GrTessellator.cpp revision 651cbe9af67b49c5a3ad3788c3a50a003827a8e2
1/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellator.h"
9
10#include "GrDefaultGeoProcFactory.h"
11#include "GrPathUtils.h"
12
13#include "SkArenaAlloc.h"
14#include "SkGeometry.h"
15#include "SkPath.h"
16
17#include <stdio.h>
18
19/*
20 * There are six stages to the basic algorithm:
21 *
22 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
23 * 2) Build a mesh of edges connecting the vertices (build_edges()).
24 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
25 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
26 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
27 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
28 *
29 * For screenspace antialiasing, the algorithm is modified as follows:
30 *
31 * Run steps 1-5 above to produce polygons.
32 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
33 * 5c) Simplify boundaries to remove "pointy" vertices which cause inversions (simplify_boundary()).
34 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
35 *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
36 *     antialiased mesh from those vertices (boundary_to_aa_mesh()).
37 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
38 *
39 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
40 * of vertices (and the necessity of inserting new vertices on intersection).
41 *
42 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
43 * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
44 * left-to-right based on the point where both edges are active (when both top vertices
45 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
46 * (shared), it's sorted based on the last point where both edges are active, so the
47 * "upper" bottom vertex.
48 *
49 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
50 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
51 * not exact and may violate the mesh topology or active edge list ordering. We
52 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
53 * points. This occurs in three ways:
54 *
55 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
56 *    neighbouring edges at the top or bottom vertex. This is handled by merging the
57 *    edges (merge_collinear_edges()).
58 * B) Intersections may cause an edge to violate the left-to-right ordering of the
59 *    active edge list. This is handled by splitting the neighbour edge on the
60 *    intersected vertex (cleanup_active_edges()).
61 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
62 *    to become active. This is handled by removing or inserting the edge in the active
63 *    edge list (fix_active_state()).
64 *
65 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
66 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
67 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
68 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
69 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
70 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
71 * linked list implementation. With the latter, all removals are O(1), and most insertions
72 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
73 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
74 * frequent. There may be other data structures worth investigating, however.
75 *
76 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
77 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
78 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
79 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
80 * that the "left" and "right" orientation in the code remains correct (edges to the left are
81 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
82 * degrees counterclockwise, rather that transposing.
83 */
84
85#define LOGGING_ENABLED 0
86
87#if LOGGING_ENABLED
88#define LOG printf
89#else
90#define LOG(...)
91#endif
92
93namespace {
94
95const int kArenaChunkSize = 16 * 1024;
96
97struct Vertex;
98struct Edge;
99struct Poly;
100
101template <class T, T* T::*Prev, T* T::*Next>
102void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
103    t->*Prev = prev;
104    t->*Next = next;
105    if (prev) {
106        prev->*Next = t;
107    } else if (head) {
108        *head = t;
109    }
110    if (next) {
111        next->*Prev = t;
112    } else if (tail) {
113        *tail = t;
114    }
115}
116
117template <class T, T* T::*Prev, T* T::*Next>
118void list_remove(T* t, T** head, T** tail) {
119    if (t->*Prev) {
120        t->*Prev->*Next = t->*Next;
121    } else if (head) {
122        *head = t->*Next;
123    }
124    if (t->*Next) {
125        t->*Next->*Prev = t->*Prev;
126    } else if (tail) {
127        *tail = t->*Prev;
128    }
129    t->*Prev = t->*Next = nullptr;
130}
131
132/**
133 * Vertices are used in three ways: first, the path contours are converted into a
134 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139 * an individual Vertex from the path mesh may belong to multiple
140 * MonotonePolys, so the original Vertices cannot be re-used.
141 */
142
143struct Vertex {
144  Vertex(const SkPoint& point, uint8_t alpha)
145    : fPoint(point), fPrev(nullptr), fNext(nullptr)
146    , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
147    , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
148    , fProcessed(false)
149    , fAlpha(alpha)
150#if LOGGING_ENABLED
151    , fID (-1.0f)
152#endif
153    {}
154    SkPoint fPoint;           // Vertex position
155    Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
156    Vertex* fNext;            // "
157    Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
158    Edge*   fLastEdgeAbove;   // "
159    Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
160    Edge*   fLastEdgeBelow;   // "
161    bool    fProcessed;       // Has this vertex been seen in simplify()?
162    uint8_t fAlpha;
163#if LOGGING_ENABLED
164    float   fID;              // Identifier used for logging.
165#endif
166};
167
168/***************************************************************************************/
169
170struct AAParams {
171    bool fTweakAlpha;
172    GrColor fColor;
173};
174
175typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
176
177bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
178    return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
179}
180
181bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
182    return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
183}
184
185struct Comparator {
186    enum class Direction { kVertical, kHorizontal };
187    Comparator(Direction direction) : fDirection(direction) {}
188    bool sweep_lt(const SkPoint& a, const SkPoint& b) const {
189        return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
190    }
191    Direction fDirection;
192};
193
194inline void* emit_vertex(Vertex* v, const AAParams* aaParams, void* data) {
195    if (!aaParams) {
196        SkPoint* d = static_cast<SkPoint*>(data);
197        *d++ = v->fPoint;
198        return d;
199    }
200    if (aaParams->fTweakAlpha) {
201        auto d = static_cast<GrDefaultGeoProcFactory::PositionColorAttr*>(data);
202        d->fPosition = v->fPoint;
203        d->fColor = SkAlphaMulQ(aaParams->fColor, SkAlpha255To256(v->fAlpha));
204        d++;
205        return d;
206    }
207    auto d = static_cast<GrDefaultGeoProcFactory::PositionColorCoverageAttr*>(data);
208    d->fPosition = v->fPoint;
209    d->fColor = aaParams->fColor;
210    d->fCoverage = GrNormalizeByteToFloat(v->fAlpha);
211    d++;
212    return d;
213}
214
215void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, const AAParams* aaParams, void* data) {
216    LOG("emit_triangle (%g, %g) %d\n", v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
217    LOG("              (%g, %g) %d\n", v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
218    LOG("              (%g, %g) %d\n", v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
219#if TESSELLATOR_WIREFRAME
220    data = emit_vertex(v0, aaParams, data);
221    data = emit_vertex(v1, aaParams, data);
222    data = emit_vertex(v1, aaParams, data);
223    data = emit_vertex(v2, aaParams, data);
224    data = emit_vertex(v2, aaParams, data);
225    data = emit_vertex(v0, aaParams, data);
226#else
227    data = emit_vertex(v0, aaParams, data);
228    data = emit_vertex(v1, aaParams, data);
229    data = emit_vertex(v2, aaParams, data);
230#endif
231    return data;
232}
233
234struct VertexList {
235    VertexList() : fHead(nullptr), fTail(nullptr) {}
236    VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
237    Vertex* fHead;
238    Vertex* fTail;
239    void insert(Vertex* v, Vertex* prev, Vertex* next) {
240        list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
241    }
242    void append(Vertex* v) {
243        insert(v, fTail, nullptr);
244    }
245    void prepend(Vertex* v) {
246        insert(v, nullptr, fHead);
247    }
248    void remove(Vertex* v) {
249        list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
250    }
251    void close() {
252        if (fHead && fTail) {
253            fTail->fNext = fHead;
254            fHead->fPrev = fTail;
255        }
256    }
257};
258
259// Round to nearest quarter-pixel. This is used for screenspace tessellation.
