GrTessellator.cpp revision 7ecc59610de72043e9b7ebaf1ef45c43425e54fc
1/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellator.h"
9
10#include "GrDefaultGeoProcFactory.h"
11#include "GrPathUtils.h"
12
13#include "SkChunkAlloc.h"
14#include "SkGeometry.h"
15#include "SkPath.h"
16
17#include <stdio.h>
18
19/*
20 * There are six stages to the basic algorithm:
21 *
22 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
23 * 2) Build a mesh of edges connecting the vertices (build_edges()).
24 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
25 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
26 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
27 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
28 *
29 * For screenspace antialiasing, the algorithm is modified as follows:
30 *
31 * Run steps 1-5 above to produce polygons.
32 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
33 * 5c) Simplify boundaries to remove "pointy" vertices which cause inversions (simplify_boundary()).
34 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
35 *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
36 *     antialiased mesh from those vertices (boundary_to_aa_mesh()).
37 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
38 *
39 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
40 * of vertices (and the necessity of inserting new vertices on intersection).
41 *
42 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
43 * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
44 * left-to-right based on the point where both edges are active (when both top vertices
45 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
46 * (shared), it's sorted based on the last point where both edges are active, so the
47 * "upper" bottom vertex.
48 *
49 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
50 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
51 * not exact and may violate the mesh topology or active edge list ordering. We
52 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
53 * points. This occurs in three ways:
54 *
55 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
56 *    neighbouring edges at the top or bottom vertex. This is handled by merging the
57 *    edges (merge_collinear_edges()).
58 * B) Intersections may cause an edge to violate the left-to-right ordering of the
59 *    active edge list. This is handled by splitting the neighbour edge on the
60 *    intersected vertex (cleanup_active_edges()).
61 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
62 *    to become active. This is handled by removing or inserting the edge in the active
63 *    edge list (fix_active_state()).
64 *
65 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
66 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
67 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
68 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
69 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
70 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
71 * linked list implementation. With the latter, all removals are O(1), and most insertions
72 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
73 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
74 * frequent. There may be other data structures worth investigating, however.
75 *
76 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
77 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
78 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
79 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
80 * that the "left" and "right" orientation in the code remains correct (edges to the left are
81 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
82 * degrees counterclockwise, rather that transposing.
83 */
84
85#define LOGGING_ENABLED 0
86
87#if LOGGING_ENABLED
88#define LOG printf
89#else
90#define LOG(...)
91#endif
92
93#define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
94
95namespace {
96
97struct Vertex;
98struct Edge;
99struct Poly;
100
101template <class T, T* T::*Prev, T* T::*Next>
102void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
103    t->*Prev = prev;
104    t->*Next = next;
105    if (prev) {
106        prev->*Next = t;
107    } else if (head) {
108        *head = t;
109    }
110    if (next) {
111        next->*Prev = t;
112    } else if (tail) {
113        *tail = t;
114    }
115}
116
117template <class T, T* T::*Prev, T* T::*Next>
118void list_remove(T* t, T** head, T** tail) {
119    if (t->*Prev) {
120        t->*Prev->*Next = t->*Next;
121    } else if (head) {
122        *head = t->*Next;
123    }
124    if (t->*Next) {
125        t->*Next->*Prev = t->*Prev;
126    } else if (tail) {
127        *tail = t->*Prev;
128    }
129    t->*Prev = t->*Next = nullptr;
130}
131
132/**
133 * Vertices are used in three ways: first, the path contours are converted into a
134 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139 * an individual Vertex from the path mesh may belong to multiple
140 * MonotonePolys, so the original Vertices cannot be re-used.
141 */
142
143struct Vertex {
144  Vertex(const SkPoint& point, uint8_t alpha)
145    : fPoint(point), fPrev(nullptr), fNext(nullptr)
146    , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
147    , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
148    , fProcessed(false)
149    , fAlpha(alpha)
150#if LOGGING_ENABLED
151    , fID (-1.0f)
152#endif
153    {}
154    SkPoint fPoint;           // Vertex position
155    Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
156    Vertex* fNext;            // "
157    Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
158    Edge*   fLastEdgeAbove;   // "
159    Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
160    Edge*   fLastEdgeBelow;   // "
161    bool    fProcessed;       // Has this vertex been seen in simplify()?
162    uint8_t fAlpha;
163#if LOGGING_ENABLED
164    float   fID;              // Identifier used for logging.
165#endif
166};
167
168/***************************************************************************************/
169
170struct AAParams {
171    bool fTweakAlpha;
172    GrColor fColor;
173};
174
175typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
176
177struct Comparator {
178    CompareFunc sweep_lt;
179    CompareFunc sweep_gt;
180};
181
182bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
183    return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
184}
185
186bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
187    return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
188}
189
190bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
191    return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
192}
193
194bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
195    return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
196}
197
198inline void* emit_vertex(Vertex* v, const AAParams* aaParams, void* data) {
199    if (!aaParams) {
200        SkPoint* d = static_cast<SkPoint*>(data);
201        *d++ = v->fPoint;
202        return d;
203    }
204    if (aaParams->fTweakAlpha) {
205        auto d = static_cast<GrDefaultGeoProcFactory::PositionColorAttr*>(data);
206        d->fPosition = v->fPoint;
207        d->fColor = SkAlphaMulQ(aaParams->fColor, SkAlpha255To256(v->fAlpha));
208        d++;
209        return d;
210    }
211    auto d = static_cast<GrDefaultGeoProcFactory::PositionColorCoverageAttr*>(data);
212    d->fPosition = v->fPoint;
213    d->fColor = aaParams->fColor;
214    d->fCoverage = GrNormalizeByteToFloat(v->fAlpha);
215    d++;
216    return d;
217}
218
219void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, const AAParams* aaParams, void* data) {
220#if TESSELLATOR_WIREFRAME
221    data = emit_vertex(v0, aaParams, data);
222    data = emit_vertex(v1, aaParams, data);
223    data = emit_vertex(v1, aaParams, data);
224    data = emit_vertex(v2, aaParams, data);
225    data = emit_vertex(v2, aaParams, data);
226    data = emit_vertex(v0, aaParams, data);
227#else
228    data = emit_vertex(v0, aaParams, data);
229    data = emit_vertex(v1, aaParams, data);
230    data = emit_vertex(v2, aaParams, data);
231#endif
232    return data;
233}
234
235struct VertexList {
236    VertexList() : fHead(nullptr), fTail(nullptr) {}
237    Vertex* fHead;
238    Vertex* fTail;
239    void insert(Vertex* v, Vertex* prev, Vertex* next) {
240        list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
241    }
242    void append(Vertex* v) {
243        insert(v, fTail, nullptr);
244    }
245    void prepend(Vertex* v) {
246        insert(v, nullptr, fHead);
247    }
248    void close() {
249        if (fHead && fTail) {
250            fTail->fNext = fHead;
251            fHead->fPrev = fTail;
252        }
253    }
254};
255
256// Round to nearest quarter-pixel. This is used for screenspace tessellation.
