GrTessellator.cpp revision e595bbfba6e7dcdda0d7d700343e9d814a406771
1/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellator.h"
9
10#include "GrDefaultGeoProcFactory.h"
11#include "GrPathUtils.h"
12
13#include "SkArenaAlloc.h"
14#include "SkGeometry.h"
15#include "SkPath.h"
16
17#include <stdio.h>
18
19/*
20 * There are six stages to the basic algorithm:
21 *
22 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
23 * 2) Build a mesh of edges connecting the vertices (build_edges()).
24 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
25 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
26 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
27 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
28 *
29 * For screenspace antialiasing, the algorithm is modified as follows:
30 *
31 * Run steps 1-5 above to produce polygons.
32 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
33 * 5c) Simplify boundaries to remove "pointy" vertices which cause inversions (simplify_boundary()).
34 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
35 *     new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
36 *     antialiased mesh from those vertices (boundary_to_aa_mesh()).
37 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
38 *
39 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
40 * of vertices (and the necessity of inserting new vertices on intersection).
41 *
42 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
43 * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
44 * left-to-right based on the point where both edges are active (when both top vertices
45 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
46 * (shared), it's sorted based on the last point where both edges are active, so the
47 * "upper" bottom vertex.
48 *
49 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
50 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
51 * not exact and may violate the mesh topology or active edge list ordering. We
52 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
53 * points. This occurs in three ways:
54 *
55 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
56 *    neighbouring edges at the top or bottom vertex. This is handled by merging the
57 *    edges (merge_collinear_edges()).
58 * B) Intersections may cause an edge to violate the left-to-right ordering of the
59 *    active edge list. This is handled by splitting the neighbour edge on the
60 *    intersected vertex (cleanup_active_edges()).
61 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
62 *    to become active. This is handled by removing or inserting the edge in the active
63 *    edge list (fix_active_state()).
64 *
65 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
66 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
67 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
68 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
69 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
70 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
71 * linked list implementation. With the latter, all removals are O(1), and most insertions
72 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
73 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
74 * frequent. There may be other data structures worth investigating, however.
75 *
76 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
77 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
78 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
79 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
80 * that the "left" and "right" orientation in the code remains correct (edges to the left are
81 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
82 * degrees counterclockwise, rather that transposing.
83 */
84
85#define LOGGING_ENABLED 0
86
87#if LOGGING_ENABLED
88#define LOG printf
89#else
90#define LOG(...)
91#endif
92
93namespace {
94
95const int kArenaChunkSize = 16 * 1024;
96
97struct Vertex;
98struct Edge;
99struct Poly;
100
101template <class T, T* T::*Prev, T* T::*Next>
102void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
103    t->*Prev = prev;
104    t->*Next = next;
105    if (prev) {
106        prev->*Next = t;
107    } else if (head) {
108        *head = t;
109    }
110    if (next) {
111        next->*Prev = t;
112    } else if (tail) {
113        *tail = t;
114    }
115}
116
117template <class T, T* T::*Prev, T* T::*Next>
118void list_remove(T* t, T** head, T** tail) {
119    if (t->*Prev) {
120        t->*Prev->*Next = t->*Next;
121    } else if (head) {
122        *head = t->*Next;
123    }
124    if (t->*Next) {
125        t->*Next->*Prev = t->*Prev;
126    } else if (tail) {
127        *tail = t->*Prev;
128    }
129    t->*Prev = t->*Next = nullptr;
130}
131
132/**
133 * Vertices are used in three ways: first, the path contours are converted into a
134 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139 * an individual Vertex from the path mesh may belong to multiple
140 * MonotonePolys, so the original Vertices cannot be re-used.
141 */
142
143struct Vertex {
144  Vertex(const SkPoint& point, uint8_t alpha)
145    : fPoint(point), fPrev(nullptr), fNext(nullptr)
146    , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
147    , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
148    , fProcessed(false)
149    , fAlpha(alpha)
150#if LOGGING_ENABLED
151    , fID (-1.0f)
152#endif
153    {}
154    SkPoint fPoint;           // Vertex position
155    Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
156    Vertex* fNext;            // "
157    Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
158    Edge*   fLastEdgeAbove;   // "
159    Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
160    Edge*   fLastEdgeBelow;   // "
161    bool    fProcessed;       // Has this vertex been seen in simplify()?
162    uint8_t fAlpha;
163#if LOGGING_ENABLED
164    float   fID;              // Identifier used for logging.
165#endif
166};
167
168/***************************************************************************************/
169
170struct AAParams {
171    bool fTweakAlpha;
172    GrColor fColor;
173};
174
175typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
176
177struct Comparator {
178    CompareFunc sweep_lt;
179    CompareFunc sweep_gt;
180};
181
182bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
183    return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
184}
185
186bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
187    return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
188}
189
190bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
191    return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
192}
193
194bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
195    return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
196}
197
198inline void* emit_vertex(Vertex* v, const AAParams* aaParams, void* data) {
199    if (!aaParams) {
200        SkPoint* d = static_cast<SkPoint*>(data);
201        *d++ = v->fPoint;
202        return d;
203    }
204    if (aaParams->fTweakAlpha) {
205        auto d = static_cast<GrDefaultGeoProcFactory::PositionColorAttr*>(data);
206        d->fPosition = v->fPoint;
207        d->fColor = SkAlphaMulQ(aaParams->fColor, SkAlpha255To256(v->fAlpha));
208        d++;
209        return d;
210    }
211    auto d = static_cast<GrDefaultGeoProcFactory::PositionColorCoverageAttr*>(data);
212    d->fPosition = v->fPoint;
213    d->fColor = aaParams->fColor;
214    d->fCoverage = GrNormalizeByteToFloat(v->fAlpha);
215    d++;
216    return d;
217}
218
219void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, const AAParams* aaParams, void* data) {
220    LOG("emit_triangle (%g, %g) %d\n", v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
221    LOG("              (%g, %g) %d\n", v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
222    LOG("              (%g, %g) %d\n", v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
223#if TESSELLATOR_WIREFRAME
224    data = emit_vertex(v0, aaParams, data);
225    data = emit_vertex(v1, aaParams, data);
226    data = emit_vertex(v1, aaParams, data);
227    data = emit_vertex(v2, aaParams, data);
228    data = emit_vertex(v2, aaParams, data);
229    data = emit_vertex(v0, aaParams, data);
230#else
231    data = emit_vertex(v0, aaParams, data);
232    data = emit_vertex(v1, aaParams, data);
233    data = emit_vertex(v2, aaParams, data);
234#endif
235    return data;
236}
237
238struct VertexList {
239    VertexList() : fHead(nullptr), fTail(nullptr) {}
240    Vertex* fHead;
241    Vertex* fTail;
242    void insert(Vertex* v, Vertex* prev, Vertex* next) {
243        list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
244    }
245    void append(Vertex* v) {
246        insert(v, fTail, nullptr);
247    }
248    void prepend(Vertex* v) {
249        insert(v, nullptr, fHead);
250    }
251    void remove(Vertex* v) {
252        list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
253    }
254    void close() {
255        if (fHead && fTail) {
256            fTail->fNext = fHead;
257            fHead->fPrev = fTail;
258        }
259    }
260};
261
262// Round to nearest quarter-pixel. This is used for screenspace tessellation.