260
261inline void round(SkPoint* p) {
262    p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
263    p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
264}
265
266// A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
267struct Line {
268    Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
269    Line(const SkPoint& p, const SkPoint& q)
270        : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
271        , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
272        , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
273             static_cast<double>(p.fX) * q.fY) {}
274    double dist(const SkPoint& p) const {
275        return fA * p.fX + fB * p.fY + fC;
276    }
277    double magSq() const {
278        return fA * fA + fB * fB;
279    }
280
281    // Compute the intersection of two (infinite) Lines.
282    bool intersect(const Line& other, SkPoint* point) {
283        double denom = fA * other.fB - fB * other.fA;
284        if (denom == 0.0) {
285            return false;
286        }
287        double scale = 1.0f / denom;
288        point->fX = SkDoubleToScalar((fB * other.fC - other.fB * fC) * scale);
289        point->fY = SkDoubleToScalar((other.fA * fC - fA * other.fC) * scale);
290        round(point);
291        return true;
292    }
293    double fA, fB, fC;
294};
295
296/**
297 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
298 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
299 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
300 * point). For speed, that case is only tested by the callers which require it (e.g.,
301 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
302 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
303 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
304 * a lot faster in the "not found" case.
305 *
306 * The coefficients of the line equation stored in double precision to avoid catastrphic
307 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
308 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
309 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
310 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
311 * this file).
312 */
313
314struct Edge {
315    enum class Type { kInner, kOuter, kConnector };
316    Edge(Vertex* top, Vertex* bottom, int winding, Type type)
317        : fWinding(winding)
318        , fTop(top)
319        , fBottom(bottom)
320        , fType(type)
321        , fLeft(nullptr)
322        , fRight(nullptr)
323        , fPrevEdgeAbove(nullptr)
324        , fNextEdgeAbove(nullptr)
325        , fPrevEdgeBelow(nullptr)
326        , fNextEdgeBelow(nullptr)
327        , fLeftPoly(nullptr)
328        , fRightPoly(nullptr)
329        , fLeftPolyPrev(nullptr)
330        , fLeftPolyNext(nullptr)
331        , fRightPolyPrev(nullptr)
332        , fRightPolyNext(nullptr)
333        , fUsedInLeftPoly(false)
334        , fUsedInRightPoly(false)
335        , fLine(top, bottom) {
336        }
337    int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
338    Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
339    Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
340    Type     fType;
341    Edge*    fLeft;             // The linked list of edges in the active edge list.
342    Edge*    fRight;            // "
343    Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
344    Edge*    fNextEdgeAbove;    // "
345    Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
346    Edge*    fNextEdgeBelow;    // "
347    Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
348    Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
349    Edge*    fLeftPolyPrev;
350    Edge*    fLeftPolyNext;
351    Edge*    fRightPolyPrev;
352    Edge*    fRightPolyNext;
353    bool     fUsedInLeftPoly;
354    bool     fUsedInRightPoly;
355    Line     fLine;
356    double dist(const SkPoint& p) const {
357        return fLine.dist(p);
358    }
359    bool isRightOf(Vertex* v) const {
360        return fLine.dist(v->fPoint) < 0.0;
361    }
362    bool isLeftOf(Vertex* v) const {
363        return fLine.dist(v->fPoint) > 0.0;
364    }
365    void recompute() {
366        fLine = Line(fTop, fBottom);
367    }
368    bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) {
369        LOG("intersecting %g -> %g with %g -> %g\n",
370               fTop->fID, fBottom->fID,
371               other.fTop->fID, other.fBottom->fID);
372        if (fTop == other.fTop || fBottom == other.fBottom) {
373            return false;
374        }
375        double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
376        if (denom == 0.0) {
377            return false;
378        }
379        double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
380        double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
381        double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
382        double tNumer = dy * fLine.fB + dx * fLine.fA;
383        // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
384        // This saves us doing the divide below unless absolutely necessary.
385        if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
386                        : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
387            return false;
388        }
389        double s = sNumer / denom;
390        SkASSERT(s >= 0.0 && s <= 1.0);
391        p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
392        p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
393        if (alpha) {
394            if (fType == Type::kConnector) {
395                *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
396            } else if (other.fType == Type::kConnector) {
397                double t = tNumer / denom;
398                *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
399            } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
400                *alpha = 0;
401            } else {
402                *alpha = 255;
403            }
404        }
405        return true;
406    }
407};
408
409struct EdgeList {
410    EdgeList() : fHead(nullptr), fTail(nullptr) {}
411    Edge* fHead;
412    Edge* fTail;
413    void insert(Edge* edge, Edge* prev, Edge* next) {
414        list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
415    }
416    void append(Edge* e) {
417        insert(e, fTail, nullptr);
418    }
419    void remove(Edge* edge) {
420        list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
421    }
422    void close() {
423        if (fHead && fTail) {
424            fTail->fRight = fHead;
425            fHead->fLeft = fTail;
426        }
427    }
428    bool contains(Edge* edge) const {
429        return edge->fLeft || edge->fRight || fHead == edge;
430    }
431};
432
433/***************************************************************************************/
434
435struct Poly {
436    Poly(Vertex* v, int winding)
437        : fFirstVertex(v)
438        , fWinding(winding)
439        , fHead(nullptr)
440        , fTail(nullptr)
441        , fNext(nullptr)
442        , fPartner(nullptr)
443        , fCount(0)
444    {
445#if LOGGING_ENABLED
446        static int gID = 0;
447        fID = gID++;
448        LOG("*** created Poly %d\n", fID);
449#endif
450    }
451    typedef enum { kLeft_Side, kRight_Side } Side;
452    struct MonotonePoly {
453        MonotonePoly(Edge* edge, Side side)
454            : fSide(side)
455            , fFirstEdge(nullptr)
456            , fLastEdge(nullptr)
457            , fPrev(nullptr)
458            , fNext(nullptr) {
459            this->addEdge(edge);
460        }
461        Side          fSide;
462        Edge*         fFirstEdge;
463        Edge*         fLastEdge;
464        MonotonePoly* fPrev;
465        MonotonePoly* fNext;
466        void addEdge(Edge* edge) {
467            if (fSide == kRight_Side) {
468                SkASSERT(!edge->fUsedInRightPoly);
469                list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
470                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
471                edge->fUsedInRightPoly = true;
472            } else {
473                SkASSERT(!edge->fUsedInLeftPoly);
474                list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
475                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
476                edge->fUsedInLeftPoly = true;
477            }
478        }
479
480        void* emit(const AAParams* aaParams, void* data) {
481            Edge* e = fFirstEdge;
482            VertexList vertices;
483            vertices.append(e->fTop);
484            int count = 1;
485            while (e != nullptr) {
486                if (kRight_Side == fSide) {
487                    vertices.append(e->fBottom);
488                    e = e->fRightPolyNext;
489                } else {
490                    vertices.prepend(e->fBottom);
491                    e = e->fLeftPolyNext;
492                }
493                count++;
494            }
495            Vertex* first = vertices.fHead;
496            Vertex* v = first->fNext;
497            while (v != vertices.fTail) {
498                SkASSERT(v && v->fPrev && v->fNext);
