GrTessellator.cpp revision 5926f2da752d1bff0051fda4137bb967f9e91d5f
1/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellator.h"
9
10#include "GrDefaultGeoProcFactory.h"
11#include "GrPathUtils.h"
12
13#include "SkArenaAlloc.h"
14#include "SkGeometry.h"
15#include "SkPath.h"
16
17#include <stdio.h>
18
19/*
20 * There are six stages to the basic algorithm:
21 *
22 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
23 * 2) Build a mesh of edges connecting the vertices (build_edges()).
24 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
25 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
26 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
27 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
28 *
29 * For screenspace antialiasing, the algorithm is modified as follows:
30 *
31 * Run steps 1-5 above to produce polygons.
32 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
33 * 5c) Simplify boundaries to remove "pointy" vertices which cause inversions (simplify_boundary()).
34 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
35 *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
36 *     antialiased mesh from those vertices (boundary_to_aa_mesh()).
37 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
38 *
39 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
40 * of vertices (and the necessity of inserting new vertices on intersection).
41 *
42 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
43 * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
44 * left-to-right based on the point where both edges are active (when both top vertices
45 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
46 * (shared), it's sorted based on the last point where both edges are active, so the
47 * "upper" bottom vertex.
48 *
49 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
50 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
51 * not exact and may violate the mesh topology or active edge list ordering. We
52 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
53 * points. This occurs in three ways:
54 *
55 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
56 *    neighbouring edges at the top or bottom vertex. This is handled by merging the
57 *    edges (merge_collinear_edges()).
58 * B) Intersections may cause an edge to violate the left-to-right ordering of the
59 *    active edge list. This is handled by splitting the neighbour edge on the
60 *    intersected vertex (cleanup_active_edges()).
61 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
62 *    to become active. This is handled by removing or inserting the edge in the active
63 *    edge list (fix_active_state()).
64 *
65 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
66 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
67 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
68 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
69 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
70 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
71 * linked list implementation. With the latter, all removals are O(1), and most insertions
72 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
73 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
74 * frequent. There may be other data structures worth investigating, however.
75 *
76 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
77 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
78 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
79 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
80 * that the "left" and "right" orientation in the code remains correct (edges to the left are
81 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
82 * degrees counterclockwise, rather that transposing.
83 */
84
85#define LOGGING_ENABLED 0
86
87#if LOGGING_ENABLED
88#define LOG printf
89#else
90#define LOG(...)
91#endif
92
93namespace {
94
95struct Vertex;
96struct Edge;
97struct Poly;
98
99template <class T, T* T::*Prev, T* T::*Next>
100void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
101    t->*Prev = prev;
102    t->*Next = next;
103    if (prev) {
104        prev->*Next = t;
105    } else if (head) {
106        *head = t;
107    }
108    if (next) {
109        next->*Prev = t;
110    } else if (tail) {
111        *tail = t;
112    }
113}
114
115template <class T, T* T::*Prev, T* T::*Next>
116void list_remove(T* t, T** head, T** tail) {
117    if (t->*Prev) {
118        t->*Prev->*Next = t->*Next;
119    } else if (head) {
120        *head = t->*Next;
121    }
122    if (t->*Next) {
123        t->*Next->*Prev = t->*Prev;
124    } else if (tail) {
125        *tail = t->*Prev;
126    }
127    t->*Prev = t->*Next = nullptr;
128}
129
130/**
131 * Vertices are used in three ways: first, the path contours are converted into a
132 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
133 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
134 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
135 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
136 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
137 * an individual Vertex from the path mesh may belong to multiple
138 * MonotonePolys, so the original Vertices cannot be re-used.
139 */
140
141struct Vertex {
142  Vertex(const SkPoint& point, uint8_t alpha)
143    : fPoint(point), fPrev(nullptr), fNext(nullptr)
144    , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
145    , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
146    , fProcessed(false)
147    , fAlpha(alpha)
148#if LOGGING_ENABLED
149    , fID (-1.0f)
150#endif
151    {}
152    SkPoint fPoint;           // Vertex position
153    Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
154    Vertex* fNext;            // "
155    Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
156    Edge*   fLastEdgeAbove;   // "
157    Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
158    Edge*   fLastEdgeBelow;   // "
159    bool    fProcessed;       // Has this vertex been seen in simplify()?
160    uint8_t fAlpha;
161#if LOGGING_ENABLED
162    float   fID;              // Identifier used for logging.
163#endif
164};
165
166/***************************************************************************************/
167
168struct AAParams {
169    bool fTweakAlpha;
170    GrColor fColor;
171};
172
173typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
174
175struct Comparator {
176    CompareFunc sweep_lt;
177    CompareFunc sweep_gt;
178};
179
180bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
181    return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
182}
183
184bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
185    return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
186}
187
188bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
189    return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
190}
191
192bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
193    return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
194}
195
196inline void* emit_vertex(Vertex* v, const AAParams* aaParams, void* data) {
197    if (!aaParams) {
198        SkPoint* d = static_cast<SkPoint*>(data);
199        *d++ = v->fPoint;
200        return d;
201    }
202    if (aaParams->fTweakAlpha) {
203        auto d = static_cast<GrDefaultGeoProcFactory::PositionColorAttr*>(data);
204        d->fPosition = v->fPoint;
205        d->fColor = SkAlphaMulQ(aaParams->fColor, SkAlpha255To256(v->fAlpha));
206        d++;
207        return d;
208    }
209    auto d = static_cast<GrDefaultGeoProcFactory::PositionColorCoverageAttr*>(data);
210    d->fPosition = v->fPoint;
211    d->fColor = aaParams->fColor;
212    d->fCoverage = GrNormalizeByteToFloat(v->fAlpha);
213    d++;
214    return d;
215}
216
217void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, const AAParams* aaParams, void* data) {
218    LOG("emit_triangle (%g, %g) %d\n", v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
219    LOG("              (%g, %g) %d\n", v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
220    LOG("              (%g, %g) %d\n", v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
221#if TESSELLATOR_WIREFRAME
222    data = emit_vertex(v0, aaParams, data);
223    data = emit_vertex(v1, aaParams, data);
224    data = emit_vertex(v1, aaParams, data);
225    data = emit_vertex(v2, aaParams, data);
226    data = emit_vertex(v2, aaParams, data);
227    data = emit_vertex(v0, aaParams, data);
228#else
229    data = emit_vertex(v0, aaParams, data);
230    data = emit_vertex(v1, aaParams, data);
231    data = emit_vertex(v2, aaParams, data);
232#endif
233    return data;
234}
235
236struct VertexList {
237    VertexList() : fHead(nullptr), fTail(nullptr) {}
238    Vertex* fHead;
239    Vertex* fTail;
240    void insert(Vertex* v, Vertex* prev, Vertex* next) {
241        list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
242    }
243    void append(Vertex* v) {
244        insert(v, fTail, nullptr);
245    }
246    void prepend(Vertex* v) {
247        insert(v, nullptr, fHead);
248    }
249    void remove(Vertex* v) {
250        list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
251    }
252    void close() {
253        if (fHead && fTail) {
254            fTail->fNext = fHead;
255            fHead->fPrev = fTail;
256        }
257    }
258};
259
260// Round to nearest quarter-pixel. This is used for screenspace tessellation.
