1/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellator.h"
9
10#include "GrDefaultGeoProcFactory.h"
11#include "GrPathUtils.h"
12
13#include "SkArenaAlloc.h"
14#include "SkGeometry.h"
15#include "SkPath.h"
16
17#include <stdio.h>
18
19/*
20 * There are six stages to the basic algorithm:
21 *
22 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
23 * 2) Build a mesh of edges connecting the vertices (build_edges()).
24 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
25 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
26 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
27 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
28 *
29 * For screenspace antialiasing, the algorithm is modified as follows:
30 *
31 * Run steps 1-5 above to produce polygons.
32 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
33 * 5c) Simplify boundaries to remove "pointy" vertices that cause inversions (simplify_boundary()).
34 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
35 *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
36 *     antialiased mesh from those vertices (stroke_boundary()).
37 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
38 *
39 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
40 * of vertices (and the necessity of inserting new vertices on intersection).
41 *
42 * Stages (4) and (5) use an active edge list -- a list of all edges for which the
43 * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
44 * left-to-right based on the point where both edges are active (when both top vertices
45 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
46 * (shared), it's sorted based on the last point where both edges are active, so the
47 * "upper" bottom vertex.
48 *
49 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
50 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
51 * not exact and may violate the mesh topology or active edge list ordering. We
52 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
53 * points. This occurs in three ways:
54 *
55 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
56 *    neighbouring edges at the top or bottom vertex. This is handled by merging the
57 *    edges (merge_collinear_edges()).
58 * B) Intersections may cause an edge to violate the left-to-right ordering of the
59 *    active edge list. This is handled by splitting the neighbour edge on the
60 *    intersected vertex (cleanup_active_edges()).
61 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
62 *    to become active. This is handled by removing or inserting the edge in the active
63 *    edge list (fix_active_state()).
64 *
65 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
66 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
67 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
68 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
69 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
70 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
71 * linked list implementation. With the latter, all removals are O(1), and most insertions
72 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
73 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
74 * frequent. There may be other data structures worth investigating, however.
75 *
76 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
77 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
78 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
79 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
80 * that the "left" and "right" orientation in the code remains correct (edges to the left are
81 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
82 * degrees counterclockwise, rather that transposing.
83 */
84
85#define LOGGING_ENABLED 0
86
87#if LOGGING_ENABLED
88#define LOG printf
89#else
90#define LOG(...)
91#endif
92
93namespace {
94
95const int kArenaChunkSize = 16 * 1024;
96
97struct Vertex;
98struct Edge;
99struct Poly;
100
101template <class T, T* T::*Prev, T* T::*Next>
102void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
103    t->*Prev = prev;
104    t->*Next = next;
105    if (prev) {
106        prev->*Next = t;
107    } else if (head) {
108        *head = t;
109    }
110    if (next) {
111        next->*Prev = t;
112    } else if (tail) {
113        *tail = t;
114    }
115}
116
117template <class T, T* T::*Prev, T* T::*Next>
118void list_remove(T* t, T** head, T** tail) {
119    if (t->*Prev) {
120        t->*Prev->*Next = t->*Next;
121    } else if (head) {
122        *head = t->*Next;
123    }
124    if (t->*Next) {
125        t->*Next->*Prev = t->*Prev;
126    } else if (tail) {
127        *tail = t->*Prev;
128    }
129    t->*Prev = t->*Next = nullptr;
130}
131
132/**
133 * Vertices are used in three ways: first, the path contours are converted into a
134 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139 * an individual Vertex from the path mesh may belong to multiple
140 * MonotonePolys, so the original Vertices cannot be re-used.
141 */
142
143struct Vertex {
144  Vertex(const SkPoint& point, uint8_t alpha)
145    : fPoint(point), fPrev(nullptr), fNext(nullptr)
146    , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
147    , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
148    , fPartner(nullptr)
149    , fProcessed(false)
150    , fAlpha(alpha)
151#if LOGGING_ENABLED
152    , fID (-1.0f)
153#endif
154    {}
155    SkPoint fPoint;           // Vertex position
156    Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
157    Vertex* fNext;            // "
158    Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
159    Edge*   fLastEdgeAbove;   // "
160    Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
161    Edge*   fLastEdgeBelow;   // "
162    Vertex* fPartner;         // Corresponding inner or outer vertex (for AA).
163    bool    fProcessed;       // Has this vertex been seen in simplify()?
164    uint8_t fAlpha;
165#if LOGGING_ENABLED
166    float   fID;              // Identifier used for logging.
167#endif
168};
169
170/***************************************************************************************/
171
172struct AAParams {
173    bool fTweakAlpha;
174    GrColor fColor;
175};
176
177typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
178
179bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
180    return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
181}
182
183bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
184    return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
185}
186
187struct Comparator {
188    enum class Direction { kVertical, kHorizontal };
189    Comparator(Direction direction) : fDirection(direction) {}
190    bool sweep_lt(const SkPoint& a, const SkPoint& b) const {
191        return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
192    }
193    Direction fDirection;
194};
195
196inline void* emit_vertex(Vertex* v, const AAParams* aaParams, void* data) {
197    if (!aaParams) {
198        SkPoint* d = static_cast<SkPoint*>(data);
199        *d++ = v->fPoint;
200        return d;
201    }
202    if (aaParams->fTweakAlpha) {
203        auto d = static_cast<GrDefaultGeoProcFactory::PositionColorAttr*>(data);
204        d->fPosition = v->fPoint;
205        d->fColor = SkAlphaMulQ(aaParams->fColor, SkAlpha255To256(v->fAlpha));
206        d++;
207        return d;
208    }
209    auto d = static_cast<GrDefaultGeoProcFactory::PositionColorCoverageAttr*>(data);
210    d->fPosition = v->fPoint;
211    d->fColor = aaParams->fColor;
212    d->fCoverage = GrNormalizeByteToFloat(v->fAlpha);
213    d++;
214    return d;
215}
216
217void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, const AAParams* aaParams, void* data) {
218    LOG("emit_triangle (%g, %g) %d\n", v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
219    LOG("              (%g, %g) %d\n", v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
220    LOG("              (%g, %g) %d\n", v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
221#if TESSELLATOR_WIREFRAME
222    data = emit_vertex(v0, aaParams, data);
223    data = emit_vertex(v1, aaParams, data);
224    data = emit_vertex(v1, aaParams, data);
225    data = emit_vertex(v2, aaParams, data);
226    data = emit_vertex(v2, aaParams, data);
227    data = emit_vertex(v0, aaParams, data);
228#else
229    data = emit_vertex(v0, aaParams, data);
230    data = emit_vertex(v1, aaParams, data);
231    data = emit_vertex(v2, aaParams, data);
232#endif
233    return data;
234}
235
236struct VertexList {
237    VertexList() : fHead(nullptr), fTail(nullptr) {}
238    VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
239    Vertex* fHead;
240    Vertex* fTail;
241    void insert(Vertex* v, Vertex* prev, Vertex* next) {
242        list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
243    }
244    void append(Vertex* v) {
245        insert(v, fTail, nullptr);
246    }
247    void append(const VertexList& list) {
248        if (!list.fHead) {
249            return;
250        }
251        if (fTail) {
252            fTail->fNext = list.fHead;
253            list.fHead->fPrev = fTail;
254        } else {
255            fHead = list.fHead;
256        }
257        fTail = list.fTail;
258    }
259    void prepend(Vertex* v) {
260        insert(v, nullptr, fHead);
261    }
262    void remove(Vertex* v) {
263        list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
264    }
265    void close() {
266        if (fHead && fTail) {
267            fTail->fNext = fHead;
268            fHead->fPrev = fTail;
269        }
270    }
271};
272
273// Round to nearest quarter-pixel. This is used for screenspace tessellation.