499                Vertex* prev = v->fPrev;
500                Vertex* curr = v;
501                Vertex* next = v->fNext;
502                if (count == 3) {
503                    return emit_triangle(prev, curr, next, aaParams, data);
504                }
505                double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
506                double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
507                double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
508                double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
509                if (ax * by - ay * bx >= 0.0) {
510                    data = emit_triangle(prev, curr, next, aaParams, data);
511                    v->fPrev->fNext = v->fNext;
512                    v->fNext->fPrev = v->fPrev;
513                    count--;
514                    if (v->fPrev == first) {
515                        v = v->fNext;
516                    } else {
517                        v = v->fPrev;
518                    }
519                } else {
520                    v = v->fNext;
521                }
522            }
523            return data;
524        }
525    };
526    Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
527        LOG("addEdge (%g -> %g) to poly %d, %s side\n",
528               e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
529        Poly* partner = fPartner;
530        Poly* poly = this;
531        if (side == kRight_Side) {
532            if (e->fUsedInRightPoly) {
533                return this;
534            }
535        } else {
536            if (e->fUsedInLeftPoly) {
537                return this;
538            }
539        }
540        if (partner) {
541            fPartner = partner->fPartner = nullptr;
542        }
543        if (!fTail) {
544            fHead = fTail = alloc.make<MonotonePoly>(e, side);
545            fCount += 2;
546        } else if (e->fBottom == fTail->fLastEdge->fBottom) {
547            return poly;
548        } else if (side == fTail->fSide) {
549            fTail->addEdge(e);
550            fCount++;
551        } else {
552            e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
553            fTail->addEdge(e);
554            fCount++;
555            if (partner) {
556                partner->addEdge(e, side, alloc);
557                poly = partner;
558            } else {
559                MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
560                m->fPrev = fTail;
561                fTail->fNext = m;
562                fTail = m;
563            }
564        }
565        return poly;
566    }
567    void* emit(const AAParams* aaParams, void *data) {
568        if (fCount < 3) {
569            return data;
570        }
571        LOG("emit() %d, size %d\n", fID, fCount);
572        for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
573            data = m->emit(aaParams, data);
574        }
575        return data;
576    }
577    Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
578    Vertex* fFirstVertex;
579    int fWinding;
580    MonotonePoly* fHead;
581    MonotonePoly* fTail;
582    Poly* fNext;
583    Poly* fPartner;
584    int fCount;
585#if LOGGING_ENABLED
586    int fID;
587#endif
588};
589
590/***************************************************************************************/
591
592bool coincident(const SkPoint& a, const SkPoint& b) {
593    return a == b;
594}
595
596Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
597    Poly* poly = alloc.make<Poly>(v, winding);
598    poly->fNext = *head;
599    *head = poly;
600    return poly;
601}
602
603Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
604                                SkArenaAlloc& alloc) {
605    Vertex* v = alloc.make<Vertex>(p, 255);
606#if LOGGING_ENABLED
607    static float gID = 0.0f;
608    v->fID = gID++;
609#endif
610    if (prev) {
611        prev->fNext = v;
612        v->fPrev = prev;
613    } else {
614        *head = v;
615    }
616    return v;
617}
618
619Vertex* generate_quadratic_points(const SkPoint& p0,
620                                  const SkPoint& p1,
621                                  const SkPoint& p2,
622                                  SkScalar tolSqd,
623                                  Vertex* prev,
624                                  Vertex** head,
625                                  int pointsLeft,
626                                  SkArenaAlloc& alloc) {
627    SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
628    if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
629        return append_point_to_contour(p2, prev, head, alloc);
630    }
631
632    const SkPoint q[] = {
633        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
634        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
635    };
636    const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
637
638    pointsLeft >>= 1;
639    prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
640    prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
641    return prev;
642}
643
644Vertex* generate_cubic_points(const SkPoint& p0,
645                              const SkPoint& p1,
646                              const SkPoint& p2,
647                              const SkPoint& p3,
648                              SkScalar tolSqd,
649                              Vertex* prev,
650                              Vertex** head,
651                              int pointsLeft,
652                              SkArenaAlloc& alloc) {
653    SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
654    SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
655    if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
656        !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
657        return append_point_to_contour(p3, prev, head, alloc);
658    }
659    const SkPoint q[] = {
660        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
661        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
662        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
663    };
664    const SkPoint r[] = {
665        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
666        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
667    };
668    const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
669    pointsLeft >>= 1;
670    prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
671    prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
672    return prev;
673}
674
675// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
676
677void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
678                      Vertex** contours, SkArenaAlloc& alloc, bool *isLinear) {
679    SkScalar toleranceSqd = tolerance * tolerance;
680
681    SkPoint pts[4];
682    bool done = false;
683    *isLinear = true;
684    SkPath::Iter iter(path, false);
685    Vertex* prev = nullptr;
686    Vertex* head = nullptr;
687    if (path.isInverseFillType()) {
688        SkPoint quad[4];
689        clipBounds.toQuad(quad);
690        for (int i = 3; i >= 0; i--) {
691            prev = append_point_to_contour(quad[i], prev, &head, alloc);
692        }
693        head->fPrev = prev;
694        prev->fNext = head;
695        *contours++ = head;
696        head = prev = nullptr;
697    }
698    SkAutoConicToQuads converter;
699    while (!done) {
700        SkPath::Verb verb = iter.next(pts);
701        switch (verb) {
702            case SkPath::kConic_Verb: {
703                SkScalar weight = iter.conicWeight();
704                const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
705                for (int i = 0; i < converter.countQuads(); ++i) {
706                    int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
707                    prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
708                                                     toleranceSqd, prev, &head, pointsLeft, alloc);
709                    quadPts += 2;
710                }
711                *isLinear = false;
712                break;
713            }
714            case SkPath::kMove_Verb:
715                if (head) {
716                    head->fPrev = prev;
717                    prev->fNext = head;
718                    *contours++ = head;
719                }
720                head = prev = nullptr;
721                prev = append_point_to_contour(pts[0], prev, &head, alloc);
722                break;
723            case SkPath::kLine_Verb: {
724                prev = append_point_to_contour(pts[1], prev, &head, alloc);
725                break;
726            }
727            case SkPath::kQuad_Verb: {
728                int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
729                prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
730                                                 &head, pointsLeft, alloc);
731                *isLinear = false;
732                break;
733            }
734            case SkPath::kCubic_Verb: {
735                int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
736                prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