257
258inline void round(SkPoint* p) {
259    p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
260    p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
261}
262
263// A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
264struct Line {
265    Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
266    Line(const SkPoint& p, const SkPoint& q)
267        : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
268        , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
269        , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
270             static_cast<double>(p.fX) * q.fY) {}
271    double dist(const SkPoint& p) const {
272        return fA * p.fX + fB * p.fY + fC;
273    }
274    double magSq() const {
275        return fA * fA + fB * fB;
276    }
277
278    // Compute the intersection of two (infinite) Lines.
279    bool intersect(const Line& other, SkPoint* point) {
280        double denom = fA * other.fB - fB * other.fA;
281        if (denom == 0.0) {
282            return false;
283        }
284        double scale = 1.0f / denom;
285        point->fX = SkDoubleToScalar((fB * other.fC - other.fB * fC) * scale);
286        point->fY = SkDoubleToScalar((other.fA * fC - fA * other.fC) * scale);
287        round(point);
288        return true;
289    }
290    double fA, fB, fC;
291};
292
293/**
294 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
295 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
296 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
297 * point). For speed, that case is only tested by the callers which require it (e.g.,
298 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
299 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
300 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
301 * a lot faster in the "not found" case.
302 *
303 * The coefficients of the line equation stored in double precision to avoid catastrphic
304 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
305 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
306 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
307 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
308 * this file).
309 */
310
311struct Edge {
312    Edge(Vertex* top, Vertex* bottom, int winding)
313        : fWinding(winding)
314        , fTop(top)
315        , fBottom(bottom)
316        , fLeft(nullptr)
317        , fRight(nullptr)
318        , fPrevEdgeAbove(nullptr)
319        , fNextEdgeAbove(nullptr)
320        , fPrevEdgeBelow(nullptr)
321        , fNextEdgeBelow(nullptr)
322        , fLeftPoly(nullptr)
323        , fRightPoly(nullptr)
324        , fLeftPolyPrev(nullptr)
325        , fLeftPolyNext(nullptr)
326        , fRightPolyPrev(nullptr)
327        , fRightPolyNext(nullptr)
328        , fUsedInLeftPoly(false)
329        , fUsedInRightPoly(false)
330        , fLine(top, bottom) {
331        }
332    int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
333    Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
334    Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
335    Edge*    fLeft;             // The linked list of edges in the active edge list.
336    Edge*    fRight;            // "
337    Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
338    Edge*    fNextEdgeAbove;    // "
339    Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
340    Edge*    fNextEdgeBelow;    // "
341    Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
342    Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
343    Edge*    fLeftPolyPrev;
344    Edge*    fLeftPolyNext;
345    Edge*    fRightPolyPrev;
346    Edge*    fRightPolyNext;
347    bool     fUsedInLeftPoly;
348    bool     fUsedInRightPoly;
349    Line     fLine;
350    double dist(const SkPoint& p) const {
351        return fLine.dist(p);
352    }
353    bool isRightOf(Vertex* v) const {
354        return fLine.dist(v->fPoint) < 0.0;
355    }
356    bool isLeftOf(Vertex* v) const {
357        return fLine.dist(v->fPoint) > 0.0;
358    }
359    void recompute() {
360        fLine = Line(fTop, fBottom);
361    }
362    bool intersect(const Edge& other, SkPoint* p) {
363        LOG("intersecting %g -> %g with %g -> %g\n",
364               fTop->fID, fBottom->fID,
365               other.fTop->fID, other.fBottom->fID);
366        if (fTop == other.fTop || fBottom == other.fBottom) {
367            return false;
368        }
369        double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
370        if (denom == 0.0) {
371            return false;
372        }
373        double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
374        double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
375        double sNumer = -dy * other.fLine.fB - dx * other.fLine.fA;
376        double tNumer = -dy * fLine.fB - dx * fLine.fA;
377        // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
378        // This saves us doing the divide below unless absolutely necessary.
379        if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
380                        : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
381            return false;
382        }
383        double s = sNumer / denom;
384        SkASSERT(s >= 0.0 && s <= 1.0);
385        p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
386        p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
387        return true;
388    }
389};
390
391struct EdgeList {
392    EdgeList() : fHead(nullptr), fTail(nullptr), fNext(nullptr), fCount(0) {}
393    Edge* fHead;
394    Edge* fTail;
395    EdgeList* fNext;
396    int fCount;
397    void insert(Edge* edge, Edge* prev, Edge* next) {
398        list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
399        fCount++;
400    }
401    void append(Edge* e) {
402        insert(e, fTail, nullptr);
403    }
404    void remove(Edge* edge) {
405        list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
406        fCount--;
407    }
408    void close() {
409        if (fHead && fTail) {
410            fTail->fRight = fHead;
411            fHead->fLeft = fTail;
412        }
413    }
414    bool contains(Edge* edge) const {
415        return edge->fLeft || edge->fRight || fHead == edge;
416    }
417};
418
419/***************************************************************************************/
420
421struct Poly {
422    Poly(Vertex* v, int winding)
423        : fFirstVertex(v)
424        , fWinding(winding)
425        , fHead(nullptr)
426        , fTail(nullptr)
427        , fNext(nullptr)
428        , fPartner(nullptr)
429        , fCount(0)
430    {
431#if LOGGING_ENABLED
432        static int gID = 0;
433        fID = gID++;
434        LOG("*** created Poly %d\n", fID);
435#endif
436    }
437    typedef enum { kLeft_Side, kRight_Side } Side;
438    struct MonotonePoly {
439        MonotonePoly(Edge* edge, Side side)
440            : fSide(side)
441            , fFirstEdge(nullptr)
442            , fLastEdge(nullptr)
443            , fPrev(nullptr)
444            , fNext(nullptr) {
445            this->addEdge(edge);
446        }
447        Side          fSide;
448        Edge*         fFirstEdge;
449        Edge*         fLastEdge;
450        MonotonePoly* fPrev;
451        MonotonePoly* fNext;
452        void addEdge(Edge* edge) {
453            if (fSide == kRight_Side) {
454                SkASSERT(!edge->fUsedInRightPoly);
455                list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
456                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
457                edge->fUsedInRightPoly = true;
458            } else {
459                SkASSERT(!edge->fUsedInLeftPoly);
460                list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
461                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
462                edge->fUsedInLeftPoly = true;
463            }
464        }
465
466        void* emit(const AAParams* aaParams, void* data) {
467            Edge* e = fFirstEdge;
468            e->fTop->fPrev = e->fTop->fNext = nullptr;
469            VertexList vertices;
470            vertices.append(e->fTop);
471            while (e != nullptr) {
472                e->fBottom->fPrev = e->fBottom->fNext = nullptr;
473                if (kRight_Side == fSide) {
474                    vertices.append(e->fBottom);
475                    e = e->fRightPolyNext;
476                } else {
477                    vertices.prepend(e->fBottom);
478                    e = e->fLeftPolyNext;
479                }
480            }
481            Vertex* first = vertices.fHead;
482            Vertex* v = first->fNext;
483            while (v != vertices.fTail) {
484                SkASSERT(v && v->fPrev && v->fNext);
485                Vertex* prev = v->fPrev;
486                Vertex* curr = v;
487                Vertex* next = v->fNext;
488                double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
489                double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
490                double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