263
264inline void round(SkPoint* p) {
265    p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
266    p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
267}
268
269// A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
270struct Line {
271    Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
272    Line(const SkPoint& p, const SkPoint& q)
273        : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
274        , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
275        , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
276             static_cast<double>(p.fX) * q.fY) {}
277    double dist(const SkPoint& p) const {
278        return fA * p.fX + fB * p.fY + fC;
279    }
280    double magSq() const {
281        return fA * fA + fB * fB;
282    }
283
284    // Compute the intersection of two (infinite) Lines.
285    bool intersect(const Line& other, SkPoint* point) {
286        double denom = fA * other.fB - fB * other.fA;
287        if (denom == 0.0) {
288            return false;
289        }
290        double scale = 1.0f / denom;
291        point->fX = SkDoubleToScalar((fB * other.fC - other.fB * fC) * scale);
292        point->fY = SkDoubleToScalar((other.fA * fC - fA * other.fC) * scale);
293        return true;
294    }
295    double fA, fB, fC;
296};
297
298/**
299 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
300 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
301 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
302 * point). For speed, that case is only tested by the callers which require it (e.g.,
303 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
304 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
305 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
306 * a lot faster in the "not found" case.
307 *
308 * The coefficients of the line equation stored in double precision to avoid catastrphic
309 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
310 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
311 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
312 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
313 * this file).
314 */
315
316struct Edge {
317    enum class Type { kInner, kOuter, kConnector };
318    Edge(Vertex* top, Vertex* bottom, int winding, Type type)
319        : fWinding(winding)
320        , fTop(top)
321        , fBottom(bottom)
322        , fType(type)
323        , fLeft(nullptr)
324        , fRight(nullptr)
325        , fPrevEdgeAbove(nullptr)
326        , fNextEdgeAbove(nullptr)
327        , fPrevEdgeBelow(nullptr)
328        , fNextEdgeBelow(nullptr)
329        , fLeftPoly(nullptr)
330        , fRightPoly(nullptr)
331        , fLeftPolyPrev(nullptr)
332        , fLeftPolyNext(nullptr)
333        , fRightPolyPrev(nullptr)
334        , fRightPolyNext(nullptr)
335        , fUsedInLeftPoly(false)
336        , fUsedInRightPoly(false)
337        , fLine(top, bottom) {
338        }
339    int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
340    Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
341    Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
342    Type     fType;
343    Edge*    fLeft;             // The linked list of edges in the active edge list.
344    Edge*    fRight;            // "
345    Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
346    Edge*    fNextEdgeAbove;    // "
347    Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
348    Edge*    fNextEdgeBelow;    // "
349    Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
350    Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
351    Edge*    fLeftPolyPrev;
352    Edge*    fLeftPolyNext;
353    Edge*    fRightPolyPrev;
354    Edge*    fRightPolyNext;
355    bool     fUsedInLeftPoly;
356    bool     fUsedInRightPoly;
357    Line     fLine;
358    double dist(const SkPoint& p) const {
359        return fLine.dist(p);
360    }
361    bool isRightOf(Vertex* v) const {
362        return fLine.dist(v->fPoint) < 0.0;
363    }
364    bool isLeftOf(Vertex* v) const {
365        return fLine.dist(v->fPoint) > 0.0;
366    }
367    void recompute() {
368        fLine = Line(fTop, fBottom);
369    }
370    bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const {
371        LOG("intersecting %g -> %g with %g -> %g\n",
372               fTop->fID, fBottom->fID,
373               other.fTop->fID, other.fBottom->fID);
374        if (fTop == other.fTop || fBottom == other.fBottom) {
375            return false;
376        }
377        double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
378        if (denom == 0.0) {
379            return false;
380        }
381        double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
382        double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
383        double sNumer = -dy * other.fLine.fB - dx * other.fLine.fA;
384        double tNumer = -dy * fLine.fB - dx * fLine.fA;
385        // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
386        // This saves us doing the divide below unless absolutely necessary.
387        if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
388                        : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
389            return false;
390        }
391        double s = sNumer / denom;
392        SkASSERT(s >= 0.0 && s <= 1.0);
393        p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
394        p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
395        if (alpha) {
396            if (fType == Type::kConnector) {
397                *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
398            } else if (other.fType == Type::kConnector) {
399                double t = tNumer / denom;
400                *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
401            } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
402                *alpha = 0;
403            } else {
404                *alpha = 255;
405            }
406        }
407        return true;
408    }
409};
410
411struct EdgeList {
412    EdgeList() : fHead(nullptr), fTail(nullptr), fNext(nullptr), fCount(0) {}
413    Edge* fHead;
414    Edge* fTail;
415    EdgeList* fNext;
416    int fCount;
417    void insert(Edge* edge, Edge* prev, Edge* next) {
418        list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
419        fCount++;
420    }
421    void append(Edge* e) {
422        insert(e, fTail, nullptr);
423    }
424    void remove(Edge* edge) {
425        list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
426        fCount--;
427    }
428    void close() {
429        if (fHead && fTail) {
430            fTail->fRight = fHead;
431            fHead->fLeft = fTail;
432        }
433    }
434    bool contains(Edge* edge) const {
435        return edge->fLeft || edge->fRight || fHead == edge;
436    }
437};
438
439/***************************************************************************************/
440
441struct Poly {
442    Poly(Vertex* v, int winding)
443        : fFirstVertex(v)
444        , fWinding(winding)
445        , fHead(nullptr)
446        , fTail(nullptr)
447        , fNext(nullptr)
448        , fPartner(nullptr)
449        , fCount(0)
450    {
451#if LOGGING_ENABLED
452        static int gID = 0;
453        fID = gID++;
454        LOG("*** created Poly %d\n", fID);
455#endif
456    }
457    typedef enum { kLeft_Side, kRight_Side } Side;
458    struct MonotonePoly {
459        MonotonePoly(Edge* edge, Side side)
460            : fSide(side)
461            , fFirstEdge(nullptr)
462            , fLastEdge(nullptr)
463            , fPrev(nullptr)
464            , fNext(nullptr) {
465            this->addEdge(edge);
466        }
467        Side          fSide;
468        Edge*         fFirstEdge;
469        Edge*         fLastEdge;
470        MonotonePoly* fPrev;
471        MonotonePoly* fNext;
472        void addEdge(Edge* edge) {
473            if (fSide == kRight_Side) {
474                SkASSERT(!edge->fUsedInRightPoly);
475                list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
476                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
477                edge->fUsedInRightPoly = true;
478            } else {
479                SkASSERT(!edge->fUsedInLeftPoly);
480                list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
481                    edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
482                edge->fUsedInLeftPoly = true;
483            }
484        }
485
486        void* emit(const AAParams* aaParams, void* data) {
487            Edge* e = fFirstEdge;
488            e->fTop->fPrev = e->fTop->fNext = nullptr;
489            VertexList vertices;
490            vertices.append(e->fTop);
491            while (e != nullptr) {
492                e->fBottom->fPrev = e->fBottom->fNext = nullptr;
493                if (kRight_Side == fSide) {
494                    vertices.append(e->fBottom);
495                    e = e->fRightPolyNext;
496                } else {
497                    vertices.prepend(e->fBottom);
498                    e = e->fLeftPolyNext;
499                }
500            }
501            Vertex* first = vertices.fHead;
