record' opcode.
445    AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
446    VarMapEntry = ++NextRecordedOperandNo;
447    return true;
448  }
449
450  // If we get here, this is a second reference to a specific name.  Since
451  // we already have checked that the first reference is valid, we don't
452  // have to recursively match it, just check that it's the same as the
453  // previously named thing.
454  AddMatcher(new CheckSameMatcher(VarMapEntry-1));
455  return false;
456}
457
458void MatcherGen::EmitMatchCode(const TreePatternNode *N,
459                               TreePatternNode *NodeNoTypes) {
460  // If N and NodeNoTypes don't agree on a type, then this is a case where we
461  // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
462  // reinfer any correlated types.
463  SmallVector<unsigned, 2> ResultsToTypeCheck;
464
465  for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
466    if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
467    NodeNoTypes->setType(i, N->getExtType(i));
468    InferPossibleTypes();
469    ResultsToTypeCheck.push_back(i);
470  }
471
472  // If this node has a name associated with it, capture it in VariableMap. If
473  // we already saw this in the pattern, emit code to verify dagness.
474  if (!N->getName().empty())
475    if (!recordUniqueNode(N->getName()))
476      return;
477
478  if (N->isLeaf())
479    EmitLeafMatchCode(N);
480  else
481    EmitOperatorMatchCode(N, NodeNoTypes);
482
483  // If there are node predicates for this node, generate their checks.
484  for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
485    AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
486
487  for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
488    AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
489                                    ResultsToTypeCheck[i]));
490}
491
492/// EmitMatcherCode - Generate the code that matches the predicate of this
493/// pattern for the specified Variant.  If the variant is invalid this returns
494/// true and does not generate code, if it is valid, it returns false.
495bool MatcherGen::EmitMatcherCode(unsigned Variant) {
496  // If the root of the pattern is a ComplexPattern and if it is specified to
497  // match some number of root opcodes, these are considered to be our variants.
498  // Depending on which variant we're generating code for, emit the root opcode
499  // check.
500  if (const ComplexPattern *CP =
501                   Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
502    const std::vector<Record*> &OpNodes = CP->getRootNodes();
503    assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
504    if (Variant >= OpNodes.size()) return true;
505
506    AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
507  } else {
508    if (Variant != 0) return true;
509  }
510
511  // Emit the matcher for the pattern structure and types.
512  EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
513
514  // If the pattern has a predicate on it (e.g. only enabled when a subtarget
515  // feature is around, do the check).
516  if (!Pattern.getPredicateCheck().empty())
517    AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
518
519  // Now that we've completed the structural type match, emit any ComplexPattern
520  // checks (e.g. addrmode matches).  We emit this after the structural match
521  // because they are generally more expensive to evaluate and more difficult to
522  // factor.
523  for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
524    const TreePatternNode *N = MatchedComplexPatterns[i].first;
525
526    // Remember where the results of this match get stuck.
527    if (N->isLeaf()) {
528      NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
529    } else {
530      unsigned CurOp = NextRecordedOperandNo;
531      for (unsigned i = 0; i < N->getNumChildren(); ++i) {
532        NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
533        CurOp += N->getChild(i)->getNumMIResults(CGP);
534      }
535    }
536
537    // Get the slot we recorded the value in from the name on the node.
538    unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
539
540    const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
541
542    // Emit a CheckComplexPat operation, which does the match (aborting if it
543    // fails) and pushes the matched operands onto the recorded nodes list.
544    AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
545                                          N->getName(), NextRecordedOperandNo));
546
547    // Record the right number of operands.
548    NextRecordedOperandNo += CP.getNumOperands();
549    if (CP.hasProperty(SDNPHasChain)) {
550      // If the complex pattern has a chain, then we need to keep track of the
551      // fact that we just recorded a chain input.  The chain input will be
552      // matched as the last operand of the predicate if it was successful.
553      ++NextRecordedOperandNo; // Chained node operand.