261
262inline void round(SkPoint* p) {
263    p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
264    p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
265}
266
267// A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
268struct Line {
269    Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
270    Line(const SkPoint& p, const SkPoint& q)
271        : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
272        , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
273        , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
274             static_cast<double>(p.fX) * q.fY) {}
275    double dist(const SkPoint& p) const {
276        return fA * p.fX + fB * p.fY + fC;
277    }
278    double magSq() const {
279        return fA * fA + fB * fB;
280    }
281
282    // Compute the intersection of two (infinite) Lines.
283    bool intersect(const Line& other, SkPoint* point) {
284        double denom = fA * other.fB - fB * other.fA;
285        if (denom == 0.0) {
286            return false;
287        }
288        double scale = 1.0f / denom;
289        point->fX = SkDoubleToScalar((fB * other.fC - other.fB * fC) * scale);
290        point->fY = SkDoubleToScalar((other.fA * fC - fA * other.fC) * scale);
291        return true;
292    }
293    double fA, fB, fC;
294};
295
296/**
297 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
298 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
299 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
300 * point). For speed, that case is only tested by the callers which require it (e.g.,
301 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
302 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
303 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
304 * a lot faster in the "not found" case.
305 *
306 * The coefficients of the line equation stored in double precision to avoid catastrphic
307 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
308 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
309 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
310 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
311 * this file).
312 */
313
314struct Edge {
315    enum class Type { kInner, kOuter, kConnector };
316    Edge(Vertex* top, Vertex* bottom, int winding, Type type)
317        : fWinding(winding)
318        , fTop(top)
319        , fBottom(bottom)
320        , fType(type)
321        , fLeft(nullptr)
322        , fRight(nullptr)
323        , fPrevEdgeAbove(nullptr)
324        , fNextEdgeAbove(nullptr)
325        , fPrevEdgeBelow(nullptr)
326        , fNextEdgeBelow(nullptr)
327        , fLeftPoly(nullptr)
328        , fRightPoly(nullptr)
329        , fLeftPolyPrev(nullptr)
330        , fLeftPolyNext(nullptr)
331        , fRightPolyPrev(nullptr)
332        , fRightPolyNext(nullptr)
333        , fUsedInLeftPoly(false)
334        , fUsedInRightPoly(false)
335        , fLine(top, bottom) {
336        }
337    int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
338    Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
339    Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
340    Type     fType;
341    Edge*    fLeft;             // The linked list of edges in the active edge list.
342    Edge*    fRight;            // "
343    Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
344    Edge*    fNextEdgeAbove;    // "
345    Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
346    Edge*    fNextEdgeBelow;    // "
347    Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
348    Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
349    Edge*    fLeftPolyPrev;
350    Edge*    fLeftPolyNext;
351    Edge*    fRightPolyPrev;
352    Edge*    fRightPolyNext;
353    bool     fUsedInLeftPoly;
354    bool     fUsedInRightPoly;
355    Line     fLine;
356    double dist(const SkPoint& p) const {
357        return fLine.dist(p);
358    }
359    bool isRightOf(Vertex* v) const {
360        return fLine.dist(v->fPoint) < 0.0;
361    }
362    bool isLeftOf(Vertex* v) const {
363        return fLine.dist(v->fPoint) > 0.0;
364    }
365    void recompute() {
366        fLine = Line(fTop, fBottom);
367    }
368    bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) {
369        LOG("intersecting %g -> %g with %g -> %g\n",
370               fTop->fID, fBottom->fID,
371               other.fTop->fID, other.fBottom->fID);
372        if (fTop == other.fTop || fBottom == other.fBottom) {
373            return false;
374        }
375        double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
376        if (denom == 0.0) {
377            return false;
378        }
379        double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
380        double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
381        double sNumer = -dy * other.fLine.fB - dx * other.fLine.fA;
382        double tNumer = -dy * fLine.fB - dx * fLine.fA;
383        // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
384        // This saves us doing the divide below unless absolutely necessary.
385        if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
386                        : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
387            return false;
388        }
389        double s = sNumer / denom;
390        SkASSERT(s >= 0.0 && s <= 1.0);
391        p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
392        p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
393        if (alpha) {
394            if (fType == Type::kConnector) {
395                *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
396            } else if (other.fType == Type::kConnector) {
397                double t = tNumer / denom;
398                *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
399            } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
400                *alpha = 0;
401            } else {
402                *alpha = 255;
403            }
404        }
405        return true;
406    }
407};
408
409struct EdgeList {
410    EdgeList() : fHead(nullptr), fTail(nullptr), fNext(nullptr), fCount(0) {}
411    Edge* fHead;
412    Edge* fTail;
413    EdgeList* fNext;
414    int fCount;
415    void insert(Edge* edge, Edge* prev, Edge* next) {
416        list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
417        fCount++;
418    }
419    void append(Edge* e) {
420        insert(e, fTail, nullptr);
421    }
422    void remove(Edge* edge) {
423        list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
424        fCount--;
425    }
426    void close() {
427        if (fHead && fTail) {
428            fTail->fRight = fHead;
429            fHead->fLeft = fTail;
430        }
431    }
432    bool contains(Edge* edge) const {
433        return edge->fLeft || edge->fRight || fHead == edge;
434    }
435};
436
437/***************************************************************************************/
438
439struct Poly {
440    Poly(Vertex* v, int winding)
441        : fFirstVertex(v)
442        , fWinding(winding)
443        , fHead(nullptr)
444        , fTail(nullptr)
445        , fNext(nullptr)
446        , fPartner(nullptr)
447        , fCount(0)
448    {
449#if LOGGING_ENABLED
450        static int gID = 0;
451        fID = gID++;
452        LOG("*** created Poly %d\n", fID);
453#endif
454    }
455    typedef enum { kLeft_Side, kRight_Side } Side;
456    struct MonotonePoly {
457        MonotonePoly(Edge* edge, Side side)
458            : fSide(side)
459            , fFirstEdge(nullptr)
460            , fLastEdge(nullptr)
461            , fPrev(nullptr)
462            , fNext(nullptr) {
463            this->addEdge(edge);
464        }
465        Side          fSide;
466        Edge*         fFirstEdge;
467        Edge*         fLastEdge;
468        MonotonePoly* fPrev;
469        MonotonePoly* fNext;
470        void addEdge(Edge* edge) {
471            if (fSide == kRight_Side) {
472                SkASSERT(!edge->fUsedInRightPoly);
473                list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
474                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
475                edge->fUsedInRightPoly = true;
476            } else {
477                SkASSERT(!edge->fUsedInLeftPoly);
478                list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
479                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
480                edge->fUsedInLeftPoly = true;
481            }
482        }
483
484        void* emit(const AAParams* aaParams, void* data) {
485            Edge* e = fFirstEdge;
486            e->fTop->fPrev = e->fTop->fNext = nullptr;
487            VertexList vertices;
488            vertices.append(e->fTop);
489            while (e != nullptr) {
490                e->fBottom->fPrev = e->fBottom->fNext = nullptr;
491                if (kRight_Side == fSide) {
492                    vertices.append(e->fBottom);
493                    e = e->fRightPolyNext;
494                } else {
495                    vertices.prepend(e->fBottom);
496                    e = e->fLeftPolyNext;
497                }
498            }
499            Vertex* first = vertices.fHead;