502            Vertex* v = first->fNext;
503            while (v != vertices.fTail) {
504                SkASSERT(v && v->fPrev && v->fNext);
505                Vertex* prev = v->fPrev;
506                Vertex* curr = v;
507                Vertex* next = v->fNext;
508                double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
509                double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
510                double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
511                double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
512                if (ax * by - ay * bx >= 0.0) {
513                    data = emit_triangle(prev, curr, next, aaParams, data);
514                    v->fPrev->fNext = v->fNext;
515                    v->fNext->fPrev = v->fPrev;
516                    if (v->fPrev == first) {
517                        v = v->fNext;
518                    } else {
519                        v = v->fPrev;
520                    }
521                } else {
522                    v = v->fNext;
523                }
524            }
525            return data;
526        }
527    };
528    Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
529        LOG("addEdge (%g -> %g) to poly %d, %s side\n",
530               e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
531        Poly* partner = fPartner;
532        Poly* poly = this;
533        if (side == kRight_Side) {
534            if (e->fUsedInRightPoly) {
535                return this;
536            }
537        } else {
538            if (e->fUsedInLeftPoly) {
539                return this;
540            }
541        }
542        if (partner) {
543            fPartner = partner->fPartner = nullptr;
544        }
545        if (!fTail) {
546            fHead = fTail = alloc.make<MonotonePoly>(e, side);
547            fCount += 2;
548        } else if (e->fBottom == fTail->fLastEdge->fBottom) {
549            return poly;
550        } else if (side == fTail->fSide) {
551            fTail->addEdge(e);
552            fCount++;
553        } else {
554            e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
555            fTail->addEdge(e);
556            fCount++;
557            if (partner) {
558                partner->addEdge(e, side, alloc);
559                poly = partner;
560            } else {
561                MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
562                m->fPrev = fTail;
563                fTail->fNext = m;
564                fTail = m;
565            }
566        }
567        return poly;
568    }
569    void* emit(const AAParams* aaParams, void *data) {
570        if (fCount < 3) {
571            return data;
572        }
573        LOG("emit() %d, size %d\n", fID, fCount);
574        for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
575            data = m->emit(aaParams, data);
576        }
577        return data;
578    }
579    Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
580    Vertex* fFirstVertex;
581    int fWinding;
582    MonotonePoly* fHead;
583    MonotonePoly* fTail;
584    Poly* fNext;
585    Poly* fPartner;
586    int fCount;
587#if LOGGING_ENABLED
588    int fID;
589#endif
590};
591
592/***************************************************************************************/
593
594bool coincident(const SkPoint& a, const SkPoint& b) {
595    return a == b;
596}
597
598Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
599    Poly* poly = alloc.make<Poly>(v, winding);
600    poly->fNext = *head;
601    *head = poly;
602    return poly;
603}
604
605EdgeList* new_contour(EdgeList** head, SkArenaAlloc& alloc) {
606    EdgeList* contour = alloc.make<EdgeList>();
607    contour->fNext = *head;
608    *head = contour;
609    return contour;
610}
611
612Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
613                                SkArenaAlloc& alloc) {
614    Vertex* v = alloc.make<Vertex>(p, 255);
615#if LOGGING_ENABLED
616    static float gID = 0.0f;
617    v->fID = gID++;
618#endif
619    if (prev) {
620        prev->fNext = v;
621        v->fPrev = prev;
622    } else {
623        *head = v;
624    }
625    return v;
626}
627
628Vertex* generate_quadratic_points(const SkPoint& p0,
629                                  const SkPoint& p1,
630                                  const SkPoint& p2,
631                                  SkScalar tolSqd,
632                                  Vertex* prev,
633                                  Vertex** head,
634                                  int pointsLeft,
635                                  SkArenaAlloc& alloc) {
636    SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
637    if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
638        return append_point_to_contour(p2, prev, head, alloc);
639    }
640
641    const SkPoint q[] = {
642        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
643        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
644    };
645    const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
646
647    pointsLeft >>= 1;
648    prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
649    prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
650    return prev;
651}
652
653Vertex* generate_cubic_points(const SkPoint& p0,
654                              const SkPoint& p1,
655                              const SkPoint& p2,
656                              const SkPoint& p3,
657                              SkScalar tolSqd,
658                              Vertex* prev,
659                              Vertex** head,
660                              int pointsLeft,
661                              SkArenaAlloc& alloc) {
662    SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
663    SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
664    if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
665        !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
666        return append_point_to_contour(p3, prev, head, alloc);
667    }
668    const SkPoint q[] = {
669        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
670        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
671        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
672    };
673    const SkPoint r[] = {
674        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
675        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
676    };
677    const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
678    pointsLeft >>= 1;
679    prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
680    prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
681    return prev;
682}
683
684// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
685
686void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
687                      Vertex** contours, SkArenaAlloc& alloc, bool *isLinear) {
688    SkScalar toleranceSqd = tolerance * tolerance;
689
690    SkPoint pts[4];
691    bool done = false;
692    *isLinear = true;
693    SkPath::Iter iter(path, false);
694    Vertex* prev = nullptr;
695    Vertex* head = nullptr;
696    if (path.isInverseFillType()) {
697        SkPoint quad[4];
698        clipBounds.toQuad(quad);
699        for (int i = 3; i >= 0; i--) {
700            prev = append_point_to_contour(quad[i], prev, &head, alloc);
701        }
702        head->fPrev = prev;
703        prev->fNext = head;
704        *contours++ = head;
705        head = prev = nullptr;
706    }
707    SkAutoConicToQuads converter;
708    while (!done) {
709        SkPath::Verb verb = iter.next(pts);
710        switch (verb) {
711            case SkPath::kConic_Verb: {
712                SkScalar weight = iter.conicWeight();
713                const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
714                for (int i = 0; i < converter.countQuads(); ++i) {
715                    int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
716                    prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
717                                                     toleranceSqd, prev, &head, pointsLeft, alloc);
718                    quadPts += 2;
719                }
720                *isLinear = false;
721                break;
722            }
723            case SkPath::kMove_Verb:
724                if (head) {
725                    head->fPrev = prev;
726                    prev->fNext = head;
727                    *contours++ = head;
728                }
729                head = prev = nullptr;
730                prev = append_point_to_contour(pts[0], prev, &head, alloc);
731                break;
732            case SkPath::kLine_Verb: {
733                prev = append_point_to_contour(pts[1], prev, &head, alloc);
734                break;
735            }
736            case SkPath::kQuad_Verb: {
737                int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
738                prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
739                                                 &head, pointsLeft, alloc);
740                *isLinear = false;
741                break;
742            }
743            case SkPath::kCubic_Verb: {