491                double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
492                if (ax * by - ay * bx >= 0.0) {
493                    data = emit_triangle(prev, curr, next, aaParams, data);
494                    v->fPrev->fNext = v->fNext;
495                    v->fNext->fPrev = v->fPrev;
496                    if (v->fPrev == first) {
497                        v = v->fNext;
498                    } else {
499                        v = v->fPrev;
500                    }
501                } else {
502                    v = v->fNext;
503                }
504            }
505            return data;
506        }
507    };
508    Poly* addEdge(Edge* e, Side side, SkChunkAlloc& alloc) {
509        LOG("addEdge (%g -> %g) to poly %d, %s side\n",
510               e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
511        Poly* partner = fPartner;
512        Poly* poly = this;
513        if (side == kRight_Side) {
514            if (e->fUsedInRightPoly) {
515                return this;
516            }
517        } else {
518            if (e->fUsedInLeftPoly) {
519                return this;
520            }
521        }
522        if (partner) {
523            fPartner = partner->fPartner = nullptr;
524        }
525        if (!fTail) {
526            fHead = fTail = ALLOC_NEW(MonotonePoly, (e, side), alloc);
527            fCount += 2;
528        } else if (e->fBottom == fTail->fLastEdge->fBottom) {
529            return poly;
530        } else if (side == fTail->fSide) {
531            fTail->addEdge(e);
532            fCount++;
533        } else {
534            e = ALLOC_NEW(Edge, (fTail->fLastEdge->fBottom, e->fBottom, 1), alloc);
535            fTail->addEdge(e);
536            fCount++;
537            if (partner) {
538                partner->addEdge(e, side, alloc);
539                poly = partner;
540            } else {
541                MonotonePoly* m = ALLOC_NEW(MonotonePoly, (e, side), alloc);
542                m->fPrev = fTail;
543                fTail->fNext = m;
544                fTail = m;
545            }
546        }
547        return poly;
548    }
549    void* emit(const AAParams* aaParams, void *data) {
550        if (fCount < 3) {
551            return data;
552        }
553        LOG("emit() %d, size %d\n", fID, fCount);
554        for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
555            data = m->emit(aaParams, data);
556        }
557        return data;
558    }
559    Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
560    Vertex* fFirstVertex;
561    int fWinding;
562    MonotonePoly* fHead;
563    MonotonePoly* fTail;
564    Poly* fNext;
565    Poly* fPartner;
566    int fCount;
567#if LOGGING_ENABLED
568    int fID;
569#endif
570};
571
572/***************************************************************************************/
573
574bool coincident(const SkPoint& a, const SkPoint& b) {
575    return a == b;
576}
577
578Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
579    Poly* poly = ALLOC_NEW(Poly, (v, winding), alloc);
580    poly->fNext = *head;
581    *head = poly;
582    return poly;
583}
584
585EdgeList* new_contour(EdgeList** head, SkChunkAlloc& alloc) {
586    EdgeList* contour = ALLOC_NEW(EdgeList, (), alloc);
587    contour->fNext = *head;
588    *head = contour;
589    return contour;
590}
591
592Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
593                                SkChunkAlloc& alloc) {
594    Vertex* v = ALLOC_NEW(Vertex, (p, 255), alloc);
595#if LOGGING_ENABLED
596    static float gID = 0.0f;
597    v->fID = gID++;
598#endif
599    if (prev) {
600        prev->fNext = v;
601        v->fPrev = prev;
602    } else {
603        *head = v;
604    }
605    return v;
606}
607
608Vertex* generate_quadratic_points(const SkPoint& p0,
609                                  const SkPoint& p1,
610                                  const SkPoint& p2,
611                                  SkScalar tolSqd,
612                                  Vertex* prev,
613                                  Vertex** head,
614                                  int pointsLeft,
615                                  SkChunkAlloc& alloc) {
616    SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
617    if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
618        return append_point_to_contour(p2, prev, head, alloc);
619    }
620
621    const SkPoint q[] = {
622        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
623        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
624    };
625    const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
626
627    pointsLeft >>= 1;
628    prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
629    prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
630    return prev;
631}
632
633Vertex* generate_cubic_points(const SkPoint& p0,
634                              const SkPoint& p1,
635                              const SkPoint& p2,
636                              const SkPoint& p3,
637                              SkScalar tolSqd,
638                              Vertex* prev,
639                              Vertex** head,
640                              int pointsLeft,
641                              SkChunkAlloc& alloc) {
642    SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
643    SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
644    if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
645        !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
646        return append_point_to_contour(p3, prev, head, alloc);
647    }
648    const SkPoint q[] = {
649        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
650        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
651        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
652    };
653    const SkPoint r[] = {
654        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
655        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
656    };
657    const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
658    pointsLeft >>= 1;
659    prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
660    prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
661    return prev;
662}
663
664// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
665
666void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
667                      Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
668    SkScalar toleranceSqd = tolerance * tolerance;
669
670    SkPoint pts[4];
671    bool done = false;
672    *isLinear = true;
673    SkPath::Iter iter(path, false);
674    Vertex* prev = nullptr;
675    Vertex* head = nullptr;
676    if (path.isInverseFillType()) {
677        SkPoint quad[4];
678        clipBounds.toQuad(quad);
679        for (int i = 3; i >= 0; i--) {
680            prev = append_point_to_contour(quad[i], prev, &head, alloc);
681        }
682        head->fPrev = prev;
683        prev->fNext = head;
684        *contours++ = head;
685        head = prev = nullptr;
686    }
687    SkAutoConicToQuads converter;
688    while (!done) {
689        SkPath::Verb verb = iter.next(pts);
690        switch (verb) {
691            case SkPath::kConic_Verb: {
692                SkScalar weight = iter.conicWeight();
693                const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
694                for (int i = 0; i < converter.countQuads(); ++i) {
695                    int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
696                    prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
697                                                     toleranceSqd, prev, &head, pointsLeft, alloc);
698                    quadPts += 2;
699                }
700                *isLinear = false;
701                break;
702            }
703            case SkPath::kMove_Verb:
704                if (head) {
705                    head->fPrev = prev;
706                    prev->fNext = head;
707                    *contours++ = head;
708                }
709                head = prev = nullptr;
710                prev = append_point_to_contour(pts[0], prev, &head, alloc);
711                break;
712            case SkPath::kLine_Verb: {
713                prev = append_point_to_contour(pts[1], prev, &head, alloc);
714                break;
715            }
716            case SkPath::kQuad_Verb: {
717                int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
718                prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
719                                                 &head, pointsLeft, alloc);
720                *isLinear = false;
721                break;
722            }
723            case SkPath::kCubic_Verb: {
724                int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
725                prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
726                                toleranceSqd, prev, &head, pointsLeft, alloc);
727                *isLinear = false;
