1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkRefCnt_DEFINED
9#define SkRefCnt_DEFINED
10
11#include "../private/SkTLogic.h"
12#include "SkTypes.h"
13#include <atomic>
14#include <functional>
15#include <memory>
16#include <type_traits>
17#include <utility>
18
19/** \class SkRefCntBase
20
21    SkRefCntBase is the base class for objects that may be shared by multiple
22    objects. When an existing owner wants to share a reference, it calls ref().
23    When an owner wants to release its reference, it calls unref(). When the
24    shared object's reference count goes to zero as the result of an unref()
25    call, its (virtual) destructor is called. It is an error for the
26    destructor to be called explicitly (or via the object going out of scope on
27    the stack or calling delete) if getRefCnt() > 1.
28*/
29class SK_API SkRefCntBase : SkNoncopyable {
30public:
31    /** Default construct, initializing the reference count to 1.
32    */
33    SkRefCntBase() : fRefCnt(1) {}
34
35    /** Destruct, asserting that the reference count is 1.
36    */
37    virtual ~SkRefCntBase() {
38#ifdef SK_DEBUG
39        SkASSERTF(getRefCnt() == 1, "fRefCnt was %d", getRefCnt());
40        // illegal value, to catch us if we reuse after delete
41        fRefCnt.store(0, std::memory_order_relaxed);
42#endif
43    }
44
45#ifdef SK_DEBUG
46    /** Return the reference count. Use only for debugging. */
47    int32_t getRefCnt() const {
48        return fRefCnt.load(std::memory_order_relaxed);
49    }
50
51    void validate() const {
52        SkASSERT(getRefCnt() > 0);
53    }
54#endif
55
56    /** May return true if the caller is the only owner.
57     *  Ensures that all previous owner's actions are complete.
58     */
59    bool unique() const {
60        if (1 == fRefCnt.load(std::memory_order_acquire)) {
61            // The acquire barrier is only really needed if we return true.  It
62            // prevents code conditioned on the result of unique() from running
63            // until previous owners are all totally done calling unref().
64            return true;
65        }
66        return false;
67    }
68
69    /** Increment the reference count. Must be balanced by a call to unref().
70    */
71    void ref() const {
72        SkASSERT(getRefCnt() > 0);
73        // No barrier required.
74        (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
75    }
76
77    /** Decrement the reference count. If the reference count is 1 before the
78        decrement, then delete the object. Note that if this is the case, then
79        the object needs to have been allocated via new, and not on the stack.
80    */
81    void unref() const {
82        SkASSERT(getRefCnt() > 0);
83        // A release here acts in place of all releases we "should" have been doing in ref().
84        if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
85            // Like unique(), the acquire is only needed on success, to make sure
86            // code in internal_dispose() doesn't happen before the decrement.
87            this->internal_dispose();
88        }
89    }
90
91protected:
92    /**
93     *  Allow subclasses to call this if they've overridden internal_dispose
94     *  so they can reset fRefCnt before the destructor is called or if they
95     *  choose not to call the destructor (e.g. using a free list).
96     */
97    void internal_dispose_restore_refcnt_to_1() const {
98        SkASSERT(0 == getRefCnt());
99        fRefCnt.store(1, std::memory_order_relaxed);
100    }
101
102private:
103    /**
104     *  Called when the ref count goes to 0.
105     */
106    virtual void internal_dispose() const {
107        this->internal_dispose_restore_refcnt_to_1();
108        delete this;
109    }
110
111    // The following friends are those which override internal_dispose()
112    // and conditionally call SkRefCnt::internal_dispose().
113    friend class SkWeakRefCnt;
114
115    mutable std::atomic<int32_t> fRefCnt;
116
117    typedef SkNoncopyable INHERITED;
118};
119
120#ifdef SK_REF_CNT_MIXIN_INCLUDE
121// It is the responsibility of the following include to define the type SkRefCnt.
122// This SkRefCnt should normally derive from SkRefCntBase.
123#include SK_REF_CNT_MIXIN_INCLUDE
124#else
125class SK_API SkRefCnt : public SkRefCntBase {
126    // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
127    #if defined(GOOGLE3)
128    public:
129        void deref() const { this->unref(); }
130    #endif
131};
132#endif
133
134///////////////////////////////////////////////////////////////////////////////
135
136/** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
137    null in on each side of the assignment, and ensuring that ref() is called
138    before unref(), in case the two pointers point to the same object.
139 */
140
141#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK)
142// This version heuristically detects data races, since those otherwise result
143// in redundant reference count decrements, which are exceedingly
144// difficult to debug.
