1/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
2 * Use of this source code is governed by a BSD-style license that can be
3 * found in the LICENSE file.
4 */
5
6#define _BSD_SOURCE
7#define _DEFAULT_SOURCE
8#define _GNU_SOURCE
9
10#include <asm/unistd.h>
11#include <ctype.h>
12#include <dirent.h>
13#include <errno.h>
14#include <fcntl.h>
15#include <grp.h>
16#include <inttypes.h>
17#include <limits.h>
18#include <linux/capability.h>
19#include <net/if.h>
20#include <pwd.h>
21#include <sched.h>
22#include <signal.h>
23#include <stdarg.h>
24#include <stdbool.h>
25#include <stddef.h>
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <sys/capability.h>
30#include <sys/mount.h>
31#include <sys/param.h>
32#include <sys/prctl.h>
33#include <sys/socket.h>
34#include <sys/stat.h>
35#include <sys/types.h>
36#include <sys/user.h>
37#include <sys/wait.h>
38#include <syscall.h>
39#include <unistd.h>
40
41#include "libminijail.h"
42#include "libminijail-private.h"
43
44#include "signal_handler.h"
45#include "syscall_filter.h"
46#include "syscall_wrapper.h"
47#include "util.h"
48
49#ifdef HAVE_SECUREBITS_H
50# include <linux/securebits.h>
51#else
52# define SECURE_ALL_BITS	0x55
53# define SECURE_ALL_LOCKS	(SECURE_ALL_BITS << 1)
54#endif
55/* For kernels < 4.3. */
56#define OLD_SECURE_ALL_BITS	0x15
57#define OLD_SECURE_ALL_LOCKS	(OLD_SECURE_ALL_BITS << 1)
58
59/*
60 * Assert the value of SECURE_ALL_BITS at compile-time.
61 * Brillo devices are currently compiled against 4.4 kernel headers. Kernel 4.3
62 * added a new securebit.
63 * When a new securebit is added, the new SECURE_ALL_BITS mask will return EPERM
64 * when used on older kernels. The compile-time assert will catch this situation
65 * at compile time.
66 */
67#ifdef __BRILLO__
68_Static_assert(SECURE_ALL_BITS == 0x55, "SECURE_ALL_BITS == 0x55.");
69#endif
70
71/* Until these are reliably available in linux/prctl.h. */
72#ifndef PR_SET_SECCOMP
73# define PR_SET_SECCOMP 22
74#endif
75
76#ifndef PR_ALT_SYSCALL
77# define PR_ALT_SYSCALL 0x43724f53
78#endif
79
80/* Seccomp filter related flags. */
81#ifndef PR_SET_NO_NEW_PRIVS
82# define PR_SET_NO_NEW_PRIVS 38
83#endif
84
85#ifndef SECCOMP_MODE_FILTER
86# define SECCOMP_MODE_FILTER 2 /* uses user-supplied filter. */
87#endif
88
89#ifndef SECCOMP_SET_MODE_STRICT
90# define SECCOMP_SET_MODE_STRICT 0
91#endif
92#ifndef SECCOMP_SET_MODE_FILTER
93# define SECCOMP_SET_MODE_FILTER 1
94#endif
95
96#ifndef SECCOMP_FILTER_FLAG_TSYNC
97# define SECCOMP_FILTER_FLAG_TSYNC 1
98#endif
99/* End seccomp filter related flags. */
100
101/* New cgroup namespace might not be in linux-headers yet. */
102#ifndef CLONE_NEWCGROUP
103# define CLONE_NEWCGROUP 0x02000000
104#endif
105
106#define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
107
108/* Keyctl commands. */
109#define KEYCTL_JOIN_SESSION_KEYRING 1
110
111struct mountpoint {
112	char *src;
113	char *dest;
114	char *type;
115	char *data;
116	int has_data;
117	unsigned long flags;
118	struct mountpoint *next;
119};
120
121struct minijail {
122	/*
123	 * WARNING: if you add a flag here you need to make sure it's
124	 * accounted for in minijail_pre{enter|exec}() below.
125	 */
126	struct {
127		int uid : 1;
128		int gid : 1;
129		int inherit_suppl_gids : 1;
130		int set_suppl_gids : 1;
131		int keep_suppl_gids : 1;
132		int use_caps : 1;
133		int capbset_drop : 1;
134		int vfs : 1;
135		int enter_vfs : 1;
136		int skip_remount_private : 1;
137		int pids : 1;
138		int ipc : 1;
139		int net : 1;
140		int enter_net : 1;
141		int ns_cgroups : 1;
142		int userns : 1;
143		int disable_setgroups : 1;
144		int seccomp : 1;
145		int remount_proc_ro : 1;
146		int no_new_privs : 1;
147		int seccomp_filter : 1;
148		int seccomp_filter_tsync : 1;
149		int seccomp_filter_logging : 1;
150		int chroot : 1;
151		int pivot_root : 1;
152		int mount_tmp : 1;
153		int do_init : 1;
154		int pid_file : 1;
155		int cgroups : 1;
156		int alt_syscall : 1;
157		int reset_signal_mask : 1;
158		int close_open_fds : 1;
159		int new_session_keyring : 1;
160	} flags;
161	uid_t uid;
162	gid_t gid;
163	gid_t usergid;
164	char *user;
165	size_t suppl_gid_count;
166	gid_t *suppl_gid_list;
167	uint64_t caps;
168	uint64_t cap_bset;
169	pid_t initpid;
170	int mountns_fd;
171	int netns_fd;
172	char *chrootdir;
173	char *pid_file_path;
174	char *uidmap;
175	char *gidmap;
176	size_t filter_len;
177	struct sock_fprog *filter_prog;
178	char *alt_syscall_table;
179	struct mountpoint *mounts_head;
180	struct mountpoint *mounts_tail;
181	size_t mounts_count;
182	size_t tmpfs_size;
183	char *cgroups[MAX_CGROUPS];
184	size_t cgroup_count;
185};
186
187/*
188 * Strip out flags meant for the parent.
189 * We keep things that are not inherited across execve(2) (e.g. capabilities),
190 * or are easier to set after execve(2) (e.g. seccomp filters).
191 */
192void minijail_preenter(struct minijail *j)
193{
194	j->flags.vfs = 0;
195	j->flags.enter_vfs = 0;
196	j->flags.skip_remount_private = 0;
197	j->flags.remount_proc_ro = 0;
198	j->flags.pids = 0;
199	j->flags.do_init = 0;
200	j->flags.pid_file = 0;
201	j->flags.cgroups = 0;
202}
203
204/*
205 * Strip out flags meant for the child.
206 * We keep things that are inherited across execve(2).
207 */
208void minijail_preexec(struct minijail *j)
209{
210	int vfs = j->flags.vfs;
211	int enter_vfs = j->flags.enter_vfs;
212	int skip_remount_private = j->flags.skip_remount_private;
213	int remount_proc_ro = j->flags.remount_proc_ro;
214	int userns = j->flags.userns;
215	if (j->user)
216		free(j->user);
217	j->user = NULL;
218	if (j->suppl_gid_list)
219		free(j->suppl_gid_list);
220	j->suppl_gid_list = NULL;
221	memset(&j->flags, 0, sizeof(j->flags));
222	/* Now restore anything we meant to keep. */
223	j->flags.vfs = vfs;
224	j->flags.enter_vfs = enter_vfs;
225	j->flags.skip_remount_private = skip_remount_private;
226	j->flags.remount_proc_ro = remount_proc_ro;
227	j->flags.userns = userns;
228	/* Note, |pids| will already have been used before this call. */
229}
230
231/* Minijail API. */
232
233struct minijail API *minijail_new(void)
234{
235	return calloc(1, sizeof(struct minijail));
236}
237
238void API minijail_change_uid(struct minijail *j, uid_t uid)
239{
240	if (uid == 0)
241		die("useless change to uid 0");
242	j->uid = uid;
243	j->flags.uid = 1;
244}
245
246void API minijail_change_gid(struct minijail *j, gid_t gid)
247{
248	if (gid == 0)
249		die("useless change to gid 0");
250	j->gid = gid;
251	j->flags.gid = 1;
252}
253
254void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
255					 const gid_t *list)
256{
257	size_t i;
258
259	if (j->flags.inherit_suppl_gids)
260		die("cannot inherit *and* set supplementary groups");
261	if (j->flags.keep_suppl_gids)
262		die("cannot keep *and* set supplementary groups");
263
264	if (size == 0) {
265		/* Clear supplementary groups. */
266		j->suppl_gid_list = NULL;
267		j->suppl_gid_count = 0;
268		j->flags.set_suppl_gids = 1;
269		return;
270	}
271
272	/* Copy the gid_t array. */
273	j->suppl_gid_list = calloc(size, sizeof(gid_t));
274	if (!j->suppl_gid_list) {
275		die("failed to allocate internal supplementary group array");
276	}
277	for (i = 0; i < size; i++) {
278		j->suppl_gid_list[i] = list[i];
279	}
280	j->suppl_gid_count = size;
281	j->flags.set_suppl_gids = 1;
282}
283
284void API minijail_keep_supplementary_gids(struct minijail *j) {
285	j->flags.keep_suppl_gids = 1;
286}
287
288int API minijail_change_user(struct minijail *j, const char *user)
289{
290	char *buf = NULL;
291	struct passwd pw;
292	struct passwd *ppw = NULL;
293	ssize_t sz = sysconf(_SC_GETPW_R_SIZE_MAX);
294	if (sz == -1)
295		sz = 65536;	/* your guess is as good as mine... */
296
297	/*
298	 * sysconf(_SC_GETPW_R_SIZE_MAX), under glibc, is documented to return
299	 * the maximum needed size of the buffer, so we don't have to search.
300	 */
301	buf = malloc(sz);
302	if (!buf)
303		return -ENOMEM;
304	getpwnam_r(user, &pw, buf, sz, &ppw);
305	/*
306	 * We're safe to free the buffer here. The strings inside |pw| point
307	 * inside |buf|, but we don't use any of them; this leaves the pointers
308	 * dangling but it's safe. |ppw| points at |pw| if getpwnam_r(3)
309	 * succeeded.