274
275inline void round(SkPoint* p) {
276    p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
277    p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
278}
279
280// A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
281struct Line {
282    Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
283    Line(const SkPoint& p, const SkPoint& q)
284        : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
285        , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
286        , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
287             static_cast<double>(p.fX) * q.fY) {}
288    double dist(const SkPoint& p) const {
289        return fA * p.fX + fB * p.fY + fC;
290    }
291    double magSq() const {
292        return fA * fA + fB * fB;
293    }
294
295    // Compute the intersection of two (infinite) Lines.
296    bool intersect(const Line& other, SkPoint* point) {
297        double denom = fA * other.fB - fB * other.fA;
298        if (denom == 0.0) {
299            return false;
300        }
301        double scale = 1.0f / denom;
302        point->fX = SkDoubleToScalar((fB * other.fC - other.fB * fC) * scale);
303        point->fY = SkDoubleToScalar((other.fA * fC - fA * other.fC) * scale);
304        round(point);
305        return true;
306    }
307    double fA, fB, fC;
308};
309
310/**
311 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
312 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
313 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
314 * point). For speed, that case is only tested by the callers that require it (e.g.,
315 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
316 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
317 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
318 * a lot faster in the "not found" case.
319 *
320 * The coefficients of the line equation stored in double precision to avoid catastrphic
321 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
322 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
323 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
324 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
325 * this file).
326 */
327
328struct Edge {
329    enum class Type { kInner, kOuter, kConnector };
330    Edge(Vertex* top, Vertex* bottom, int winding, Type type)
331        : fWinding(winding)
332        , fTop(top)
333        , fBottom(bottom)
334        , fType(type)
335        , fLeft(nullptr)
336        , fRight(nullptr)
337        , fPrevEdgeAbove(nullptr)
338        , fNextEdgeAbove(nullptr)
339        , fPrevEdgeBelow(nullptr)
340        , fNextEdgeBelow(nullptr)
341        , fLeftPoly(nullptr)
342        , fRightPoly(nullptr)
343        , fLeftPolyPrev(nullptr)
344        , fLeftPolyNext(nullptr)
345        , fRightPolyPrev(nullptr)
346        , fRightPolyNext(nullptr)
347        , fUsedInLeftPoly(false)
348        , fUsedInRightPoly(false)
349        , fLine(top, bottom) {
350        }
351    int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
352    Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
353    Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
354    Type     fType;
355    Edge*    fLeft;             // The linked list of edges in the active edge list.
356    Edge*    fRight;            // "
357    Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
358    Edge*    fNextEdgeAbove;    // "
359    Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
360    Edge*    fNextEdgeBelow;    // "
361    Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
362    Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
363    Edge*    fLeftPolyPrev;
364    Edge*    fLeftPolyNext;
365    Edge*    fRightPolyPrev;
366    Edge*    fRightPolyNext;
367    bool     fUsedInLeftPoly;
368    bool     fUsedInRightPoly;
369    Line     fLine;
370    double dist(const SkPoint& p) const {
371        return fLine.dist(p);
372    }
373    bool isRightOf(Vertex* v) const {
374        return fLine.dist(v->fPoint) < 0.0;
375    }
376    bool isLeftOf(Vertex* v) const {
377        return fLine.dist(v->fPoint) > 0.0;
378    }
379    void recompute() {
380        fLine = Line(fTop, fBottom);
381    }
382    bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) {
383        LOG("intersecting %g -> %g with %g -> %g\n",
384               fTop->fID, fBottom->fID,
385               other.fTop->fID, other.fBottom->fID);
386        if (fTop == other.fTop || fBottom == other.fBottom) {
387            return false;
388        }
389        double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
390        if (denom == 0.0) {
391            return false;
392        }
393        double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
394        double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
395        double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
396        double tNumer = dy * fLine.fB + dx * fLine.fA;
397        // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
398        // This saves us doing the divide below unless absolutely necessary.
399        if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
400                        : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
401            return false;
402        }
403        double s = sNumer / denom;
404        SkASSERT(s >= 0.0 && s <= 1.0);
405        p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
406        p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
407        if (alpha) {
408            if (fType == Type::kConnector) {
409                *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
410            } else if (other.fType == Type::kConnector) {
411                double t = tNumer / denom;
412                *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
413            } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
414                *alpha = 0;
415            } else {
416                *alpha = 255;
417            }
418        }
419        return true;
420    }
421};
422
423struct EdgeList {
424    EdgeList() : fHead(nullptr), fTail(nullptr) {}
425    Edge* fHead;
426    Edge* fTail;
427    void insert(Edge* edge, Edge* prev, Edge* next) {
428        list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
429    }
430    void append(Edge* e) {
431        insert(e, fTail, nullptr);
432    }
433    void remove(Edge* edge) {
434        list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
435    }
436    void removeAll() {
437        while (fHead) {
438            this->remove(fHead);
439        }
440    }
441    void close() {
442        if (fHead && fTail) {
443            fTail->fRight = fHead;
444            fHead->fLeft = fTail;
445        }
446    }
447    bool contains(Edge* edge) const {
448        return edge->fLeft || edge->fRight || fHead == edge;
449    }
450};
451
452/***************************************************************************************/
453
454struct Poly {
455    Poly(Vertex* v, int winding)
456        : fFirstVertex(v)
457        , fWinding(winding)
458        , fHead(nullptr)
459        , fTail(nullptr)
460        , fNext(nullptr)
461        , fPartner(nullptr)
462        , fCount(0)
463    {
464#if LOGGING_ENABLED
465        static int gID = 0;
466        fID = gID++;
467        LOG("*** created Poly %d\n", fID);
468#endif
469    }
470    typedef enum { kLeft_Side, kRight_Side } Side;
471    struct MonotonePoly {
472        MonotonePoly(Edge* edge, Side side)
473            : fSide(side)
474            , fFirstEdge(nullptr)
475            , fLastEdge(nullptr)
476            , fPrev(nullptr)
477            , fNext(nullptr) {
478            this->addEdge(edge);
479        }
480        Side          fSide;
481        Edge*         fFirstEdge;
482        Edge*         fLastEdge;
483        MonotonePoly* fPrev;
484        MonotonePoly* fNext;
485        void addEdge(Edge* edge) {
486            if (fSide == kRight_Side) {
487                SkASSERT(!edge->fUsedInRightPoly);
488                list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
489                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
490                edge->fUsedInRightPoly = true;
491            } else {
492                SkASSERT(!edge->fUsedInLeftPoly);
493                list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
494                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
495                edge->fUsedInLeftPoly = true;
496            }
497        }
498
499        void* emit(const AAParams* aaParams, void* data) {
500            Edge* e = fFirstEdge;
501            VertexList vertices;
502            vertices.append(e->fTop);
503            int count = 1;
504            while (e != nullptr) {
505                if (kRight_Side == fSide) {
506                    vertices.append(e->fBottom);
507                    e = e->fRightPolyNext;
508                } else {
509                    vertices.prepend(e->fBottom);
510                    e = e->fLeftPolyNext;
511                }
512                count++;
513            }
514            Vertex* first = vertices.fHead;
515            Vertex* v = first->fNext;