744                int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
745                prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
746                                toleranceSqd, prev, &head, pointsLeft, alloc);
747                *isLinear = false;
748                break;
749            }
750            case SkPath::kClose_Verb:
751                if (head) {
752                    head->fPrev = prev;
753                    prev->fNext = head;
754                    *contours++ = head;
755                }
756                head = prev = nullptr;
757                break;
758            case SkPath::kDone_Verb:
759                if (head) {
760                    head->fPrev = prev;
761                    prev->fNext = head;
762                    *contours++ = head;
763                }
764                done = true;
765                break;
766        }
767    }
768}
769
770inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
771    if (!poly) {
772        return false;
773    }
774    int winding = poly->fWinding;
775    switch (fillType) {
776        case SkPath::kWinding_FillType:
777            return winding != 0;
778        case SkPath::kEvenOdd_FillType:
779            return (winding & 1) != 0;
780        case SkPath::kInverseWinding_FillType:
781            return winding == 1;
782        case SkPath::kInverseEvenOdd_FillType:
783            return (winding & 1) == 1;
784        default:
785            SkASSERT(false);
786            return false;
787    }
788}
789
790Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
791    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
792    Vertex* top = winding < 0 ? next : prev;
793    Vertex* bottom = winding < 0 ? prev : next;
794    return alloc.make<Edge>(top, bottom, winding, type);
795}
796
797void remove_edge(Edge* edge, EdgeList* edges) {
798    LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
799    SkASSERT(edges->contains(edge));
800    edges->remove(edge);
801}
802
803void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
804    LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
805    SkASSERT(!edges->contains(edge));
806    Edge* next = prev ? prev->fRight : edges->fHead;
807    edges->insert(edge, prev, next);
808}
809
810void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
811    if (v->fFirstEdgeAbove) {
812        *left = v->fFirstEdgeAbove->fLeft;
813        *right = v->fLastEdgeAbove->fRight;
814        return;
815    }
816    Edge* next = nullptr;
817    Edge* prev;
818    for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
819        if (prev->isLeftOf(v)) {
820            break;
821        }
822        next = prev;
823    }
824    *left = prev;
825    *right = next;
826}
827
828void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
829    Edge* prev = nullptr;
830    Edge* next;
831    for (next = edges->fHead; next != nullptr; next = next->fRight) {
832        if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
833            (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
834            (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
835             next->isRightOf(edge->fBottom)) ||
836            (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
837             edge->isLeftOf(next->fBottom))) {
838            break;
839        }
840        prev = next;
841    }
842    *left = prev;
843    *right = next;
844}
845
846void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
847    if (!activeEdges) {
848        return;
849    }
850    if (activeEdges->contains(edge)) {
851        if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
852            remove_edge(edge, activeEdges);
853        }
854    } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
855        Edge* left;
856        Edge* right;
857        find_enclosing_edges(edge, activeEdges, c, &left, &right);
858        insert_edge(edge, left, activeEdges);
859    }
860}
861
862void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
863    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
864        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
865        return;
866    }
867    LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
868    Edge* prev = nullptr;
869    Edge* next;
870    for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
871        if (next->isRightOf(edge->fTop)) {
872            break;
873        }
874        prev = next;
875    }
876    list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
877        edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
878}
879
880void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
881    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
882        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
883        return;
884    }
885    LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
886    Edge* prev = nullptr;
887    Edge* next;
888    for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
889        if (next->isRightOf(edge->fBottom)) {
890            break;
891        }
892        prev = next;
893    }
894    list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
895        edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
896}
897
898void remove_edge_above(Edge* edge) {
899    LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
900        edge->fBottom->fID);
901    list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
902        edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
903}
904
905void remove_edge_below(Edge* edge) {
906    LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
907        edge->fTop->fID);
908    list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
909        edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
910}
911
912void disconnect(Edge* edge)
913{
914    remove_edge_above(edge);
915    remove_edge_below(edge);
916}
917
918void erase_edge(Edge* edge, EdgeList* edges) {
919    LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
920    disconnect(edge);
921    if (edges && edges->contains(edge)) {
922        remove_edge(edge, edges);
923    }
924}
925
926void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
927
928void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
929    remove_edge_below(edge);
930    edge->fTop = v;
931    edge->recompute();
932    insert_edge_below(edge, v, c);
933    fix_active_state(edge, activeEdges, c);
934    merge_collinear_edges(edge, activeEdges, c);
935}
936
937void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
938    remove_edge_above(edge);
939    edge->fBottom = v;
940    edge->recompute();
941    insert_edge_above(edge, v, c);
942    fix_active_state(edge, activeEdges, c);
943    merge_collinear_edges(edge, activeEdges, c);
944}
945
946void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
947    if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
948        LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
949            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
950            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
951        other->fWinding += edge->fWinding;
952        erase_edge(edge, activeEdges);
953    } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
954        other->fWinding += edge->fWinding;
955        set_bottom(edge, other->fTop, activeEdges, c);
956    } else {
957        edge->fWinding += other->fWinding;
958        set_bottom(other, edge->fTop, activeEdges, c);
959    }
960}
961
962void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
963    if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
964        LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
965            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
966            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
967        other->fWinding += edge->fWinding;
968        erase_edge(edge, activeEdges);
969    } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
970        edge->fWinding += other->fWinding;
971        set_top(other, edge->fBottom, activeEdges, c);
972    } else {
973        other->fWinding += edge->fWinding;
974        set_top(edge, other->fBottom, activeEdges, c);
975    }
976}
977
978void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
979    if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
980                                 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
981        merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
982    } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
983                                        !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
984        merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
985    }
986    if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
987                                 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
988        merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
989    } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
990                                        !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
991        merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