310	 */
311	free(buf);
312	/* getpwnam_r(3) does *not* set errno when |ppw| is NULL. */
313	if (!ppw)
314		return -1;
315	minijail_change_uid(j, ppw->pw_uid);
316	j->user = strdup(user);
317	if (!j->user)
318		return -ENOMEM;
319	j->usergid = ppw->pw_gid;
320	return 0;
321}
322
323int API minijail_change_group(struct minijail *j, const char *group)
324{
325	char *buf = NULL;
326	struct group gr;
327	struct group *pgr = NULL;
328	ssize_t sz = sysconf(_SC_GETGR_R_SIZE_MAX);
329	if (sz == -1)
330		sz = 65536;	/* and mine is as good as yours, really */
331
332	/*
333	 * sysconf(_SC_GETGR_R_SIZE_MAX), under glibc, is documented to return
334	 * the maximum needed size of the buffer, so we don't have to search.
335	 */
336	buf = malloc(sz);
337	if (!buf)
338		return -ENOMEM;
339	getgrnam_r(group, &gr, buf, sz, &pgr);
340	/*
341	 * We're safe to free the buffer here. The strings inside gr point
342	 * inside buf, but we don't use any of them; this leaves the pointers
343	 * dangling but it's safe. pgr points at gr if getgrnam_r succeeded.
344	 */
345	free(buf);
346	/* getgrnam_r(3) does *not* set errno when |pgr| is NULL. */
347	if (!pgr)
348		return -1;
349	minijail_change_gid(j, pgr->gr_gid);
350	return 0;
351}
352
353void API minijail_use_seccomp(struct minijail *j)
354{
355	j->flags.seccomp = 1;
356}
357
358void API minijail_no_new_privs(struct minijail *j)
359{
360	j->flags.no_new_privs = 1;
361}
362
363void API minijail_use_seccomp_filter(struct minijail *j)
364{
365	j->flags.seccomp_filter = 1;
366}
367
368void API minijail_set_seccomp_filter_tsync(struct minijail *j)
369{
370	if (j->filter_len > 0 && j->filter_prog != NULL) {
371		die("minijail_set_seccomp_filter_tsync() must be called "
372		    "before minijail_parse_seccomp_filters()");
373	}
374	j->flags.seccomp_filter_tsync = 1;
375}
376
377void API minijail_log_seccomp_filter_failures(struct minijail *j)
378{
379	if (j->filter_len > 0 && j->filter_prog != NULL) {
380		die("minijail_log_seccomp_filter_failures() must be called "
381		    "before minijail_parse_seccomp_filters()");
382	}
383	j->flags.seccomp_filter_logging = 1;
384}
385
386void API minijail_use_caps(struct minijail *j, uint64_t capmask)
387{
388	/*
389	 * 'minijail_use_caps' configures a runtime-capabilities-only
390	 * environment, including a bounding set matching the thread's runtime
391	 * (permitted|inheritable|effective) sets.
392	 * Therefore, it will override any existing bounding set configurations
393	 * since the latter would allow gaining extra runtime capabilities from
394	 * file capabilities.
395	 */
396	if (j->flags.capbset_drop) {
397		warn("overriding bounding set configuration");
398		j->cap_bset = 0;
399		j->flags.capbset_drop = 0;
400	}
401	j->caps = capmask;
402	j->flags.use_caps = 1;
403}
404
405void API minijail_capbset_drop(struct minijail *j, uint64_t capmask)
406{
407	if (j->flags.use_caps) {
408		/*
409		 * 'minijail_use_caps' will have already configured a capability
410		 * bounding set matching the (permitted|inheritable|effective)
411		 * sets. Abort if the user tries to configure a separate
412		 * bounding set. 'minijail_capbset_drop' and 'minijail_use_caps'
413		 * are mutually exclusive.
414		 */
415		die("runtime capabilities already configured, can't drop "
416		    "bounding set separately");
417	}
418	j->cap_bset = capmask;
419	j->flags.capbset_drop = 1;
420}
421
422void API minijail_reset_signal_mask(struct minijail *j)
423{
424	j->flags.reset_signal_mask = 1;
425}
426
427void API minijail_namespace_vfs(struct minijail *j)
428{
429	j->flags.vfs = 1;
430}
431
432void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
433{
434	int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
435	if (ns_fd < 0) {
436		pdie("failed to open namespace '%s'", ns_path);
437	}
438	j->mountns_fd = ns_fd;
439	j->flags.enter_vfs = 1;
440}
441
442void API minijail_new_session_keyring(struct minijail *j)
443{
444	j->flags.new_session_keyring = 1;
445}
446
447void API minijail_skip_remount_private(struct minijail *j)
448{
449	j->flags.skip_remount_private = 1;
450}
451
452void API minijail_namespace_pids(struct minijail *j)
453{
454	j->flags.vfs = 1;
455	j->flags.remount_proc_ro = 1;
456	j->flags.pids = 1;
457	j->flags.do_init = 1;
458}
459
460void API minijail_namespace_ipc(struct minijail *j)
461{
462	j->flags.ipc = 1;
463}
464
465void API minijail_namespace_net(struct minijail *j)
466{
467	j->flags.net = 1;
468}
469
470void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
471{
472	int ns_fd = open(ns_path, O_RDONLY | O_CLOEXEC);
473	if (ns_fd < 0) {
474		pdie("failed to open namespace '%s'", ns_path);
475	}
476	j->netns_fd = ns_fd;
477	j->flags.enter_net = 1;
478}
479
480void API minijail_namespace_cgroups(struct minijail *j)
481{
482	j->flags.ns_cgroups = 1;
483}
484
485void API minijail_close_open_fds(struct minijail *j)
486{
487	j->flags.close_open_fds = 1;
488}
489
490void API minijail_remount_proc_readonly(struct minijail *j)
491{
492	j->flags.vfs = 1;
493	j->flags.remount_proc_ro = 1;
494}
495
496void API minijail_namespace_user(struct minijail *j)
497{
498	j->flags.userns = 1;
499}
500
501void API minijail_namespace_user_disable_setgroups(struct minijail *j)
502{
503	j->flags.disable_setgroups = 1;
504}
505
506int API minijail_uidmap(struct minijail *j, const char *uidmap)
507{
508	j->uidmap = strdup(uidmap);
509	if (!j->uidmap)
510		return -ENOMEM;
511	char *ch;
512	for (ch = j->uidmap; *ch; ch++) {
513		if (*ch == ',')
514			*ch = '\n';
515	}
516	return 0;
517}
518
519int API minijail_gidmap(struct minijail *j, const char *gidmap)
520{
521	j->gidmap = strdup(gidmap);
522	if (!j->gidmap)
523		return -ENOMEM;
524	char *ch;
525	for (ch = j->gidmap; *ch; ch++) {
526		if (*ch == ',')
527			*ch = '\n';
528	}
529	return 0;
530}
531
532void API minijail_inherit_usergroups(struct minijail *j)
533{
534	j->flags.inherit_suppl_gids = 1;
535}
536
537void API minijail_run_as_init(struct minijail *j)
538{
539	/*
540	 * Since the jailed program will become 'init' in the new PID namespace,
541	 * Minijail does not need to fork an 'init' process.
542	 */
543	j->flags.do_init = 0;
544}
545
546int API minijail_enter_chroot(struct minijail *j, const char *dir)
547{
548	if (j->chrootdir)
549		return -EINVAL;
550	j->chrootdir = strdup(dir);
551	if (!j->chrootdir)
552		return -ENOMEM;
553	j->flags.chroot = 1;
554	return 0;
555}
556
557int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
558{
559	if (j->chrootdir)
560		return -EINVAL;
561	j->chrootdir = strdup(dir);
562	if (!j->chrootdir)
563		return -ENOMEM;
564	j->flags.pivot_root = 1;
565	return 0;
566}
567
568char API *minijail_get_original_path(struct minijail *j,
569				     const char *path_inside_chroot)
570{
571	struct mountpoint *b;
572
573	b = j->mounts_head;
574	while (b) {
575		/*
576		 * If |path_inside_chroot| is the exact destination of a
577		 * mount, then the original path is exactly the source of
578		 * the mount.
579		 *  for example: "-b /some/path/exe,/chroot/path/exe"
580		 *    mount source = /some/path/exe, mount dest =
581		 *    /chroot/path/exe Then when getting the original path of
582		 *    "/chroot/path/exe", the source of that mount,
583		 *    "/some/path/exe" is what should be returned.
584		 */
585		if (!strcmp(b->dest, path_inside_chroot))
586			return strdup(b->src);
587
588		/*
589		 * If |path_inside_chroot| is within the destination path of a
590		 * mount, take the suffix of the chroot path relative to the
591		 * mount destination path, and append it to the mount source
592		 * path.
593		 */
594		if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
595			const char *relative_path =
596				path_inside_chroot + strlen(b->dest);
597			return path_join(b->src, relative_path);
598		}
599		b = b->next;
600	}
601
602	/* If there is a chroot path, append |path_inside_chroot| to that. */
603	if (j->chrootdir)
604		return path_join(j->chrootdir, path_inside_chroot);
605
606	/* No chroot, so the path outside is the same as it is inside. */
607	return strdup(path_inside_chroot);
608}
609
610size_t minijail_get_tmpfs_size(const struct minijail *j)
611{
612	return j->tmpfs_size;
613}
614
615void API minijail_mount_tmp(struct minijail *j)
616{
617	minijail_mount_tmp_size(j, 64 * 1024 * 1024);
618}
619
620void API minijail_mount_tmp_size(struct minijail *j, size_t size)
621{
622	j->tmpfs_size = size;
623	j->flags.mount_tmp = 1;
624}
625
626int API minijail_write_pid_file(struct minijail *j, const char *path)
627{
628	j->pid_file_path = strdup(path);
629	if (!j->pid_file_path)
630		return -ENOMEM;
631	j->flags.pid_file = 1;
632	return 0;
633}
634
635int API minijail_add_to_cgroup(struct minijail *j, const char *path)
636{
637	if (j->cgroup_count >= MAX_CGROUPS)
638		return -ENOMEM;
639	j->cgroups[j->cgroup_count] = strdup(path);
640	if (!j->cgroups[j->cgroup_count])
641		return -ENOMEM;
642	j->cgroup_count++;
643	j->flags.cgroups = 1;
644	return 0;
645}
646
647int API minijail_mount_with_data(struct minijail *j, const char *src,
648				 const char *dest, const char *type,
649				 unsigned long flags, const char *data)
650{
651	struct mountpoint *m;
652
653	if (*dest != '/')
654		return -EINVAL;
655	m = calloc(1, sizeof(*m));
656	if (!m)
657		return -ENOMEM;
658	m->dest = strdup(dest);
659	if (!m->dest)
660		goto error;
661	m->src = strdup(src);
662	if (!m->src)
663		goto error;
664	m->type = strdup(type);
665	if (!m->type)
666		goto error;
667	if (data) {
668		m->data = strdup(data);
669		if (!m->data)
670			goto error;
671		m->has_data = 1;
672	}
673	m->flags = flags;
674
675	info("mount %s -> %s type '%s'", src, dest, type);
676
677	/*
678	 * Force vfs namespacing so the mounts don't leak out into the
679	 * containing vfs namespace.