728                break;
729            }
730            case SkPath::kClose_Verb:
731                if (head) {
732                    head->fPrev = prev;
733                    prev->fNext = head;
734                    *contours++ = head;
735                }
736                head = prev = nullptr;
737                break;
738            case SkPath::kDone_Verb:
739                if (head) {
740                    head->fPrev = prev;
741                    prev->fNext = head;
742                    *contours++ = head;
743                }
744                done = true;
745                break;
746        }
747    }
748}
749
750inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
751    if (!poly) {
752        return false;
753    }
754    int winding = poly->fWinding;
755    switch (fillType) {
756        case SkPath::kWinding_FillType:
757            return winding != 0;
758        case SkPath::kEvenOdd_FillType:
759            return (winding & 1) != 0;
760        case SkPath::kInverseWinding_FillType:
761            return winding == 1;
762        case SkPath::kInverseEvenOdd_FillType:
763            return (winding & 1) == 1;
764        default:
765            SkASSERT(false);
766            return false;
767    }
768}
769
770Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c,
771               int winding_scale = 1) {
772    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? winding_scale : -winding_scale;
773    Vertex* top = winding < 0 ? next : prev;
774    Vertex* bottom = winding < 0 ? prev : next;
775    return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
776}
777
778void remove_edge(Edge* edge, EdgeList* edges) {
779    LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
780    SkASSERT(edges->contains(edge));
781    edges->remove(edge);
782}
783
784void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
785    LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
786    SkASSERT(!edges->contains(edge));
787    Edge* next = prev ? prev->fRight : edges->fHead;
788    edges->insert(edge, prev, next);
789}
790
791void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
792    if (v->fFirstEdgeAbove) {
793        *left = v->fFirstEdgeAbove->fLeft;
794        *right = v->fLastEdgeAbove->fRight;
795        return;
796    }
797    Edge* next = nullptr;
798    Edge* prev;
799    for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
800        if (prev->isLeftOf(v)) {
801            break;
802        }
803        next = prev;
804    }
805    *left = prev;
806    *right = next;
807}
808
809void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
810    Edge* prev = nullptr;
811    Edge* next;
812    for (next = edges->fHead; next != nullptr; next = next->fRight) {
813        if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
814            (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
815            (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
816             next->isRightOf(edge->fBottom)) ||
817            (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
818             edge->isLeftOf(next->fBottom))) {
819            break;
820        }
821        prev = next;
822    }
823    *left = prev;
824    *right = next;
825}
826
827void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
828    if (activeEdges && activeEdges->contains(edge)) {
829        if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
830            remove_edge(edge, activeEdges);
831        }
832    } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
833        Edge* left;
834        Edge* right;
835        find_enclosing_edges(edge, activeEdges, c, &left, &right);
836        insert_edge(edge, left, activeEdges);
837    }
838}
839
840void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
841    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
842        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
843        return;
844    }
845    LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
846    Edge* prev = nullptr;
847    Edge* next;
848    for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
849        if (next->isRightOf(edge->fTop)) {
850            break;
851        }
852        prev = next;
853    }
854    list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
855        edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
856}
857
858void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
859    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
860        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
861        return;
862    }
863    LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
864    Edge* prev = nullptr;
865    Edge* next;
866    for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
867        if (next->isRightOf(edge->fBottom)) {
868            break;
869        }
870        prev = next;
871    }
872    list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
873        edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
874}
875
876void remove_edge_above(Edge* edge) {
877    LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
878        edge->fBottom->fID);
879    list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
880        edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
881}
882
883void remove_edge_below(Edge* edge) {
884    LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
885        edge->fTop->fID);
886    list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
887        edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
888}
889
890void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
891    if (edge->fWinding != 0) {
892        return;
893    }
894    LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
895    remove_edge_above(edge);
896    remove_edge_below(edge);
897    if (edges && edges->contains(edge)) {
898        remove_edge(edge, edges);
899    }
900}
901
902void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
903
904void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
905    remove_edge_below(edge);
906    edge->fTop = v;
907    edge->recompute();
908    insert_edge_below(edge, v, c);
909    fix_active_state(edge, activeEdges, c);
910    merge_collinear_edges(edge, activeEdges, c);
911}
912
913void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
914    remove_edge_above(edge);
915    edge->fBottom = v;
916    edge->recompute();
917    insert_edge_above(edge, v, c);
918    fix_active_state(edge, activeEdges, c);
919    merge_collinear_edges(edge, activeEdges, c);
920}
921
922void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
923    if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
924        LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
925            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
926            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
927        other->fWinding += edge->fWinding;
928        erase_edge_if_zero_winding(other, activeEdges);
929        edge->fWinding = 0;
930        erase_edge_if_zero_winding(edge, activeEdges);
931    } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
932        other->fWinding += edge->fWinding;
933        erase_edge_if_zero_winding(other, activeEdges);
934        set_bottom(edge, other->fTop, activeEdges, c);
935    } else {
936        edge->fWinding += other->fWinding;
937        erase_edge_if_zero_winding(edge, activeEdges);
938        set_bottom(other, edge->fTop, activeEdges, c);
939    }
940}
941
942void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
943    if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
944        LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
945            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
946            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
947        other->fWinding += edge->fWinding;
948        erase_edge_if_zero_winding(other, activeEdges);
949        edge->fWinding = 0;
950        erase_edge_if_zero_winding(edge, activeEdges);
951    } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
952        edge->fWinding += other->fWinding;
953        erase_edge_if_zero_winding(edge, activeEdges);
954        set_top(other, edge->fBottom, activeEdges, c);
955    } else {
956        other->fWinding += edge->fWinding;
957        erase_edge_if_zero_winding(other, activeEdges);
958        set_top(edge, other->fBottom, activeEdges, c);
959    }
960}
961
962void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
963    if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
964                                 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
965        merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
966    } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
967                                        !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
968        merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
969    }
970    if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