516            while (v != vertices.fTail) {
517                SkASSERT(v && v->fPrev && v->fNext);
518                Vertex* prev = v->fPrev;
519                Vertex* curr = v;
520                Vertex* next = v->fNext;
521                if (count == 3) {
522                    return emit_triangle(prev, curr, next, aaParams, data);
523                }
524                double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
525                double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
526                double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
527                double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
528                if (ax * by - ay * bx >= 0.0) {
529                    data = emit_triangle(prev, curr, next, aaParams, data);
530                    v->fPrev->fNext = v->fNext;
531                    v->fNext->fPrev = v->fPrev;
532                    count--;
533                    if (v->fPrev == first) {
534                        v = v->fNext;
535                    } else {
536                        v = v->fPrev;
537                    }
538                } else {
539                    v = v->fNext;
540                }
541            }
542            return data;
543        }
544    };
545    Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
546        LOG("addEdge (%g -> %g) to poly %d, %s side\n",
547               e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
548        Poly* partner = fPartner;
549        Poly* poly = this;
550        if (side == kRight_Side) {
551            if (e->fUsedInRightPoly) {
552                return this;
553            }
554        } else {
555            if (e->fUsedInLeftPoly) {
556                return this;
557            }
558        }
559        if (partner) {
560            fPartner = partner->fPartner = nullptr;
561        }
562        if (!fTail) {
563            fHead = fTail = alloc.make<MonotonePoly>(e, side);
564            fCount += 2;
565        } else if (e->fBottom == fTail->fLastEdge->fBottom) {
566            return poly;
567        } else if (side == fTail->fSide) {
568            fTail->addEdge(e);
569            fCount++;
570        } else {
571            e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
572            fTail->addEdge(e);
573            fCount++;
574            if (partner) {
575                partner->addEdge(e, side, alloc);
576                poly = partner;
577            } else {
578                MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
579                m->fPrev = fTail;
580                fTail->fNext = m;
581                fTail = m;
582            }
583        }
584        return poly;
585    }
586    void* emit(const AAParams* aaParams, void *data) {
587        if (fCount < 3) {
588            return data;
589        }
590        LOG("emit() %d, size %d\n", fID, fCount);
591        for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
592            data = m->emit(aaParams, data);
593        }
594        return data;
595    }
596    Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
597    Vertex* fFirstVertex;
598    int fWinding;
599    MonotonePoly* fHead;
600    MonotonePoly* fTail;
601    Poly* fNext;
602    Poly* fPartner;
603    int fCount;
604#if LOGGING_ENABLED
605    int fID;
606#endif
607};
608
609/***************************************************************************************/
610
611bool coincident(const SkPoint& a, const SkPoint& b) {
612    return a == b;
613}
614
615Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
616    Poly* poly = alloc.make<Poly>(v, winding);
617    poly->fNext = *head;
618    *head = poly;
619    return poly;
620}
621
622void append_point_to_contour(const SkPoint& p, VertexList* contour, SkArenaAlloc& alloc) {
623    Vertex* v = alloc.make<Vertex>(p, 255);
624#if LOGGING_ENABLED
625    static float gID = 0.0f;
626    v->fID = gID++;
627#endif
628    contour->append(v);
629}
630
631void generate_quadratic_points(const SkPoint& p0,
632                               const SkPoint& p1,
633                               const SkPoint& p2,
634                               SkScalar tolSqd,
635                               VertexList* contour,
636                               int pointsLeft,
637                               SkArenaAlloc& alloc) {
638    SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
639    if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
640        append_point_to_contour(p2, contour, alloc);
641        return;
642    }
643
644    const SkPoint q[] = {
645        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
646        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
647    };
648    const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
649
650    pointsLeft >>= 1;
651    generate_quadratic_points(p0, q[0], r, tolSqd, contour, pointsLeft, alloc);
652    generate_quadratic_points(r, q[1], p2, tolSqd, contour, pointsLeft, alloc);
653}
654
655void generate_cubic_points(const SkPoint& p0,
656                           const SkPoint& p1,
657                           const SkPoint& p2,
658                           const SkPoint& p3,
659                           SkScalar tolSqd,
660                           VertexList* contour,
661                           int pointsLeft,
662                           SkArenaAlloc& alloc) {
663    SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
664    SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
665    if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
666        !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
667        append_point_to_contour(p3, contour, alloc);
668        return;
669    }
670    const SkPoint q[] = {
671        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
672        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
673        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
674    };
675    const SkPoint r[] = {
676        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
677        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
678    };
679    const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
680    pointsLeft >>= 1;
681    generate_cubic_points(p0, q[0], r[0], s, tolSqd, contour, pointsLeft, alloc);
682    generate_cubic_points(s, r[1], q[2], p3, tolSqd, contour, pointsLeft, alloc);
683}
684
685// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
686
687void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
688                      VertexList* contours, SkArenaAlloc& alloc, bool *isLinear) {
689    SkScalar toleranceSqd = tolerance * tolerance;
690
691    SkPoint pts[4];
692    *isLinear = true;
693    VertexList* contour = contours;
694    SkPath::Iter iter(path, false);
695    if (path.isInverseFillType()) {
696        SkPoint quad[4];
697        clipBounds.toQuad(quad);
698        for (int i = 3; i >= 0; i--) {
699            append_point_to_contour(quad[i], contours, alloc);
700        }
701        contour++;
702    }
703    SkAutoConicToQuads converter;
704    SkPath::Verb verb;
705    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
706        switch (verb) {
707            case SkPath::kConic_Verb: {
708                SkScalar weight = iter.conicWeight();
709                const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
710                for (int i = 0; i < converter.countQuads(); ++i) {
711                    int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
712                    generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2], toleranceSqd,
713                                              contour, pointsLeft, alloc);
714                    quadPts += 2;
715                }
716                *isLinear = false;
717                break;
718            }
719            case SkPath::kMove_Verb:
720                if (contour->fHead) {
721                    contour++;
722                }
723                append_point_to_contour(pts[0], contour, alloc);
724                break;
725            case SkPath::kLine_Verb: {
726                append_point_to_contour(pts[1], contour, alloc);
727                break;
728            }
729            case SkPath::kQuad_Verb: {
730                int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
731                generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, contour,
732                                          pointsLeft, alloc);
733                *isLinear = false;
734                break;
735            }
736            case SkPath::kCubic_Verb: {
737                int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
738                generate_cubic_points(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
739                                      pointsLeft, alloc);
740                *isLinear = false;
741                break;
742            }
743            case SkPath::kClose_Verb:
744            case SkPath::kDone_Verb:
745                break;
746        }
747    }
748}
749
750inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
751    switch (fillType) {
752        case SkPath::kWinding_FillType:
753            return winding != 0;
754        case SkPath::kEvenOdd_FillType:
755            return (winding & 1) != 0;
756        case SkPath::kInverseWinding_FillType:
757            return winding == 1;
758        case SkPath::kInverseEvenOdd_FillType:
759            return (winding & 1) == 1;
760        default:
761            SkASSERT(false);
762            return false;
763    }
764}
765
766inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
767    return poly && apply_fill_type(fillType, poly->fWinding);
768}
769
770Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
771    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
772    Vertex* top = winding < 0 ? next : prev;
773    Vertex* bottom = winding < 0 ? prev : next;
774    return alloc.make<Edge>(top, bottom, winding, type);
775}
776
777void remove_edge(Edge* edge, EdgeList* edges) {
778    LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
779    SkASSERT(edges->contains(edge));
780    edges->remove(edge);
781}
782
783void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
784    LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
785    SkASSERT(!edges->contains(edge));
786    Edge* next = prev ? prev->fRight : edges->fHead;
787    edges->insert(edge, prev, next);
788}
789
790void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
791    if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
792        *left = v->fFirstEdgeAbove->fLeft;
793        *right = v->fLastEdgeAbove->fRight;
794        return;
795    }
796    Edge* next = nullptr;
797    Edge* prev;
798    for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
799        if (prev->isLeftOf(v)) {
800            break;
801        }
802        next = prev;
803    }
804    *left = prev;
805    *right = next;
806}
807
808void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
809    Edge* prev = nullptr;
810    Edge* next;
811    for (next = edges->fHead; next != nullptr; next = next->fRight) {
812        if ((c.sweep_lt(next->fTop->fPoint, edge->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
813            (c.sweep_lt(edge->fTop->fPoint, next->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
814            (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
815             next->isRightOf(edge->fBottom)) ||
816            (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
817             edge->isLeftOf(next->fBottom))) {
818            break;
819        }
820        prev = next;
821    }
822    *left = prev;
823    *right = next;
824}
825
826void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
827    if (!activeEdges) {
828        return;
829    }
830    if (activeEdges->contains(edge)) {
831        if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
832            remove_edge(edge, activeEdges);
833        }
834    } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
835        Edge* left;
836        Edge* right;
837        find_enclosing_edges(edge, activeEdges, c, &left, &right);
838        insert_edge(edge, left, activeEdges);
839    }
840}
841
842void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
843    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
844        c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
845        return;
846    }
847    LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
848    Edge* prev = nullptr;
849    Edge* next;
850    for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
851        if (next->isRightOf(edge->fTop)) {
852            break;
853        }
854        prev = next;
855    }
856    list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
857        edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
858}
859
860void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
861    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
862        c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
863        return;
864    }
865    LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
866    Edge* prev = nullptr;
867    Edge* next;
868    for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
869        if (next->isRightOf(edge->fBottom)) {
870            break;
871        }
872        prev = next;
873    }
874    list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
875        edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
876}
877
878void remove_edge_above(Edge* edge) {
879    LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
880        edge->fBottom->fID);
881    list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
882        edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
883}
884
885void remove_edge_below(Edge* edge) {
886    LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
887        edge->fTop->fID);
888    list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
889        edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
890}
891
892void disconnect(Edge* edge)
893{
894    remove_edge_above(edge);
895    remove_edge_below(edge);
896}
897
898void erase_edge(Edge* edge, EdgeList* edges) {
899    LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
900    disconnect(edge);
901    if (edges && edges->contains(edge)) {
902        remove_edge(edge, edges);
903    }
904}
905
906void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
907
908void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
909    remove_edge_below(edge);
910    edge->fTop = v;
911    edge->recompute();
912    insert_edge_below(edge, v, c);
913    fix_active_state(edge, activeEdges, c);
914    merge_collinear_edges(edge, activeEdges, c);
915}
916
917void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
918    remove_edge_above(edge);
919    edge->fBottom = v;
920    edge->recompute();
921    insert_edge_above(edge, v, c);
922    fix_active_state(edge, activeEdges, c);
923    merge_collinear_edges(edge, activeEdges, c);
924}
925
926void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
927    if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
928        LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
929            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
930            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
931        other->fWinding += edge->fWinding;
932        erase_edge(edge, activeEdges);
933    } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
934        other->fWinding += edge->fWinding;
935        set_bottom(edge, other->fTop, activeEdges, c);
936    } else {
937        edge->fWinding += other->fWinding;
938        set_bottom(other, edge->fTop, activeEdges, c);
939    }
940}
941
942void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
943    if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
944        LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
945            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
946            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
947        other->fWinding += edge->fWinding;
948        erase_edge(edge, activeEdges);
949    } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
950        edge->fWinding += other->fWinding;
951        set_top(other, edge->fBottom, activeEdges, c);
952    } else {
953        other->fWinding += edge->fWinding;
954        set_top(edge, other->fBottom, activeEdges, c);
955    }
956}
957
958void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
959    if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
960                                 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
961        merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
962    } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
963                                        !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
964        merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
965    }
966    if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
967                                 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
968        merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
969    } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
970                                        !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
971        merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
972    }
973}
974
975void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc);
976
977void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
978    Vertex* top = edge->fTop;
979    Vertex* bottom = edge->fBottom;
980    if (edge->fLeft) {
981        Vertex* leftTop = edge->fLeft->fTop;
982        Vertex* leftBottom = edge->fLeft->fBottom;
983        if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
984            split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
985        } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
986            split_edge(edge, leftTop, activeEdges, c, alloc);
987        } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
988                   !edge->fLeft->isLeftOf(bottom)) {
989            split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
990        } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