680	 */
681	minijail_namespace_vfs(j);
682
683	if (j->mounts_tail)
684		j->mounts_tail->next = m;
685	else
686		j->mounts_head = m;
687	j->mounts_tail = m;
688	j->mounts_count++;
689
690	return 0;
691
692error:
693	free(m->type);
694	free(m->src);
695	free(m->dest);
696	free(m);
697	return -ENOMEM;
698}
699
700int API minijail_mount(struct minijail *j, const char *src, const char *dest,
701		       const char *type, unsigned long flags)
702{
703	return minijail_mount_with_data(j, src, dest, type, flags, NULL);
704}
705
706int API minijail_bind(struct minijail *j, const char *src, const char *dest,
707		      int writeable)
708{
709	unsigned long flags = MS_BIND;
710
711	if (!writeable)
712		flags |= MS_RDONLY;
713
714	return minijail_mount(j, src, dest, "", flags);
715}
716
717static void clear_seccomp_options(struct minijail *j)
718{
719	j->flags.seccomp_filter = 0;
720	j->flags.seccomp_filter_tsync = 0;
721	j->flags.seccomp_filter_logging = 0;
722	j->filter_len = 0;
723	j->filter_prog = NULL;
724	j->flags.no_new_privs = 0;
725}
726
727static int seccomp_should_parse_filters(struct minijail *j)
728{
729	if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL) == -1) {
730		/*
731		 * |errno| will be set to EINVAL when seccomp has not been
732		 * compiled into the kernel. On certain platforms and kernel
733		 * versions this is not a fatal failure. In that case, and only
734		 * in that case, disable seccomp and skip loading the filters.
735		 */
736		if ((errno == EINVAL) && seccomp_can_softfail()) {
737			warn("not loading seccomp filters, seccomp filter not "
738			     "supported");
739			clear_seccomp_options(j);
740			return 0;
741		}
742		/*
743		 * If |errno| != EINVAL or seccomp_can_softfail() is false,
744		 * we can proceed. Worst case scenario minijail_enter() will
745		 * abort() if seccomp fails.
746		 */
747	}
748	if (j->flags.seccomp_filter_tsync) {
749		/* Are the seccomp(2) syscall and the TSYNC option supported? */
750		if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
751				SECCOMP_FILTER_FLAG_TSYNC, NULL) == -1) {
752			int saved_errno = errno;
753			if (saved_errno == ENOSYS && seccomp_can_softfail()) {
754				warn("seccomp(2) syscall not supported");
755				clear_seccomp_options(j);
756				return 0;
757			} else if (saved_errno == EINVAL &&
758				   seccomp_can_softfail()) {
759				warn(
760				    "seccomp filter thread sync not supported");
761				clear_seccomp_options(j);
762				return 0;
763			}
764			/*
765			 * Similar logic here. If seccomp_can_softfail() is
766			 * false, or |errno| != ENOSYS, or |errno| != EINVAL,
767			 * we can proceed. Worst case scenario minijail_enter()
768			 * will abort() if seccomp or TSYNC fail.
769			 */
770		}
771	}
772	return 1;
773}
774
775static int parse_seccomp_filters(struct minijail *j, FILE *policy_file)
776{
777	struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
778	int use_ret_trap =
779	    j->flags.seccomp_filter_tsync || j->flags.seccomp_filter_logging;
780	int allow_logging = j->flags.seccomp_filter_logging;
781
782	if (compile_filter(policy_file, fprog, use_ret_trap, allow_logging)) {
783		free(fprog);
784		return -1;
785	}
786
787	j->filter_len = fprog->len;
788	j->filter_prog = fprog;
789	return 0;
790}
791
792void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
793{
794	if (!seccomp_should_parse_filters(j))
795		return;
796
797	FILE *file = fopen(path, "r");
798	if (!file) {
799		pdie("failed to open seccomp filter file '%s'", path);
800	}
801
802	if (parse_seccomp_filters(j, file) != 0) {
803		die("failed to compile seccomp filter BPF program in '%s'",
804		    path);
805	}
806	fclose(file);
807}
808
809void API minijail_parse_seccomp_filters_from_fd(struct minijail *j, int fd)
810{
811	if (!seccomp_should_parse_filters(j))
812		return;
813
814	FILE *file = fdopen(fd, "r");
815	if (!file) {
816		pdie("failed to associate stream with fd %d", fd);
817	}
818
819	if (parse_seccomp_filters(j, file) != 0) {
820		die("failed to compile seccomp filter BPF program from fd %d",
821		    fd);
822	}
823	fclose(file);
824}
825
826int API minijail_use_alt_syscall(struct minijail *j, const char *table)
827{
828	j->alt_syscall_table = strdup(table);
829	if (!j->alt_syscall_table)
830		return -ENOMEM;
831	j->flags.alt_syscall = 1;
832	return 0;
833}
834
835struct marshal_state {
836	size_t available;
837	size_t total;
838	char *buf;
839};
840
841void marshal_state_init(struct marshal_state *state, char *buf,
842			size_t available)
843{
844	state->available = available;
845	state->buf = buf;
846	state->total = 0;
847}
848
849void marshal_append(struct marshal_state *state, void *src, size_t length)
850{
851	size_t copy_len = MIN(state->available, length);
852
853	/* Up to |available| will be written. */
854	if (copy_len) {
855		memcpy(state->buf, src, copy_len);
856		state->buf += copy_len;
857		state->available -= copy_len;
858	}
859	/* |total| will contain the expected length. */
860	state->total += length;
861}
862
863void marshal_mount(struct marshal_state *state, const struct mountpoint *m)
864{
865	marshal_append(state, m->src, strlen(m->src) + 1);
866	marshal_append(state, m->dest, strlen(m->dest) + 1);
867	marshal_append(state, m->type, strlen(m->type) + 1);
868	marshal_append(state, (char *)&m->has_data, sizeof(m->has_data));
869	if (m->has_data)
870		marshal_append(state, m->data, strlen(m->data) + 1);
871	marshal_append(state, (char *)&m->flags, sizeof(m->flags));
872}
873
874void minijail_marshal_helper(struct marshal_state *state,
875			     const struct minijail *j)
876{
877	struct mountpoint *m = NULL;
878	size_t i;
879
880	marshal_append(state, (char *)j, sizeof(*j));
881	if (j->user)
882		marshal_append(state, j->user, strlen(j->user) + 1);
883	if (j->suppl_gid_list) {
884		marshal_append(state, j->suppl_gid_list,
885			       j->suppl_gid_count * sizeof(gid_t));
886	}
887	if (j->chrootdir)
888		marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
889	if (j->alt_syscall_table) {
890		marshal_append(state, j->alt_syscall_table,
891			       strlen(j->alt_syscall_table) + 1);
892	}
893	if (j->flags.seccomp_filter && j->filter_prog) {
894		struct sock_fprog *fp = j->filter_prog;
895		marshal_append(state, (char *)fp->filter,
896			       fp->len * sizeof(struct sock_filter));
897	}
898	for (m = j->mounts_head; m; m = m->next) {
899		marshal_mount(state, m);
900	}
901	for (i = 0; i < j->cgroup_count; ++i)
902		marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
903}
904
905size_t API minijail_size(const struct minijail *j)
906{
907	struct marshal_state state;
908	marshal_state_init(&state, NULL, 0);
909	minijail_marshal_helper(&state, j);
910	return state.total;
911}
912
913int minijail_marshal(const struct minijail *j, char *buf, size_t available)
914{
915	struct marshal_state state;
916	marshal_state_init(&state, buf, available);
917	minijail_marshal_helper(&state, j);
918	return (state.total > available);
919}
920
921int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
922{
923	size_t i;
924	size_t count;
925	int ret = -EINVAL;
926
927	if (length < sizeof(*j))
928		goto out;
929	memcpy((void *)j, serialized, sizeof(*j));
930	serialized += sizeof(*j);
931	length -= sizeof(*j);
932
933	/* Potentially stale pointers not used as signals. */
934	j->pid_file_path = NULL;
935	j->uidmap = NULL;
936	j->gidmap = NULL;
937	j->mounts_head = NULL;
938	j->mounts_tail = NULL;
939	j->filter_prog = NULL;
940
941	if (j->user) {		/* stale pointer */
942		char *user = consumestr(&serialized, &length);
943		if (!user)
944			goto clear_pointers;
945		j->user = strdup(user);
946		if (!j->user)
947			goto clear_pointers;
948	}
949
950	if (j->suppl_gid_list) {	/* stale pointer */
951		if (j->suppl_gid_count > NGROUPS_MAX) {
952			goto bad_gid_list;
953		}
954		size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
955		void *gid_list_bytes =
956		    consumebytes(gid_list_size, &serialized, &length);
957		if (!gid_list_bytes)
958			goto bad_gid_list;
959
960		j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
961		if (!j->suppl_gid_list)
962			goto bad_gid_list;
963
964		memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
965	}
966
967	if (j->chrootdir) {	/* stale pointer */
968		char *chrootdir = consumestr(&serialized, &length);
969		if (!chrootdir)
970			goto bad_chrootdir;
971		j->chrootdir = strdup(chrootdir);
972		if (!j->chrootdir)
973			goto bad_chrootdir;
974	}
975
976	if (j->alt_syscall_table) {	/* stale pointer */
977		char *alt_syscall_table = consumestr(&serialized, &length);
978		if (!alt_syscall_table)
979			goto bad_syscall_table;
980		j->alt_syscall_table = strdup(alt_syscall_table);
981		if (!j->alt_syscall_table)
982			goto bad_syscall_table;
983	}
984
985	if (j->flags.seccomp_filter && j->filter_len > 0) {
986		size_t ninstrs = j->filter_len;