554
555      // It is the last operand recorded.
556      assert(NextRecordedOperandNo > 1 &&
557             "Should have recorded input/result chains at least!");
558      MatchedChainNodes.push_back(NextRecordedOperandNo-1);
559    }
560
561    // TODO: Complex patterns can't have output glues, if they did, we'd want
562    // to record them.
563  }
564
565  return false;
566}
567
568
569//===----------------------------------------------------------------------===//
570// Node Result Generation
571//===----------------------------------------------------------------------===//
572
573void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
574                                          SmallVectorImpl<unsigned> &ResultOps){
575  assert(!N->getName().empty() && "Operand not named!");
576
577  if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
578    // Complex operands have already been completely selected, just find the
579    // right slot ant add the arguments directly.
580    for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
581      ResultOps.push_back(SlotNo - 1 + i);
582
583    return;
584  }
585
586  unsigned SlotNo = getNamedArgumentSlot(N->getName());
587
588  // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
589  // version of the immediate so that it doesn't get selected due to some other
590  // node use.
591  if (!N->isLeaf()) {
592    StringRef OperatorName = N->getOperator()->getName();
593    if (OperatorName == "imm" || OperatorName == "fpimm") {
594      AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
595      ResultOps.push_back(NextRecordedOperandNo++);
596      return;
597    }
598  }
599
600  for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
601    ResultOps.push_back(SlotNo + i);
602}
603
604void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
605                                         SmallVectorImpl<unsigned> &ResultOps) {
606  assert(N->isLeaf() && "Must be a leaf");
607
608  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
609    AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
610    ResultOps.push_back(NextRecordedOperandNo++);
611    return;
612  }
613
614  // If this is an explicit register reference, handle it.
615  if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
616    Record *Def = DI->getDef();
617    if (Def->isSubClassOf("Register")) {
618      const CodeGenRegister *Reg =
619        CGP.getTargetInfo().getRegBank().getReg(Def);
620      AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
621      ResultOps.push_back(NextRecordedOperandNo++);
622      return;
623    }
624
625    if (Def->getName() == "zero_reg") {
626      AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
627      ResultOps.push_back(NextRecordedOperandNo++);
628      return;
629    }
630
631    // Handle a reference to a register class. This is used
632    // in COPY_TO_SUBREG instructions.
633    if (Def->isSubClassOf("RegisterOperand"))
634      Def = Def->getValueAsDef("RegClass");
635    if (Def->isSubClassOf("RegisterClass")) {
636      std::string Value = getQualifiedName(Def) + "RegClassID";
637      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
638      ResultOps.push_back(NextRecordedOperandNo++);
639      return;
640    }
641
642    // Handle a subregister index. This is used for INSERT_SUBREG etc.
643    if (Def->isSubClassOf("SubRegIndex")) {
644      std::string Value = getQualifiedName(Def);
645      AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
646      ResultOps.push_back(NextRecordedOperandNo++);
647      return;
648    }
649  }
650
651  errs() << "unhandled leaf node: \n";
652  N->dump();
653}
654
655/// GetInstPatternNode - Get the pattern for an instruction.
656///
657const TreePatternNode *MatcherGen::
658GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
659  const TreePattern *InstPat = Inst.getPattern();
660
661  // FIXME2?: Assume actual pattern comes before "implicit".