991            split_edge(edge, leftBottom, activeEdges, c, alloc);
992        }
993    }
994    if (edge->fRight) {
995        Vertex* rightTop = edge->fRight->fTop;
996        Vertex* rightBottom = edge->fRight->fBottom;
997        if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
998            split_edge(edge->fRight, top, activeEdges, c, alloc);
999        } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
1000            split_edge(edge, rightTop, activeEdges, c, alloc);
1001        } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
1002                   !edge->fRight->isRightOf(bottom)) {
1003            split_edge(edge->fRight, bottom, activeEdges, c, alloc);
1004        } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
1005                   !edge->isLeftOf(rightBottom)) {
1006            split_edge(edge, rightBottom, activeEdges, c, alloc);
1007        }
1008    }
1009}
1010
1011void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
1012    LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1013        edge->fTop->fID, edge->fBottom->fID,
1014        v->fID, v->fPoint.fX, v->fPoint.fY);
1015    if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1016        set_top(edge, v, activeEdges, c);
1017    } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
1018        set_bottom(edge, v, activeEdges, c);
1019    } else {
1020        Edge* newEdge = alloc.make<Edge>(v, edge->fBottom, edge->fWinding, edge->fType);
1021        insert_edge_below(newEdge, v, c);
1022        insert_edge_above(newEdge, edge->fBottom, c);
1023        set_bottom(edge, v, activeEdges, c);
1024        cleanup_active_edges(edge, activeEdges, c, alloc);
1025        fix_active_state(newEdge, activeEdges, c);
1026        merge_collinear_edges(newEdge, activeEdges, c);
1027    }
1028}
1029
1030Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1031              int winding_scale = 1) {
1032    Edge* edge = new_edge(prev, next, type, c, alloc);
1033    insert_edge_below(edge, edge->fTop, c);
1034    insert_edge_above(edge, edge->fBottom, c);
1035    edge->fWinding *= winding_scale;
1036    merge_collinear_edges(edge, nullptr, c);
1037    return edge;
1038}
1039
1040void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1041                    SkArenaAlloc& alloc) {
1042    LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1043        src->fID, dst->fID);
1044    dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1045    if (src->fPartner) {
1046        src->fPartner->fPartner = dst;
1047    }
1048    for (Edge* edge = src->fFirstEdgeAbove; edge;) {
1049        Edge* next = edge->fNextEdgeAbove;
1050        set_bottom(edge, dst, nullptr, c);
1051        edge = next;
1052    }
1053    for (Edge* edge = src->fFirstEdgeBelow; edge;) {
1054        Edge* next = edge->fNextEdgeBelow;
1055        set_top(edge, dst, nullptr, c);
1056        edge = next;
1057    }
1058    mesh->remove(src);
1059}
1060
1061uint8_t max_edge_alpha(Edge* a, Edge* b) {
1062    if (a->fType == Edge::Type::kInner || b->fType == Edge::Type::kInner) {
1063        return 255;
1064    } else if (a->fType == Edge::Type::kOuter && b->fType == Edge::Type::kOuter) {
1065        return 0;
1066    } else {
1067        return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
1068                      SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
1069    }
1070}
1071
1072Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
1073                               SkArenaAlloc& alloc) {
1074    if (!edge || !other) {
1075        return nullptr;
1076    }
1077    SkPoint p;
1078    uint8_t alpha;
1079    if (edge->intersect(*other, &p, &alpha)) {
1080        Vertex* v;
1081        LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1082        if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
1083            split_edge(other, edge->fTop, activeEdges, c, alloc);
1084            v = edge->fTop;
1085        } else if (p == edge->fBottom->fPoint || c.sweep_lt(edge->fBottom->fPoint, p)) {
1086            split_edge(other, edge->fBottom, activeEdges, c, alloc);
1087            v = edge->fBottom;
1088        } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
1089            split_edge(edge, other->fTop, activeEdges, c, alloc);
1090            v = other->fTop;
1091        } else if (p == other->fBottom->fPoint || c.sweep_lt(other->fBottom->fPoint, p)) {
1092            split_edge(edge, other->fBottom, activeEdges, c, alloc);
1093            v = other->fBottom;
1094        } else {
1095            Vertex* nextV = edge->fTop;
1096            while (c.sweep_lt(p, nextV->fPoint)) {
1097                nextV = nextV->fPrev;
1098            }
1099            while (c.sweep_lt(nextV->fPoint, p)) {
1100                nextV = nextV->fNext;
1101            }
1102            Vertex* prevV = nextV->fPrev;
1103            if (coincident(prevV->fPoint, p)) {
1104                v = prevV;
1105            } else if (coincident(nextV->fPoint, p)) {
1106                v = nextV;
1107            } else {
1108                v = alloc.make<Vertex>(p, alpha);
1109                LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1110                    prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1111                    nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1112#if LOGGING_ENABLED
1113                v->fID = (nextV->fID + prevV->fID) * 0.5f;
1114#endif
1115                v->fPrev = prevV;
1116                v->fNext = nextV;
1117                prevV->fNext = v;
1118                nextV->fPrev = v;
1119            }
1120            split_edge(edge, v, activeEdges, c, alloc);
1121            split_edge(other, v, activeEdges, c, alloc);
1122        }
1123        v->fAlpha = SkTMax(v->fAlpha, alpha);
1124        return v;
1125    }
1126    return nullptr;
1127}
1128
1129void sanitize_contours(VertexList* contours, int contourCnt, bool approximate) {
1130    for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1131        SkASSERT(contour->fHead);
1132        Vertex* prev = contour->fTail;
1133        if (approximate) {
1134            round(&prev->fPoint);
1135        }
1136        for (Vertex* v = contour->fHead; v;) {
1137            if (approximate) {
1138                round(&v->fPoint);
1139            }
1140            Vertex* next = v->fNext;
1141            if (coincident(prev->fPoint, v->fPoint)) {
1142                LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1143                contour->remove(v);
1144            }
1145            prev = v;
1146            v = next;
1147        }
1148    }
1149}
1150
1151void merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1152    if (!mesh->fHead) {
1153        return;
1154    }
1155    for (Vertex* v = mesh->fHead->fNext; v != nullptr; v = v->fNext) {
1156        if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1157            v->fPoint = v->fPrev->fPoint;
1158        }
1159        if (coincident(v->fPrev->fPoint, v->fPoint)) {
1160            merge_vertices(v->fPrev, v, mesh, c, alloc);
1161        }
1162    }
1163}
1164
1165// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1166
1167void build_edges(VertexList* contours, int contourCnt, VertexList* mesh, Comparator& c,
1168                 SkArenaAlloc& alloc) {
1169    for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1170        Vertex* prev = contour->fTail;
1171        for (Vertex* v = contour->fHead; v;) {
1172            Vertex* next = v->fNext;
1173            connect(prev, v, Edge::Type::kInner, c, alloc);
1174            mesh->append(v);
1175            prev = v;
1176            v = next;
1177        }
1178    }
1179}
1180
1181void connect_partners(VertexList* outerVertices, Comparator& c, SkArenaAlloc& alloc) {
1182    for (Vertex* outer = outerVertices->fHead; outer; outer = outer->fNext) {
1183        if (Vertex* inner = outer->fPartner) {
1184            // Connector edges get zero winding, since they're only structural (i.e., to ensure
1185            // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding number.
1186            connect(outer, inner, Edge::Type::kConnector, c, alloc, 0);
1187            inner->fPartner = outer->fPartner = nullptr;
1188        }
1189    }
1190}
1191
1192template <CompareFunc sweep_lt>
1193void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1194    Vertex* a = front->fHead;
1195    Vertex* b = back->fHead;
1196    while (a && b) {
1197        if (sweep_lt(a->fPoint, b->fPoint)) {
1198            front->remove(a);
1199            result->append(a);
1200            a = front->fHead;
1201        } else {
1202            back->remove(b);
1203            result->append(b);
1204            b = back->fHead;
1205        }
1206    }
1207    result->append(*front);
1208    result->append(*back);
1209}
1210
1211void sorted_merge(VertexList* front, VertexList* back, VertexList* result, Comparator& c) {
1212    if (c.fDirection == Comparator::Direction::kHorizontal) {
1213        sorted_merge<sweep_lt_horiz>(front, back, result);
1214    } else {
1215        sorted_merge<sweep_lt_vert>(front, back, result);
1216    }
1217}
1218
1219// Stage 3: sort the vertices by increasing sweep direction.