737                                toleranceSqd, prev, &head, pointsLeft, alloc);
738                *isLinear = false;
739                break;
740            }
741            case SkPath::kClose_Verb:
742                if (head) {
743                    head->fPrev = prev;
744                    prev->fNext = head;
745                    *contours++ = head;
746                }
747                head = prev = nullptr;
748                break;
749            case SkPath::kDone_Verb:
750                if (head) {
751                    head->fPrev = prev;
752                    prev->fNext = head;
753                    *contours++ = head;
754                }
755                done = true;
756                break;
757        }
758    }
759}
760
761inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
762    switch (fillType) {
763        case SkPath::kWinding_FillType:
764            return winding != 0;
765        case SkPath::kEvenOdd_FillType:
766            return (winding & 1) != 0;
767        case SkPath::kInverseWinding_FillType:
768            return winding == 1;
769        case SkPath::kInverseEvenOdd_FillType:
770            return (winding & 1) == 1;
771        default:
772            SkASSERT(false);
773            return false;
774    }
775}
776
777inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
778    return poly && apply_fill_type(fillType, poly->fWinding);
779}
780
781Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
782    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
783    Vertex* top = winding < 0 ? next : prev;
784    Vertex* bottom = winding < 0 ? prev : next;
785    return alloc.make<Edge>(top, bottom, winding, type);
786}
787
788void remove_edge(Edge* edge, EdgeList* edges) {
789    LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
790    SkASSERT(edges->contains(edge));
791    edges->remove(edge);
792}
793
794void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
795    LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
796    SkASSERT(!edges->contains(edge));
797    Edge* next = prev ? prev->fRight : edges->fHead;
798    edges->insert(edge, prev, next);
799}
800
801void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
802    if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
803        *left = v->fFirstEdgeAbove->fLeft;
804        *right = v->fLastEdgeAbove->fRight;
805        return;
806    }
807    Edge* next = nullptr;
808    Edge* prev;
809    for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
810        if (prev->isLeftOf(v)) {
811            break;
812        }
813        next = prev;
814    }
815    *left = prev;
816    *right = next;
817}
818
819void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
820    Edge* prev = nullptr;
821    Edge* next;
822    for (next = edges->fHead; next != nullptr; next = next->fRight) {
823        if ((c.sweep_lt(next->fTop->fPoint, edge->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
824            (c.sweep_lt(edge->fTop->fPoint, next->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
825            (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
826             next->isRightOf(edge->fBottom)) ||
827            (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
828             edge->isLeftOf(next->fBottom))) {
829            break;
830        }
831        prev = next;
832    }
833    *left = prev;
834    *right = next;
835}
836
837void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
838    if (!activeEdges) {
839        return;
840    }
841    if (activeEdges->contains(edge)) {
842        if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
843            remove_edge(edge, activeEdges);
844        }
845    } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
846        Edge* left;
847        Edge* right;
848        find_enclosing_edges(edge, activeEdges, c, &left, &right);
849        insert_edge(edge, left, activeEdges);
850    }
851}
852
853void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
854    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
855        c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
856        return;
857    }
858    LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
859    Edge* prev = nullptr;
860    Edge* next;
861    for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
862        if (next->isRightOf(edge->fTop)) {
863            break;
864        }
865        prev = next;
866    }
867    list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
868        edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
869}
870
871void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
872    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
873        c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
874        return;
875    }
876    LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
877    Edge* prev = nullptr;
878    Edge* next;
879    for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
880        if (next->isRightOf(edge->fBottom)) {
881            break;
882        }
883        prev = next;
884    }
885    list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
886        edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
887}
888
889void remove_edge_above(Edge* edge) {
890    LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
891        edge->fBottom->fID);
892    list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
893        edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
894}
895
896void remove_edge_below(Edge* edge) {
897    LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
898        edge->fTop->fID);
899    list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
900        edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
901}
902
903void disconnect(Edge* edge)
904{
905    remove_edge_above(edge);
906    remove_edge_below(edge);
907}
908
909void erase_edge(Edge* edge, EdgeList* edges) {
910    LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
911    disconnect(edge);
912    if (edges && edges->contains(edge)) {
913        remove_edge(edge, edges);
914    }
915}
916
917void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
918
919void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
920    remove_edge_below(edge);
921    edge->fTop = v;
922    edge->recompute();
923    insert_edge_below(edge, v, c);
924    fix_active_state(edge, activeEdges, c);
925    merge_collinear_edges(edge, activeEdges, c);
926}
927
928void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
929    remove_edge_above(edge);
930    edge->fBottom = v;
931    edge->recompute();
932    insert_edge_above(edge, v, c);
933    fix_active_state(edge, activeEdges, c);
934    merge_collinear_edges(edge, activeEdges, c);
935}
936
937void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
938    if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
939        LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
940            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
941            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
942        other->fWinding += edge->fWinding;
943        erase_edge(edge, activeEdges);
944    } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
945        other->fWinding += edge->fWinding;
946        set_bottom(edge, other->fTop, activeEdges, c);
947    } else {
948        edge->fWinding += other->fWinding;
949        set_bottom(other, edge->fTop, activeEdges, c);
950    }
951}
952
953void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
954    if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
955        LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
956            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
957            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
958        other->fWinding += edge->fWinding;
959        erase_edge(edge, activeEdges);
960    } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
961        edge->fWinding += other->fWinding;
962        set_top(other, edge->fBottom, activeEdges, c);
963    } else {
964        other->fWinding += edge->fWinding;
965        set_top(edge, other->fBottom, activeEdges, c);
966    }
967}
968
969void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
970    if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
971                                 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
972        merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
973    } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
974                                        !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
975        merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
976    }
977    if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
978                                 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
979        merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
980    } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
981                                        !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