662  TreePatternNode *InstPatNode;
663  if (InstPat)
664    InstPatNode = InstPat->getTree(0);
665  else if (/*isRoot*/ N == Pattern.getDstPattern())
666    InstPatNode = Pattern.getSrcPattern();
667  else
668    return nullptr;
669
670  if (InstPatNode && !InstPatNode->isLeaf() &&
671      InstPatNode->getOperator()->getName() == "set")
672    InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
673
674  return InstPatNode;
675}
676
677static bool
678mayInstNodeLoadOrStore(const TreePatternNode *N,
679                       const CodeGenDAGPatterns &CGP) {
680  Record *Op = N->getOperator();
681  const CodeGenTarget &CGT = CGP.getTargetInfo();
682  CodeGenInstruction &II = CGT.getInstruction(Op);
683  return II.mayLoad || II.mayStore;
684}
685
686static unsigned
687numNodesThatMayLoadOrStore(const TreePatternNode *N,
688                           const CodeGenDAGPatterns &CGP) {
689  if (N->isLeaf())
690    return 0;
691
692  Record *OpRec = N->getOperator();
693  if (!OpRec->isSubClassOf("Instruction"))
694    return 0;
695
696  unsigned Count = 0;
697  if (mayInstNodeLoadOrStore(N, CGP))
698    ++Count;
699
700  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
701    Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
702
703  return Count;
704}
705
706void MatcherGen::
707EmitResultInstructionAsOperand(const TreePatternNode *N,
708                               SmallVectorImpl<unsigned> &OutputOps) {
709  Record *Op = N->getOperator();
710  const CodeGenTarget &CGT = CGP.getTargetInfo();
711  CodeGenInstruction &II = CGT.getInstruction(Op);
712  const DAGInstruction &Inst = CGP.getInstruction(Op);
713
714  // If we can, get the pattern for the instruction we're generating. We derive
715  // a variety of information from this pattern, such as whether it has a chain.
716  //
717  // FIXME2: This is extremely dubious for several reasons, not the least of
718  // which it gives special status to instructions with patterns that Pat<>
719  // nodes can't duplicate.
720  const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
721
722  // NodeHasChain - Whether the instruction node we're creating takes chains.
723  bool NodeHasChain = InstPatNode &&
724                      InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
725
726  // Instructions which load and store from memory should have a chain,
727  // regardless of whether they happen to have an internal pattern saying so.
728  if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
729      && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
730          II.hasSideEffects))
731      NodeHasChain = true;
732
733  bool isRoot = N == Pattern.getDstPattern();
734
735  // TreeHasOutGlue - True if this tree has glue.
736  bool TreeHasInGlue = false, TreeHasOutGlue = false;
737  if (isRoot) {
738    const TreePatternNode *SrcPat = Pattern.getSrcPattern();
739    TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
740                    SrcPat->TreeHasProperty(SDNPInGlue, CGP);
741
742    // FIXME2: this is checking the entire pattern, not just the node in
743    // question, doing this just for the root seems like a total hack.
744    TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
745  }
746
747  // NumResults - This is the number of results produced by the instruction in
748  // the "outs" list.
749  unsigned NumResults = Inst.getNumResults();
750
751  // Number of operands we know the output instruction must have. If it is
752  // variadic, we could have more operands.
753  unsigned NumFixedOperands = II.Operands.size();
754
755  SmallVector<unsigned, 8> InstOps;
756
757  // Loop over all of the fixed operands of the instruction pattern, emitting
758  // code to fill them all in. The node 'N' usually has number children equal to
759  // the number of input operands of the instruction.  However, in cases where
760  // there are predicate operands for an instruction, we need to fill in the
761  // 'execute always' values. Match up the node operands to the instruction
762  // operands to do this.
763  unsigned ChildNo = 0;
764  for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
765       InstOpNo != e; ++InstOpNo) {
766    // Determine what to emit for this operand.
767    Record *OperandNode = II.Operands[InstOpNo].Rec;
768    if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
769        !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
770      // This is a predicate or optional def operand; emit the
771      // 'default ops' operands.
772      const DAGDefaultOperand &DefaultOp
773        = CGP.getDefaultOperand(OperandNode);
774      for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
775        EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
776      continue;
777    }
778
779    // Otherwise this is a normal operand or a predicate operand without
780    // 'execute always'; emit it.
781
782    // For operands with multiple sub-operands we may need to emit
783    // multiple child patterns to cover them all.  However, ComplexPattern
784    // children may themselves emit multiple MI operands.