145
146#define SkRefCnt_SafeAssign(dst, src)   \
147    do {                                \
148        typedef typename std::remove_reference<decltype(dst)>::type \
149                SkRefCntPtrT;  \
150        SkRefCntPtrT old_dst = *const_cast<SkRefCntPtrT volatile *>(&dst); \
151        if (src) src->ref();            \
152        if (old_dst) old_dst->unref();          \
153        if (old_dst != *const_cast<SkRefCntPtrT volatile *>(&dst)) { \
154            SkDebugf("Detected racing Skia calls at %s:%d\n", \
155                    __FILE__, __LINE__); \
156        } \
157        dst = src;                      \
158    } while (0)
159
160#else /* !SK_BUILD_FOR_ANDROID_FRAMEWORK */
161
162#define SkRefCnt_SafeAssign(dst, src)   \
163    do {                                \
164        if (src) src->ref();            \
165        if (dst) dst->unref();          \
166        dst = src;                      \
167    } while (0)
168
169#endif
170
171
172/** Call obj->ref() and return obj. The obj must not be nullptr.
173 */
174template <typename T> static inline T* SkRef(T* obj) {
175    SkASSERT(obj);
176    obj->ref();
177    return obj;
178}
179
180/** Check if the argument is non-null, and if so, call obj->ref() and return obj.
181 */
182template <typename T> static inline T* SkSafeRef(T* obj) {
183    if (obj) {
184        obj->ref();
185    }
186    return obj;
187}
188
189/** Check if the argument is non-null, and if so, call obj->unref()
190 */
191template <typename T> static inline void SkSafeUnref(T* obj) {
192    if (obj) {
193        obj->unref();
194    }
195}
196
197template<typename T> static inline void SkSafeSetNull(T*& obj) {
198    if (obj) {
199        obj->unref();
200        obj = nullptr;
201    }
202}
203
204///////////////////////////////////////////////////////////////////////////////
205
206// This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
207// There's only benefit to using this if the deriving class does not otherwise need a vtable.
208template <typename Derived>
209class SkNVRefCnt : SkNoncopyable {
210public:
211    SkNVRefCnt() : fRefCnt(1) {}
212    ~SkNVRefCnt() { SkASSERTF(1 == getRefCnt(), "NVRefCnt was %d", getRefCnt()); }
213
214    // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
215    //   - unique() needs acquire when it returns true, and no barrier if it returns false;
216    //   - ref() doesn't need any barrier;
217    //   - unref() needs a release barrier, and an acquire if it's going to call delete.
218
219    bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
220    void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
221    void  unref() const {
222        if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
223            // restore the 1 for our destructor's assert
224            SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
225            delete (const Derived*)this;
226        }
227    }
228    void  deref() const { this->unref(); }
229
230private:
231    mutable std::atomic<int32_t> fRefCnt;
232    int32_t getRefCnt() const {
233        return fRefCnt.load(std::memory_order_relaxed);
234    }
235};
236
237///////////////////////////////////////////////////////////////////////////////////////////////////
238
239/**
240 *  Shared pointer class to wrap classes that support a ref()/unref() interface.
241 *
242 *  This can be used for classes inheriting from SkRefCnt, but it also works for other
243 *  classes that match the interface, but have different internal choices: e.g. the hosted class
244 *  may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
245 */
246template <typename T> class sk_sp {
247    /** Supports safe bool idiom. Obsolete with explicit operator bool. */
248    using unspecified_bool_type = T* sk_sp::*;
249public:
250    using element_type = T;
251
252    constexpr sk_sp() : fPtr(nullptr) {}
253    constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
254
255    /**
256     *  Shares the underlying object by calling ref(), so that both the argument and the newly
257     *  created sk_sp both have a reference to it.
258     */
259    sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
260    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
261    sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
262
263    /**
264     *  Move the underlying object from the argument to the newly created sk_sp. Afterwards only
265     *  the new sk_sp will have a reference to the object, and the argument will point to null.
266     *  No call to ref() or unref() will be made.
267     */
268    sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
269    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
270    sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
271
272    /**
273     *  Adopt the bare pointer into the newly created sk_sp.
274     *  No call to ref() or unref() will be made.
275     */
276    explicit sk_sp(T* obj) : fPtr(obj) {}
277
278    /**
279     *  Calls unref() on the underlying object pointer.
280     */
281    ~sk_sp() {
282        SkSafeUnref(fPtr);
283        SkDEBUGCODE(fPtr = nullptr);
284    }
285
286    sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
287
288    /**
289     *  Shares the underlying object referenced by the argument by calling ref() on it. If this
290     *  sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
291     *  object.
292     */
293    sk_sp<T>& operator=(const sk_sp<T>& that) {
294        this->reset(SkSafeRef(that.get()));
295        return *this;
296    }
297    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
298    sk_sp<T>& operator=(const sk_sp<U>& that) {
299        this->reset(SkSafeRef(that.get()));
300        return *this;
301    }
302
303    /**
304     *  Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
305     *  a reference to another object, unref() will be called on that object. No call to ref()
306     *  will be made.