987		if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
988		    ninstrs > USHRT_MAX)
989			goto bad_filters;
990
991		size_t program_len = ninstrs * sizeof(struct sock_filter);
992		void *program = consumebytes(program_len, &serialized, &length);
993		if (!program)
994			goto bad_filters;
995
996		j->filter_prog = malloc(sizeof(struct sock_fprog));
997		if (!j->filter_prog)
998			goto bad_filters;
999
1000		j->filter_prog->len = ninstrs;
1001		j->filter_prog->filter = malloc(program_len);
1002		if (!j->filter_prog->filter)
1003			goto bad_filter_prog_instrs;
1004
1005		memcpy(j->filter_prog->filter, program, program_len);
1006	}
1007
1008	count = j->mounts_count;
1009	j->mounts_count = 0;
1010	for (i = 0; i < count; ++i) {
1011		unsigned long *flags;
1012		int *has_data;
1013		const char *dest;
1014		const char *type;
1015		const char *data = NULL;
1016		const char *src = consumestr(&serialized, &length);
1017		if (!src)
1018			goto bad_mounts;
1019		dest = consumestr(&serialized, &length);
1020		if (!dest)
1021			goto bad_mounts;
1022		type = consumestr(&serialized, &length);
1023		if (!type)
1024			goto bad_mounts;
1025		has_data = consumebytes(sizeof(*has_data), &serialized,
1026					&length);
1027		if (!has_data)
1028			goto bad_mounts;
1029		if (*has_data) {
1030			data = consumestr(&serialized, &length);
1031			if (!data)
1032				goto bad_mounts;
1033		}
1034		flags = consumebytes(sizeof(*flags), &serialized, &length);
1035		if (!flags)
1036			goto bad_mounts;
1037		if (minijail_mount_with_data(j, src, dest, type, *flags, data))
1038			goto bad_mounts;
1039	}
1040
1041	count = j->cgroup_count;
1042	j->cgroup_count = 0;
1043	for (i = 0; i < count; ++i) {
1044		char *cgroup = consumestr(&serialized, &length);
1045		if (!cgroup)
1046			goto bad_cgroups;
1047		j->cgroups[i] = strdup(cgroup);
1048		if (!j->cgroups[i])
1049			goto bad_cgroups;
1050		++j->cgroup_count;
1051	}
1052
1053	return 0;
1054
1055bad_cgroups:
1056	while (j->mounts_head) {
1057		struct mountpoint *m = j->mounts_head;
1058		j->mounts_head = j->mounts_head->next;
1059		free(m->data);
1060		free(m->type);
1061		free(m->dest);
1062		free(m->src);
1063		free(m);
1064	}
1065	for (i = 0; i < j->cgroup_count; ++i)
1066		free(j->cgroups[i]);
1067bad_mounts:
1068	if (j->flags.seccomp_filter && j->filter_len > 0) {
1069		free(j->filter_prog->filter);
1070		free(j->filter_prog);
1071	}
1072bad_filter_prog_instrs:
1073	if (j->filter_prog)
1074		free(j->filter_prog);
1075bad_filters:
1076	if (j->alt_syscall_table)
1077		free(j->alt_syscall_table);
1078bad_syscall_table:
1079	if (j->chrootdir)
1080		free(j->chrootdir);
1081bad_chrootdir:
1082	if (j->suppl_gid_list)
1083		free(j->suppl_gid_list);
1084bad_gid_list:
1085	if (j->user)
1086		free(j->user);
1087clear_pointers:
1088	j->user = NULL;
1089	j->suppl_gid_list = NULL;
1090	j->chrootdir = NULL;
1091	j->alt_syscall_table = NULL;
1092	j->cgroup_count = 0;
1093out:
1094	return ret;
1095}
1096
1097/*
1098 * setup_mount_destination: Ensures the mount target exists.
1099 * Creates it if needed and possible.
1100 */
1101static int setup_mount_destination(const char *source, const char *dest,
1102				   uid_t uid, uid_t gid)
1103{
1104	int rc;
1105	struct stat st_buf;
1106
1107	rc = stat(dest, &st_buf);
1108	if (rc == 0) /* destination exists */
1109		return 0;
1110
1111	/*
1112	 * Try to create the destination.
1113	 * Either make a directory or touch a file depending on the source type.
1114	 * If the source doesn't exist, assume it is a filesystem type such as
1115	 * "tmpfs" and create a directory to mount it on.
1116	 */
1117	rc = stat(source, &st_buf);
1118	if (rc || S_ISDIR(st_buf.st_mode) || S_ISBLK(st_buf.st_mode)) {
1119		if (mkdir(dest, 0700))
1120			return -errno;
1121	} else {
1122		int fd = open(dest, O_RDWR | O_CREAT, 0700);
1123		if (fd < 0)
1124			return -errno;
1125		close(fd);
1126	}
1127	return chown(dest, uid, gid);
1128}
1129
1130/*
1131 * mount_one: Applies mounts from @m for @j, recursing as needed.
1132 * @j Minijail these mounts are for
1133 * @m Head of list of mounts
1134 *
1135 * Returns 0 for success.
1136 */
1137static int mount_one(const struct minijail *j, struct mountpoint *m)
1138{
1139	int ret;
1140	char *dest;
1141	int remount_ro = 0;
1142
1143	/* |dest| has a leading "/". */
1144	if (asprintf(&dest, "%s%s", j->chrootdir, m->dest) < 0)
1145		return -ENOMEM;
1146
1147	if (setup_mount_destination(m->src, dest, j->uid, j->gid))
1148		pdie("creating mount target '%s' failed", dest);
1149
1150	/*
1151	 * R/O bind mounts have to be remounted since 'bind' and 'ro'
1152	 * can't both be specified in the original bind mount.
1153	 * Remount R/O after the initial mount.
1154	 */
1155	if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
1156		remount_ro = 1;
1157		m->flags &= ~MS_RDONLY;
1158	}
1159
1160	ret = mount(m->src, dest, m->type, m->flags, m->data);
1161	if (ret)
1162		pdie("mount: %s -> %s", m->src, dest);
1163
1164	if (remount_ro) {
1165		m->flags |= MS_RDONLY;
1166		ret = mount(m->src, dest, NULL,
1167			    m->flags | MS_REMOUNT, m->data);
1168		if (ret)
1169			pdie("bind ro: %s -> %s", m->src, dest);
1170	}
1171
1172	free(dest);
1173	if (m->next)
1174		return mount_one(j, m->next);
1175	return ret;
1176}
1177
1178static int enter_chroot(const struct minijail *j)
1179{
1180	int ret;
1181
1182	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1183		return ret;
1184
1185	if (chroot(j->chrootdir))
1186		return -errno;
1187
1188	if (chdir("/"))
1189		return -errno;
1190
1191	return 0;
1192}
1193
1194static int enter_pivot_root(const struct minijail *j)
1195{
1196	int ret, oldroot, newroot;
1197
1198	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
1199		return ret;
1200
1201	/*
1202	 * Keep the fd for both old and new root.
1203	 * It will be used in fchdir(2) later.
1204	 */
1205	oldroot = open("/", O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1206	if (oldroot < 0)
1207		pdie("failed to open / for fchdir");
1208	newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY | O_CLOEXEC);
1209	if (newroot < 0)
1210		pdie("failed to open %s for fchdir", j->chrootdir);
1211
1212	/*
1213	 * To ensure j->chrootdir is the root of a filesystem,
1214	 * do a self bind mount.
1215	 */
1216	if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
1217		pdie("failed to bind mount '%s'", j->chrootdir);
1218	if (chdir(j->chrootdir))
1219		return -errno;
1220	if (syscall(SYS_pivot_root, ".", "."))
1221		pdie("pivot_root");
1222
1223	/*
1224	 * Now the old root is mounted on top of the new root. Use fchdir(2) to
1225	 * change to the old root and unmount it.
1226	 */
1227	if (fchdir(oldroot))
1228		pdie("failed to fchdir to old /");
1229
1230	/*
1231	 * If j->flags.skip_remount_private was enabled for minijail_enter(),
1232	 * there could be a shared mount point under |oldroot|. In that case,
1233	 * mounts under this shared mount point will be unmounted below, and
1234	 * this unmounting will propagate to the original mount namespace
1235	 * (because the mount point is shared). To prevent this unexpected
1236	 * unmounting, remove these mounts from their peer groups by recursively
1237	 * remounting them as MS_PRIVATE.
1238	 */
1239	if (mount(NULL, ".", NULL, MS_REC | MS_PRIVATE, NULL))
1240		pdie("failed to mount(/, private) before umount(/)");
1241	/* The old root might be busy, so use lazy unmount. */
1242	if (umount2(".", MNT_DETACH))
1243		pdie("umount(/)");
1244	/* Change back to the new root. */
1245	if (fchdir(newroot))
1246		return -errno;
1247	if (close(oldroot))
1248		return -errno;
1249	if (close(newroot))
1250		return -errno;
1251	if (chroot("/"))
1252		return -errno;
1253	/* Set correct CWD for getcwd(3). */
1254	if (chdir("/"))
1255		return -errno;
1256
1257	return 0;
1258}
1259
1260static int mount_tmp(const struct minijail *j)
1261{
1262	const char fmt[] = "size=%zu,mode=1777";
1263	/* Count for the user storing ULLONG_MAX literally + extra space. */
1264	char data[sizeof(fmt) + sizeof("18446744073709551615ULL")];
1265	int ret;
1266
1267	ret = snprintf(data, sizeof(data), fmt, j->tmpfs_size);
1268
1269	if (ret <= 0)
1270		pdie("tmpfs size spec error");
1271	else if ((size_t)ret >= sizeof(data))
1272		pdie("tmpfs size spec too large");
1273	return mount("none", "/tmp", "tmpfs", MS_NODEV | MS_NOEXEC | MS_NOSUID,
1274		     data);
1275}
1276
1277static int remount_proc_readonly(const struct minijail *j)
1278{
1279	const char *kProcPath = "/proc";
1280	const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
1281	/*
1282	 * Right now, we're holding a reference to our parent's old mount of
1283	 * /proc in our namespace, which means using MS_REMOUNT here would
1284	 * mutate our parent's mount as well, even though we're in a VFS
1285	 * namespace (!). Instead, remove their mount from our namespace lazily
1286	 * (MNT_DETACH) and make our own.