1220
1221template <CompareFunc sweep_lt>
1222void merge_sort(VertexList* vertices) {
1223    Vertex* slow = vertices->fHead;
1224    if (!slow) {
1225        return;
1226    }
1227    Vertex* fast = slow->fNext;
1228    if (!fast) {
1229        return;
1230    }
1231    do {
1232        fast = fast->fNext;
1233        if (fast) {
1234            fast = fast->fNext;
1235            slow = slow->fNext;
1236        }
1237    } while (fast);
1238    VertexList front(vertices->fHead, slow);
1239    VertexList back(slow->fNext, vertices->fTail);
1240    front.fTail->fNext = back.fHead->fPrev = nullptr;
1241
1242    merge_sort<sweep_lt>(&front);
1243    merge_sort<sweep_lt>(&back);
1244
1245    vertices->fHead = vertices->fTail = nullptr;
1246    sorted_merge<sweep_lt>(&front, &back, vertices);
1247}
1248
1249// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1250
1251void simplify(const VertexList& vertices, Comparator& c, SkArenaAlloc& alloc) {
1252    LOG("simplifying complex polygons\n");
1253    EdgeList activeEdges;
1254    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1255        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1256            continue;
1257        }
1258#if LOGGING_ENABLED
1259        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1260#endif
1261        Edge* leftEnclosingEdge;
1262        Edge* rightEnclosingEdge;
1263        bool restartChecks;
1264        do {
1265            restartChecks = false;
1266            find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1267            if (v->fFirstEdgeBelow) {
1268                for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1269                    if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1270                        restartChecks = true;
1271                        break;
1272                    }
1273                    if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1274                        restartChecks = true;
1275                        break;
1276                    }
1277                }
1278            } else {
1279                if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1280                                                        &activeEdges, c, alloc)) {
1281                    if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1282                        v = pv;
1283                    }
1284                    restartChecks = true;
1285                }
1286
1287            }
1288        } while (restartChecks);
1289        if (v->fAlpha == 0) {
1290            if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
1291                (rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
1292                v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
1293            }
1294        }
1295        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1296            remove_edge(e, &activeEdges);
1297        }
1298        Edge* leftEdge = leftEnclosingEdge;
1299        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1300            insert_edge(e, leftEdge, &activeEdges);
1301            leftEdge = e;
1302        }
1303        v->fProcessed = true;
1304    }
1305}
1306
1307// This is a stripped-down version of simplify() (the Bentley-Ottmann algorithm) that
1308// early-returns true on the first found intersection, false if none.
1309bool is_complex(const VertexList& vertices) {
1310    LOG("testing polygon complexity\n");
1311    EdgeList activeEdges;
1312    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1313        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1314            continue;
1315        }
1316        Edge* leftEnclosingEdge;
1317        Edge* rightEnclosingEdge;
1318        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1319        SkPoint dummy;
1320        if (v->fFirstEdgeBelow) {
1321            for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1322                if (edge && leftEnclosingEdge && edge->intersect(*leftEnclosingEdge, &dummy)) {
1323                    activeEdges.removeAll();
1324                    return true;
1325                }
1326                if (edge && rightEnclosingEdge && edge->intersect(*rightEnclosingEdge, &dummy)) {
1327                    activeEdges.removeAll();
1328                    return true;
1329                }
1330            }
1331        } else if (leftEnclosingEdge && rightEnclosingEdge &&
1332                   leftEnclosingEdge->intersect(*rightEnclosingEdge, &dummy)) {
1333            activeEdges.removeAll();
1334            return true;
1335        }
1336        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1337            remove_edge(e, &activeEdges);
1338        }
1339        Edge* leftEdge = leftEnclosingEdge;
1340        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1341            insert_edge(e, leftEdge, &activeEdges);
1342            leftEdge = e;
1343        }
1344    }
1345    activeEdges.removeAll();
1346    return false;
1347}
1348
1349// Stage 5: Tessellate the simplified mesh into monotone polygons.
1350
1351Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1352    LOG("tessellating simple polygons\n");
1353    EdgeList activeEdges;
1354    Poly* polys = nullptr;
1355    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1356        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1357            continue;
1358        }
1359#if LOGGING_ENABLED
1360        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1361#endif
1362        Edge* leftEnclosingEdge;
1363        Edge* rightEnclosingEdge;
1364        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1365        Poly* leftPoly;
1366        Poly* rightPoly;
1367        if (v->fFirstEdgeAbove) {
1368            leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1369            rightPoly = v->fLastEdgeAbove->fRightPoly;
1370        } else {
1371            leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1372            rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1373        }
1374#if LOGGING_ENABLED
1375        LOG("edges above:\n");
1376        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1377            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1378                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1379        }
1380        LOG("edges below:\n");
1381        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1382            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1383                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1384        }
1385#endif
1386        if (v->fFirstEdgeAbove) {
1387            if (leftPoly) {
1388                leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1389            }
1390            if (rightPoly) {
1391                rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1392            }
1393            for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1394                Edge* rightEdge = e->fNextEdgeAbove;
1395                SkASSERT(rightEdge->isRightOf(e->fTop));
1396                remove_edge(e, &activeEdges);
1397                if (e->fRightPoly) {
1398                    e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1399                }
1400                if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1401                    rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1402                }
1403            }
1404            remove_edge(v->fLastEdgeAbove, &activeEdges);
1405            if (!v->fFirstEdgeBelow) {
1406                if (leftPoly && rightPoly && leftPoly != rightPoly) {
1407                    SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1408                    rightPoly->fPartner = leftPoly;
1409                    leftPoly->fPartner = rightPoly;
1410                }
1411            }
1412        }
1413        if (v->fFirstEdgeBelow) {
1414            if (!v->fFirstEdgeAbove) {
1415                if (leftPoly && rightPoly) {
1416                    if (leftPoly == rightPoly) {
1417                        if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1418                            leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1419                                                 leftPoly->fWinding, alloc);
1420                            leftEnclosingEdge->fRightPoly = leftPoly;
1421                        } else {
1422                            rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1423                                                 rightPoly->fWinding, alloc);
1424                            rightEnclosingEdge->fLeftPoly = rightPoly;
1425                        }
1426                    }
1427                    Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1428                    leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1429                    rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1430                }
1431            }
1432            Edge* leftEdge = v->fFirstEdgeBelow;
1433            leftEdge->fLeftPoly = leftPoly;
1434            insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1435            for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1436                 rightEdge = rightEdge->fNextEdgeBelow) {
1437                insert_edge(rightEdge, leftEdge, &activeEdges);
1438                int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1439                winding += leftEdge->fWinding;
1440                if (winding != 0) {
1441                    Poly* poly = new_poly(&polys, v, winding, alloc);
1442                    leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1443                }
1444                leftEdge = rightEdge;
1445            }
1446            v->fLastEdgeBelow->fRightPoly = rightPoly;
1447        }
1448#if LOGGING_ENABLED
1449        LOG("\nactive edges:\n");
1450        for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1451            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1452                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1453        }
1454#endif
1455    }
1456    return polys;
1457}
1458
1459void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1460                               SkArenaAlloc& alloc) {
1461    LOG("removing non-boundary edges\n");
1462    EdgeList activeEdges;
1463    for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1464        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1465            continue;
1466        }
1467        Edge* leftEnclosingEdge;
1468        Edge* rightEnclosingEdge;
1469        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1470        bool prevFilled = leftEnclosingEdge &&
1471                          apply_fill_type(fillType, leftEnclosingEdge->fWinding);
1472        for (Edge* e = v->fFirstEdgeAbove; e;) {
1473            Edge* next = e->fNextEdgeAbove;
1474            remove_edge(e, &activeEdges);
1475            bool filled = apply_fill_type(fillType, e->fWinding);
1476            if (filled == prevFilled) {
1477                disconnect(e);
1478            }
1479            prevFilled = filled;
1480            e = next;
1481        }
1482        Edge* prev = leftEnclosingEdge;
1483        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1484            if (prev) {
1485                e->fWinding += prev->fWinding;
1486            }
1487            insert_edge(e, prev, &activeEdges);
1488            prev = e;
1489        }
1490    }
1491}
1492
1493// Note: this is the normal to the edge, but not necessarily unit length.
1494void get_edge_normal(const Edge* e, SkVector* normal) {
1495    normal->set(SkDoubleToScalar(e->fLine.fA) * e->fWinding,
1496                SkDoubleToScalar(e->fLine.fB) * e->fWinding);
1497}
1498
1499// Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1500// and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1501// invert on stroking.