992    }
993}
994
995void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc);
996
997void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
998    Vertex* top = edge->fTop;
999    Vertex* bottom = edge->fBottom;
1000    if (edge->fLeft) {
1001        Vertex* leftTop = edge->fLeft->fTop;
1002        Vertex* leftBottom = edge->fLeft->fBottom;
1003        if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
1004            split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
1005        } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
1006            split_edge(edge, leftTop, activeEdges, c, alloc);
1007        } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
1008                   !edge->fLeft->isLeftOf(bottom)) {
1009            split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
1010        } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
1011            split_edge(edge, leftBottom, activeEdges, c, alloc);
1012        }
1013    }
1014    if (edge->fRight) {
1015        Vertex* rightTop = edge->fRight->fTop;
1016        Vertex* rightBottom = edge->fRight->fBottom;
1017        if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
1018            split_edge(edge->fRight, top, activeEdges, c, alloc);
1019        } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
1020            split_edge(edge, rightTop, activeEdges, c, alloc);
1021        } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
1022                   !edge->fRight->isRightOf(bottom)) {
1023            split_edge(edge->fRight, bottom, activeEdges, c, alloc);
1024        } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
1025                   !edge->isLeftOf(rightBottom)) {
1026            split_edge(edge, rightBottom, activeEdges, c, alloc);
1027        }
1028    }
1029}
1030
1031void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
1032    LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1033        edge->fTop->fID, edge->fBottom->fID,
1034        v->fID, v->fPoint.fX, v->fPoint.fY);
1035    if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1036        set_top(edge, v, activeEdges, c);
1037    } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
1038        set_bottom(edge, v, activeEdges, c);
1039    } else {
1040        Edge* newEdge = alloc.make<Edge>(v, edge->fBottom, edge->fWinding, edge->fType);
1041        insert_edge_below(newEdge, v, c);
1042        insert_edge_above(newEdge, edge->fBottom, c);
1043        set_bottom(edge, v, activeEdges, c);
1044        cleanup_active_edges(edge, activeEdges, c, alloc);
1045        fix_active_state(newEdge, activeEdges, c);
1046        merge_collinear_edges(newEdge, activeEdges, c);
1047    }
1048}
1049
1050Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1051              int winding_scale = 1) {
1052    Edge* edge = new_edge(prev, next, type, c, alloc);
1053    if (edge->fWinding > 0) {
1054        insert_edge_below(edge, prev, c);
1055        insert_edge_above(edge, next, c);
1056    } else {
1057        insert_edge_below(edge, next, c);
1058        insert_edge_above(edge, prev, c);
1059    }
1060    edge->fWinding *= winding_scale;
1061    merge_collinear_edges(edge, nullptr, c);
1062    return edge;
1063}
1064
1065void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1066                    SkArenaAlloc& alloc) {
1067    LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1068        src->fID, dst->fID);
1069    dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1070    for (Edge* edge = src->fFirstEdgeAbove; edge;) {
1071        Edge* next = edge->fNextEdgeAbove;
1072        set_bottom(edge, dst, nullptr, c);
1073        edge = next;
1074    }
1075    for (Edge* edge = src->fFirstEdgeBelow; edge;) {
1076        Edge* next = edge->fNextEdgeBelow;
1077        set_top(edge, dst, nullptr, c);
1078        edge = next;
1079    }
1080    mesh->remove(src);
1081}
1082
1083uint8_t max_edge_alpha(Edge* a, Edge* b) {
1084    if (a->fType == Edge::Type::kInner || b->fType == Edge::Type::kInner) {
1085        return 255;
1086    } else if (a->fType == Edge::Type::kOuter && b->fType == Edge::Type::kOuter) {
1087        return 0;
1088    } else {
1089        return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
1090                      SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
1091    }
1092}
1093
1094Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
1095                               SkArenaAlloc& alloc) {
1096    if (!edge || !other) {
1097        return nullptr;
1098    }
1099    SkPoint p;
1100    uint8_t alpha;
1101    if (edge->intersect(*other, &p, &alpha)) {
1102        Vertex* v;
1103        LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1104        if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
1105            split_edge(other, edge->fTop, activeEdges, c, alloc);
1106            v = edge->fTop;
1107        } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
1108            split_edge(other, edge->fBottom, activeEdges, c, alloc);
1109            v = edge->fBottom;
1110        } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
1111            split_edge(edge, other->fTop, activeEdges, c, alloc);
1112            v = other->fTop;
1113        } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
1114            split_edge(edge, other->fBottom, activeEdges, c, alloc);
1115            v = other->fBottom;
1116        } else {
1117            Vertex* nextV = edge->fTop;
1118            while (c.sweep_lt(p, nextV->fPoint)) {
1119                nextV = nextV->fPrev;
1120            }
1121            while (c.sweep_lt(nextV->fPoint, p)) {
1122                nextV = nextV->fNext;
1123            }
1124            Vertex* prevV = nextV->fPrev;
1125            if (coincident(prevV->fPoint, p)) {
1126                v = prevV;
1127            } else if (coincident(nextV->fPoint, p)) {
1128                v = nextV;
1129            } else {
1130                v = alloc.make<Vertex>(p, alpha);
1131                LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1132                    prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1133                    nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1134#if LOGGING_ENABLED
1135                v->fID = (nextV->fID + prevV->fID) * 0.5f;
1136#endif
1137                v->fPrev = prevV;
1138                v->fNext = nextV;
1139                prevV->fNext = v;
1140                nextV->fPrev = v;
1141            }
1142            split_edge(edge, v, activeEdges, c, alloc);
1143            split_edge(other, v, activeEdges, c, alloc);
1144        }
1145        v->fAlpha = SkTMax(v->fAlpha, alpha);
1146        return v;
1147    }
1148    return nullptr;
1149}
1150
1151void sanitize_contours(Vertex** contours, int contourCnt, bool approximate) {
1152    for (int i = 0; i < contourCnt; ++i) {
1153        SkASSERT(contours[i]);
1154        if (approximate) {
1155            round(&contours[i]->fPrev->fPoint);
1156        }
1157        for (Vertex* v = contours[i];;) {
1158            if (approximate) {
1159                round(&v->fPoint);
1160            }
1161            if (coincident(v->fPrev->fPoint, v->fPoint)) {
1162                LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1163                if (v->fPrev == v) {
1164                    contours[i] = nullptr;
1165                    break;
1166                }
1167                v->fPrev->fNext = v->fNext;
1168                v->fNext->fPrev = v->fPrev;
1169                if (contours[i] == v) {
1170                    contours[i] = v->fPrev;
1171                }
1172                v = v->fPrev;
1173            } else {
1174                v = v->fNext;
1175                if (v == contours[i]) break;
1176            }
1177        }
1178    }
1179}
1180
1181void merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1182    for (Vertex* v = mesh->fHead->fNext; v != nullptr; v = v->fNext) {
1183        if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1184            v->fPoint = v->fPrev->fPoint;
1185        }
1186        if (coincident(v->fPrev->fPoint, v->fPoint)) {
1187            merge_vertices(v->fPrev, v, mesh, c, alloc);
1188        }
1189    }
1190}
1191
1192// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1193
1194void build_edges(Vertex** contours, int contourCnt, VertexList* mesh, Comparator& c,
1195                 SkArenaAlloc& alloc) {
1196    Vertex* prev = nullptr;
1197    for (int i = 0; i < contourCnt; ++i) {
1198        for (Vertex* v = contours[i]; v != nullptr;) {
1199            Vertex* vNext = v->fNext;
1200            connect(v->fPrev, v, Edge::Type::kInner, c, alloc);
1201            if (prev) {
1202                prev->fNext = v;
1203                v->fPrev = prev;
1204            } else {
1205                mesh->fHead = v;
1206            }
1207            prev = v;
1208            v = vNext;
1209            if (v == contours[i]) break;
1210        }
1211    }
1212    if (prev) {
1213        prev->fNext = mesh->fHead->fPrev = nullptr;
1214    }
1215    mesh->fTail = prev;
1216}
1217
1218// Stage 3: sort the vertices by increasing sweep direction.