1287	 */
1288	if (umount2(kProcPath, MNT_DETACH)) {
1289		/*
1290		 * If we are in a new user namespace, umount(2) will fail.
1291		 * See http://man7.org/linux/man-pages/man7/user_namespaces.7.html
1292		 */
1293		if (j->flags.userns) {
1294			info("umount(/proc, MNT_DETACH) failed, "
1295			     "this is expected when using user namespaces");
1296		} else {
1297			return -errno;
1298		}
1299	}
1300	if (mount("proc", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
1301		return -errno;
1302	return 0;
1303}
1304
1305static void kill_child_and_die(const struct minijail *j, const char *msg)
1306{
1307	kill(j->initpid, SIGKILL);
1308	die("%s", msg);
1309}
1310
1311static void write_pid_file_or_die(const struct minijail *j)
1312{
1313	if (write_pid_to_path(j->initpid, j->pid_file_path))
1314		kill_child_and_die(j, "failed to write pid file");
1315}
1316
1317static void add_to_cgroups_or_die(const struct minijail *j)
1318{
1319	size_t i;
1320
1321	for (i = 0; i < j->cgroup_count; ++i) {
1322		if (write_pid_to_path(j->initpid, j->cgroups[i]))
1323			kill_child_and_die(j, "failed to add to cgroups");
1324	}
1325}
1326
1327static void write_ugid_maps_or_die(const struct minijail *j)
1328{
1329	if (j->uidmap && write_proc_file(j->initpid, j->uidmap, "uid_map") != 0)
1330		kill_child_and_die(j, "failed to write uid_map");
1331	if (j->gidmap && j->flags.disable_setgroups) {
1332		/* Older kernels might not have the /proc/<pid>/setgroups files. */
1333		int ret = write_proc_file(j->initpid, "deny", "setgroups");
1334		if (ret != 0) {
1335			if (ret == -ENOENT) {
1336				/* See http://man7.org/linux/man-pages/man7/user_namespaces.7.html. */
1337				warn("could not disable setgroups(2)");
1338			} else
1339				kill_child_and_die(j, "failed to disable setgroups(2)");
1340		}
1341	}
1342	if (j->gidmap && write_proc_file(j->initpid, j->gidmap, "gid_map") != 0)
1343		kill_child_and_die(j, "failed to write gid_map");
1344}
1345
1346static void enter_user_namespace(const struct minijail *j)
1347{
1348	if (j->uidmap && setresuid(0, 0, 0))
1349		pdie("user_namespaces: setresuid(0, 0, 0) failed");
1350	if (j->gidmap && setresgid(0, 0, 0))
1351		pdie("user_namespaces: setresgid(0, 0, 0) failed");
1352}
1353
1354static void parent_setup_complete(int *pipe_fds)
1355{
1356	close(pipe_fds[0]);
1357	close(pipe_fds[1]);
1358}
1359
1360/*
1361 * wait_for_parent_setup: Called by the child process to wait for any
1362 * further parent-side setup to complete before continuing.
1363 */
1364static void wait_for_parent_setup(int *pipe_fds)
1365{
1366	char buf;
1367
1368	close(pipe_fds[1]);
1369
1370	/* Wait for parent to complete setup and close the pipe. */
1371	if (read(pipe_fds[0], &buf, 1) != 0)
1372		die("failed to sync with parent");
1373	close(pipe_fds[0]);
1374}
1375
1376static void drop_ugid(const struct minijail *j)
1377{
1378	if (j->flags.inherit_suppl_gids + j->flags.keep_suppl_gids +
1379	    j->flags.set_suppl_gids > 1) {
1380		die("can only do one of inherit, keep, or set supplementary "
1381		    "groups");
1382	}
1383
1384	if (j->flags.inherit_suppl_gids) {
1385		if (initgroups(j->user, j->usergid))
1386			pdie("initgroups(%s, %d) failed", j->user, j->usergid);
1387	} else if (j->flags.set_suppl_gids) {
1388		if (setgroups(j->suppl_gid_count, j->suppl_gid_list))
1389			pdie("setgroups(suppl_gids) failed");
1390	} else if (!j->flags.keep_suppl_gids) {
1391		/*
1392		 * Only attempt to clear supplementary groups if we are changing
1393		 * users or groups.
1394		 */
1395		if ((j->flags.uid || j->flags.gid) && setgroups(0, NULL))
1396			pdie("setgroups(0, NULL) failed");
1397	}
1398
1399	if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
1400		pdie("setresgid(%d, %d, %d) failed", j->gid, j->gid, j->gid);
1401
1402	if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
1403		pdie("setresuid(%d, %d, %d) failed", j->uid, j->uid, j->uid);
1404}
1405
1406/*
1407 * We specifically do not use cap_valid() as that only tells us the last
1408 * valid cap we were *compiled* against (i.e. what the version of kernel
1409 * headers says). If we run on a different kernel version, then it's not
1410 * uncommon for that to be less (if an older kernel) or more (if a newer
1411 * kernel).
1412 * Normally, we suck up the answer via /proc. On Android, not all processes are
1413 * guaranteed to be able to access '/proc/sys/kernel/cap_last_cap' so we
1414 * programmatically find the value by calling prctl(PR_CAPBSET_READ).
1415 */
1416static unsigned int get_last_valid_cap()
1417{
1418	unsigned int last_valid_cap = 0;
1419	if (is_android()) {
1420		for (; prctl(PR_CAPBSET_READ, last_valid_cap, 0, 0, 0) >= 0;
1421		     ++last_valid_cap);
1422
1423		/* |last_valid_cap| will be the first failing value. */
1424		if (last_valid_cap > 0) {
1425			last_valid_cap--;
1426		}
1427	} else {
1428		const char cap_file[] = "/proc/sys/kernel/cap_last_cap";
1429		FILE *fp = fopen(cap_file, "re");
1430		if (fscanf(fp, "%u", &last_valid_cap) != 1)
1431			pdie("fscanf(%s)", cap_file);
1432		fclose(fp);
1433	}
1434	return last_valid_cap;
1435}
1436
1437static void drop_capbset(uint64_t keep_mask, unsigned int last_valid_cap)
1438{
1439	const uint64_t one = 1;
1440	unsigned int i;
1441	for (i = 0; i < sizeof(keep_mask) * 8 && i <= last_valid_cap; ++i) {
1442		if (keep_mask & (one << i))
1443			continue;
1444		if (prctl(PR_CAPBSET_DROP, i))
1445			pdie("could not drop capability from bounding set");
1446	}
1447}
1448
1449static void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
1450{
1451	if (!j->flags.use_caps)
1452		return;
1453
1454	cap_t caps = cap_get_proc();
1455	cap_value_t flag[1];
1456	const uint64_t one = 1;
1457	unsigned int i;
1458	if (!caps)
1459		die("can't get process caps");
1460	if (cap_clear_flag(caps, CAP_INHERITABLE))
1461		die("can't clear inheritable caps");
1462	if (cap_clear_flag(caps, CAP_EFFECTIVE))
1463		die("can't clear effective caps");
1464	if (cap_clear_flag(caps, CAP_PERMITTED))
1465		die("can't clear permitted caps");
1466	for (i = 0; i < sizeof(j->caps) * 8 && i <= last_valid_cap; ++i) {
1467		/* Keep CAP_SETPCAP for dropping bounding set bits. */
1468		if (i != CAP_SETPCAP && !(j->caps & (one << i)))
1469			continue;
1470		flag[0] = i;
1471		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
1472			die("can't add effective cap");
1473		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
1474			die("can't add permitted cap");
1475		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
1476			die("can't add inheritable cap");
1477	}
1478	if (cap_set_proc(caps))
1479		die("can't apply initial cleaned capset");
1480
1481	/*
1482	 * Instead of dropping bounding set first, do it here in case
1483	 * the caller had a more permissive bounding set which could
1484	 * have been used above to raise a capability that wasn't already
1485	 * present. This requires CAP_SETPCAP, so we raised/kept it above.
1486	 */
1487	drop_capbset(j->caps, last_valid_cap);
1488
1489	/* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
1490	if ((j->caps & (one << CAP_SETPCAP)) == 0) {
1491		flag[0] = CAP_SETPCAP;
1492		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
1493			die("can't clear effective cap");
1494		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
1495			die("can't clear permitted cap");
1496		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
1497			die("can't clear inheritable cap");
1498	}
1499
1500	if (cap_set_proc(caps))
1501		die("can't apply final cleaned capset");
1502
1503	cap_free(caps);
1504}
1505
1506static void set_seccomp_filter(const struct minijail *j)
1507{
1508	/*
1509	 * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
1510	 * in the kernel source tree for an explanation of the parameters.
1511	 */
1512	if (j->flags.no_new_privs) {
1513		if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
1514			pdie("prctl(PR_SET_NO_NEW_PRIVS)");
1515	}
1516
1517	/*
1518	 * Code running with ASan
1519	 * (https://github.com/google/sanitizers/wiki/AddressSanitizer)
1520	 * will make system calls not included in the syscall filter policy,
1521	 * which will likely crash the program. Skip setting seccomp filter in
1522	 * that case.
1523	 * 'running_with_asan()' has no inputs and is completely defined at
1524	 * build time, so this cannot be used by an attacker to skip setting
1525	 * seccomp filter.
1526	 */
1527	if (j->flags.seccomp_filter && running_with_asan()) {
1528		warn("running with ASan, not setting seccomp filter");
1529		return;
1530	}
1531
1532	if (j->flags.seccomp_filter) {
1533		if (j->flags.seccomp_filter_logging) {
1534			/*
1535			 * If logging seccomp filter failures,
1536			 * install the SIGSYS handler first.
1537			 */
1538			if (install_sigsys_handler())
1539				pdie("failed to install SIGSYS handler");
1540			warn("logging seccomp filter failures");
1541		} else if (j->flags.seccomp_filter_tsync) {
1542			/*
1543			 * If setting thread sync,
1544			 * reset the SIGSYS signal handler so that
1545			 * the entire thread group is killed.