500            Vertex* v = first->fNext;
501            while (v != vertices.fTail) {
502                SkASSERT(v && v->fPrev && v->fNext);
503                Vertex* prev = v->fPrev;
504                Vertex* curr = v;
505                Vertex* next = v->fNext;
506                double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
507                double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
508                double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
509                double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
510                if (ax * by - ay * bx >= 0.0) {
511                    data = emit_triangle(prev, curr, next, aaParams, data);
512                    v->fPrev->fNext = v->fNext;
513                    v->fNext->fPrev = v->fPrev;
514                    if (v->fPrev == first) {
515                        v = v->fNext;
516                    } else {
517                        v = v->fPrev;
518                    }
519                } else {
520                    v = v->fNext;
521                }
522            }
523            return data;
524        }
525    };
526    Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
527        LOG("addEdge (%g -> %g) to poly %d, %s side\n",
528               e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
529        Poly* partner = fPartner;
530        Poly* poly = this;
531        if (side == kRight_Side) {
532            if (e->fUsedInRightPoly) {
533                return this;
534            }
535        } else {
536            if (e->fUsedInLeftPoly) {
537                return this;
538            }
539        }
540        if (partner) {
541            fPartner = partner->fPartner = nullptr;
542        }
543        if (!fTail) {
544            fHead = fTail = alloc.make<MonotonePoly>(e, side);
545            fCount += 2;
546        } else if (e->fBottom == fTail->fLastEdge->fBottom) {
547            return poly;
548        } else if (side == fTail->fSide) {
549            fTail->addEdge(e);
550            fCount++;
551        } else {
552            e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
553            fTail->addEdge(e);
554            fCount++;
555            if (partner) {
556                partner->addEdge(e, side, alloc);
557                poly = partner;
558            } else {
559                MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
560                m->fPrev = fTail;
561                fTail->fNext = m;
562                fTail = m;
563            }
564        }
565        return poly;
566    }
567    void* emit(const AAParams* aaParams, void *data) {
568        if (fCount < 3) {
569            return data;
570        }
571        LOG("emit() %d, size %d\n", fID, fCount);
572        for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
573            data = m->emit(aaParams, data);
574        }
575        return data;
576    }
577    Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
578    Vertex* fFirstVertex;
579    int fWinding;
580    MonotonePoly* fHead;
581    MonotonePoly* fTail;
582    Poly* fNext;
583    Poly* fPartner;
584    int fCount;
585#if LOGGING_ENABLED
586    int fID;
587#endif
588};
589
590/***************************************************************************************/
591
592bool coincident(const SkPoint& a, const SkPoint& b) {
593    return a == b;
594}
595
596Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
597    Poly* poly = alloc.make<Poly>(v, winding);
598    poly->fNext = *head;
599    *head = poly;
600    return poly;
601}
602
603EdgeList* new_contour(EdgeList** head, SkArenaAlloc& alloc) {
604    EdgeList* contour = alloc.make<EdgeList>();
605    contour->fNext = *head;
606    *head = contour;
607    return contour;
608}
609
610Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
611                                SkArenaAlloc& alloc) {
612    Vertex* v = alloc.make<Vertex>(p, 255);
613#if LOGGING_ENABLED
614    static float gID = 0.0f;
615    v->fID = gID++;
616#endif
617    if (prev) {
618        prev->fNext = v;
619        v->fPrev = prev;
620    } else {
621        *head = v;
622    }
623    return v;
624}
625
626Vertex* generate_quadratic_points(const SkPoint& p0,
627                                  const SkPoint& p1,
628                                  const SkPoint& p2,
629                                  SkScalar tolSqd,
630                                  Vertex* prev,
631                                  Vertex** head,
632                                  int pointsLeft,
633                                  SkArenaAlloc& alloc) {
634    SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
635    if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
636        return append_point_to_contour(p2, prev, head, alloc);
637    }
638
639    const SkPoint q[] = {
640        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
641        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
642    };
643    const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
644
645    pointsLeft >>= 1;
646    prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
647    prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
648    return prev;
649}
650
651Vertex* generate_cubic_points(const SkPoint& p0,
652                              const SkPoint& p1,
653                              const SkPoint& p2,
654                              const SkPoint& p3,
655                              SkScalar tolSqd,
656                              Vertex* prev,
657                              Vertex** head,
658                              int pointsLeft,
659                              SkArenaAlloc& alloc) {
660    SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
661    SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
662    if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
663        !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
664        return append_point_to_contour(p3, prev, head, alloc);
665    }
666    const SkPoint q[] = {
667        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
668        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
669        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
670    };
671    const SkPoint r[] = {
672        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
673        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
674    };
675    const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
676    pointsLeft >>= 1;
677    prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
678    prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
679    return prev;
680}
681
682// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
683
684void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
685                      Vertex** contours, SkArenaAlloc& alloc, bool *isLinear) {
686    SkScalar toleranceSqd = tolerance * tolerance;
687
688    SkPoint pts[4];
689    bool done = false;
690    *isLinear = true;
691    SkPath::Iter iter(path, false);
692    Vertex* prev = nullptr;
693    Vertex* head = nullptr;
694    if (path.isInverseFillType()) {
695        SkPoint quad[4];
696        clipBounds.toQuad(quad);
697        for (int i = 3; i >= 0; i--) {
698            prev = append_point_to_contour(quad[i], prev, &head, alloc);
699        }
700        head->fPrev = prev;
701        prev->fNext = head;
702        *contours++ = head;
703        head = prev = nullptr;
704    }
705    SkAutoConicToQuads converter;
706    while (!done) {
707        SkPath::Verb verb = iter.next(pts);
708        switch (verb) {
709            case SkPath::kConic_Verb: {
710                SkScalar weight = iter.conicWeight();
711                const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
712                for (int i = 0; i < converter.countQuads(); ++i) {
713                    int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
714                    prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
715                                                     toleranceSqd, prev, &head, pointsLeft, alloc);
716                    quadPts += 2;
717                }
718                *isLinear = false;
719                break;
720            }
721            case SkPath::kMove_Verb:
722                if (head) {
723                    head->fPrev = prev;
724                    prev->fNext = head;
725                    *contours++ = head;
726                }
727                head = prev = nullptr;
728                prev = append_point_to_contour(pts[0], prev, &head, alloc);
729                break;
730            case SkPath::kLine_Verb: {
731                prev = append_point_to_contour(pts[1], prev, &head, alloc);
732                break;
733            }
734            case SkPath::kQuad_Verb: {
735                int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
736                prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
737                                                 &head, pointsLeft, alloc);
738                *isLinear = false;
739                break;
740            }
741            case SkPath::kCubic_Verb: {