785    unsigned NumSubOps = 1;
786    if (OperandNode->isSubClassOf("Operand")) {
787      DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
788      if (unsigned NumArgs = MIOpInfo->getNumArgs())
789        NumSubOps = NumArgs;
790    }
791
792    unsigned FinalNumOps = InstOps.size() + NumSubOps;
793    while (InstOps.size() < FinalNumOps) {
794      const TreePatternNode *Child = N->getChild(ChildNo);
795      unsigned BeforeAddingNumOps = InstOps.size();
796      EmitResultOperand(Child, InstOps);
797      assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
798
799      // If the operand is an instruction and it produced multiple results, just
800      // take the first one.
801      if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
802        InstOps.resize(BeforeAddingNumOps+1);
803
804      ++ChildNo;
805    }
806  }
807
808  // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
809  // expand suboperands, use default operands, or other features determined from
810  // the CodeGenInstruction after the fixed operands, which were handled
811  // above. Emit the remaining instructions implicitly added by the use for
812  // variable_ops.
813  if (II.Operands.isVariadic) {
814    for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
815      EmitResultOperand(N->getChild(I), InstOps);
816  }
817
818  // If this node has input glue or explicitly specified input physregs, we
819  // need to add chained and glued copyfromreg nodes and materialize the glue
820  // input.
821  if (isRoot && !PhysRegInputs.empty()) {
822    // Emit all of the CopyToReg nodes for the input physical registers.  These
823    // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
824    for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
825      AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
826                                          PhysRegInputs[i].first));
827    // Even if the node has no other glue inputs, the resultant node must be
828    // glued to the CopyFromReg nodes we just generated.
829    TreeHasInGlue = true;
830  }
831
832  // Result order: node results, chain, glue
833
834  // Determine the result types.
835  SmallVector<MVT::SimpleValueType, 4> ResultVTs;
836  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
837    ResultVTs.push_back(N->getType(i));
838
839  // If this is the root instruction of a pattern that has physical registers in
840  // its result pattern, add output VTs for them.  For example, X86 has:
841  //   (set AL, (mul ...))
842  // This also handles implicit results like:
843  //   (implicit EFLAGS)
844  if (isRoot && !Pattern.getDstRegs().empty()) {
845    // If the root came from an implicit def in the instruction handling stuff,
846    // don't re-add it.
847    Record *HandledReg = nullptr;
848    if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
849      HandledReg = II.ImplicitDefs[0];
850
851    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
852      Record *Reg = Pattern.getDstRegs()[i];
853      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
854      ResultVTs.push_back(getRegisterValueType(Reg, CGT));
855    }
856  }
857
858  // If this is the root of the pattern and the pattern we're matching includes
859  // a node that is variadic, mark the generated node as variadic so that it
860  // gets the excess operands from the input DAG.
861  int NumFixedArityOperands = -1;
862  if (isRoot &&
863      Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
864    NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
865
866  // If this is the root node and multiple matched nodes in the input pattern
867  // have MemRefs in them, have the interpreter collect them and plop them onto
868  // this node. If there is just one node with MemRefs, leave them on that node
869  // even if it is not the root.
870  //
871  // FIXME3: This is actively incorrect for result patterns with multiple
872  // memory-referencing instructions.
873  bool PatternHasMemOperands =
874    Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
875
876  bool NodeHasMemRefs = false;
877  if (PatternHasMemOperands) {
878    unsigned NumNodesThatLoadOrStore =
879      numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
880    bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
881                                   NumNodesThatLoadOrStore == 1;
882    NodeHasMemRefs =
883      NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
884                                             NumNodesThatLoadOrStore != 1));
885  }
886
887  assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
888         "Node has no result");
889
890  AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
891                                 ResultVTs, InstOps,
892                                 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
893                                 NodeHasMemRefs, NumFixedArityOperands,
894                                 NextRecordedOperandNo));
895
896  // The non-chain and non-glue results of the newly emitted node get recorded.