1219
1220void sorted_merge(Vertex* a, Vertex* b, VertexList* result, Comparator& c);
1221
1222void front_back_split(VertexList* v, VertexList* front, VertexList* back) {
1223    Vertex* fast;
1224    Vertex* slow;
1225    if (!v->fHead || !v->fHead->fNext) {
1226        *front = *v;
1227    } else {
1228        slow = v->fHead;
1229        fast = v->fHead->fNext;
1230
1231        while (fast != nullptr) {
1232            fast = fast->fNext;
1233            if (fast != nullptr) {
1234                slow = slow->fNext;
1235                fast = fast->fNext;
1236            }
1237        }
1238        front->fHead = v->fHead;
1239        front->fTail = slow;
1240        back->fHead = slow->fNext;
1241        back->fTail = v->fTail;
1242        slow->fNext->fPrev = nullptr;
1243        slow->fNext = nullptr;
1244    }
1245    v->fHead = v->fTail = nullptr;
1246}
1247
1248void merge_sort(VertexList* mesh, Comparator& c) {
1249    if (!mesh->fHead || !mesh->fHead->fNext) {
1250        return;
1251    }
1252
1253    VertexList a;
1254    VertexList b;
1255    front_back_split(mesh, &a, &b);
1256
1257    merge_sort(&a, c);
1258    merge_sort(&b, c);
1259
1260    sorted_merge(a.fHead, b.fHead, mesh, c);
1261}
1262
1263void sorted_merge(Vertex* a, Vertex* b, VertexList* result, Comparator& c) {
1264    VertexList vertices;
1265    while (a && b) {
1266        if (c.sweep_lt(a->fPoint, b->fPoint)) {
1267            Vertex* next = a->fNext;
1268            vertices.append(a);
1269            a = next;
1270        } else {
1271            Vertex* next = b->fNext;
1272            vertices.append(b);
1273            b = next;
1274        }
1275    }
1276    if (a) {
1277        vertices.insert(a, vertices.fTail, a->fNext);
1278    }
1279    if (b) {
1280        vertices.insert(b, vertices.fTail, b->fNext);
1281    }
1282    *result = vertices;
1283}
1284
1285// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1286
1287void simplify(const VertexList& vertices, Comparator& c, SkArenaAlloc& alloc) {
1288    LOG("simplifying complex polygons\n");
1289    EdgeList activeEdges;
1290    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1291        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1292            continue;
1293        }
1294#if LOGGING_ENABLED
1295        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1296#endif
1297        Edge* leftEnclosingEdge = nullptr;
1298        Edge* rightEnclosingEdge = nullptr;
1299        bool restartChecks;
1300        do {
1301            restartChecks = false;
1302            find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1303            if (v->fFirstEdgeBelow) {
1304                for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1305                    if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1306                        restartChecks = true;
1307                        break;
1308                    }
1309                    if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1310                        restartChecks = true;
1311                        break;
1312                    }
1313                }
1314            } else {
1315                if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1316                                                        &activeEdges, c, alloc)) {
1317                    if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1318                        v = pv;
1319                    }
1320                    restartChecks = true;
1321                }
1322
1323            }
1324        } while (restartChecks);
1325        if (v->fAlpha == 0) {
1326            if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
1327                (rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
1328                v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
1329            }
1330        }
1331        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1332            remove_edge(e, &activeEdges);
1333        }
1334        Edge* leftEdge = leftEnclosingEdge;
1335        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1336            insert_edge(e, leftEdge, &activeEdges);
1337            leftEdge = e;
1338        }
1339        v->fProcessed = true;
1340    }
1341}
1342
1343// Stage 5: Tessellate the simplified mesh into monotone polygons.
1344
1345Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1346    LOG("tessellating simple polygons\n");
1347    EdgeList activeEdges;
1348    Poly* polys = nullptr;
1349    for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1350        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1351            continue;
1352        }
1353#if LOGGING_ENABLED
1354        LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1355#endif
1356        Edge* leftEnclosingEdge = nullptr;
1357        Edge* rightEnclosingEdge = nullptr;
1358        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1359        Poly* leftPoly = nullptr;
1360        Poly* rightPoly = nullptr;
1361        if (v->fFirstEdgeAbove) {
1362            leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1363            rightPoly = v->fLastEdgeAbove->fRightPoly;
1364        } else {
1365            leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1366            rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1367        }
1368#if LOGGING_ENABLED
1369        LOG("edges above:\n");
1370        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1371            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1372                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1373        }
1374        LOG("edges below:\n");
1375        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1376            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1377                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1378        }
1379#endif
1380        if (v->fFirstEdgeAbove) {
1381            if (leftPoly) {
1382                leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1383            }
1384            if (rightPoly) {
1385                rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1386            }
1387            for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1388                Edge* leftEdge = e;
1389                Edge* rightEdge = e->fNextEdgeAbove;
1390                SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1391                remove_edge(leftEdge, &activeEdges);
1392                if (leftEdge->fRightPoly) {
1393                    leftEdge->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1394                }
1395                if (rightEdge->fLeftPoly) {
1396                    rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1397                }
1398            }
1399            remove_edge(v->fLastEdgeAbove, &activeEdges);
1400            if (!v->fFirstEdgeBelow) {
1401                if (leftPoly && rightPoly && leftPoly != rightPoly) {
1402                    SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1403                    rightPoly->fPartner = leftPoly;
1404                    leftPoly->fPartner = rightPoly;
1405                }
1406            }
1407        }
1408        if (v->fFirstEdgeBelow) {
1409            if (!v->fFirstEdgeAbove) {
1410                if (leftPoly && rightPoly) {
1411                    if (leftPoly == rightPoly) {
1412                        if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1413                            leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1414                                                 leftPoly->fWinding, alloc);
1415                            leftEnclosingEdge->fRightPoly = leftPoly;
1416                        } else {
1417                            rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1418                                                 rightPoly->fWinding, alloc);
1419                            rightEnclosingEdge->fLeftPoly = rightPoly;
1420                        }
1421                    }
1422                    Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1423                    leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1424                    rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1425                }
1426            }
1427            Edge* leftEdge = v->fFirstEdgeBelow;
1428            leftEdge->fLeftPoly = leftPoly;
1429            insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1430            for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1431                 rightEdge = rightEdge->fNextEdgeBelow) {
1432                insert_edge(rightEdge, leftEdge, &activeEdges);
1433                int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1434                winding += leftEdge->fWinding;
1435                if (winding != 0) {
1436                    Poly* poly = new_poly(&polys, v, winding, alloc);
1437                    leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1438                }
1439                leftEdge = rightEdge;
1440            }
1441            v->fLastEdgeBelow->fRightPoly = rightPoly;
1442        }
1443#if LOGGING_ENABLED
1444        LOG("\nactive edges:\n");
1445        for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1446            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1447                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1448        }
1449#endif
1450    }
1451    return polys;
1452}
1453
1454bool is_boundary_edge(Edge* edge, SkPath::FillType fillType) {
1455    return apply_fill_type(fillType, edge->fLeftPoly) !=
1456           apply_fill_type(fillType, edge->fRightPoly);
1457}
1458
1459bool is_boundary_start(Edge* edge, SkPath::FillType fillType) {
1460    return !apply_fill_type(fillType, edge->fLeftPoly) &&
1461            apply_fill_type(fillType, edge->fRightPoly);
1462}
1463
1464void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1465                               SkArenaAlloc& alloc) {
1466    for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1467        for (Edge* e = v->fFirstEdgeBelow; e != nullptr;) {
1468            Edge* next = e->fNextEdgeBelow;
1469            if (!is_boundary_edge(e, fillType)) {
1470                disconnect(e);
1471            }
1472            e = next;
1473        }
1474    }
1475}
1476
1477void get_edge_normal(const Edge* e, SkVector* normal) {
1478    normal->setNormalize(SkDoubleToScalar(e->fLine.fA) * e->fWinding,
1479                         SkDoubleToScalar(e->fLine.fB) * e->fWinding);
1480}
1481
1482// Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1483// and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1484// invert on stroking.