742                int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
743                prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
744                                toleranceSqd, prev, &head, pointsLeft, alloc);
745                *isLinear = false;
746                break;
747            }
748            case SkPath::kClose_Verb:
749                if (head) {
750                    head->fPrev = prev;
751                    prev->fNext = head;
752                    *contours++ = head;
753                }
754                head = prev = nullptr;
755                break;
756            case SkPath::kDone_Verb:
757                if (head) {
758                    head->fPrev = prev;
759                    prev->fNext = head;
760                    *contours++ = head;
761                }
762                done = true;
763                break;
764        }
765    }
766}
767
768inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
769    if (!poly) {
770        return false;
771    }
772    int winding = poly->fWinding;
773    switch (fillType) {
774        case SkPath::kWinding_FillType:
775            return winding != 0;
776        case SkPath::kEvenOdd_FillType:
777            return (winding & 1) != 0;
778        case SkPath::kInverseWinding_FillType:
779            return winding == 1;
780        case SkPath::kInverseEvenOdd_FillType:
781            return (winding & 1) == 1;
782        default:
783            SkASSERT(false);
784            return false;
785    }
786}
787
788Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
789    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
790    Vertex* top = winding < 0 ? next : prev;
791    Vertex* bottom = winding < 0 ? prev : next;
792    return alloc.make<Edge>(top, bottom, winding, type);
793}
794
795void remove_edge(Edge* edge, EdgeList* edges) {
796    LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
797    SkASSERT(edges->contains(edge));
798    edges->remove(edge);
799}
800
801void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
802    LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
803    SkASSERT(!edges->contains(edge));
804    Edge* next = prev ? prev->fRight : edges->fHead;
805    edges->insert(edge, prev, next);
806}
807
808void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
809    if (v->fFirstEdgeAbove) {
810        *left = v->fFirstEdgeAbove->fLeft;
811        *right = v->fLastEdgeAbove->fRight;
812        return;
813    }
814    Edge* next = nullptr;
815    Edge* prev;
816    for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
817        if (prev->isLeftOf(v)) {
818            break;
819        }
820        next = prev;
821    }
822    *left = prev;
823    *right = next;
824}
825
826void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
827    Edge* prev = nullptr;
828    Edge* next;
829    for (next = edges->fHead; next != nullptr; next = next->fRight) {
830        if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
831            (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
832            (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
833             next->isRightOf(edge->fBottom)) ||
834            (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
835             edge->isLeftOf(next->fBottom))) {
836            break;
837        }
838        prev = next;
839    }
840    *left = prev;
841    *right = next;
842}
843
844void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
845    if (!activeEdges) {
846        return;
847    }
848    if (activeEdges->contains(edge)) {
849        if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
850            remove_edge(edge, activeEdges);
851        }
852    } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
853        Edge* left;
854        Edge* right;
855        find_enclosing_edges(edge, activeEdges, c, &left, &right);
856        insert_edge(edge, left, activeEdges);
857    }
858}
859
860void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
861    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
862        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
863        return;
864    }
865    LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
866    Edge* prev = nullptr;
867    Edge* next;
868    for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
869        if (next->isRightOf(edge->fTop)) {
870            break;
871        }
872        prev = next;
873    }
874    list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
875        edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
876}
877
878void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
879    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
880        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
881        return;
882    }
883    LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
884    Edge* prev = nullptr;
885    Edge* next;
886    for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
887        if (next->isRightOf(edge->fBottom)) {
888            break;
889        }
890        prev = next;
891    }
892    list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
893        edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
894}
895
896void remove_edge_above(Edge* edge) {
897    LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
898        edge->fBottom->fID);
899    list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
900        edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
901}
902
903void remove_edge_below(Edge* edge) {
904    LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
905        edge->fTop->fID);
906    list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
907        edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
908}
909
910void disconnect(Edge* edge)
911{
912    remove_edge_above(edge);
913    remove_edge_below(edge);
914}
915
916void erase_edge(Edge* edge, EdgeList* edges) {
917    LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
918    disconnect(edge);
919    if (edges && edges->contains(edge)) {
920        remove_edge(edge, edges);
921    }
922}
923
924void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
925
926void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
927    remove_edge_below(edge);
928    edge->fTop = v;
929    edge->recompute();
930    insert_edge_below(edge, v, c);
931    fix_active_state(edge, activeEdges, c);
932    merge_collinear_edges(edge, activeEdges, c);
933}
934
935void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
936    remove_edge_above(edge);
937    edge->fBottom = v;
938    edge->recompute();
939    insert_edge_above(edge, v, c);
940    fix_active_state(edge, activeEdges, c);
941    merge_collinear_edges(edge, activeEdges, c);
942}
943
944void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
945    if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
946        LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
947            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
948            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
949        other->fWinding += edge->fWinding;
950        erase_edge(edge, activeEdges);
951    } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
952        other->fWinding += edge->fWinding;
953        set_bottom(edge, other->fTop, activeEdges, c);
954    } else {
955        edge->fWinding += other->fWinding;
956        set_bottom(other, edge->fTop, activeEdges, c);
957    }
958}
959
960void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
961    if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
962        LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
963            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
964            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
965        other->fWinding += edge->fWinding;
966        erase_edge(edge, activeEdges);
967    } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
968        edge->fWinding += other->fWinding;
969        set_top(other, edge->fBottom, activeEdges, c);
970    } else {
971        other->fWinding += edge->fWinding;
972        set_top(edge, other->fBottom, activeEdges, c);
973    }
974}
975
976void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
977    if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
978                                 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
979        merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
980    } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
981                                        !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
982        merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
983    }
984    if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
985                                 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
986        merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
987    } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
988                                        !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
989        merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