982        merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
983    }
984}
985
986void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc);
987
988void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
989    Vertex* top = edge->fTop;
990    Vertex* bottom = edge->fBottom;
991    if (edge->fLeft) {
992        Vertex* leftTop = edge->fLeft->fTop;
993        Vertex* leftBottom = edge->fLeft->fBottom;
994        if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
995            split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
996        } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
997            split_edge(edge, leftTop, activeEdges, c, alloc);
998        } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
999                   !edge->fLeft->isLeftOf(bottom)) {
1000            split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
1001        } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
1002            split_edge(edge, leftBottom, activeEdges, c, alloc);
1003        }
1004    }
1005    if (edge->fRight) {
1006        Vertex* rightTop = edge->fRight->fTop;
1007        Vertex* rightBottom = edge->fRight->fBottom;
1008        if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
1009            split_edge(edge->fRight, top, activeEdges, c, alloc);
1010        } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
1011            split_edge(edge, rightTop, activeEdges, c, alloc);
1012        } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
1013                   !edge->fRight->isRightOf(bottom)) {
1014            split_edge(edge->fRight, bottom, activeEdges, c, alloc);
1015        } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
1016                   !edge->isLeftOf(rightBottom)) {
1017            split_edge(edge, rightBottom, activeEdges, c, alloc);
1018        }
1019    }
1020}
1021
1022void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
1023    LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1024        edge->fTop->fID, edge->fBottom->fID,
1025        v->fID, v->fPoint.fX, v->fPoint.fY);
1026    if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1027        set_top(edge, v, activeEdges, c);
1028    } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
1029        set_bottom(edge, v, activeEdges, c);
1030    } else {
1031        Edge* newEdge = alloc.make<Edge>(v, edge->fBottom, edge->fWinding, edge->fType);
1032        insert_edge_below(newEdge, v, c);
1033        insert_edge_above(newEdge, edge->fBottom, c);
1034        set_bottom(edge, v, activeEdges, c);
1035        cleanup_active_edges(edge, activeEdges, c, alloc);
1036        fix_active_state(newEdge, activeEdges, c);
1037        merge_collinear_edges(newEdge, activeEdges, c);
1038    }
1039}
1040
1041Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1042              int winding_scale = 1) {
1043    Edge* edge = new_edge(prev, next, type, c, alloc);
1044    insert_edge_below(edge, edge->fTop, c);
1045    insert_edge_above(edge, edge->fBottom, c);
1046    edge->fWinding *= winding_scale;
1047    merge_collinear_edges(edge, nullptr, c);
1048    return edge;
1049}
1050
1051void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1052                    SkArenaAlloc& alloc) {
1053    LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1054        src->fID, dst->fID);
1055    dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1056    for (Edge* edge = src->fFirstEdgeAbove; edge;) {
1057        Edge* next = edge->fNextEdgeAbove;
1058        set_bottom(edge, dst, nullptr, c);
1059        edge = next;
1060    }
1061    for (Edge* edge = src->fFirstEdgeBelow; edge;) {
1062        Edge* next = edge->fNextEdgeBelow;
1063        set_top(edge, dst, nullptr, c);
1064        edge = next;
1065    }
1066    mesh->remove(src);
1067}
1068
1069uint8_t max_edge_alpha(Edge* a, Edge* b) {
1070    if (a->fType == Edge::Type::kInner || b->fType == Edge::Type::kInner) {
1071        return 255;
1072    } else if (a->fType == Edge::Type::kOuter && b->fType == Edge::Type::kOuter) {
1073        return 0;
1074    } else {
1075        return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
1076                      SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
1077    }
1078}
1079
1080Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
1081                               SkArenaAlloc& alloc) {
1082    if (!edge || !other) {
1083        return nullptr;
1084    }
1085    SkPoint p;
1086    uint8_t alpha;
1087    if (edge->intersect(*other, &p, &alpha)) {
1088        Vertex* v;
1089        LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1090        if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
1091            split_edge(other, edge->fTop, activeEdges, c, alloc);
1092            v = edge->fTop;
1093        } else if (p == edge->fBottom->fPoint || c.sweep_lt(edge->fBottom->fPoint, p)) {
1094            split_edge(other, edge->fBottom, activeEdges, c, alloc);
1095            v = edge->fBottom;
1096        } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
1097            split_edge(edge, other->fTop, activeEdges, c, alloc);
1098            v = other->fTop;
1099        } else if (p == other->fBottom->fPoint || c.sweep_lt(other->fBottom->fPoint, p)) {
1100            split_edge(edge, other->fBottom, activeEdges, c, alloc);
1101            v = other->fBottom;
1102        } else {
1103            Vertex* nextV = edge->fTop;
1104            while (c.sweep_lt(p, nextV->fPoint)) {
1105                nextV = nextV->fPrev;
1106            }
1107            while (c.sweep_lt(nextV->fPoint, p)) {
1108                nextV = nextV->fNext;
1109            }
1110            Vertex* prevV = nextV->fPrev;
1111            if (coincident(prevV->fPoint, p)) {
1112                v = prevV;
1113            } else if (coincident(nextV->fPoint, p)) {
1114                v = nextV;
1115            } else {
1116                v = alloc.make<Vertex>(p, alpha);
1117                LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1118                    prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1119                    nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1120#if LOGGING_ENABLED
1121                v->fID = (nextV->fID + prevV->fID) * 0.5f;
1122#endif
1123                v->fPrev = prevV;
1124                v->fNext = nextV;
1125                prevV->fNext = v;
1126                nextV->fPrev = v;
1127            }
1128            split_edge(edge, v, activeEdges, c, alloc);
1129            split_edge(other, v, activeEdges, c, alloc);
1130        }
1131        v->fAlpha = SkTMax(v->fAlpha, alpha);
1132        return v;
1133    }
1134    return nullptr;
1135}
1136
1137void sanitize_contours(Vertex** contours, int contourCnt, bool approximate) {
1138    for (int i = 0; i < contourCnt; ++i) {
1139        SkASSERT(contours[i]);
1140        if (approximate) {
1141            round(&contours[i]->fPrev->fPoint);
1142        }
1143        for (Vertex* v = contours[i];;) {
1144            if (approximate) {
1145                round(&v->fPoint);
1146            }
1147            if (coincident(v->fPrev->fPoint, v->fPoint)) {
1148                LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1149                if (v->fPrev == v) {
1150                    contours[i] = nullptr;
1151                    break;
1152                }
1153                v->fPrev->fNext = v->fNext;
1154                v->fNext->fPrev = v->fPrev;
1155                if (contours[i] == v) {
1156                    contours[i] = v->fPrev;
1157                }
1158                v = v->fPrev;
1159            } else {
1160                v = v->fNext;
1161                if (v == contours[i]) break;
1162            }
1163        }
1164    }
1165}
1166
1167void merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1168    for (Vertex* v = mesh->fHead->fNext; v != nullptr; v = v->fNext) {
1169        if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1170            v->fPoint = v->fPrev->fPoint;
1171        }
1172        if (coincident(v->fPrev->fPoint, v->fPoint)) {
1173            merge_vertices(v->fPrev, v, mesh, c, alloc);
1174        }
1175    }
1176}
1177
1178// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1179
1180void build_edges(Vertex** contours, int contourCnt, VertexList* mesh, Comparator& c,
1181                 SkArenaAlloc& alloc) {
1182    Vertex* prev = nullptr;
1183    for (int i = 0; i < contourCnt; ++i) {
1184        for (Vertex* v = contours[i]; v != nullptr;) {
1185            Vertex* vNext = v->fNext;
1186            connect(v->fPrev, v, Edge::Type::kInner, c, alloc);
1187            if (prev) {
1188                prev->fNext = v;
1189                v->fPrev = prev;
1190            } else {
1191                mesh->fHead = v;
1192            }
1193            prev = v;
1194            v = vNext;
1195            if (v == contours[i]) break;
1196        }
1197    }
1198    if (prev) {
1199        prev->fNext = mesh->fHead->fPrev = nullptr;
1200    }
1201    mesh->fTail = prev;
1202}
1203
1204// Stage 3: sort the vertices by increasing sweep direction.