307     */
308    sk_sp<T>& operator=(sk_sp<T>&& that) {
309        this->reset(that.release());
310        return *this;
311    }
312    template <typename U, typename = skstd::enable_if_t<std::is_convertible<U*, T*>::value>>
313    sk_sp<T>& operator=(sk_sp<U>&& that) {
314        this->reset(that.release());
315        return *this;
316    }
317
318    T& operator*() const {
319        SkASSERT(this->get() != nullptr);
320        return *this->get();
321    }
322
323    // MSVC 2013 does not work correctly with explicit operator bool.
324    // https://chromium-cpp.appspot.com/#core-blacklist
325    // When explicit operator bool can be used, remove operator! and operator unspecified_bool_type.
326    //explicit operator bool() const { return this->get() != nullptr; }
327    operator unspecified_bool_type() const { return this->get() ? &sk_sp::fPtr : nullptr; }
328    bool operator!() const { return this->get() == nullptr; }
329
330    T* get() const { return fPtr; }
331    T* operator->() const { return fPtr; }
332
333    /**
334     *  Adopt the new bare pointer, and call unref() on any previously held object (if not null).
335     *  No call to ref() will be made.
336     */
337    void reset(T* ptr = nullptr) {
338        // Calling fPtr->unref() may call this->~() or this->reset(T*).
339        // http://wg21.cmeerw.net/lwg/issue998
340        // http://wg21.cmeerw.net/lwg/issue2262
341        T* oldPtr = fPtr;
342        fPtr = ptr;
343        SkSafeUnref(oldPtr);
344    }
345
346    /**
347     *  Return the bare pointer, and set the internal object pointer to nullptr.
348     *  The caller must assume ownership of the object, and manage its reference count directly.
349     *  No call to unref() will be made.
350     */
351    T* SK_WARN_UNUSED_RESULT release() {
352        T* ptr = fPtr;
353        fPtr = nullptr;
354        return ptr;
355    }
356
357    void swap(sk_sp<T>& that) /*noexcept*/ {
358        using std::swap;
359        swap(fPtr, that.fPtr);
360    }
361
362private:
363    T*  fPtr;
364};
365
366template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
367    a.swap(b);
368}
369
370template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
371    return a.get() == b.get();
372}
373template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
374    return !a;
375}
376template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
377    return !b;
378}
379
380template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
381    return a.get() != b.get();
382}
383template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
384    return static_cast<bool>(a);
385}
386template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
387    return static_cast<bool>(b);
388}
389
390template <typename T, typename U> inline bool operator<(const sk_sp<T>& a, const sk_sp<U>& b) {
391    // Provide defined total order on sk_sp.
392    // http://wg21.cmeerw.net/lwg/issue1297
393    // http://wg21.cmeerw.net/lwg/issue1401 .
394    return std::less<skstd::common_type_t<T*, U*>>()(a.get(), b.get());
395}
396template <typename T> inline bool operator<(const sk_sp<T>& a, std::nullptr_t) {
397    return std::less<T*>()(a.get(), nullptr);
398}
399template <typename T> inline bool operator<(std::nullptr_t, const sk_sp<T>& b) {
400    return std::less<T*>()(nullptr, b.get());
401}
402
403template <typename T, typename U> inline bool operator<=(const sk_sp<T>& a, const sk_sp<U>& b) {
404    return !(b < a);
405}
406template <typename T> inline bool operator<=(const sk_sp<T>& a, std::nullptr_t) {
407    return !(nullptr < a);
408}
409template <typename T> inline bool operator<=(std::nullptr_t, const sk_sp<T>& b) {
410    return !(b < nullptr);
411}
412
413template <typename T, typename U> inline bool operator>(const sk_sp<T>& a, const sk_sp<U>& b) {
414    return b < a;
415}
416template <typename T> inline bool operator>(const sk_sp<T>& a, std::nullptr_t) {
417    return nullptr < a;
418}
419template <typename T> inline bool operator>(std::nullptr_t, const sk_sp<T>& b) {
420    return b < nullptr;
421}
422
423template <typename T, typename U> inline bool operator>=(const sk_sp<T>& a, const sk_sp<U>& b) {
424    return !(a < b);
425}
426template <typename T> inline bool operator>=(const sk_sp<T>& a, std::nullptr_t) {
427    return !(a < nullptr);
428}
429template <typename T> inline bool operator>=(std::nullptr_t, const sk_sp<T>& b) {
430    return !(nullptr < b);
431}
432
433template <typename T, typename... Args>
434sk_sp<T> sk_make_sp(Args&&... args) {
435    return sk_sp<T>(new T(std::forward<Args>(args)...));
436}
437
438/*
439 *  Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
440 *
441 *  This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
442 *  effectively "adopting" it.
443 */
444template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
445    return sk_sp<T>(SkSafeRef(obj));
446}
447
448#endif
449