1502
1503void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1504    Edge* prevEdge = boundary->fTail;
1505    SkVector prevNormal;
1506    get_edge_normal(prevEdge, &prevNormal);
1507    for (Edge* e = boundary->fHead; e != nullptr;) {
1508        Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1509        Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1510        double dist = e->dist(prev->fPoint);
1511        SkVector normal;
1512        get_edge_normal(e, &normal);
1513        double denom = 0.0625f * e->fLine.magSq();
1514        if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
1515            Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1516            insert_edge(join, e, boundary);
1517            remove_edge(prevEdge, boundary);
1518            remove_edge(e, boundary);
1519            if (join->fLeft && join->fRight) {
1520                prevEdge = join->fLeft;
1521                e = join;
1522            } else {
1523                prevEdge = boundary->fTail;
1524                e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1525            }
1526            get_edge_normal(prevEdge, &prevNormal);
1527        } else {
1528            prevEdge = e;
1529            prevNormal = normal;
1530            e = e->fRight;
1531        }
1532    }
1533}
1534
1535void fix_inversions(Vertex* prev, Vertex* next, Edge* prevBisector, Edge* nextBisector,
1536                    Edge* prevEdge, Comparator& c) {
1537    if (!prev || !next) {
1538        return;
1539    }
1540    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1541    SkPoint p;
1542    uint8_t alpha;
1543    if (winding != prevEdge->fWinding && prevBisector->intersect(*nextBisector, &p, &alpha)) {
1544        prev->fPoint = next->fPoint = p;
1545        prev->fAlpha = next->fAlpha = alpha;
1546    }
1547}
1548
1549// Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1550// find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1551// new antialiased mesh from those vertices.
1552
1553void stroke_boundary(EdgeList* boundary, VertexList* innerMesh, VertexList* outerMesh,
1554                     Comparator& c, SkArenaAlloc& alloc) {
1555    // A boundary with fewer than 3 edges is degenerate.
1556    if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
1557        return;
1558    }
1559    Edge* prevEdge = boundary->fTail;
1560    float radius = 0.5f;
1561    double offset = radius * sqrt(prevEdge->fLine.magSq()) * prevEdge->fWinding;
1562    Line prevInner(prevEdge->fLine);
1563    prevInner.fC -= offset;
1564    Line prevOuter(prevEdge->fLine);
1565    prevOuter.fC += offset;
1566    VertexList innerVertices;
1567    VertexList outerVertices;
1568    Edge* prevBisector = nullptr;
1569    for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1570        double offset = radius * sqrt(e->fLine.magSq()) * e->fWinding;
1571        Line inner(e->fLine);
1572        inner.fC -= offset;
1573        Line outer(e->fLine);
1574        outer.fC += offset;
1575        SkPoint innerPoint, outerPoint;
1576        if (prevInner.intersect(inner, &innerPoint) &&
1577            prevOuter.intersect(outer, &outerPoint)) {
1578            Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
1579            Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
1580            Edge* bisector = new_edge(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc);
1581            fix_inversions(innerVertices.fTail, innerVertex, prevBisector, bisector, prevEdge, c);
1582            fix_inversions(outerVertices.fTail, outerVertex, prevBisector, bisector, prevEdge, c);
1583            innerVertex->fPartner = outerVertex;
1584            outerVertex->fPartner = innerVertex;
1585            innerVertices.append(innerVertex);
1586            outerVertices.append(outerVertex);
1587            prevBisector = bisector;
1588        }
1589        prevInner = inner;
1590        prevOuter = outer;
1591        prevEdge = e;
1592    }
1593
1594    Vertex* innerVertex = innerVertices.fHead;
1595    Vertex* outerVertex = outerVertices.fHead;
1596    if (!innerVertex || !outerVertex) {
1597        return;
1598    }
1599    Edge* bisector = new_edge(outerVertices.fHead, innerVertices.fHead, Edge::Type::kConnector, c,
1600                              alloc);
1601    fix_inversions(innerVertices.fTail, innerVertices.fHead, prevBisector, bisector, prevEdge, c);
1602    fix_inversions(outerVertices.fTail, outerVertices.fHead, prevBisector, bisector, prevEdge, c);
1603    Vertex* prevInnerVertex = innerVertices.fTail;
1604    Vertex* prevOuterVertex = outerVertices.fTail;
1605    while (innerVertex && outerVertex) {
1606        // Connect vertices into a quad mesh. Outer edges get default (1) winding.
1607        // Inner edges get -2 winding. This ensures that the interior is always filled
1608        // (-1 winding number for normal cases, 3 for thin features where the interior inverts).
1609        connect(prevOuterVertex, outerVertex, Edge::Type::kOuter, c, alloc);
1610        connect(prevInnerVertex, innerVertex, Edge::Type::kInner, c, alloc, -2);
1611        prevInnerVertex = innerVertex;
1612        prevOuterVertex = outerVertex;
1613        innerVertex = innerVertex->fNext;
1614        outerVertex = outerVertex->fNext;
1615    }
1616    innerMesh->append(innerVertices);
1617    outerMesh->append(outerVertices);
1618}
1619
1620void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
1621    bool down = apply_fill_type(fillType, e->fWinding);
1622    while (e) {
1623        e->fWinding = down ? 1 : -1;
1624        Edge* next;
1625        boundary->append(e);
1626        if (down) {
1627            // Find outgoing edge, in clockwise order.
1628            if ((next = e->fNextEdgeAbove)) {
1629                down = false;
1630            } else if ((next = e->fBottom->fLastEdgeBelow)) {
1631                down = true;
1632            } else if ((next = e->fPrevEdgeAbove)) {
1633                down = false;
1634            }
1635        } else {
1636            // Find outgoing edge, in counter-clockwise order.
1637            if ((next = e->fPrevEdgeBelow)) {
1638                down = true;
1639            } else if ((next = e->fTop->fFirstEdgeAbove)) {
1640                down = false;
1641            } else if ((next = e->fNextEdgeBelow)) {
1642                down = true;
1643            }
1644        }
1645        disconnect(e);
1646        e = next;
1647    }
1648}
1649
1650// Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
1651
1652void extract_boundaries(const VertexList& inMesh, VertexList* innerVertices,
1653                        VertexList* outerVertices, SkPath::FillType fillType,
1654                        Comparator& c, SkArenaAlloc& alloc) {
1655    remove_non_boundary_edges(inMesh, fillType, alloc);
1656    for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
1657        while (v->fFirstEdgeBelow) {
1658            EdgeList boundary;
1659            extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc);
1660            simplify_boundary(&boundary, c, alloc);
1661            stroke_boundary(&boundary, innerVertices, outerVertices, c, alloc);
1662        }
1663    }
1664}
1665
1666// This is a driver function that calls stages 2-5 in turn.
1667
1668void contours_to_mesh(VertexList* contours, int contourCnt, bool antialias,
1669                      VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1670#if LOGGING_ENABLED
1671    for (int i = 0; i < contourCnt; ++i) {
1672        Vertex* v = contours[i].fHead;
1673        SkASSERT(v);
1674        LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1675        for (v = v->fNext; v; v = v->fNext) {
1676            LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1677        }
1678    }
1679#endif
1680    sanitize_contours(contours, contourCnt, antialias);
1681    build_edges(contours, contourCnt, mesh, c, alloc);
1682}
1683
1684void sort_mesh(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1685    if (!vertices || !vertices->fHead) {
1686        return;
1687    }
1688
1689    // Sort vertices in Y (secondarily in X).