1205
1206template <CompareFunc sweep_lt>
1207void merge_sort(VertexList* vertices) {
1208    Vertex* slow = vertices->fHead;
1209    if (!slow) {
1210        return;
1211    }
1212    Vertex* fast = slow->fNext;
1213    if (!fast) {
1214        return;
1215    }
1216    do {
1217        fast = fast->fNext;
1218        if (fast) {
1219            fast = fast->fNext;
1220            slow = slow->fNext;
1221        }
1222    } while (fast);
1223    VertexList front(vertices->fHead, slow);
1224    VertexList back(slow->fNext, vertices->fTail);
1225    front.fTail->fNext = back.fHead->fPrev = nullptr;
1226
1227    merge_sort<sweep_lt>(&front);
1228    merge_sort<sweep_lt>(&back);
1229
1230    vertices->fHead = vertices->fTail = nullptr;
1231    Vertex* a = front.fHead;
1232    Vertex* b = back.fHead;
1233    while (a && b) {
1234        if (sweep_lt(a->fPoint, b->fPoint)) {
1235            Vertex* next = a->fNext;
1236            vertices->append(a);
1237            a = next;
1238        } else {
1239            Vertex* next = b->fNext;
1240            vertices->append(b);
1241            b = next;
1242        }
1243    }
1244    if (a) {
1245        vertices->insert(a, vertices->fTail, a->fNext);
1246    }
1247    if (b) {
1248        vertices->insert(b, vertices->fTail, b->fNext);
1249    }
1250}
1251
1252// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1253
1254void simplify(const VertexList& vertices, Comparator& c, SkArenaAlloc& alloc) {
1255    LOG("simplifying complex polygons\n");
1256    EdgeList activeEdges;
1257    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1258        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1259            continue;
1260        }
1261#if LOGGING_ENABLED
1262        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1263#endif
1264        Edge* leftEnclosingEdge;
1265        Edge* rightEnclosingEdge;
1266        bool restartChecks;
1267        do {
1268            restartChecks = false;
1269            find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1270            if (v->fFirstEdgeBelow) {
1271                for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1272                    if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1273                        restartChecks = true;
1274                        break;
1275                    }
1276                    if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1277                        restartChecks = true;
1278                        break;
1279                    }
1280                }
1281            } else {
1282                if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1283                                                        &activeEdges, c, alloc)) {
1284                    if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1285                        v = pv;
1286                    }
1287                    restartChecks = true;
1288                }
1289
1290            }
1291        } while (restartChecks);
1292        if (v->fAlpha == 0) {
1293            if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
1294                (rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
1295                v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
1296            }
1297        }
1298        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1299            remove_edge(e, &activeEdges);
1300        }
1301        Edge* leftEdge = leftEnclosingEdge;
1302        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1303            insert_edge(e, leftEdge, &activeEdges);
1304            leftEdge = e;
1305        }
1306        v->fProcessed = true;
1307    }
1308}
1309
1310// Stage 5: Tessellate the simplified mesh into monotone polygons.
1311
1312Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1313    LOG("tessellating simple polygons\n");
1314    EdgeList activeEdges;
1315    Poly* polys = nullptr;
1316    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1317        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1318            continue;
1319        }
1320#if LOGGING_ENABLED
1321        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1322#endif
1323        Edge* leftEnclosingEdge;
1324        Edge* rightEnclosingEdge;
1325        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1326        Poly* leftPoly;
1327        Poly* rightPoly;
1328        if (v->fFirstEdgeAbove) {
1329            leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1330            rightPoly = v->fLastEdgeAbove->fRightPoly;
1331        } else {
1332            leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1333            rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1334        }
1335#if LOGGING_ENABLED
1336        LOG("edges above:\n");
1337        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1338            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1339                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1340        }
1341        LOG("edges below:\n");
1342        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1343            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1344                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1345        }
1346#endif
1347        if (v->fFirstEdgeAbove) {
1348            if (leftPoly) {
1349                leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1350            }
1351            if (rightPoly) {
1352                rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1353            }
1354            for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1355                Edge* rightEdge = e->fNextEdgeAbove;
1356                SkASSERT(rightEdge->isRightOf(e->fTop));
1357                remove_edge(e, &activeEdges);
1358                if (e->fRightPoly) {
1359                    e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1360                }
1361                if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1362                    rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1363                }
1364            }
1365            remove_edge(v->fLastEdgeAbove, &activeEdges);
1366            if (!v->fFirstEdgeBelow) {
1367                if (leftPoly && rightPoly && leftPoly != rightPoly) {
1368                    SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1369                    rightPoly->fPartner = leftPoly;
1370                    leftPoly->fPartner = rightPoly;
1371                }
1372            }
1373        }
1374        if (v->fFirstEdgeBelow) {
1375            if (!v->fFirstEdgeAbove) {
1376                if (leftPoly && rightPoly) {
1377                    if (leftPoly == rightPoly) {
1378                        if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1379                            leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1380                                                 leftPoly->fWinding, alloc);
1381                            leftEnclosingEdge->fRightPoly = leftPoly;
1382                        } else {
1383                            rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1384                                                 rightPoly->fWinding, alloc);
1385                            rightEnclosingEdge->fLeftPoly = rightPoly;
1386                        }
1387                    }
1388                    Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1389                    leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1390                    rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1391                }
1392            }
1393            Edge* leftEdge = v->fFirstEdgeBelow;
1394            leftEdge->fLeftPoly = leftPoly;
1395            insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1396            for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1397                 rightEdge = rightEdge->fNextEdgeBelow) {
1398                insert_edge(rightEdge, leftEdge, &activeEdges);
1399                int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1400                winding += leftEdge->fWinding;
1401                if (winding != 0) {
1402                    Poly* poly = new_poly(&polys, v, winding, alloc);
1403                    leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1404                }
1405                leftEdge = rightEdge;
1406            }
1407            v->fLastEdgeBelow->fRightPoly = rightPoly;
1408        }
1409#if LOGGING_ENABLED
1410        LOG("\nactive edges:\n");
1411        for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1412            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1413                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1414        }
1415#endif
1416    }
1417    return polys;
1418}
1419
1420void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1421                               SkArenaAlloc& alloc) {
1422    LOG("removing non-boundary edges\n");
1423    EdgeList activeEdges;
1424    for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1425        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1426            continue;
1427        }
1428        Edge* leftEnclosingEdge;
1429        Edge* rightEnclosingEdge;
1430        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1431        bool prevFilled = leftEnclosingEdge &&
1432                          apply_fill_type(fillType, leftEnclosingEdge->fWinding);
1433        for (Edge* e = v->fFirstEdgeAbove; e;) {
1434            Edge* next = e->fNextEdgeAbove;
1435            remove_edge(e, &activeEdges);
1436            bool filled = apply_fill_type(fillType, e->fWinding);
1437            if (filled == prevFilled) {
1438                disconnect(e);
1439            }
1440            prevFilled = filled;
1441            e = next;
1442        }
1443        Edge* prev = leftEnclosingEdge;
1444        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1445            if (prev) {
1446                e->fWinding += prev->fWinding;
1447            }
1448            insert_edge(e, prev, &activeEdges);
1449            prev = e;
1450        }
1451    }
1452}
1453
1454// Note: this is the normal to the edge, but not necessarily unit length.