1546			 */
1547			if (signal(SIGSYS, SIG_DFL) == SIG_ERR)
1548				pdie("failed to reset SIGSYS disposition");
1549			info("reset SIGSYS disposition");
1550		}
1551	}
1552
1553	/*
1554	 * Install the syscall filter.
1555	 */
1556	if (j->flags.seccomp_filter) {
1557		if (j->flags.seccomp_filter_tsync) {
1558			if (sys_seccomp(SECCOMP_SET_MODE_FILTER,
1559					SECCOMP_FILTER_FLAG_TSYNC,
1560					j->filter_prog)) {
1561				pdie("seccomp(tsync) failed");
1562			}
1563		} else {
1564			if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
1565				  j->filter_prog)) {
1566				pdie("prctl(seccomp_filter) failed");
1567			}
1568		}
1569	}
1570}
1571
1572static void config_net_loopback(void)
1573{
1574	static const char ifname[] = "lo";
1575	int sock;
1576	struct ifreq ifr;
1577
1578	/* Make sure people don't try to add really long names. */
1579	_Static_assert(sizeof(ifname) <= IFNAMSIZ, "interface name too long");
1580
1581	sock = socket(AF_LOCAL, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1582	if (sock < 0)
1583		pdie("socket(AF_LOCAL) failed");
1584
1585	/*
1586	 * Do the equiv of `ip link set up lo`.  The kernel will assign
1587	 * IPv4 (127.0.0.1) & IPv6 (::1) addresses automatically!
1588	 */
1589	strcpy(ifr.ifr_name, ifname);
1590	if (ioctl(sock, SIOCGIFFLAGS, &ifr) < 0)
1591		pdie("ioctl(SIOCGIFFLAGS) failed");
1592
1593	/* The kernel preserves ifr.ifr_name for use. */
1594	ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
1595	if (ioctl(sock, SIOCSIFFLAGS, &ifr) < 0)
1596		pdie("ioctl(SIOCSIFFLAGS) failed");
1597
1598	close(sock);
1599}
1600
1601void API minijail_enter(const struct minijail *j)
1602{
1603	/*
1604	 * If we're dropping caps, get the last valid cap from /proc now,
1605	 * since /proc can be unmounted before drop_caps() is called.
1606	 */
1607	unsigned int last_valid_cap = 0;
1608	if (j->flags.capbset_drop || j->flags.use_caps)
1609		last_valid_cap = get_last_valid_cap();
1610
1611	if (j->flags.pids)
1612		die("tried to enter a pid-namespaced jail;"
1613		    " try minijail_run()?");
1614
1615	if (j->flags.inherit_suppl_gids && !j->user)
1616		die("cannot inherit supplementary groups without setting a "
1617		    "username");
1618
1619	/*
1620	 * We can't recover from failures if we've dropped privileges partially,
1621	 * so we don't even try. If any of our operations fail, we abort() the
1622	 * entire process.
1623	 */
1624	if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
1625		pdie("setns(CLONE_NEWNS) failed");
1626
1627	if (j->flags.vfs) {
1628		if (unshare(CLONE_NEWNS))
1629			pdie("unshare(CLONE_NEWNS) failed");
1630		/*
1631		 * Unless asked not to, remount all filesystems as private.
1632		 * If they are shared, new bind mounts will creep out of our
1633		 * namespace.
1634		 * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
1635		 */
1636		if (!j->flags.skip_remount_private) {
1637			if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL))
1638				pdie("mount(NULL, /, NULL, MS_REC | MS_PRIVATE,"
1639				     " NULL) failed");
1640		}
1641	}
1642
1643	if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
1644		pdie("unshare(CLONE_NEWIPC) failed");
1645	}
1646
1647	if (j->flags.enter_net) {
1648		if (setns(j->netns_fd, CLONE_NEWNET))
1649			pdie("setns(CLONE_NEWNET) failed");
1650	} else if (j->flags.net) {
1651		if (unshare(CLONE_NEWNET))
1652			pdie("unshare(CLONE_NEWNET) failed");
1653		config_net_loopback();
1654	}
1655
1656	if (j->flags.ns_cgroups && unshare(CLONE_NEWCGROUP))
1657		pdie("unshare(CLONE_NEWCGROUP) failed");
1658
1659	if (j->flags.new_session_keyring) {
1660		if (syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING, NULL) < 0)
1661			pdie("keyctl(KEYCTL_JOIN_SESSION_KEYRING) failed");
1662	}
1663
1664	if (j->flags.chroot && enter_chroot(j))
1665		pdie("chroot");
1666
1667	if (j->flags.pivot_root && enter_pivot_root(j))
1668		pdie("pivot_root");
1669
1670	if (j->flags.mount_tmp && mount_tmp(j))
1671		pdie("mount_tmp");
1672
1673	if (j->flags.remount_proc_ro && remount_proc_readonly(j))
1674		pdie("remount");
1675
1676	/*
1677	 * If we're only dropping capabilities from the bounding set, but not
1678	 * from the thread's (permitted|inheritable|effective) sets, do it now.
1679	 */
1680	if (j->flags.capbset_drop) {
1681		drop_capbset(j->cap_bset, last_valid_cap);
1682	}
1683
1684	if (j->flags.use_caps) {
1685		/*
1686		 * POSIX capabilities are a bit tricky. If we drop our
1687		 * capability to change uids, our attempt to use setuid()
1688		 * below will fail. Hang on to root caps across setuid(), then
1689		 * lock securebits.
1690		 */
1691		if (prctl(PR_SET_KEEPCAPS, 1))
1692			pdie("prctl(PR_SET_KEEPCAPS) failed");
1693
1694		/*
1695		 * Kernels 4.3+ define a new securebit
1696		 * (SECURE_NO_CAP_AMBIENT_RAISE), so using the SECURE_ALL_BITS
1697		 * and SECURE_ALL_LOCKS masks from newer kernel headers will
1698		 * return EPERM on older kernels. Detect this, and retry with
1699		 * the right mask for older (2.6.26-4.2) kernels.
1700		 */
1701		int securebits_ret = prctl(PR_SET_SECUREBITS,
1702					   SECURE_ALL_BITS | SECURE_ALL_LOCKS);
1703		if (securebits_ret < 0) {
1704			if (errno == EPERM) {
1705				/* Possibly running on kernel < 4.3. */
1706				securebits_ret = prctl(
1707				    PR_SET_SECUREBITS,
1708				    OLD_SECURE_ALL_BITS | OLD_SECURE_ALL_LOCKS);
1709			}
1710		}
1711		if (securebits_ret < 0)
1712			pdie("prctl(PR_SET_SECUREBITS) failed");
1713	}
1714
1715	if (j->flags.no_new_privs) {
1716		/*
1717		 * If we're setting no_new_privs, we can drop privileges
1718		 * before setting seccomp filter. This way filter policies
1719		 * don't need to allow privilege-dropping syscalls.
1720		 */
1721		drop_ugid(j);
1722		drop_caps(j, last_valid_cap);
1723		set_seccomp_filter(j);
1724	} else {
1725		/*
1726		 * If we're not setting no_new_privs,
1727		 * we need to set seccomp filter *before* dropping privileges.
1728		 * WARNING: this means that filter policies *must* allow
1729		 * setgroups()/setresgid()/setresuid() for dropping root and
1730		 * capget()/capset()/prctl() for dropping caps.
1731		 */
1732		set_seccomp_filter(j);
1733		drop_ugid(j);
1734		drop_caps(j, last_valid_cap);
1735	}
1736
1737	/*
1738	 * Select the specified alternate syscall table.  The table must not
1739	 * block prctl(2) if we're using seccomp as well.
1740	 */
1741	if (j->flags.alt_syscall) {
1742		if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
1743			pdie("prctl(PR_ALT_SYSCALL) failed");
1744	}
1745
1746	/*
1747	 * seccomp has to come last since it cuts off all the other
1748	 * privilege-dropping syscalls :)
1749	 */
1750	if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
1751		if ((errno == EINVAL) && seccomp_can_softfail()) {
1752			warn("seccomp not supported");
1753			return;
1754		}
1755		pdie("prctl(PR_SET_SECCOMP) failed");
1756	}
1757}
1758
1759/* TODO(wad): will visibility affect this variable? */
1760static int init_exitstatus = 0;
1761
1762void init_term(int __attribute__ ((unused)) sig)
1763{
1764	_exit(init_exitstatus);
1765}
1766
1767void init(pid_t rootpid)
1768{
1769	pid_t pid;
1770	int status;
1771	/* So that we exit with the right status. */
1772	signal(SIGTERM, init_term);
1773	/* TODO(wad): self jail with seccomp filters here. */
1774	while ((pid = wait(&status)) > 0) {
1775		/*
1776		 * This loop will only end when either there are no processes
1777		 * left inside our pid namespace or we get a signal.