1690    if (c.fDirection == Comparator::Direction::kHorizontal) {
1691        merge_sort<sweep_lt_horiz>(vertices);
1692    } else {
1693        merge_sort<sweep_lt_vert>(vertices);
1694    }
1695#if LOGGING_ENABLED
1696    for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1697        static float gID = 0.0f;
1698        v->fID = gID++;
1699    }
1700#endif
1701}
1702
1703Poly* contours_to_polys(VertexList* contours, int contourCnt, SkPath::FillType fillType,
1704                        const SkRect& pathBounds, bool antialias, VertexList* outerMesh,
1705                        SkArenaAlloc& alloc) {
1706    Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1707                                                          : Comparator::Direction::kVertical);
1708    VertexList mesh;
1709    contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
1710    sort_mesh(&mesh, c, alloc);
1711    merge_coincident_vertices(&mesh, c, alloc);
1712    simplify(mesh, c, alloc);
1713    if (antialias) {
1714        VertexList innerMesh;
1715        extract_boundaries(mesh, &innerMesh, outerMesh, fillType, c, alloc);
1716        sort_mesh(&innerMesh, c, alloc);
1717        sort_mesh(outerMesh, c, alloc);
1718        if (is_complex(innerMesh) || is_complex(*outerMesh)) {
1719            LOG("found complex mesh; taking slow path\n");
1720            VertexList aaMesh;
1721            connect_partners(outerMesh, c, alloc);
1722            sorted_merge(&innerMesh, outerMesh, &aaMesh, c);
1723            merge_coincident_vertices(&aaMesh, c, alloc);
1724            simplify(aaMesh, c, alloc);
1725            outerMesh->fHead = outerMesh->fTail = nullptr;
1726            return tessellate(aaMesh, alloc);
1727        } else {
1728            LOG("no complex polygons; taking fast path\n");
1729            merge_coincident_vertices(&innerMesh, c, alloc);
1730            return tessellate(innerMesh, alloc);
1731        }
1732    } else {
1733        return tessellate(mesh, alloc);
1734    }
1735}
1736
1737// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1738void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, const AAParams* aaParams,
1739                         void* data) {
1740    for (Poly* poly = polys; poly; poly = poly->fNext) {
1741        if (apply_fill_type(fillType, poly)) {
1742            data = poly->emit(aaParams, data);
1743        }
1744    }
1745    return data;
1746}
1747
1748Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1749                    int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear,
1750                    VertexList* outerMesh) {
1751    SkPath::FillType fillType = path.getFillType();
1752    if (SkPath::IsInverseFillType(fillType)) {
1753        contourCnt++;
1754    }
1755    std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1756
1757    path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1758    return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
1759                             antialias, outerMesh, alloc);
1760}
1761
1762int get_contour_count(const SkPath& path, SkScalar tolerance) {
1763    int contourCnt;
1764    int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
1765    if (maxPts <= 0) {
1766        return 0;
1767    }
1768    if (maxPts > ((int)SK_MaxU16 + 1)) {
1769        SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1770        return 0;
1771    }
1772    return contourCnt;
1773}
1774
1775int count_points(Poly* polys, SkPath::FillType fillType) {
1776    int count = 0;
1777    for (Poly* poly = polys; poly; poly = poly->fNext) {
1778        if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
1779            count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1780        }
1781    }
1782    return count;
1783}
1784
1785int count_outer_mesh_points(const VertexList& outerMesh) {
1786    int count = 0;
1787    for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
1788        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1789            count += TESSELLATOR_WIREFRAME ? 12 : 6;
1790        }
1791    }
1792    return count;
1793}
1794
1795void* outer_mesh_to_triangles(const VertexList& outerMesh, const AAParams* aaParams, void* data) {
1796    for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
1797        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1798            Vertex* v0 = e->fTop;
1799            Vertex* v1 = e->fBottom;
1800            Vertex* v2 = e->fBottom->fPartner;
1801            Vertex* v3 = e->fTop->fPartner;
1802            data = emit_triangle(v0, v1, v2, aaParams, data);
1803            data = emit_triangle(v0, v2, v3, aaParams, data);
1804        }
1805    }
1806    return data;
1807}
1808
1809} // namespace
1810
1811namespace GrTessellator {
1812
1813// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1814
1815int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1816                    VertexAllocator* vertexAllocator, bool antialias, const GrColor& color,
1817                    bool canTweakAlphaForCoverage, bool* isLinear) {
1818    int contourCnt = get_contour_count(path, tolerance);
1819    if (contourCnt <= 0) {
1820        *isLinear = true;
1821        return 0;
1822    }
1823    SkArenaAlloc alloc(kArenaChunkSize);
1824    VertexList outerMesh;
1825    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
1826                                isLinear, &outerMesh);
1827    SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
1828    int count = count_points(polys, fillType);
1829    if (0 == count) {
1830        return 0;
1831    }
1832    if (antialias) {
1833        count += count_outer_mesh_points(outerMesh);
1834    }
1835
1836    void* verts = vertexAllocator->lock(count);
1837    if (!verts) {
1838        SkDebugf("Could not allocate vertices\n");
1839        return 0;
1840    }
1841
1842    LOG("emitting %d verts\n", count);
1843    AAParams aaParams;
1844    aaParams.fTweakAlpha = canTweakAlphaForCoverage;
1845    aaParams.fColor = color;
1846
1847    void* end = polys_to_triangles(polys, fillType, antialias ? &aaParams : nullptr, verts);
1848    end = outer_mesh_to_triangles(outerMesh, &aaParams, end);
1849    int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1850                                       / vertexAllocator->stride());
1851    SkASSERT(actualCount <= count);
1852    vertexAllocator->unlock(actualCount);
1853    return actualCount;
1854}
1855
1856int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1857                   GrTessellator::WindingVertex** verts) {
1858    int contourCnt = get_contour_count(path, tolerance);
1859    if (contourCnt <= 0) {
1860        return 0;
1861    }
1862    SkArenaAlloc alloc(kArenaChunkSize);
1863    bool isLinear;
1864    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear,
1865                                nullptr);
1866    SkPath::FillType fillType = path.getFillType();
1867    int count = count_points(polys, fillType);
1868    if (0 == count) {
1869        *verts = nullptr;
1870        return 0;
1871    }
1872
1873    *verts = new GrTessellator::WindingVertex[count];
1874    GrTessellator::WindingVertex* vertsEnd = *verts;
1875    SkPoint* points = new SkPoint[count];
1876    SkPoint* pointsEnd = points;
1877    for (Poly* poly = polys; poly; poly = poly->fNext) {
1878        if (apply_fill_type(fillType, poly)) {
1879            SkPoint* start = pointsEnd;
1880            pointsEnd = static_cast<SkPoint*>(poly->emit(nullptr, pointsEnd));
1881            while (start != pointsEnd) {
1882                vertsEnd->fPos = *start;
1883                vertsEnd->fWinding = poly->fWinding;
1884                ++start;
1885                ++vertsEnd;
1886            }
1887        }
1888    }
1889    int actualCount = static_cast<int>(vertsEnd - *verts);
1890    SkASSERT(actualCount <= count);
1891    SkASSERT(pointsEnd - points == actualCount);
1892    delete[] points;
1893    return actualCount;
1894}
1895
1896} // namespace
1897