1455void get_edge_normal(const Edge* e, SkVector* normal) {
1456    normal->set(SkDoubleToScalar(e->fLine.fA) * e->fWinding,
1457                SkDoubleToScalar(e->fLine.fB) * e->fWinding);
1458}
1459
1460// Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1461// and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1462// invert on stroking.
1463
1464void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1465    Edge* prevEdge = boundary->fTail;
1466    SkVector prevNormal;
1467    get_edge_normal(prevEdge, &prevNormal);
1468    for (Edge* e = boundary->fHead; e != nullptr;) {
1469        Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1470        Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1471        double dist = e->dist(prev->fPoint);
1472        SkVector normal;
1473        get_edge_normal(e, &normal);
1474        double denom = 0.0625f * e->fLine.magSq();
1475        if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
1476            Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1477            insert_edge(join, e, boundary);
1478            remove_edge(prevEdge, boundary);
1479            remove_edge(e, boundary);
1480            if (join->fLeft && join->fRight) {
1481                prevEdge = join->fLeft;
1482                e = join;
1483            } else {
1484                prevEdge = boundary->fTail;
1485                e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1486            }
1487            get_edge_normal(prevEdge, &prevNormal);
1488        } else {
1489            prevEdge = e;
1490            prevNormal = normal;
1491            e = e->fRight;
1492        }
1493    }
1494}
1495
1496void fix_inversions(Vertex* prev, Vertex* next, Edge* prevBisector, Edge* nextBisector,
1497                    Edge* prevEdge, Comparator& c) {
1498    if (!prev || !next) {
1499        return;
1500    }
1501    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1502    SkPoint p;
1503    uint8_t alpha;
1504    if (winding != prevEdge->fWinding && prevBisector->intersect(*nextBisector, &p, &alpha)) {
1505        prev->fPoint = next->fPoint = p;
1506        prev->fAlpha = next->fAlpha = alpha;
1507    }
1508}
1509
1510// Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1511// find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1512// new antialiased mesh from those vertices.
1513
1514void boundary_to_aa_mesh(EdgeList* boundary, VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1515    // A boundary with fewer than 3 edges is degenerate.
1516    if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
1517        return;
1518    }
1519    Edge* prevEdge = boundary->fTail;
1520    float radius = 0.5f;
1521    double offset = radius * sqrt(prevEdge->fLine.magSq()) * prevEdge->fWinding;
1522    Line prevInner(prevEdge->fLine);
1523    prevInner.fC -= offset;
1524    Line prevOuter(prevEdge->fLine);
1525    prevOuter.fC += offset;
1526    VertexList innerVertices;
1527    VertexList outerVertices;
1528    Edge* prevBisector = nullptr;
1529    for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1530        double offset = radius * sqrt(e->fLine.magSq()) * e->fWinding;
1531        Line inner(e->fLine);
1532        inner.fC -= offset;
1533        Line outer(e->fLine);
1534        outer.fC += offset;
1535        SkPoint innerPoint, outerPoint;
1536        if (prevInner.intersect(inner, &innerPoint) &&
1537            prevOuter.intersect(outer, &outerPoint)) {
1538            Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
1539            Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
1540            Edge* bisector = new_edge(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc);
1541            fix_inversions(innerVertices.fTail, innerVertex, prevBisector, bisector, prevEdge, c);
1542            fix_inversions(outerVertices.fTail, outerVertex, prevBisector, bisector, prevEdge, c);
1543            innerVertices.append(innerVertex);
1544            outerVertices.append(outerVertex);
1545            prevBisector = bisector;
1546        }
1547        prevInner = inner;
1548        prevOuter = outer;
1549        prevEdge = e;
1550    }
1551    innerVertices.close();
1552    outerVertices.close();
1553
1554    Vertex* innerVertex = innerVertices.fHead;
1555    Vertex* outerVertex = outerVertices.fHead;
1556    if (!innerVertex || !outerVertex) {
1557        return;
1558    }
1559    Edge* bisector = new_edge(outerVertices.fHead, innerVertices.fHead, Edge::Type::kConnector, c,
1560                              alloc);
1561    fix_inversions(innerVertices.fTail, innerVertices.fHead, prevBisector, bisector, prevEdge, c);
1562    fix_inversions(outerVertices.fTail, outerVertices.fHead, prevBisector, bisector, prevEdge, c);
1563    do {
1564        // Connect vertices into a quad mesh. Outer edges get default (1) winding.
1565        // Inner edges get -2 winding. This ensures that the interior is always filled
1566        // (-1 winding number for normal cases, 3 for thin features where the interior inverts).
1567        // Connector edges get zero winding, since they're only structural (i.e., to ensure
1568        // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding number.
1569        connect(outerVertex->fPrev, outerVertex, Edge::Type::kOuter, c, alloc);
1570        connect(innerVertex->fPrev, innerVertex, Edge::Type::kInner, c, alloc, -2);
1571        connect(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc, 0);
1572        Vertex* innerNext = innerVertex->fNext;
1573        Vertex* outerNext = outerVertex->fNext;
1574        mesh->append(innerVertex);
1575        mesh->append(outerVertex);
1576        innerVertex = innerNext;
1577        outerVertex = outerNext;
1578    } while (innerVertex != innerVertices.fHead && outerVertex != outerVertices.fHead);
1579}
1580
1581void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
1582    bool down = apply_fill_type(fillType, e->fWinding);
1583    while (e) {
1584        e->fWinding = down ? 1 : -1;
1585        Edge* next;
1586        boundary->append(e);
1587        if (down) {
1588            // Find outgoing edge, in clockwise order.
1589            if ((next = e->fNextEdgeAbove)) {
1590                down = false;
1591            } else if ((next = e->fBottom->fLastEdgeBelow)) {
1592                down = true;
1593            } else if ((next = e->fPrevEdgeAbove)) {
1594                down = false;
1595            }
1596        } else {
1597            // Find outgoing edge, in counter-clockwise order.