971                                 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
972        merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
973    } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
974                                        !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
975        merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
976    }
977}
978
979void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
980
981void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
982    Vertex* top = edge->fTop;
983    Vertex* bottom = edge->fBottom;
984    if (edge->fLeft) {
985        Vertex* leftTop = edge->fLeft->fTop;
986        Vertex* leftBottom = edge->fLeft->fBottom;
987        if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
988            split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
989        } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
990            split_edge(edge, leftTop, activeEdges, c, alloc);
991        } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
992                   !edge->fLeft->isLeftOf(bottom)) {
993            split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
994        } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
995            split_edge(edge, leftBottom, activeEdges, c, alloc);
996        }
997    }
998    if (edge->fRight) {
999        Vertex* rightTop = edge->fRight->fTop;
1000        Vertex* rightBottom = edge->fRight->fBottom;
1001        if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
1002            split_edge(edge->fRight, top, activeEdges, c, alloc);
1003        } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
1004            split_edge(edge, rightTop, activeEdges, c, alloc);
1005        } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
1006                   !edge->fRight->isRightOf(bottom)) {
1007            split_edge(edge->fRight, bottom, activeEdges, c, alloc);
1008        } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
1009                   !edge->isLeftOf(rightBottom)) {
1010            split_edge(edge, rightBottom, activeEdges, c, alloc);
1011        }
1012    }
1013}
1014
1015void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
1016    LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1017        edge->fTop->fID, edge->fBottom->fID,
1018        v->fID, v->fPoint.fX, v->fPoint.fY);
1019    if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1020        set_top(edge, v, activeEdges, c);
1021    } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
1022        set_bottom(edge, v, activeEdges, c);
1023    } else {
1024        Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
1025        insert_edge_below(newEdge, v, c);
1026        insert_edge_above(newEdge, edge->fBottom, c);
1027        set_bottom(edge, v, activeEdges, c);
1028        cleanup_active_edges(edge, activeEdges, c, alloc);
1029        fix_active_state(newEdge, activeEdges, c);
1030        merge_collinear_edges(newEdge, activeEdges, c);
1031    }
1032}
1033
1034Edge* connect(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator c,
1035              int winding_scale = 1) {
1036    Edge* edge = new_edge(prev, next, alloc, c, winding_scale);
1037    if (edge->fWinding > 0) {
1038        insert_edge_below(edge, prev, c);
1039        insert_edge_above(edge, next, c);
1040    } else {
1041        insert_edge_below(edge, next, c);
1042        insert_edge_above(edge, prev, c);
1043    }
1044    merge_collinear_edges(edge, nullptr, c);
1045    return edge;
1046}
1047
1048void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
1049    LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1050        src->fID, dst->fID);
1051    dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1052    for (Edge* edge = src->fFirstEdgeAbove; edge;) {
1053        Edge* next = edge->fNextEdgeAbove;
1054        set_bottom(edge, dst, nullptr, c);
1055        edge = next;
1056    }
1057    for (Edge* edge = src->fFirstEdgeBelow; edge;) {
1058        Edge* next = edge->fNextEdgeBelow;
1059        set_top(edge, dst, nullptr, c);
1060        edge = next;
1061    }
1062    list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
1063}
1064
1065uint8_t max_edge_alpha(Edge* a, Edge* b) {
1066    return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
1067                  SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
1068}
1069
1070Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
1071                               SkChunkAlloc& alloc) {
1072    SkPoint p;
1073    if (!edge || !other) {
1074        return nullptr;
1075    }
1076    if (edge->intersect(*other, &p)) {
1077        Vertex* v;
1078        LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1079        if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
1080            split_edge(other, edge->fTop, activeEdges, c, alloc);
1081            v = edge->fTop;
1082        } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
1083            split_edge(other, edge->fBottom, activeEdges, c, alloc);
1084            v = edge->fBottom;
1085        } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
1086            split_edge(edge, other->fTop, activeEdges, c, alloc);
1087            v = other->fTop;
1088        } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
1089            split_edge(edge, other->fBottom, activeEdges, c, alloc);
1090            v = other->fBottom;
1091        } else {
1092            Vertex* nextV = edge->fTop;
1093            while (c.sweep_lt(p, nextV->fPoint)) {
1094                nextV = nextV->fPrev;
1095            }
1096            while (c.sweep_lt(nextV->fPoint, p)) {
1097                nextV = nextV->fNext;
1098            }
1099            Vertex* prevV = nextV->fPrev;
1100            if (coincident(prevV->fPoint, p)) {
1101                v = prevV;
1102            } else if (coincident(nextV->fPoint, p)) {
1103                v = nextV;
1104            } else {
1105                uint8_t alpha = max_edge_alpha(edge, other);
1106                v = ALLOC_NEW(Vertex, (p, alpha), alloc);
1107                LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1108                    prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1109                    nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1110#if LOGGING_ENABLED
1111                v->fID = (nextV->fID + prevV->fID) * 0.5f;
1112#endif
1113                v->fPrev = prevV;
1114                v->fNext = nextV;
1115                prevV->fNext = v;
1116                nextV->fPrev = v;
1117            }
1118            split_edge(edge, v, activeEdges, c, alloc);
1119            split_edge(other, v, activeEdges, c, alloc);
1120        }
1121        return v;
1122    }
1123    return nullptr;
1124}
1125
1126void sanitize_contours(Vertex** contours, int contourCnt, bool approximate) {
1127    for (int i = 0; i < contourCnt; ++i) {
1128        SkASSERT(contours[i]);
1129        for (Vertex* v = contours[i];;) {
1130            if (approximate) {
1131                round(&v->fPoint);
1132            }
1133            if (coincident(v->fPrev->fPoint, v->fPoint)) {
1134                LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1135                if (v->fPrev == v) {
1136                    contours[i] = nullptr;
1137                    break;
1138                }
1139                v->fPrev->fNext = v->fNext;
1140                v->fNext->fPrev = v->fPrev;
1141                if (contours[i] == v) {
1142                    contours[i] = v->fNext;
1143                }
1144                v = v->fPrev;
1145            } else {
1146                v = v->fNext;
1147                if (v == contours[i]) break;
1148            }
1149        }
1150    }
1151}
1152
1153void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
1154    for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
1155        if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1156            v->fPoint = v->fPrev->fPoint;
1157        }
1158        if (coincident(v->fPrev->fPoint, v->fPoint)) {
1159            merge_vertices(v->fPrev, v, vertices, c, alloc);
1160        }
1161    }
1162}
1163
1164// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1165
1166Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1167    Vertex* vertices = nullptr;
1168    Vertex* prev = nullptr;
1169    for (int i = 0; i < contourCnt; ++i) {
1170        for (Vertex* v = contours[i]; v != nullptr;) {
1171            Vertex* vNext = v->fNext;
1172            connect(v->fPrev, v, alloc, c);
1173            if (prev) {
1174                prev->fNext = v;
1175                v->fPrev = prev;
1176            } else {
1177                vertices = v;
1178            }
1179            prev = v;
1180            v = vNext;
1181            if (v == contours[i]) break;
1182        }
1183    }
1184    if (prev) {
1185        prev->fNext = vertices->fPrev = nullptr;
1186    }
1187    return vertices;
1188}
1189
1190// Stage 3: sort the vertices by increasing sweep direction.