990    }
991}
992
993void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc);
994
995void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
996    Vertex* top = edge->fTop;
997    Vertex* bottom = edge->fBottom;
998    if (edge->fLeft) {
999        Vertex* leftTop = edge->fLeft->fTop;
1000        Vertex* leftBottom = edge->fLeft->fBottom;
1001        if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
1002            split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
1003        } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
1004            split_edge(edge, leftTop, activeEdges, c, alloc);
1005        } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
1006                   !edge->fLeft->isLeftOf(bottom)) {
1007            split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
1008        } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
1009            split_edge(edge, leftBottom, activeEdges, c, alloc);
1010        }
1011    }
1012    if (edge->fRight) {
1013        Vertex* rightTop = edge->fRight->fTop;
1014        Vertex* rightBottom = edge->fRight->fBottom;
1015        if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
1016            split_edge(edge->fRight, top, activeEdges, c, alloc);
1017        } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
1018            split_edge(edge, rightTop, activeEdges, c, alloc);
1019        } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
1020                   !edge->fRight->isRightOf(bottom)) {
1021            split_edge(edge->fRight, bottom, activeEdges, c, alloc);
1022        } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
1023                   !edge->isLeftOf(rightBottom)) {
1024            split_edge(edge, rightBottom, activeEdges, c, alloc);
1025        }
1026    }
1027}
1028
1029void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
1030    LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1031        edge->fTop->fID, edge->fBottom->fID,
1032        v->fID, v->fPoint.fX, v->fPoint.fY);
1033    if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1034        set_top(edge, v, activeEdges, c);
1035    } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
1036        set_bottom(edge, v, activeEdges, c);
1037    } else {
1038        Edge* newEdge = alloc.make<Edge>(v, edge->fBottom, edge->fWinding, edge->fType);
1039        insert_edge_below(newEdge, v, c);
1040        insert_edge_above(newEdge, edge->fBottom, c);
1041        set_bottom(edge, v, activeEdges, c);
1042        cleanup_active_edges(edge, activeEdges, c, alloc);
1043        fix_active_state(newEdge, activeEdges, c);
1044        merge_collinear_edges(newEdge, activeEdges, c);
1045    }
1046}
1047
1048Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1049              int winding_scale = 1) {
1050    Edge* edge = new_edge(prev, next, type, c, alloc);
1051    if (edge->fWinding > 0) {
1052        insert_edge_below(edge, prev, c);
1053        insert_edge_above(edge, next, c);
1054    } else {
1055        insert_edge_below(edge, next, c);
1056        insert_edge_above(edge, prev, c);
1057    }
1058    edge->fWinding *= winding_scale;
1059    merge_collinear_edges(edge, nullptr, c);
1060    return edge;
1061}
1062
1063void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1064                    SkArenaAlloc& alloc) {
1065    LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1066        src->fID, dst->fID);
1067    dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1068    for (Edge* edge = src->fFirstEdgeAbove; edge;) {
1069        Edge* next = edge->fNextEdgeAbove;
1070        set_bottom(edge, dst, nullptr, c);
1071        edge = next;
1072    }
1073    for (Edge* edge = src->fFirstEdgeBelow; edge;) {
1074        Edge* next = edge->fNextEdgeBelow;
1075        set_top(edge, dst, nullptr, c);
1076        edge = next;
1077    }
1078    mesh->remove(src);
1079}
1080
1081uint8_t max_edge_alpha(Edge* a, Edge* b) {
1082    if (a->fType == Edge::Type::kInner || b->fType == Edge::Type::kInner) {
1083        return 255;
1084    } else if (a->fType == Edge::Type::kOuter && b->fType == Edge::Type::kOuter) {
1085        return 0;
1086    } else {
1087        return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
1088                      SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
1089    }
1090}
1091
1092Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
1093                               SkArenaAlloc& alloc) {
1094    if (!edge || !other) {
1095        return nullptr;
1096    }
1097    SkPoint p;
1098    uint8_t alpha;
1099    if (edge->intersect(*other, &p, &alpha)) {
1100        Vertex* v;
1101        LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1102        if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
1103            split_edge(other, edge->fTop, activeEdges, c, alloc);
1104            v = edge->fTop;
1105        } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
1106            split_edge(other, edge->fBottom, activeEdges, c, alloc);
1107            v = edge->fBottom;
1108        } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
1109            split_edge(edge, other->fTop, activeEdges, c, alloc);
1110            v = other->fTop;
1111        } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
1112            split_edge(edge, other->fBottom, activeEdges, c, alloc);
1113            v = other->fBottom;
1114        } else {
1115            Vertex* nextV = edge->fTop;
1116            while (c.sweep_lt(p, nextV->fPoint)) {
1117                nextV = nextV->fPrev;
1118            }
1119            while (c.sweep_lt(nextV->fPoint, p)) {
1120                nextV = nextV->fNext;
1121            }
1122            Vertex* prevV = nextV->fPrev;
1123            if (coincident(prevV->fPoint, p)) {
1124                v = prevV;
1125            } else if (coincident(nextV->fPoint, p)) {
1126                v = nextV;
1127            } else {
1128                v = alloc.make<Vertex>(p, alpha);
1129                LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1130                    prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1131                    nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1132#if LOGGING_ENABLED
1133                v->fID = (nextV->fID + prevV->fID) * 0.5f;
1134#endif
1135                v->fPrev = prevV;
1136                v->fNext = nextV;
1137                prevV->fNext = v;
1138                nextV->fPrev = v;
1139            }
1140            split_edge(edge, v, activeEdges, c, alloc);
1141            split_edge(other, v, activeEdges, c, alloc);
1142        }
1143        v->fAlpha = SkTMax(v->fAlpha, alpha);
1144        return v;
1145    }
1146    return nullptr;
1147}
1148
1149void sanitize_contours(Vertex** contours, int contourCnt, bool approximate) {
1150    for (int i = 0; i < contourCnt; ++i) {
1151        SkASSERT(contours[i]);
1152        if (approximate) {
1153            round(&contours[i]->fPrev->fPoint);
1154        }
1155        for (Vertex* v = contours[i];;) {
1156            if (approximate) {
1157                round(&v->fPoint);
1158            }
1159            if (coincident(v->fPrev->fPoint, v->fPoint)) {
1160                LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1161                if (v->fPrev == v) {
1162                    contours[i] = nullptr;
1163                    break;
1164                }
1165                v->fPrev->fNext = v->fNext;
1166                v->fNext->fPrev = v->fPrev;
1167                if (contours[i] == v) {
1168                    contours[i] = v->fPrev;
1169                }
1170                v = v->fPrev;
1171            } else {
1172                v = v->fNext;
1173                if (v == contours[i]) break;
1174            }
1175        }
1176    }
1177}
1178
1179void merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1180    for (Vertex* v = mesh->fHead->fNext; v != nullptr; v = v->fNext) {
1181        if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1182            v->fPoint = v->fPrev->fPoint;
1183        }
1184        if (coincident(v->fPrev->fPoint, v->fPoint)) {
1185            merge_vertices(v->fPrev, v, mesh, c, alloc);
1186        }
1187    }
1188}
1189
1190// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1191
1192void build_edges(Vertex** contours, int contourCnt, VertexList* mesh, Comparator& c,
1193                 SkArenaAlloc& alloc) {
1194    Vertex* prev = nullptr;
1195    for (int i = 0; i < contourCnt; ++i) {
1196        for (Vertex* v = contours[i]; v != nullptr;) {
1197            Vertex* vNext = v->fNext;
1198            connect(v->fPrev, v, Edge::Type::kInner, c, alloc);
1199            if (prev) {
1200                prev->fNext = v;
1201                v->fPrev = prev;
1202            } else {
1203                mesh->fHead = v;
1204            }
1205            prev = v;
1206            v = vNext;
1207            if (v == contours[i]) break;
1208        }
1209    }
1210    if (prev) {
1211        prev->fNext = mesh->fHead->fPrev = nullptr;
1212    }
1213    mesh->fTail = prev;
1214}
1215
1216// Stage 3: sort the vertices by increasing sweep direction.