1778		 */
1779		if (pid == rootpid)
1780			init_exitstatus = status;
1781	}
1782	if (!WIFEXITED(init_exitstatus))
1783		_exit(MINIJAIL_ERR_INIT);
1784	_exit(WEXITSTATUS(init_exitstatus));
1785}
1786
1787int API minijail_from_fd(int fd, struct minijail *j)
1788{
1789	size_t sz = 0;
1790	size_t bytes = read(fd, &sz, sizeof(sz));
1791	char *buf;
1792	int r;
1793	if (sizeof(sz) != bytes)
1794		return -EINVAL;
1795	if (sz > USHRT_MAX)	/* arbitrary sanity check */
1796		return -E2BIG;
1797	buf = malloc(sz);
1798	if (!buf)
1799		return -ENOMEM;
1800	bytes = read(fd, buf, sz);
1801	if (bytes != sz) {
1802		free(buf);
1803		return -EINVAL;
1804	}
1805	r = minijail_unmarshal(j, buf, sz);
1806	free(buf);
1807	return r;
1808}
1809
1810int API minijail_to_fd(struct minijail *j, int fd)
1811{
1812	char *buf;
1813	size_t sz = minijail_size(j);
1814	ssize_t written;
1815	int r;
1816
1817	if (!sz)
1818		return -EINVAL;
1819	buf = malloc(sz);
1820	r = minijail_marshal(j, buf, sz);
1821	if (r) {
1822		free(buf);
1823		return r;
1824	}
1825	/* Sends [size][minijail]. */
1826	written = write(fd, &sz, sizeof(sz));
1827	if (written != sizeof(sz)) {
1828		free(buf);
1829		return -EFAULT;
1830	}
1831	written = write(fd, buf, sz);
1832	if (written < 0 || (size_t) written != sz) {
1833		free(buf);
1834		return -EFAULT;
1835	}
1836	free(buf);
1837	return 0;
1838}
1839
1840int setup_preload(void)
1841{
1842#if defined(__ANDROID__)
1843	/* Don't use LDPRELOAD on Brillo. */
1844	return 0;
1845#else
1846	char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
1847	char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
1848	if (!newenv)
1849		return -ENOMEM;
1850
1851	/* Only insert a separating space if we have something to separate... */
1852	sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
1853		PRELOADPATH);
1854
1855	/* setenv() makes a copy of the string we give it. */
1856	setenv(kLdPreloadEnvVar, newenv, 1);
1857	free(newenv);
1858	return 0;
1859#endif
1860}
1861
1862int setup_pipe(int fds[2])
1863{
1864	int r = pipe(fds);
1865	char fd_buf[11];
1866	if (r)
1867		return r;
1868	r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
1869	if (r <= 0)
1870		return -EINVAL;
1871	setenv(kFdEnvVar, fd_buf, 1);
1872	return 0;
1873}
1874
1875int setup_pipe_end(int fds[2], size_t index)
1876{
1877	if (index > 1)
1878		return -1;
1879
1880	close(fds[1 - index]);
1881	return fds[index];
1882}
1883
1884int setup_and_dupe_pipe_end(int fds[2], size_t index, int fd)
1885{
1886	if (index > 1)
1887		return -1;
1888
1889	close(fds[1 - index]);
1890	/* dup2(2) the corresponding end of the pipe into |fd|. */
1891	return dup2(fds[index], fd);
1892}
1893
1894int close_open_fds(int *inheritable_fds, size_t size)
1895{
1896	const char *kFdPath = "/proc/self/fd";
1897
1898	DIR *d = opendir(kFdPath);
1899	struct dirent *dir_entry;
1900
1901	if (d == NULL)
1902		return -1;
1903	int dir_fd = dirfd(d);
1904	while ((dir_entry = readdir(d)) != NULL) {
1905		size_t i;
1906		char *end;
1907		bool should_close = true;
1908		const int fd = strtol(dir_entry->d_name, &end, 10);
1909
1910		if ((*end) != '\0') {
1911			continue;
1912		}
1913		/*
1914		 * We might have set up some pipes that we want to share with
1915		 * the parent process, and should not be closed.
1916		 */
1917		for (i = 0; i < size; ++i) {
1918			if (fd == inheritable_fds[i]) {
1919				should_close = false;
1920				break;
1921			}
1922		}
1923		/* Also avoid closing the directory fd. */
1924		if (should_close && fd != dir_fd)
1925			close(fd);
1926	}
1927	closedir(d);
1928	return 0;
1929}
1930
1931int minijail_run_internal(struct minijail *j, const char *filename,
1932			  char *const argv[], pid_t *pchild_pid,
1933			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1934			  int use_preload);
1935
1936int API minijail_run(struct minijail *j, const char *filename,
1937		     char *const argv[])
1938{
1939	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1940				     true);
1941}
1942
1943int API minijail_run_pid(struct minijail *j, const char *filename,
1944			 char *const argv[], pid_t *pchild_pid)
1945{
1946	return minijail_run_internal(j, filename, argv, pchild_pid,
1947				     NULL, NULL, NULL, true);
1948}
1949
1950int API minijail_run_pipe(struct minijail *j, const char *filename,
1951			  char *const argv[], int *pstdin_fd)
1952{
1953	return minijail_run_internal(j, filename, argv, NULL, pstdin_fd,
1954				     NULL, NULL, true);
1955}
1956
1957int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
1958			       char *const argv[], pid_t *pchild_pid,
1959			       int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
1960{
1961	return minijail_run_internal(j, filename, argv, pchild_pid,
1962				     pstdin_fd, pstdout_fd, pstderr_fd, true);
1963}
1964
1965int API minijail_run_no_preload(struct minijail *j, const char *filename,
1966				char *const argv[])
1967{
1968	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
1969				     false);
1970}
1971
1972int API minijail_run_pid_pipes_no_preload(struct minijail *j,
1973					  const char *filename,
1974					  char *const argv[],
1975					  pid_t *pchild_pid,
1976					  int *pstdin_fd, int *pstdout_fd,
1977					  int *pstderr_fd)
1978{
1979	return minijail_run_internal(j, filename, argv, pchild_pid,
1980				     pstdin_fd, pstdout_fd, pstderr_fd, false);
1981}
1982
1983int minijail_run_internal(struct minijail *j, const char *filename,
1984			  char *const argv[], pid_t *pchild_pid,
1985			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
1986			  int use_preload)
1987{
1988	char *oldenv, *oldenv_copy = NULL;
1989	pid_t child_pid;
1990	int pipe_fds[2];
1991	int stdin_fds[2];
1992	int stdout_fds[2];
1993	int stderr_fds[2];
1994	int child_sync_pipe_fds[2];
1995	int sync_child = 0;
1996	int ret;
1997	/* We need to remember this across the minijail_preexec() call. */
1998	int pid_namespace = j->flags.pids;
1999	int do_init = j->flags.do_init;
2000
2001	if (use_preload) {
2002		oldenv = getenv(kLdPreloadEnvVar);
2003		if (oldenv) {
2004			oldenv_copy = strdup(oldenv);
2005			if (!oldenv_copy)
2006				return -ENOMEM;
2007		}
2008
2009		if (setup_preload())
2010			return -EFAULT;
2011	}
2012
2013	if (!use_preload) {
2014		if (j->flags.use_caps && j->caps != 0)
2015			die("non-empty capabilities are not supported without "
2016			    "LD_PRELOAD");
2017	}
2018
2019	/*
2020	 * Make the process group ID of this process equal to its PID.
2021	 * In the non-interactive case (e.g. when the parent process is started
2022	 * from init) this ensures the parent process and the jailed process
2023	 * can be killed together.
2024	 * When the parent process is started from the console this ensures
2025	 * the call to setsid(2) in the jailed process succeeds.
2026	 *
2027	 * Don't fail on EPERM, since setpgid(0, 0) can only EPERM when
2028	 * the process is already a process group leader.
2029	 */
2030	if (setpgid(0 /* use calling PID */, 0 /* make PGID = PID */)) {
2031		if (errno != EPERM) {
2032			pdie("setpgid(0, 0) failed");
2033		}
2034	}
2035
2036	if (use_preload) {
2037		/*
2038		 * Before we fork(2) and execve(2) the child process, we need
2039		 * to open a pipe(2) to send the minijail configuration over.
2040		 */
2041		if (setup_pipe(pipe_fds))
2042			return -EFAULT;
2043	}
2044
2045	/*
2046	 * If we want to write to the child process' standard input,
2047	 * create the pipe(2) now.
2048	 */
2049	if (pstdin_fd) {
2050		if (pipe(stdin_fds))
2051			return -EFAULT;
2052	}
2053
2054	/*
2055	 * If we want to read from the child process' standard output,
2056	 * create the pipe(2) now.
2057	 */
2058	if (pstdout_fd) {
2059		if (pipe(stdout_fds))
2060			return -EFAULT;
2061	}
2062
2063	/*
2064	 * If we want to read from the child process' standard error,
2065	 * create the pipe(2) now.
2066	 */
2067	if (pstderr_fd) {
2068		if (pipe(stderr_fds))
2069			return -EFAULT;
2070	}
2071
2072	/*
2073	 * If we want to set up a new uid/gid map in the user namespace,
2074	 * or if we need to add the child process to cgroups, create the pipe(2)
2075	 * to sync between parent and child.
2076	 */
2077	if (j->flags.userns || j->flags.cgroups) {
2078		sync_child = 1;
2079		if (pipe(child_sync_pipe_fds))
2080			return -EFAULT;
2081	}
2082
2083	/*
2084	 * Use sys_clone() if and only if we're creating a pid namespace.
2085	 *
2086	 * tl;dr: WARNING: do not mix pid namespaces and multithreading.
2087	 *
2088	 * In multithreaded programs, there are a bunch of locks inside libc,
2089	 * some of which may be held by other threads at the time that we call
2090	 * minijail_run_pid(). If we call fork(), glibc does its level best to
2091	 * ensure that we hold all of these locks before it calls clone()
2092	 * internally and drop them after clone() returns, but when we call
2093	 * sys_clone(2) directly, all that gets bypassed and we end up with a
2094	 * child address space where some of libc's important locks are held by
2095	 * other threads (which did not get cloned, and hence will never release
2096	 * those locks). This is okay so long as we call exec() immediately
2097	 * after, but a bunch of seemingly-innocent libc functions like setenv()
2098	 * take locks.
2099	 *
2100	 * Hence, only call sys_clone() if we need to, in order to get at pid
2101	 * namespacing. If we follow this path, the child's address space might
2102	 * have broken locks; you may only call functions that do not acquire
2103	 * any locks.
2104	 *
2105	 * Unfortunately, fork() acquires every lock it can get its hands on, as
2106	 * previously detailed, so this function is highly likely to deadlock
2107	 * later on (see "deadlock here") if we're multithreaded.
2108	 *
2109	 * We might hack around this by having the clone()d child (init of the
2110	 * pid namespace) return directly, rather than leaving the clone()d
2111	 * process hanging around to be init for the new namespace (and having
2112	 * its fork()ed child return in turn), but that process would be
2113	 * crippled with its libc locks potentially broken. We might try
2114	 * fork()ing in the parent before we clone() to ensure that we own all
2115	 * the locks, but then we have to have the forked child hanging around
2116	 * consuming resources (and possibly having file descriptors / shared
2117	 * memory regions / etc attached). We'd need to keep the child around to
2118	 * avoid having its children get reparented to init.
2119	 *
2120	 * TODO(ellyjones): figure out if the "forked child hanging around"
2121	 * problem is fixable or not. It would be nice if we worked in this
2122	 * case.