1191
1192Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
1193
1194void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1195    Vertex* fast;
1196    Vertex* slow;
1197    if (!v || !v->fNext) {
1198        *pFront = v;
1199        *pBack = nullptr;
1200    } else {
1201        slow = v;
1202        fast = v->fNext;
1203
1204        while (fast != nullptr) {
1205            fast = fast->fNext;
1206            if (fast != nullptr) {
1207                slow = slow->fNext;
1208                fast = fast->fNext;
1209            }
1210        }
1211
1212        *pFront = v;
1213        *pBack = slow->fNext;
1214        slow->fNext->fPrev = nullptr;
1215        slow->fNext = nullptr;
1216    }
1217}
1218
1219void merge_sort(Vertex** head, Comparator& c) {
1220    if (!*head || !(*head)->fNext) {
1221        return;
1222    }
1223
1224    Vertex* a;
1225    Vertex* b;
1226    front_back_split(*head, &a, &b);
1227
1228    merge_sort(&a, c);
1229    merge_sort(&b, c);
1230
1231    *head = sorted_merge(a, b, c);
1232}
1233
1234Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
1235    VertexList vertices;
1236
1237    while (a && b) {
1238        if (c.sweep_lt(a->fPoint, b->fPoint)) {
1239            Vertex* next = a->fNext;
1240            vertices.append(a);
1241            a = next;
1242        } else {
1243            Vertex* next = b->fNext;
1244            vertices.append(b);
1245            b = next;
1246        }
1247    }
1248    if (a) {
1249        vertices.insert(a, vertices.fTail, a->fNext);
1250    }
1251    if (b) {
1252        vertices.insert(b, vertices.fTail, b->fNext);
1253    }
1254    return vertices.fHead;
1255}
1256
1257// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1258
1259void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
1260    LOG("simplifying complex polygons\n");
1261    EdgeList activeEdges;
1262    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1263        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1264            continue;
1265        }
1266#if LOGGING_ENABLED
1267        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1268#endif
1269        Edge* leftEnclosingEdge = nullptr;
1270        Edge* rightEnclosingEdge = nullptr;
1271        bool restartChecks;
1272        do {
1273            restartChecks = false;
1274            find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1275            if (v->fFirstEdgeBelow) {
1276                for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = edge->fNextEdgeBelow) {
1277                    if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1278                        restartChecks = true;
1279                        break;
1280                    }
1281                    if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1282                        restartChecks = true;
1283                        break;
1284                    }
1285                }
1286            } else {
1287                if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1288                                                        &activeEdges, c, alloc)) {
1289                    if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1290                        v = pv;
1291                    }
1292                    restartChecks = true;
1293                }
1294
1295            }
1296        } while (restartChecks);
1297        if (v->fAlpha == 0) {
1298            if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
1299                (rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
1300                v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
1301            }
1302        }
1303        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1304            remove_edge(e, &activeEdges);
1305        }
1306        Edge* leftEdge = leftEnclosingEdge;
1307        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1308            insert_edge(e, leftEdge, &activeEdges);
1309            leftEdge = e;
1310        }
1311        v->fProcessed = true;
1312    }
1313}
1314
1315// Stage 5: Tessellate the simplified mesh into monotone polygons.
1316
1317Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1318    LOG("tessellating simple polygons\n");
1319    EdgeList activeEdges;
1320    Poly* polys = nullptr;
1321    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1322        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1323            continue;
1324        }
1325#if LOGGING_ENABLED
1326        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1327#endif
1328        Edge* leftEnclosingEdge = nullptr;
1329        Edge* rightEnclosingEdge = nullptr;
1330        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1331        Poly* leftPoly = nullptr;
1332        Poly* rightPoly = nullptr;
1333        if (v->fFirstEdgeAbove) {
1334            leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1335            rightPoly = v->fLastEdgeAbove->fRightPoly;
1336        } else {
1337            leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1338            rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1339        }
1340#if LOGGING_ENABLED
1341        LOG("edges above:\n");
1342        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1343            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1344                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1345        }
1346        LOG("edges below:\n");
1347        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1348            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1349                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1350        }
1351#endif
1352        if (v->fFirstEdgeAbove) {
1353            if (leftPoly) {
1354                leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1355            }
1356            if (rightPoly) {
1357                rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1358            }
1359            for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1360                Edge* leftEdge = e;
1361                Edge* rightEdge = e->fNextEdgeAbove;
1362                SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1363                remove_edge(leftEdge, &activeEdges);
1364                if (leftEdge->fRightPoly) {
1365                    leftEdge->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1366                }
1367                if (rightEdge->fLeftPoly) {
1368                    rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1369                }
1370            }
1371            remove_edge(v->fLastEdgeAbove, &activeEdges);
1372            if (!v->fFirstEdgeBelow) {
1373                if (leftPoly && rightPoly && leftPoly != rightPoly) {
1374                    SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1375                    rightPoly->fPartner = leftPoly;
1376                    leftPoly->fPartner = rightPoly;
1377                }
1378            }
1379        }
1380        if (v->fFirstEdgeBelow) {
1381            if (!v->fFirstEdgeAbove) {
1382                if (leftPoly && rightPoly) {
1383                    if (leftPoly == rightPoly) {
1384                        if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1385                            leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1386                                                 leftPoly->fWinding, alloc);
1387                            leftEnclosingEdge->fRightPoly = leftPoly;
1388                        } else {
1389                            rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1390                                                 rightPoly->fWinding, alloc);
1391                            rightEnclosingEdge->fLeftPoly = rightPoly;
1392                        }
1393                    }
1394                    Edge* join = ALLOC_NEW(Edge, (leftPoly->lastVertex(), v, 1), alloc);
1395                    leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1396                    rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1397                }
1398            }
1399            Edge* leftEdge = v->fFirstEdgeBelow;
1400            leftEdge->fLeftPoly = leftPoly;
1401            insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1402            for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1403                 rightEdge = rightEdge->fNextEdgeBelow) {
1404                insert_edge(rightEdge, leftEdge, &activeEdges);
1405                int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1406                winding += leftEdge->fWinding;
1407                if (winding != 0) {
1408                    Poly* poly = new_poly(&polys, v, winding, alloc);
1409                    leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1410                }
1411                leftEdge = rightEdge;
1412            }
1413            v->fLastEdgeBelow->fRightPoly = rightPoly;
1414        }
1415#if LOGGING_ENABLED
1416        LOG("\nactive edges:\n");
1417        for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1418            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1419                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1420        }
1421#endif
1422    }
1423    return polys;
1424}
1425
1426bool is_boundary_edge(Edge* edge, SkPath::FillType fillType) {
1427    return apply_fill_type(fillType, edge->fLeftPoly) !=
1428           apply_fill_type(fillType, edge->fRightPoly);
1429}
1430
1431bool is_boundary_start(Edge* edge, SkPath::FillType fillType) {
1432    return !apply_fill_type(fillType, edge->fLeftPoly) &&
1433            apply_fill_type(fillType, edge->fRightPoly);
1434}
1435
1436Vertex* remove_non_boundary_edges(Vertex* vertices, SkPath::FillType fillType,
1437                                  SkChunkAlloc& alloc) {
1438    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1439        for (Edge* e = v->fFirstEdgeBelow; e != nullptr;) {
1440            Edge* next = e->fNextEdgeBelow;
1441            if (!is_boundary_edge(e, fillType)) {
1442                remove_edge_above(e);
1443                remove_edge_below(e);
1444            }
1445            e = next;
1446        }
1447    }
1448    return vertices;
1449}
1450
1451void get_edge_normal(const Edge* e, SkVector* normal) {
1452    normal->setNormalize(SkDoubleToScalar(-e->fLine.fB) * e->fWinding,
1453                         SkDoubleToScalar(e->fLine.fA) * e->fWinding);
1454}
1455
1456// Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1457// and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1458// invert on stroking.