1217
1218void sorted_merge(Vertex* a, Vertex* b, VertexList* result, Comparator& c);
1219
1220void front_back_split(VertexList* v, VertexList* front, VertexList* back) {
1221    Vertex* fast;
1222    Vertex* slow;
1223    if (!v->fHead || !v->fHead->fNext) {
1224        *front = *v;
1225    } else {
1226        slow = v->fHead;
1227        fast = v->fHead->fNext;
1228
1229        while (fast != nullptr) {
1230            fast = fast->fNext;
1231            if (fast != nullptr) {
1232                slow = slow->fNext;
1233                fast = fast->fNext;
1234            }
1235        }
1236        front->fHead = v->fHead;
1237        front->fTail = slow;
1238        back->fHead = slow->fNext;
1239        back->fTail = v->fTail;
1240        slow->fNext->fPrev = nullptr;
1241        slow->fNext = nullptr;
1242    }
1243    v->fHead = v->fTail = nullptr;
1244}
1245
1246void merge_sort(VertexList* mesh, Comparator& c) {
1247    if (!mesh->fHead || !mesh->fHead->fNext) {
1248        return;
1249    }
1250
1251    VertexList a;
1252    VertexList b;
1253    front_back_split(mesh, &a, &b);
1254
1255    merge_sort(&a, c);
1256    merge_sort(&b, c);
1257
1258    sorted_merge(a.fHead, b.fHead, mesh, c);
1259}
1260
1261void sorted_merge(Vertex* a, Vertex* b, VertexList* result, Comparator& c) {
1262    VertexList vertices;
1263    while (a && b) {
1264        if (c.sweep_lt(a->fPoint, b->fPoint)) {
1265            Vertex* next = a->fNext;
1266            vertices.append(a);
1267            a = next;
1268        } else {
1269            Vertex* next = b->fNext;
1270            vertices.append(b);
1271            b = next;
1272        }
1273    }
1274    if (a) {
1275        vertices.insert(a, vertices.fTail, a->fNext);
1276    }
1277    if (b) {
1278        vertices.insert(b, vertices.fTail, b->fNext);
1279    }
1280    *result = vertices;
1281}
1282
1283// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1284
1285void simplify(const VertexList& vertices, Comparator& c, SkArenaAlloc& alloc) {
1286    LOG("simplifying complex polygons\n");
1287    EdgeList activeEdges;
1288    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1289        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1290            continue;
1291        }
1292#if LOGGING_ENABLED
1293        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1294#endif
1295        Edge* leftEnclosingEdge = nullptr;
1296        Edge* rightEnclosingEdge = nullptr;
1297        bool restartChecks;
1298        do {
1299            restartChecks = false;
1300            find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1301            if (v->fFirstEdgeBelow) {
1302                for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1303                    if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1304                        restartChecks = true;
1305                        break;
1306                    }
1307                    if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1308                        restartChecks = true;
1309                        break;
1310                    }
1311                }
1312            } else {
1313                if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1314                                                        &activeEdges, c, alloc)) {
1315                    if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1316                        v = pv;
1317                    }
1318                    restartChecks = true;
1319                }
1320
1321            }
1322        } while (restartChecks);
1323        if (v->fAlpha == 0) {
1324            if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
1325                (rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
1326                v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
1327            }
1328        }
1329        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1330            remove_edge(e, &activeEdges);
1331        }
1332        Edge* leftEdge = leftEnclosingEdge;
1333        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1334            insert_edge(e, leftEdge, &activeEdges);
1335            leftEdge = e;
1336        }
1337        v->fProcessed = true;
1338    }
1339}
1340
1341// Stage 5: Tessellate the simplified mesh into monotone polygons.
1342
1343Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1344    LOG("tessellating simple polygons\n");
1345    EdgeList activeEdges;
1346    Poly* polys = nullptr;
1347    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1348        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1349            continue;
1350        }
1351#if LOGGING_ENABLED
1352        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1353#endif
1354        Edge* leftEnclosingEdge = nullptr;
1355        Edge* rightEnclosingEdge = nullptr;
1356        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1357        Poly* leftPoly = nullptr;
1358        Poly* rightPoly = nullptr;
1359        if (v->fFirstEdgeAbove) {
1360            leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1361            rightPoly = v->fLastEdgeAbove->fRightPoly;
1362        } else {
1363            leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1364            rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1365        }
1366#if LOGGING_ENABLED
1367        LOG("edges above:\n");
1368        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1369            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1370                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1371        }
1372        LOG("edges below:\n");
1373        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1374            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1375                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1376        }
1377#endif
1378        if (v->fFirstEdgeAbove) {
1379            if (leftPoly) {
1380                leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1381            }
1382            if (rightPoly) {
1383                rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1384            }
1385            for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1386                Edge* leftEdge = e;
1387                Edge* rightEdge = e->fNextEdgeAbove;
1388                SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1389                remove_edge(leftEdge, &activeEdges);
1390                if (leftEdge->fRightPoly) {
1391                    leftEdge->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1392                }
1393                if (rightEdge->fLeftPoly) {
1394                    rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1395                }
1396            }
1397            remove_edge(v->fLastEdgeAbove, &activeEdges);
1398            if (!v->fFirstEdgeBelow) {
1399                if (leftPoly && rightPoly && leftPoly != rightPoly) {
1400                    SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1401                    rightPoly->fPartner = leftPoly;
1402                    leftPoly->fPartner = rightPoly;
1403                }
1404            }
1405        }
1406        if (v->fFirstEdgeBelow) {
1407            if (!v->fFirstEdgeAbove) {
1408                if (leftPoly && rightPoly) {
1409                    if (leftPoly == rightPoly) {
1410                        if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1411                            leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1412                                                 leftPoly->fWinding, alloc);
1413                            leftEnclosingEdge->fRightPoly = leftPoly;
1414                        } else {
1415                            rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1416                                                 rightPoly->fWinding, alloc);
1417                            rightEnclosingEdge->fLeftPoly = rightPoly;
1418                        }
1419                    }
1420                    Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1421                    leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1422                    rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1423                }
1424            }
1425            Edge* leftEdge = v->fFirstEdgeBelow;
1426            leftEdge->fLeftPoly = leftPoly;
1427            insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1428            for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1429                 rightEdge = rightEdge->fNextEdgeBelow) {
1430                insert_edge(rightEdge, leftEdge, &activeEdges);
1431                int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1432                winding += leftEdge->fWinding;
1433                if (winding != 0) {
1434                    Poly* poly = new_poly(&polys, v, winding, alloc);
1435                    leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1436                }
1437                leftEdge = rightEdge;
1438            }
1439            v->fLastEdgeBelow->fRightPoly = rightPoly;
1440        }
1441#if LOGGING_ENABLED
1442        LOG("\nactive edges:\n");
1443        for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1444            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1445                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1446        }
1447#endif
1448    }
1449    return polys;
1450}
1451
1452bool is_boundary_edge(Edge* edge, SkPath::FillType fillType) {
1453    return apply_fill_type(fillType, edge->fLeftPoly) !=
1454           apply_fill_type(fillType, edge->fRightPoly);
1455}
1456
1457bool is_boundary_start(Edge* edge, SkPath::FillType fillType) {
1458    return !apply_fill_type(fillType, edge->fLeftPoly) &&
1459            apply_fill_type(fillType, edge->fRightPoly);
1460}
1461
1462void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1463                               SkArenaAlloc& alloc) {
1464    for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1465        for (Edge* e = v->fFirstEdgeBelow; e != nullptr;) {
1466            Edge* next = e->fNextEdgeBelow;
1467            if (!is_boundary_edge(e, fillType)) {
1468                disconnect(e);
1469            }
1470            e = next;
1471        }
1472    }
1473}
1474
1475void get_edge_normal(const Edge* e, SkVector* normal) {
1476    normal->setNormalize(SkDoubleToScalar(e->fLine.fA) * e->fWinding,
1477                         SkDoubleToScalar(e->fLine.fB) * e->fWinding);
1478}
1479
1480// Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1481// and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1482// invert on stroking.