1598            if ((next = e->fPrevEdgeBelow)) {
1599                down = true;
1600            } else if ((next = e->fTop->fFirstEdgeAbove)) {
1601                down = false;
1602            } else if ((next = e->fNextEdgeBelow)) {
1603                down = true;
1604            }
1605        }
1606        disconnect(e);
1607        e = next;
1608    }
1609}
1610
1611// Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
1612
1613void extract_boundaries(const VertexList& inMesh, VertexList* outMesh, SkPath::FillType fillType,
1614                        Comparator& c, SkArenaAlloc& alloc) {
1615    remove_non_boundary_edges(inMesh, fillType, alloc);
1616    for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
1617        while (v->fFirstEdgeBelow) {
1618            EdgeList boundary;
1619            extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc);
1620            simplify_boundary(&boundary, c, alloc);
1621            boundary_to_aa_mesh(&boundary, outMesh, c, alloc);
1622        }
1623    }
1624}
1625
1626// This is a driver function which calls stages 2-5 in turn.
1627
1628void contours_to_mesh(Vertex** contours, int contourCnt, bool antialias,
1629                      VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1630#if LOGGING_ENABLED
1631    for (int i = 0; i < contourCnt; ++i) {
1632        Vertex* v = contours[i];
1633        SkASSERT(v);
1634        LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1635        for (v = v->fNext; v != contours[i]; v = v->fNext) {
1636            LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1637        }
1638    }
1639#endif
1640    sanitize_contours(contours, contourCnt, antialias);
1641    build_edges(contours, contourCnt, mesh, c, alloc);
1642}
1643
1644void sort_and_simplify(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1645    if (!vertices || !vertices->fHead) {
1646        return;
1647    }
1648
1649    // Sort vertices in Y (secondarily in X).
1650    if (c.fDirection == Comparator::Direction::kHorizontal) {
1651        merge_sort<sweep_lt_horiz>(vertices);
1652    } else {
1653        merge_sort<sweep_lt_vert>(vertices);
1654    }
1655    merge_coincident_vertices(vertices, c, alloc);
1656#if LOGGING_ENABLED
1657    for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1658        static float gID = 0.0f;
1659        v->fID = gID++;
1660    }
1661#endif
1662    simplify(*vertices, c, alloc);
1663}
1664
1665Poly* contours_to_polys(Vertex** contours, int contourCnt, SkPath::FillType fillType,
1666                        const SkRect& pathBounds, bool antialias,
1667                        SkArenaAlloc& alloc) {
1668    Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1669                                                          : Comparator::Direction::kVertical);
1670    VertexList mesh;
1671    contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
1672    sort_and_simplify(&mesh, c, alloc);
1673    if (antialias) {
1674        VertexList aaMesh;
1675        extract_boundaries(mesh, &aaMesh, fillType, c, alloc);
1676        sort_and_simplify(&aaMesh, c, alloc);
1677        return tessellate(aaMesh, alloc);
1678    } else {
1679        return tessellate(mesh, alloc);
1680    }
1681}
1682
1683// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1684void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, const AAParams* aaParams,
1685                         void* data) {
1686    for (Poly* poly = polys; poly; poly = poly->fNext) {
1687        if (apply_fill_type(fillType, poly)) {
1688            data = poly->emit(aaParams, data);
1689        }
1690    }
1691    return data;
1692}
1693
1694Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1695                    int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear) {
1696    SkPath::FillType fillType = path.getFillType();
1697    if (SkPath::IsInverseFillType(fillType)) {
1698        contourCnt++;
1699    }
1700    std::unique_ptr<Vertex*[]> contours(new Vertex* [contourCnt]);
1701
1702    path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1703    return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
1704                             antialias, alloc);
1705}
1706
1707int get_contour_count(const SkPath& path, SkScalar tolerance) {
1708    int contourCnt;
1709    int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
1710    if (maxPts <= 0) {
1711        return 0;
1712    }
1713    if (maxPts > ((int)SK_MaxU16 + 1)) {
1714        SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1715        return 0;
1716    }
1717    return contourCnt;
1718}
1719
1720int count_points(Poly* polys, SkPath::FillType fillType) {
1721    int count = 0;
1722    for (Poly* poly = polys; poly; poly = poly->fNext) {
1723        if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
1724            count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1725        }
1726    }
1727    return count;
1728}
1729
1730} // namespace
1731
1732namespace GrTessellator {
1733
1734// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1735
1736int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1737                    VertexAllocator* vertexAllocator, bool antialias, const GrColor& color,
1738                    bool canTweakAlphaForCoverage, bool* isLinear) {
1739    int contourCnt = get_contour_count(path, tolerance);
1740    if (contourCnt <= 0) {
1741        *isLinear = true;
1742        return 0;
1743    }
1744    SkArenaAlloc alloc(kArenaChunkSize);
1745    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
1746                                isLinear);
1747    SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
1748    int count = count_points(polys, fillType);
1749    if (0 == count) {
1750        return 0;
1751    }
1752
1753    void* verts = vertexAllocator->lock(count);
1754    if (!verts) {
1755        SkDebugf("Could not allocate vertices\n");
1756        return 0;
1757    }
1758
1759    LOG("emitting %d verts\n", count);
1760    AAParams aaParams;
1761    aaParams.fTweakAlpha = canTweakAlphaForCoverage;
1762    aaParams.fColor = color;
1763
1764    void* end = polys_to_triangles(polys, fillType, antialias ? &aaParams : nullptr, verts);
1765    int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1766                                       / vertexAllocator->stride());
1767    SkASSERT(actualCount <= count);
1768    vertexAllocator->unlock(actualCount);
1769    return actualCount;
1770}
1771
1772int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1773                   GrTessellator::WindingVertex** verts) {
1774    int contourCnt = get_contour_count(path, tolerance);
1775    if (contourCnt <= 0) {
1776        return 0;
1777    }
1778    SkArenaAlloc alloc(kArenaChunkSize);
1779    bool isLinear;
1780    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear);
1781    SkPath::FillType fillType = path.getFillType();
1782    int count = count_points(polys, fillType);
1783    if (0 == count) {
1784        *verts = nullptr;
1785        return 0;
1786    }
1787
1788    *verts = new GrTessellator::WindingVertex[count];
1789    GrTessellator::WindingVertex* vertsEnd = *verts;
1790    SkPoint* points = new SkPoint[count];
1791    SkPoint* pointsEnd = points;
1792    for (Poly* poly = polys; poly; poly = poly->fNext) {
1793        if (apply_fill_type(fillType, poly)) {
1794            SkPoint* start = pointsEnd;
1795            pointsEnd = static_cast<SkPoint*>(poly->emit(nullptr, pointsEnd));
1796            while (start != pointsEnd) {
1797                vertsEnd->fPos = *start;
1798                vertsEnd->fWinding = poly->fWinding;
1799                ++start;
1800                ++vertsEnd;
1801            }
1802        }
1803    }
1804    int actualCount = static_cast<int>(vertsEnd - *verts);
1805    SkASSERT(actualCount <= count);
1806    SkASSERT(pointsEnd - points == actualCount);
1807    delete[] points;
1808    return actualCount;
1809}
1810
1811} // namespace
1812