1459
1460void simplify_boundary(EdgeList* boundary, Comparator& c, SkChunkAlloc& alloc) {
1461    Edge* prevEdge = boundary->fTail;
1462    SkVector prevNormal;
1463    get_edge_normal(prevEdge, &prevNormal);
1464    for (Edge* e = boundary->fHead; e != nullptr;) {
1465        Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1466        Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1467        double dist = e->dist(prev->fPoint);
1468        SkVector normal;
1469        get_edge_normal(e, &normal);
1470        float denom = 0.25f * static_cast<float>(e->fLine.magSq());
1471        if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
1472            Edge* join = new_edge(prev, next, alloc, c);
1473            insert_edge(join, e, boundary);
1474            remove_edge(prevEdge, boundary);
1475            remove_edge(e, boundary);
1476            if (join->fLeft && join->fRight) {
1477                prevEdge = join->fLeft;
1478                e = join;
1479            } else {
1480                prevEdge = boundary->fTail;
1481                e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1482            }
1483            get_edge_normal(prevEdge, &prevNormal);
1484        } else {
1485            prevEdge = e;
1486            prevNormal = normal;
1487            e = e->fRight;
1488        }
1489    }
1490}
1491
1492// Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1493// find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1494// new antialiased mesh from those vertices.
1495
1496void boundary_to_aa_mesh(EdgeList* boundary, VertexList* mesh, Comparator& c, SkChunkAlloc& alloc) {
1497    EdgeList outerContour;
1498    Edge* prevEdge = boundary->fTail;
1499    float radius = 0.5f;
1500    double offset = radius * sqrt(prevEdge->fLine.magSq()) * prevEdge->fWinding;
1501    Line prevInner(prevEdge->fTop, prevEdge->fBottom);
1502    prevInner.fC -= offset;
1503    Line prevOuter(prevEdge->fTop, prevEdge->fBottom);
1504    prevOuter.fC += offset;
1505    VertexList innerVertices;
1506    VertexList outerVertices;
1507    SkScalar innerCount = SK_Scalar1, outerCount = SK_Scalar1;
1508    for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1509        double offset = radius * sqrt(e->fLine.magSq()) * e->fWinding;
1510        Line inner(e->fTop, e->fBottom);
1511        inner.fC -= offset;
1512        Line outer(e->fTop, e->fBottom);
1513        outer.fC += offset;
1514        SkPoint innerPoint, outerPoint;
1515        if (prevInner.intersect(inner, &innerPoint) &&
1516            prevOuter.intersect(outer, &outerPoint)) {
1517            Vertex* innerVertex = ALLOC_NEW(Vertex, (innerPoint, 255), alloc);
1518            Vertex* outerVertex = ALLOC_NEW(Vertex, (outerPoint, 0), alloc);
1519            if (innerVertices.fTail && outerVertices.fTail) {
1520                Edge innerEdge(innerVertices.fTail, innerVertex, 1);
1521                Edge outerEdge(outerVertices.fTail, outerVertex, 1);
1522                SkVector innerNormal;
1523                get_edge_normal(&innerEdge, &innerNormal);
1524                SkVector outerNormal;
1525                get_edge_normal(&outerEdge, &outerNormal);
1526                SkVector normal;
1527                get_edge_normal(prevEdge, &normal);
1528                if (normal.dot(innerNormal) < 0) {
1529                    innerPoint += innerVertices.fTail->fPoint * innerCount;
1530                    innerCount++;
1531                    innerPoint *= SkScalarInvert(innerCount);
1532                    innerVertices.fTail->fPoint = innerVertex->fPoint = innerPoint;
1533                } else {
1534                    innerCount = SK_Scalar1;
1535                }
1536                if (normal.dot(outerNormal) < 0) {
1537                    outerPoint += outerVertices.fTail->fPoint * outerCount;
1538                    outerCount++;
1539                    outerPoint *= SkScalarInvert(outerCount);
1540                    outerVertices.fTail->fPoint = outerVertex->fPoint = outerPoint;
1541                } else {
1542                    outerCount = SK_Scalar1;
1543                }
1544            }
1545            innerVertices.append(innerVertex);
1546            outerVertices.append(outerVertex);
1547            prevEdge = e;
1548        }
1549        prevInner = inner;
1550        prevOuter = outer;
1551    }
1552    innerVertices.close();
1553    outerVertices.close();
1554
1555    Vertex* innerVertex = innerVertices.fHead;
1556    Vertex* outerVertex = outerVertices.fHead;
1557    // Alternate clockwise and counterclockwise polys, so the tesselator
1558    // doesn't cancel out the interior edges.
1559    if (!innerVertex || !outerVertex) {
1560        return;
1561    }
1562    do {
1563        connect(outerVertex->fNext, outerVertex, alloc, c);
1564        connect(innerVertex->fNext, innerVertex, alloc, c, 2);
1565        connect(innerVertex, outerVertex->fNext, alloc, c, 2);
1566        connect(outerVertex, innerVertex, alloc, c, 2);
1567        Vertex* innerNext = innerVertex->fNext;
1568        Vertex* outerNext = outerVertex->fNext;
1569        mesh->append(innerVertex);
1570        mesh->append(outerVertex);
1571        innerVertex = innerNext;
1572        outerVertex = outerNext;
1573    } while (innerVertex != innerVertices.fHead && outerVertex != outerVertices.fHead);
1574}
1575
1576void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkChunkAlloc& alloc) {
1577    bool down = is_boundary_start(e, fillType);
1578    while (e) {
1579        e->fWinding = down ? 1 : -1;
1580        Edge* next;
1581        boundary->append(e);
1582        if (down) {
1583            // Find outgoing edge, in clockwise order.
1584            if ((next = e->fNextEdgeAbove)) {
1585                down = false;
1586            } else if ((next = e->fBottom->fLastEdgeBelow)) {
1587                down = true;
1588            } else if ((next = e->fPrevEdgeAbove)) {
1589                down = false;
1590            }
1591        } else {
1592            // Find outgoing edge, in counter-clockwise order.
1593            if ((next = e->fPrevEdgeBelow)) {
1594                down = true;
1595            } else if ((next = e->fTop->fFirstEdgeAbove)) {
1596                down = false;
1597            } else if ((next = e->fNextEdgeBelow)) {
1598                down = true;
1599            }
1600        }
1601        remove_edge_above(e);
1602        remove_edge_below(e);
1603        e = next;
1604    }
1605}
1606
1607// Stage 5b: Extract boundary edges.
1608
1609EdgeList* extract_boundaries(Vertex* vertices, SkPath::FillType fillType, SkChunkAlloc& alloc) {
1610    LOG("extracting boundaries\n");
1611    vertices = remove_non_boundary_edges(vertices, fillType, alloc);
1612    EdgeList* boundaries = nullptr;
1613    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1614        while (v->fFirstEdgeBelow) {
1615            EdgeList* boundary = new_contour(&boundaries, alloc);
1616            extract_boundary(boundary, v->fFirstEdgeBelow, fillType, alloc);
1617        }
1618    }
1619    return boundaries;
1620}
1621
1622// This is a driver function which calls stages 2-5 in turn.