2123	 */
2124	if (pid_namespace) {
2125		int clone_flags = CLONE_NEWPID | SIGCHLD;
2126		if (j->flags.userns)
2127			clone_flags |= CLONE_NEWUSER;
2128		child_pid = syscall(SYS_clone, clone_flags, NULL);
2129	} else {
2130		child_pid = fork();
2131	}
2132
2133	if (child_pid < 0) {
2134		if (use_preload) {
2135			free(oldenv_copy);
2136		}
2137		die("failed to fork child");
2138	}
2139
2140	if (child_pid) {
2141		if (use_preload) {
2142			/* Restore parent's LD_PRELOAD. */
2143			if (oldenv_copy) {
2144				setenv(kLdPreloadEnvVar, oldenv_copy, 1);
2145				free(oldenv_copy);
2146			} else {
2147				unsetenv(kLdPreloadEnvVar);
2148			}
2149			unsetenv(kFdEnvVar);
2150		}
2151
2152		j->initpid = child_pid;
2153
2154		if (j->flags.pid_file)
2155			write_pid_file_or_die(j);
2156
2157		if (j->flags.cgroups)
2158			add_to_cgroups_or_die(j);
2159
2160		if (j->flags.userns)
2161			write_ugid_maps_or_die(j);
2162
2163		if (sync_child)
2164			parent_setup_complete(child_sync_pipe_fds);
2165
2166		if (use_preload) {
2167			/* Send marshalled minijail. */
2168			close(pipe_fds[0]);	/* read endpoint */
2169			ret = minijail_to_fd(j, pipe_fds[1]);
2170			close(pipe_fds[1]);	/* write endpoint */
2171			if (ret) {
2172				kill(j->initpid, SIGKILL);
2173				die("failed to send marshalled minijail");
2174			}
2175		}
2176
2177		if (pchild_pid)
2178			*pchild_pid = child_pid;
2179
2180		/*
2181		 * If we want to write to the child process' standard input,
2182		 * set up the write end of the pipe.
2183		 */
2184		if (pstdin_fd)
2185			*pstdin_fd = setup_pipe_end(stdin_fds,
2186						    1 /* write end */);
2187
2188		/*
2189		 * If we want to read from the child process' standard output,
2190		 * set up the read end of the pipe.
2191		 */
2192		if (pstdout_fd)
2193			*pstdout_fd = setup_pipe_end(stdout_fds,
2194						     0 /* read end */);
2195
2196		/*
2197		 * If we want to read from the child process' standard error,
2198		 * set up the read end of the pipe.
2199		 */
2200		if (pstderr_fd)
2201			*pstderr_fd = setup_pipe_end(stderr_fds,
2202						     0 /* read end */);
2203
2204		return 0;
2205	}
2206	/* Child process. */
2207	free(oldenv_copy);
2208
2209	if (j->flags.reset_signal_mask) {
2210		sigset_t signal_mask;
2211		if (sigemptyset(&signal_mask) != 0)
2212			pdie("sigemptyset failed");
2213		if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
2214			pdie("sigprocmask failed");
2215	}
2216
2217	if (j->flags.close_open_fds) {
2218		const size_t kMaxInheritableFdsSize = 10;
2219		int inheritable_fds[kMaxInheritableFdsSize];
2220		size_t size = 0;
2221		if (use_preload) {
2222			inheritable_fds[size++] = pipe_fds[0];
2223			inheritable_fds[size++] = pipe_fds[1];
2224		}
2225		if (sync_child) {
2226			inheritable_fds[size++] = child_sync_pipe_fds[0];
2227			inheritable_fds[size++] = child_sync_pipe_fds[1];
2228		}
2229		if (pstdin_fd) {
2230			inheritable_fds[size++] = stdin_fds[0];
2231			inheritable_fds[size++] = stdin_fds[1];
2232		}
2233		if (pstdout_fd) {
2234			inheritable_fds[size++] = stdout_fds[0];
2235			inheritable_fds[size++] = stdout_fds[1];
2236		}
2237		if (pstderr_fd) {
2238			inheritable_fds[size++] = stderr_fds[0];
2239			inheritable_fds[size++] = stderr_fds[1];
2240		}
2241
2242		if (close_open_fds(inheritable_fds, size) < 0)
2243			die("failed to close open file descriptors");
2244	}
2245
2246	if (sync_child)
2247		wait_for_parent_setup(child_sync_pipe_fds);
2248
2249	if (j->flags.userns)
2250		enter_user_namespace(j);
2251
2252	/*
2253	 * If we want to write to the jailed process' standard input,
2254	 * set up the read end of the pipe.
2255	 */
2256	if (pstdin_fd) {
2257		if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
2258					    STDIN_FILENO) < 0)
2259			die("failed to set up stdin pipe");
2260	}
2261
2262	/*
2263	 * If we want to read from the jailed process' standard output,
2264	 * set up the write end of the pipe.
2265	 */
2266	if (pstdout_fd) {
2267		if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
2268					    STDOUT_FILENO) < 0)
2269			die("failed to set up stdout pipe");
2270	}
2271
2272	/*
2273	 * If we want to read from the jailed process' standard error,
2274	 * set up the write end of the pipe.
2275	 */
2276	if (pstderr_fd) {
2277		if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
2278					    STDERR_FILENO) < 0)
2279			die("failed to set up stderr pipe");
2280	}
2281
2282	/*
2283	 * If any of stdin, stdout, or stderr are TTYs, create a new session.
2284	 * This prevents the jailed process from using the TIOCSTI ioctl
2285	 * to push characters into the parent process terminal's input buffer,
2286	 * therefore escaping the jail.
2287	 */
2288	if (isatty(STDIN_FILENO) || isatty(STDOUT_FILENO) ||
2289	    isatty(STDERR_FILENO)) {
2290		if (setsid() < 0) {
2291			pdie("setsid() failed");
2292		}
2293	}
2294
2295	/* If running an init program, let it decide when/how to mount /proc. */
2296	if (pid_namespace && !do_init)
2297		j->flags.remount_proc_ro = 0;
2298
2299	if (use_preload) {
2300		/* Strip out flags that cannot be inherited across execve(2). */
2301		minijail_preexec(j);
2302	} else {
2303		/*
2304		 * If not using LD_PRELOAD, do all jailing before execve(2).
2305		 * Note that PID namespaces can only be entered on fork(2),
2306		 * so that flag is still cleared.
2307		 */
2308		j->flags.pids = 0;
2309	}
2310	/* Jail this process, then execve(2) the target. */
2311	minijail_enter(j);
2312
2313	if (pid_namespace && do_init) {
2314		/*
2315		 * pid namespace: this process will become init inside the new
2316		 * namespace. We don't want all programs we might exec to have
2317		 * to know how to be init. Normally (do_init == 1) we fork off
2318		 * a child to actually run the program. If |do_init == 0|, we
2319		 * let the program keep pid 1 and be init.
2320		 *
2321		 * If we're multithreaded, we'll probably deadlock here. See
2322		 * WARNING above.
2323		 */
2324		child_pid = fork();
2325		if (child_pid < 0) {
2326			_exit(child_pid);
2327		} else if (child_pid > 0) {
2328			/*
2329			 * Best effort. Don't bother checking the return value.
2330			 */
2331			prctl(PR_SET_NAME, "minijail-init");
2332			init(child_pid);	/* Never returns. */
2333		}
2334	}
2335
2336	/*
2337	 * If we aren't pid-namespaced, or the jailed program asked to be init:
2338	 *   calling process
2339	 *   -> execve()-ing process
2340	 * If we are:
2341	 *   calling process
2342	 *   -> init()-ing process
2343	 *      -> execve()-ing process
2344	 */
2345	ret = execve(filename, argv, environ);
2346	if (ret == -1) {
2347		pwarn("execve(%s) failed", filename);
2348	}
2349	_exit(ret);
2350}
2351
2352int API minijail_kill(struct minijail *j)
2353{
2354	int st;
2355	if (kill(j->initpid, SIGTERM))
2356		return -errno;
2357	if (waitpid(j->initpid, &st, 0) < 0)
2358		return -errno;
2359	return st;
2360}
2361
2362int API minijail_wait(struct minijail *j)
2363{
2364	int st;
2365	if (waitpid(j->initpid, &st, 0) < 0)
2366		return -errno;
2367
2368	if (!WIFEXITED(st)) {
2369		int error_status = st;
2370		if (WIFSIGNALED(st)) {
2371			int signum = WTERMSIG(st);
2372			warn("child process %d received signal %d",
2373			     j->initpid, signum);
2374			/*
2375			 * We return MINIJAIL_ERR_JAIL if the process received
2376			 * SIGSYS, which happens when a syscall is blocked by
2377			 * seccomp filters.
2378			 * If not, we do what bash(1) does:
2379			 * $? = 128 + signum
2380			 */
2381			if (signum == SIGSYS) {
2382				error_status = MINIJAIL_ERR_JAIL;
2383			} else {
2384				error_status = 128 + signum;
2385			}
2386		}
2387		return error_status;
2388	}
2389
2390	int exit_status = WEXITSTATUS(st);
2391	if (exit_status != 0)
2392		info("child process %d exited with status %d",
2393		     j->initpid, exit_status);
2394
2395	return exit_status;
2396}
2397
2398void API minijail_destroy(struct minijail *j)
2399{
2400	size_t i;
2401
2402	if (j->flags.seccomp_filter && j->filter_prog) {
2403		free(j->filter_prog->filter);
2404		free(j->filter_prog);
2405	}
2406	while (j->mounts_head) {
2407		struct mountpoint *m = j->mounts_head;
2408		j->mounts_head = j->mounts_head->next;
2409		free(m->data);
2410		free(m->type);
2411		free(m->dest);
2412		free(m->src);
2413		free(m);
2414	}
2415	j->mounts_tail = NULL;
2416	if (j->user)
2417		free(j->user);
2418	if (j->suppl_gid_list)
2419		free(j->suppl_gid_list);
2420	if (j->chrootdir)
2421		free(j->chrootdir);
2422	if (j->pid_file_path)
2423		free(j->pid_file_path);
2424	if (j->uidmap)
2425		free(j->uidmap);
2426	if (j->gidmap)
2427		free(j->gidmap);
2428	if (j->alt_syscall_table)
2429		free(j->alt_syscall_table);
2430	for (i = 0; i < j->cgroup_count; ++i)
2431		free(j->cgroups[i]);
2432	free(j);
2433}
2434