897  for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
898    if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
899    OutputOps.push_back(NextRecordedOperandNo++);
900  }
901}
902
903void MatcherGen::
904EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
905                               SmallVectorImpl<unsigned> &ResultOps) {
906  assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
907
908  // Emit the operand.
909  SmallVector<unsigned, 8> InputOps;
910
911  // FIXME2: Could easily generalize this to support multiple inputs and outputs
912  // to the SDNodeXForm.  For now we just support one input and one output like
913  // the old instruction selector.
914  assert(N->getNumChildren() == 1);
915  EmitResultOperand(N->getChild(0), InputOps);
916
917  // The input currently must have produced exactly one result.
918  assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
919
920  AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
921  ResultOps.push_back(NextRecordedOperandNo++);
922}
923
924void MatcherGen::EmitResultOperand(const TreePatternNode *N,
925                                   SmallVectorImpl<unsigned> &ResultOps) {
926  // This is something selected from the pattern we matched.
927  if (!N->getName().empty())
928    return EmitResultOfNamedOperand(N, ResultOps);
929
930  if (N->isLeaf())
931    return EmitResultLeafAsOperand(N, ResultOps);
932
933  Record *OpRec = N->getOperator();
934  if (OpRec->isSubClassOf("Instruction"))
935    return EmitResultInstructionAsOperand(N, ResultOps);
936  if (OpRec->isSubClassOf("SDNodeXForm"))
937    return EmitResultSDNodeXFormAsOperand(N, ResultOps);
938  errs() << "Unknown result node to emit code for: " << *N << '\n';
939  PrintFatalError("Unknown node in result pattern!");
940}
941
942void MatcherGen::EmitResultCode() {
943  // Patterns that match nodes with (potentially multiple) chain inputs have to
944  // merge them together into a token factor.  This informs the generated code
945  // what all the chained nodes are.
946  if (!MatchedChainNodes.empty())
947    AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
948
949  // Codegen the root of the result pattern, capturing the resulting values.
950  SmallVector<unsigned, 8> Ops;
951  EmitResultOperand(Pattern.getDstPattern(), Ops);
952
953  // At this point, we have however many values the result pattern produces.
954  // However, the input pattern might not need all of these.  If there are
955  // excess values at the end (such as implicit defs of condition codes etc)
956  // just lop them off.  This doesn't need to worry about glue or chains, just
957  // explicit results.
958  //
959  unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
960
961  // If the pattern also has (implicit) results, count them as well.
962  if (!Pattern.getDstRegs().empty()) {
963    // If the root came from an implicit def in the instruction handling stuff,
964    // don't re-add it.
965    Record *HandledReg = nullptr;
966    const TreePatternNode *DstPat = Pattern.getDstPattern();
967    if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
968      const CodeGenTarget &CGT = CGP.getTargetInfo();
969      CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
970
971      if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
972        HandledReg = II.ImplicitDefs[0];
973    }
974
975    for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
976      Record *Reg = Pattern.getDstRegs()[i];
977      if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
978      ++NumSrcResults;
979    }
980  }
981
982  assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
983  Ops.resize(NumSrcResults);
984
985  AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
986}
987
988
989/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
990/// the specified variant.  If the variant number is invalid, this returns null.
991Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
992                                       unsigned Variant,
993                                       const CodeGenDAGPatterns &CGP) {
994  MatcherGen Gen(Pattern, CGP);
995
996  // Generate the code for the matcher.
997  if (Gen.EmitMatcherCode(Variant))
998    return nullptr;
999
1000  // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1001  // FIXME2: Split result code out to another table, and make the matcher end
1002  // with an "Emit <index>" command.  This allows result generation stuff to be
1003  // shared and factored?
1004
1005  // If the match succeeds, then we generate Pattern.
1006  Gen.EmitResultCode();
1007
1008  // Unconditional match.
1009  return Gen.GetMatcher();
1010}
1011