1483
1484void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1485    Edge* prevEdge = boundary->fTail;
1486    SkVector prevNormal;
1487    get_edge_normal(prevEdge, &prevNormal);
1488    for (Edge* e = boundary->fHead; e != nullptr;) {
1489        Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1490        Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1491        double dist = e->dist(prev->fPoint);
1492        SkVector normal;
1493        get_edge_normal(e, &normal);
1494        float denom = 0.0625f * static_cast<float>(e->fLine.magSq());
1495        if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
1496            Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1497            insert_edge(join, e, boundary);
1498            remove_edge(prevEdge, boundary);
1499            remove_edge(e, boundary);
1500            if (join->fLeft && join->fRight) {
1501                prevEdge = join->fLeft;
1502                e = join;
1503            } else {
1504                prevEdge = boundary->fTail;
1505                e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1506            }
1507            get_edge_normal(prevEdge, &prevNormal);
1508        } else {
1509            prevEdge = e;
1510            prevNormal = normal;
1511            e = e->fRight;
1512        }
1513    }
1514}
1515
1516void fix_inversions(Vertex* prev, Vertex* next, Edge* prevBisector, Edge* nextBisector,
1517                    Edge* prevEdge, Comparator& c) {
1518    if (!prev || !next) {
1519        return;
1520    }
1521    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1522    SkPoint p;
1523    uint8_t alpha;
1524    if (winding != prevEdge->fWinding && prevBisector->intersect(*nextBisector, &p, &alpha)) {
1525        prev->fPoint = next->fPoint = p;
1526        prev->fAlpha = next->fAlpha = alpha;
1527    }
1528}
1529
1530// Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1531// find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1532// new antialiased mesh from those vertices.
1533
1534void boundary_to_aa_mesh(EdgeList* boundary, VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1535    Edge* prevEdge = boundary->fTail;
1536    float radius = 0.5f;
1537    double offset = radius * sqrt(prevEdge->fLine.magSq()) * prevEdge->fWinding;
1538    Line prevInner(prevEdge->fTop, prevEdge->fBottom);
1539    prevInner.fC -= offset;
1540    Line prevOuter(prevEdge->fTop, prevEdge->fBottom);
1541    prevOuter.fC += offset;
1542    VertexList innerVertices;
1543    VertexList outerVertices;
1544    Edge* prevBisector = nullptr;
1545    for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1546        double offset = radius * sqrt(e->fLine.magSq()) * e->fWinding;
1547        Line inner(e->fTop, e->fBottom);
1548        inner.fC -= offset;
1549        Line outer(e->fTop, e->fBottom);
1550        outer.fC += offset;
1551        SkPoint innerPoint, outerPoint;
1552        SkVector normal;
1553        get_edge_normal(e, &normal);
1554        if (prevInner.intersect(inner, &innerPoint) &&
1555            prevOuter.intersect(outer, &outerPoint)) {
1556            Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
1557            Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
1558            Edge* bisector = new_edge(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc);
1559            fix_inversions(innerVertices.fTail, innerVertex, prevBisector, bisector, prevEdge, c);
1560            fix_inversions(outerVertices.fTail, outerVertex, prevBisector, bisector, prevEdge, c);
1561            innerVertices.append(innerVertex);
1562            outerVertices.append(outerVertex);
1563            prevBisector = bisector;
1564        }
1565        prevInner = inner;
1566        prevOuter = outer;
1567        prevEdge = e;
1568    }
1569    innerVertices.close();
1570    outerVertices.close();
1571
1572    Vertex* innerVertex = innerVertices.fHead;
1573    Vertex* outerVertex = outerVertices.fHead;
1574    if (!innerVertex || !outerVertex) {
1575        return;
1576    }
1577    Edge* bisector = new_edge(outerVertices.fHead, innerVertices.fHead, Edge::Type::kConnector, c,
1578                              alloc);
1579    fix_inversions(innerVertices.fTail, innerVertices.fHead, prevBisector, bisector, prevEdge, c);
1580    fix_inversions(outerVertices.fTail, outerVertices.fHead, prevBisector, bisector, prevEdge, c);
1581    do {
1582        // Connect vertices into a quad mesh. Outer edges get default (1) winding.
1583        // Inner edges get -2 winding. This ensures that the interior is always filled
1584        // (-1 winding number for normal cases, 3 for thin features where the interior inverts).
1585        // Connector edges get zero winding, since they're only structural (i.e., to ensure
1586        // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding number.
1587        connect(outerVertex->fPrev, outerVertex, Edge::Type::kOuter, c, alloc);
1588        connect(innerVertex->fPrev, innerVertex, Edge::Type::kInner, c, alloc, -2);
1589        connect(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc, 0);
1590        Vertex* innerNext = innerVertex->fNext;
1591        Vertex* outerNext = outerVertex->fNext;
1592        mesh->append(innerVertex);
1593        mesh->append(outerVertex);
1594        innerVertex = innerNext;
1595        outerVertex = outerNext;
1596    } while (innerVertex != innerVertices.fHead && outerVertex != outerVertices.fHead);
1597}
1598
1599void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
1600    bool down = is_boundary_start(e, fillType);
1601    while (e) {
1602        e->fWinding = down ? 1 : -1;
1603        Edge* next;
1604        boundary->append(e);
1605        if (down) {
1606            // Find outgoing edge, in clockwise order.
1607            if ((next = e->fNextEdgeAbove)) {
1608                down = false;
1609            } else if ((next = e->fBottom->fLastEdgeBelow)) {
1610                down = true;
1611            } else if ((next = e->fPrevEdgeAbove)) {
1612                down = false;
1613            }
1614        } else {
1615            // Find outgoing edge, in counter-clockwise order.
1616            if ((next = e->fPrevEdgeBelow)) {
1617                down = true;
1618            } else if ((next = e->fTop->fFirstEdgeAbove)) {
1619                down = false;
1620            } else if ((next = e->fNextEdgeBelow)) {
1621                down = true;
1622            }
1623        }
1624        disconnect(e);
1625        e = next;
1626    }
1627}
1628
1629// Stage 5b: Extract boundary edges.
1630
1631EdgeList* extract_boundaries(const VertexList& mesh, SkPath::FillType fillType,
1632                             SkArenaAlloc& alloc) {
1633    LOG("extracting boundaries\n");
1634    remove_non_boundary_edges(mesh, fillType, alloc);
1635    EdgeList* boundaries = nullptr;
1636    for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1637        while (v->fFirstEdgeBelow) {
1638            EdgeList* boundary = new_contour(&boundaries, alloc);
1639            extract_boundary(boundary, v->fFirstEdgeBelow, fillType, alloc);
1640        }
1641    }
1642    return boundaries;
1643}
1644
1645// This is a driver function which calls stages 2-5 in turn.