1485
1486void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1487    Edge* prevEdge = boundary->fTail;
1488    SkVector prevNormal;
1489    get_edge_normal(prevEdge, &prevNormal);
1490    for (Edge* e = boundary->fHead; e != nullptr;) {
1491        Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1492        Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1493        double dist = e->dist(prev->fPoint);
1494        SkVector normal;
1495        get_edge_normal(e, &normal);
1496        float denom = 0.0625f * static_cast<float>(e->fLine.magSq());
1497        if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
1498            Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1499            insert_edge(join, e, boundary);
1500            remove_edge(prevEdge, boundary);
1501            remove_edge(e, boundary);
1502            if (join->fLeft && join->fRight) {
1503                prevEdge = join->fLeft;
1504                e = join;
1505            } else {
1506                prevEdge = boundary->fTail;
1507                e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1508            }
1509            get_edge_normal(prevEdge, &prevNormal);
1510        } else {
1511            prevEdge = e;
1512            prevNormal = normal;
1513            e = e->fRight;
1514        }
1515    }
1516}
1517
1518void fix_inversions(Vertex* prev, Vertex* next, const Edge& prevBisector, const Edge& nextBisector,
1519                    Edge* prevEdge, Comparator& c) {
1520    if (!prev || !next) {
1521        return;
1522    }
1523    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1524    SkPoint p;
1525    uint8_t alpha;
1526    if (winding != prevEdge->fWinding && prevBisector.intersect(nextBisector, &p, &alpha)) {
1527        prev->fPoint = next->fPoint = p;
1528        prev->fAlpha = next->fAlpha = alpha;
1529    }
1530}
1531
1532// Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1533// find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1534// new antialiased mesh from those vertices.
1535
1536void boundary_to_aa_mesh(EdgeList* boundary, VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1537    Edge* prevEdge = boundary->fTail;
1538    float radius = 0.5f;
1539    double offset = radius * sqrt(prevEdge->fLine.magSq()) * prevEdge->fWinding;
1540    Line prevInner(prevEdge->fTop, prevEdge->fBottom);
1541    prevInner.fC -= offset;
1542    Line prevOuter(prevEdge->fTop, prevEdge->fBottom);
1543    prevOuter.fC += offset;
1544    VertexList innerVertices;
1545    VertexList outerVertices;
1546    Edge prevBisector(*prevEdge);
1547    for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1548        double offset = radius * sqrt(e->fLine.magSq()) * e->fWinding;
1549        Line inner(e->fTop, e->fBottom);
1550        inner.fC -= offset;
1551        Line outer(e->fTop, e->fBottom);
1552        outer.fC += offset;
1553        SkPoint innerPoint, outerPoint;
1554        if (prevInner.intersect(inner, &innerPoint) &&
1555            prevOuter.intersect(outer, &outerPoint)) {
1556            Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
1557            Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
1558            Edge bisector(outerVertex, innerVertex, 0, Edge::Type::kConnector);
1559            fix_inversions(innerVertices.fTail, innerVertex, prevBisector, bisector, prevEdge, c);
1560            fix_inversions(outerVertices.fTail, outerVertex, prevBisector, bisector, prevEdge, c);
1561            innerVertices.append(innerVertex);
1562            outerVertices.append(outerVertex);
1563            prevBisector = bisector;
1564        }
1565        prevInner = inner;
1566        prevOuter = outer;
1567        prevEdge = e;
1568    }
1569    innerVertices.close();
1570    outerVertices.close();
1571
1572    Vertex* innerVertex = innerVertices.fHead;
1573    Vertex* outerVertex = outerVertices.fHead;
1574    if (!innerVertex || !outerVertex) {
1575        return;
1576    }
1577    Edge bisector(outerVertices.fHead, innerVertices.fHead, 0, Edge::Type::kConnector);
1578    fix_inversions(innerVertices.fTail, innerVertices.fHead, prevBisector, bisector, prevEdge, c);
1579    fix_inversions(outerVertices.fTail, outerVertices.fHead, prevBisector, bisector, prevEdge, c);
1580    do {
1581        // Connect vertices into a quad mesh. Outer edges get default (1) winding.
1582        // Inner edges get -2 winding. This ensures that the interior is always filled
1583        // (-1 winding number for normal cases, 3 for thin features where the interior inverts).
1584        // Connector edges get zero winding, since they're only structural (i.e., to ensure
1585        // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding number.
1586        connect(outerVertex->fPrev, outerVertex, Edge::Type::kOuter, c, alloc);
1587        connect(innerVertex->fPrev, innerVertex, Edge::Type::kInner, c, alloc, -2);
1588        connect(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc, 0);
1589        Vertex* innerNext = innerVertex->fNext;
1590        Vertex* outerNext = outerVertex->fNext;
1591        mesh->append(innerVertex);
1592        mesh->append(outerVertex);
1593        innerVertex = innerNext;
1594        outerVertex = outerNext;
1595    } while (innerVertex != innerVertices.fHead && outerVertex != outerVertices.fHead);
1596}
1597
1598void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
1599    bool down = is_boundary_start(e, fillType);
1600    while (e) {
1601        e->fWinding = down ? 1 : -1;
1602        Edge* next;
1603        boundary->append(e);
1604        if (down) {
1605            // Find outgoing edge, in clockwise order.
1606            if ((next = e->fNextEdgeAbove)) {
1607                down = false;
1608            } else if ((next = e->fBottom->fLastEdgeBelow)) {
1609                down = true;
1610            } else if ((next = e->fPrevEdgeAbove)) {
1611                down = false;
1612            }
1613        } else {
1614            // Find outgoing edge, in counter-clockwise order.
1615            if ((next = e->fPrevEdgeBelow)) {
1616                down = true;
1617            } else if ((next = e->fTop->fFirstEdgeAbove)) {
1618                down = false;
1619            } else if ((next = e->fNextEdgeBelow)) {
1620                down = true;
1621            }
1622        }
1623        disconnect(e);
1624        e = next;
1625    }
1626}
1627
1628// Stage 5b: Extract boundary edges.
1629
1630EdgeList* extract_boundaries(const VertexList& mesh, SkPath::FillType fillType,
1631                             SkArenaAlloc& alloc) {
1632    LOG("extracting boundaries\n");
1633    remove_non_boundary_edges(mesh, fillType, alloc);
1634    EdgeList* boundaries = nullptr;
1635    for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1636        while (v->fFirstEdgeBelow) {
1637            EdgeList* boundary = new_contour(&boundaries, alloc);
1638            extract_boundary(boundary, v->fFirstEdgeBelow, fillType, alloc);
1639        }
1640    }
1641    return boundaries;
1642}
1643
1644// This is a driver function which calls stages 2-5 in turn.