1623
1624Vertex* contours_to_mesh(Vertex** contours, int contourCnt, bool antialias,
1625                         Comparator& c, SkChunkAlloc& alloc) {
1626#if LOGGING_ENABLED
1627    for (int i = 0; i < contourCnt; ++i) {
1628        Vertex* v = contours[i];
1629        SkASSERT(v);
1630        LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1631        for (v = v->fNext; v != contours[i]; v = v->fNext) {
1632            LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1633        }
1634    }
1635#endif
1636    sanitize_contours(contours, contourCnt, antialias);
1637    return build_edges(contours, contourCnt, c, alloc);
1638}
1639
1640Poly* mesh_to_polys(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
1641    if (!vertices || !*vertices) {
1642        return nullptr;
1643    }
1644
1645    // Sort vertices in Y (secondarily in X).
1646    merge_sort(vertices, c);
1647    merge_coincident_vertices(vertices, c, alloc);
1648#if LOGGING_ENABLED
1649    for (Vertex* v = *vertices; v != nullptr; v = v->fNext) {
1650        static float gID = 0.0f;
1651        v->fID = gID++;
1652    }
1653#endif
1654    simplify(*vertices, c, alloc);
1655    return tessellate(*vertices, alloc);
1656}
1657
1658Poly* contours_to_polys(Vertex** contours, int contourCnt, SkPath::FillType fillType,
1659                        const SkRect& pathBounds, bool antialias,
1660                        SkChunkAlloc& alloc) {
1661    Comparator c;
1662    if (pathBounds.width() > pathBounds.height()) {
1663        c.sweep_lt = sweep_lt_horiz;
1664        c.sweep_gt = sweep_gt_horiz;
1665    } else {
1666        c.sweep_lt = sweep_lt_vert;
1667        c.sweep_gt = sweep_gt_vert;
1668    }
1669    Vertex* mesh = contours_to_mesh(contours, contourCnt, antialias, c, alloc);
1670    Poly* polys = mesh_to_polys(&mesh, c, alloc);
1671    if (antialias) {
1672        EdgeList* boundaries = extract_boundaries(mesh, fillType, alloc);
1673        VertexList aaMesh;
1674        for (EdgeList* boundary = boundaries; boundary != nullptr; boundary = boundary->fNext) {
1675            simplify_boundary(boundary, c, alloc);
1676            if (boundary->fCount > 2) {
1677                boundary_to_aa_mesh(boundary, &aaMesh, c, alloc);
1678            }
1679        }
1680        return mesh_to_polys(&aaMesh.fHead, c, alloc);
1681    }
1682    return polys;
1683}
1684
1685// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1686void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, const AAParams* aaParams,
1687                         void* data) {
1688    for (Poly* poly = polys; poly; poly = poly->fNext) {
1689        if (apply_fill_type(fillType, poly)) {
1690            data = poly->emit(aaParams, data);
1691        }
1692    }
1693    return data;
1694}
1695
1696Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1697                    int contourCnt, SkChunkAlloc& alloc, bool antialias, bool* isLinear) {
1698    SkPath::FillType fillType = path.getFillType();
1699    if (SkPath::IsInverseFillType(fillType)) {
1700        contourCnt++;
1701    }
1702    std::unique_ptr<Vertex*[]> contours(new Vertex* [contourCnt]);
1703
1704    path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1705    return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
1706                             antialias, alloc);
1707}
1708
1709void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance, int* contourCnt,
1710                                         int* sizeEstimate) {
1711    int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance);
1712    if (maxPts <= 0) {
1713        *contourCnt = 0;
1714        return;
1715    }
1716    if (maxPts > ((int)SK_MaxU16 + 1)) {
1717        SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1718        *contourCnt = 0;
1719        return;
1720    }
1721    // For the initial size of the chunk allocator, estimate based on the point count:
1722    // one vertex per point for the initial passes, plus two for the vertices in the
1723    // resulting Polys, since the same point may end up in two Polys.  Assume minimal
1724    // connectivity of one Edge per Vertex (will grow for intersections).
1725    *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge));
1726}
1727
1728int count_points(Poly* polys, SkPath::FillType fillType) {
1729    int count = 0;
1730    for (Poly* poly = polys; poly; poly = poly->fNext) {
1731        if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
1732            count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1733        }
1734    }
1735    return count;
1736}
1737
1738} // namespace
1739
1740namespace GrTessellator {
1741
1742// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1743
1744int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1745                    VertexAllocator* vertexAllocator, bool antialias, const GrColor& color,
1746                    bool canTweakAlphaForCoverage, bool* isLinear) {
1747    int contourCnt;
1748    int sizeEstimate;
1749    get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1750    if (contourCnt <= 0) {
1751        *isLinear = true;
1752        return 0;
1753    }
1754    SkChunkAlloc alloc(sizeEstimate);
1755    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
1756                                isLinear);
1757    SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
1758    int count = count_points(polys, fillType);
1759    if (0 == count) {
1760        return 0;
1761    }
1762
1763    void* verts = vertexAllocator->lock(count);
1764    if (!verts) {
1765        SkDebugf("Could not allocate vertices\n");
1766        return 0;
1767    }
1768
1769    LOG("emitting %d verts\n", count);
1770    AAParams aaParams;
1771    aaParams.fTweakAlpha = canTweakAlphaForCoverage;
1772    aaParams.fColor = color;
1773
1774    void* end = polys_to_triangles(polys, fillType, antialias ? &aaParams : nullptr, verts);
1775    int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1776                                       / vertexAllocator->stride());
1777    SkASSERT(actualCount <= count);
1778    vertexAllocator->unlock(actualCount);
1779    return actualCount;
1780}
1781
1782int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1783                   GrTessellator::WindingVertex** verts) {
1784    int contourCnt;
1785    int sizeEstimate;
1786    get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1787    if (contourCnt <= 0) {
1788        return 0;
1789    }
1790    SkChunkAlloc alloc(sizeEstimate);
1791    bool isLinear;
1792    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear);
1793    SkPath::FillType fillType = path.getFillType();
1794    int count = count_points(polys, fillType);
1795    if (0 == count) {
1796        *verts = nullptr;
1797        return 0;
1798    }
1799
1800    *verts = new GrTessellator::WindingVertex[count];
1801    GrTessellator::WindingVertex* vertsEnd = *verts;
1802    SkPoint* points = new SkPoint[count];
1803    SkPoint* pointsEnd = points;
1804    for (Poly* poly = polys; poly; poly = poly->fNext) {
1805        if (apply_fill_type(fillType, poly)) {
1806            SkPoint* start = pointsEnd;
1807            pointsEnd = static_cast<SkPoint*>(poly->emit(nullptr, pointsEnd));
1808            while (start != pointsEnd) {
1809                vertsEnd->fPos = *start;
1810                vertsEnd->fWinding = poly->fWinding;
1811                ++start;
1812                ++vertsEnd;
1813            }
1814        }
1815    }
1816    int actualCount = static_cast<int>(vertsEnd - *verts);
1817    SkASSERT(actualCount <= count);
1818    SkASSERT(pointsEnd - points == actualCount);
1819    delete[] points;
1820    return actualCount;
1821}
1822
1823} // namespace
1824