1646
1647void contours_to_mesh(Vertex** contours, int contourCnt, bool antialias,
1648                      VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1649#if LOGGING_ENABLED
1650    for (int i = 0; i < contourCnt; ++i) {
1651        Vertex* v = contours[i];
1652        SkASSERT(v);
1653        LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1654        for (v = v->fNext; v != contours[i]; v = v->fNext) {
1655            LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1656        }
1657    }
1658#endif
1659    sanitize_contours(contours, contourCnt, antialias);
1660    build_edges(contours, contourCnt, mesh, c, alloc);
1661}
1662
1663void sort_and_simplify(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1664    if (!vertices || !vertices->fHead) {
1665        return;
1666    }
1667
1668    // Sort vertices in Y (secondarily in X).
1669    merge_sort(vertices, c);
1670    merge_coincident_vertices(vertices, c, alloc);
1671#if LOGGING_ENABLED
1672    for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1673        static float gID = 0.0f;
1674        v->fID = gID++;
1675    }
1676#endif
1677    simplify(*vertices, c, alloc);
1678}
1679
1680Poly* mesh_to_polys(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1681    sort_and_simplify(vertices, c, alloc);
1682    return tessellate(*vertices, alloc);
1683}
1684
1685Poly* contours_to_polys(Vertex** contours, int contourCnt, SkPath::FillType fillType,
1686                        const SkRect& pathBounds, bool antialias,
1687                        SkArenaAlloc& alloc) {
1688    Comparator c;
1689    if (pathBounds.width() > pathBounds.height()) {
1690        c.sweep_lt = sweep_lt_horiz;
1691        c.sweep_gt = sweep_gt_horiz;
1692    } else {
1693        c.sweep_lt = sweep_lt_vert;
1694        c.sweep_gt = sweep_gt_vert;
1695    }
1696    VertexList mesh;
1697    contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
1698    Poly* polys = mesh_to_polys(&mesh, c, alloc);
1699    if (antialias) {
1700        EdgeList* boundaries = extract_boundaries(mesh, fillType, alloc);
1701        VertexList aaMesh;
1702        for (EdgeList* boundary = boundaries; boundary != nullptr; boundary = boundary->fNext) {
1703            simplify_boundary(boundary, c, alloc);
1704            if (boundary->fCount > 2) {
1705                boundary_to_aa_mesh(boundary, &aaMesh, c, alloc);
1706            }
1707        }
1708        sort_and_simplify(&aaMesh, c, alloc);
1709        return tessellate(aaMesh, alloc);
1710    }
1711    return polys;
1712}
1713
1714// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1715void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, const AAParams* aaParams,
1716                         void* data) {
1717    for (Poly* poly = polys; poly; poly = poly->fNext) {
1718        if (apply_fill_type(fillType, poly)) {
1719            data = poly->emit(aaParams, data);
1720        }
1721    }
1722    return data;
1723}
1724
1725Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1726                    int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear) {
1727    SkPath::FillType fillType = path.getFillType();
1728    if (SkPath::IsInverseFillType(fillType)) {
1729        contourCnt++;
1730    }
1731    std::unique_ptr<Vertex*[]> contours(new Vertex* [contourCnt]);
1732
1733    path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1734    return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
1735                             antialias, alloc);
1736}
1737
1738void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance, int* contourCnt,
1739                                         int* sizeEstimate) {
1740    int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance);
1741    if (maxPts <= 0) {
1742        *contourCnt = 0;
1743        return;
1744    }
1745    if (maxPts > ((int)SK_MaxU16 + 1)) {
1746        SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1747        *contourCnt = 0;
1748        return;
1749    }
1750    // For the initial size of the chunk allocator, estimate based on the point count:
1751    // one vertex per point for the initial passes, plus two for the vertices in the
1752    // resulting Polys, since the same point may end up in two Polys.  Assume minimal
1753    // connectivity of one Edge per Vertex (will grow for intersections).
1754    *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge));
1755}
1756
1757int count_points(Poly* polys, SkPath::FillType fillType) {
1758    int count = 0;
1759    for (Poly* poly = polys; poly; poly = poly->fNext) {
1760        if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
1761            count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1762        }
1763    }
1764    return count;
1765}
1766
1767} // namespace
1768
1769namespace GrTessellator {
1770
1771// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1772
1773int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1774                    VertexAllocator* vertexAllocator, bool antialias, const GrColor& color,
1775                    bool canTweakAlphaForCoverage, bool* isLinear) {
1776    int contourCnt;
1777    int sizeEstimate;
1778    get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1779    if (contourCnt <= 0) {
1780        *isLinear = true;
1781        return 0;
1782    }
1783    SkArenaAlloc alloc(sizeEstimate);
1784    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
1785                                isLinear);
1786    SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
1787    int count = count_points(polys, fillType);
1788    if (0 == count) {
1789        return 0;
1790    }
1791
1792    void* verts = vertexAllocator->lock(count);
1793    if (!verts) {
1794        SkDebugf("Could not allocate vertices\n");
1795        return 0;
1796    }
1797
1798    LOG("emitting %d verts\n", count);
1799    AAParams aaParams;
1800    aaParams.fTweakAlpha = canTweakAlphaForCoverage;
1801    aaParams.fColor = color;
1802
1803    void* end = polys_to_triangles(polys, fillType, antialias ? &aaParams : nullptr, verts);
1804    int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1805                                       / vertexAllocator->stride());
1806    SkASSERT(actualCount <= count);
1807    vertexAllocator->unlock(actualCount);
1808    return actualCount;
1809}
1810
1811int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1812                   GrTessellator::WindingVertex** verts) {
1813    int contourCnt;
1814    int sizeEstimate;
1815    get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1816    if (contourCnt <= 0) {
1817        return 0;
1818    }
1819    SkArenaAlloc alloc(sizeEstimate);
1820    bool isLinear;
1821    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear);
1822    SkPath::FillType fillType = path.getFillType();
1823    int count = count_points(polys, fillType);
1824    if (0 == count) {
1825        *verts = nullptr;
1826        return 0;
1827    }
1828
1829    *verts = new GrTessellator::WindingVertex[count];
1830    GrTessellator::WindingVertex* vertsEnd = *verts;
1831    SkPoint* points = new SkPoint[count];
1832    SkPoint* pointsEnd = points;
1833    for (Poly* poly = polys; poly; poly = poly->fNext) {
1834        if (apply_fill_type(fillType, poly)) {
1835            SkPoint* start = pointsEnd;
1836            pointsEnd = static_cast<SkPoint*>(poly->emit(nullptr, pointsEnd));
1837            while (start != pointsEnd) {
1838                vertsEnd->fPos = *start;
1839                vertsEnd->fWinding = poly->fWinding;
1840                ++start;
1841                ++vertsEnd;
1842            }
1843        }
1844    }
1845    int actualCount = static_cast<int>(vertsEnd - *verts);
1846    SkASSERT(actualCount <= count);
1847    SkASSERT(pointsEnd - points == actualCount);
1848    delete[] points;
1849    return actualCount;
1850}
1851
1852} // namespace
1853