1645
1646void contours_to_mesh(Vertex** contours, int contourCnt, bool antialias,
1647                      VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1648#if LOGGING_ENABLED
1649    for (int i = 0; i < contourCnt; ++i) {
1650        Vertex* v = contours[i];
1651        SkASSERT(v);
1652        LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1653        for (v = v->fNext; v != contours[i]; v = v->fNext) {
1654            LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1655        }
1656    }
1657#endif
1658    sanitize_contours(contours, contourCnt, antialias);
1659    build_edges(contours, contourCnt, mesh, c, alloc);
1660}
1661
1662void sort_and_simplify(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1663    if (!vertices || !vertices->fHead) {
1664        return;
1665    }
1666
1667    // Sort vertices in Y (secondarily in X).
1668    merge_sort(vertices, c);
1669    merge_coincident_vertices(vertices, c, alloc);
1670#if LOGGING_ENABLED
1671    for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1672        static float gID = 0.0f;
1673        v->fID = gID++;
1674    }
1675#endif
1676    simplify(*vertices, c, alloc);
1677}
1678
1679Poly* mesh_to_polys(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1680    sort_and_simplify(vertices, c, alloc);
1681    return tessellate(*vertices, alloc);
1682}
1683
1684Poly* contours_to_polys(Vertex** contours, int contourCnt, SkPath::FillType fillType,
1685                        const SkRect& pathBounds, bool antialias,
1686                        SkArenaAlloc& alloc) {
1687    Comparator c;
1688    if (pathBounds.width() > pathBounds.height()) {
1689        c.sweep_lt = sweep_lt_horiz;
1690        c.sweep_gt = sweep_gt_horiz;
1691    } else {
1692        c.sweep_lt = sweep_lt_vert;
1693        c.sweep_gt = sweep_gt_vert;
1694    }
1695    VertexList mesh;
1696    contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
1697    Poly* polys = mesh_to_polys(&mesh, c, alloc);
1698    if (antialias) {
1699        EdgeList* boundaries = extract_boundaries(mesh, fillType, alloc);
1700        VertexList aaMesh;
1701        for (EdgeList* boundary = boundaries; boundary != nullptr; boundary = boundary->fNext) {
1702            simplify_boundary(boundary, c, alloc);
1703            if (boundary->fCount > 2) {
1704                boundary_to_aa_mesh(boundary, &aaMesh, c, alloc);
1705            }
1706        }
1707        sort_and_simplify(&aaMesh, c, alloc);
1708        return tessellate(aaMesh, alloc);
1709    }
1710    return polys;
1711}
1712
1713// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1714void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, const AAParams* aaParams,
1715                         void* data) {
1716    for (Poly* poly = polys; poly; poly = poly->fNext) {
1717        if (apply_fill_type(fillType, poly)) {
1718            data = poly->emit(aaParams, data);
1719        }
1720    }
1721    return data;
1722}
1723
1724Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1725                    int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear) {
1726    SkPath::FillType fillType = path.getFillType();
1727    if (SkPath::IsInverseFillType(fillType)) {
1728        contourCnt++;
1729    }
1730    std::unique_ptr<Vertex*[]> contours(new Vertex* [contourCnt]);
1731
1732    path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1733    return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
1734                             antialias, alloc);
1735}
1736
1737int get_contour_count(const SkPath& path, SkScalar tolerance) {
1738    int contourCnt;
1739    int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
1740    if (maxPts <= 0) {
1741        return 0;
1742    }
1743    if (maxPts > ((int)SK_MaxU16 + 1)) {
1744        SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1745        return 0;
1746    }
1747    return contourCnt;
1748}
1749
1750int count_points(Poly* polys, SkPath::FillType fillType) {
1751    int count = 0;
1752    for (Poly* poly = polys; poly; poly = poly->fNext) {
1753        if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
1754            count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1755        }
1756    }
1757    return count;
1758}
1759
1760} // namespace
1761
1762namespace GrTessellator {
1763
1764// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1765
1766int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1767                    VertexAllocator* vertexAllocator, bool antialias, const GrColor& color,
1768                    bool canTweakAlphaForCoverage, bool* isLinear) {
1769    int contourCnt = get_contour_count(path, tolerance);
1770    if (contourCnt <= 0) {
1771        *isLinear = true;
1772        return 0;
1773    }
1774    SkArenaAlloc alloc(kArenaChunkSize);
1775    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
1776                                isLinear);
1777    SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
1778    int count = count_points(polys, fillType);
1779    if (0 == count) {
1780        return 0;
1781    }
1782
1783    void* verts = vertexAllocator->lock(count);
1784    if (!verts) {
1785        SkDebugf("Could not allocate vertices\n");
1786        return 0;
1787    }
1788
1789    LOG("emitting %d verts\n", count);
1790    AAParams aaParams;
1791    aaParams.fTweakAlpha = canTweakAlphaForCoverage;
1792    aaParams.fColor = color;
1793
1794    void* end = polys_to_triangles(polys, fillType, antialias ? &aaParams : nullptr, verts);
1795    int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1796                                       / vertexAllocator->stride());
1797    SkASSERT(actualCount <= count);
1798    vertexAllocator->unlock(actualCount);
1799    return actualCount;
1800}
1801
1802int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1803                   GrTessellator::WindingVertex** verts) {
1804    int contourCnt = get_contour_count(path, tolerance);
1805    if (contourCnt <= 0) {
1806        return 0;
1807    }
1808    SkArenaAlloc alloc(kArenaChunkSize);
1809    bool isLinear;
1810    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear);
1811    SkPath::FillType fillType = path.getFillType();
1812    int count = count_points(polys, fillType);
1813    if (0 == count) {
1814        *verts = nullptr;
1815        return 0;
1816    }
1817
1818    *verts = new GrTessellator::WindingVertex[count];
1819    GrTessellator::WindingVertex* vertsEnd = *verts;
1820    SkPoint* points = new SkPoint[count];
1821    SkPoint* pointsEnd = points;
1822    for (Poly* poly = polys; poly; poly = poly->fNext) {
1823        if (apply_fill_type(fillType, poly)) {
1824            SkPoint* start = pointsEnd;
1825            pointsEnd = static_cast<SkPoint*>(poly->emit(nullptr, pointsEnd));
1826            while (start != pointsEnd) {
1827                vertsEnd->fPos = *start;
1828                vertsEnd->fWinding = poly->fWinding;
1829                ++start;
1830                ++vertsEnd;
1831            }
1832        }
1833    }
1834    int actualCount = static_cast<int>(vertsEnd - *verts);
1835    SkASSERT(actualCount <= count);
1836    SkASSERT(pointsEnd - points == actualCount);
1837    delete[] points;
1838    return actualCount;
1839}
1840
1841} // namespace
1842