GrTessellator.cpp revision e6eaa320e8dac34396dc364aa0863574d7b5291c
1/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrTessellator.h"
9
10#include "GrBatchFlushState.h"
11#include "GrBatchTest.h"
12#include "GrDefaultGeoProcFactory.h"
13#include "GrPathUtils.h"
14#include "GrVertices.h"
15#include "GrResourceCache.h"
16#include "GrResourceProvider.h"
17#include "SkGeometry.h"
18#include "SkChunkAlloc.h"
19
20#include "batches/GrVertexBatch.h"
21
22#include <stdio.h>
23
24/*
25 * There are six stages to the algorithm:
26 *
27 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
28 * 2) Build a mesh of edges connecting the vertices (build_edges()).
29 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
30 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
31 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
32 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
33 *
34 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
35 * of vertices (and the necessity of inserting new vertices on intersection).
36 *
37 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
38 * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
39 * left-to-right based on the point where both edges are active (when both top vertices
40 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
41 * (shared), it's sorted based on the last point where both edges are active, so the
42 * "upper" bottom vertex.
43 *
44 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
45 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
46 * not exact and may violate the mesh topology or active edge list ordering. We
47 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
48 * points. This occurs in three ways:
49 *
50 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
51 *    neighbouring edges at the top or bottom vertex. This is handled by merging the
52 *    edges (merge_collinear_edges()).
53 * B) Intersections may cause an edge to violate the left-to-right ordering of the
54 *    active edge list. This is handled by splitting the neighbour edge on the
55 *    intersected vertex (cleanup_active_edges()).
56 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
57 *    to become active. This is handled by removing or inserting the edge in the active
58 *    edge list (fix_active_state()).
59 *
60 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
61 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
62 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
63 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
64 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
65 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
66 * linked list implementation. With the latter, all removals are O(1), and most insertions
67 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
68 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
69 * frequent. There may be other data structures worth investigating, however.
70 *
71 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
72 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
73 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
74 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
75 * that the "left" and "right" orientation in the code remains correct (edges to the left are
76 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
77 * degrees counterclockwise, rather that transposing.
78 */
79
80#define LOGGING_ENABLED 0
81
82#if LOGGING_ENABLED
83#define LOG printf
84#else
85#define LOG(...)
86#endif
87
88#define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
89
90namespace {
91
92struct Vertex;
93struct Edge;
94struct Poly;
95
96template <class T, T* T::*Prev, T* T::*Next>
97void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
98    t->*Prev = prev;
99    t->*Next = next;
100    if (prev) {
101        prev->*Next = t;
102    } else if (head) {
103        *head = t;
104    }
105    if (next) {
106        next->*Prev = t;
107    } else if (tail) {
108        *tail = t;
109    }
110}
111
112template <class T, T* T::*Prev, T* T::*Next>
113void list_remove(T* t, T** head, T** tail) {
114    if (t->*Prev) {
115        t->*Prev->*Next = t->*Next;
116    } else if (head) {
117        *head = t->*Next;
118    }
119    if (t->*Next) {
120        t->*Next->*Prev = t->*Prev;
121    } else if (tail) {
122        *tail = t->*Prev;
123    }
124    t->*Prev = t->*Next = nullptr;
125}
126
127/**
128 * Vertices are used in three ways: first, the path contours are converted into a
129 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
130 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
131 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
132 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
133 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
134 * an individual Vertex from the path mesh may belong to multiple
135 * MonotonePolys, so the original Vertices cannot be re-used.
136 */
137
138struct Vertex {
139  Vertex(const SkPoint& point)
140    : fPoint(point), fPrev(nullptr), fNext(nullptr)
141    , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
142    , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
143    , fProcessed(false)
144#if LOGGING_ENABLED
145    , fID (-1.0f)
146#endif
147    {}
148    SkPoint fPoint;           // Vertex position
149    Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
150    Vertex* fNext;            // "
151    Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
152    Edge*   fLastEdgeAbove;   // "
153    Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
154    Edge*   fLastEdgeBelow;   // "
155    bool    fProcessed;       // Has this vertex been seen in simplify()?
156#if LOGGING_ENABLED
157    float   fID;              // Identifier used for logging.
158#endif
159};
160
161/***************************************************************************************/
162
163typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
164
165struct Comparator {
166    CompareFunc sweep_lt;
167    CompareFunc sweep_gt;
168};
169
170bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
171    return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
172}
173
174bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
175    return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
176}
177
178bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
179    return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
180}
181
182bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
183    return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
184}
185
186inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
187    *data++ = v->fPoint;
188    return data;
189}
190
191SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
192#if WIREFRAME
193    data = emit_vertex(v0, data);
194    data = emit_vertex(v1, data);
195    data = emit_vertex(v1, data);
196    data = emit_vertex(v2, data);
197    data = emit_vertex(v2, data);
198    data = emit_vertex(v0, data);
199#else
200    data = emit_vertex(v0, data);
201    data = emit_vertex(v1, data);
202    data = emit_vertex(v2, data);
203#endif
204    return data;
205}
206
207struct EdgeList {
208    EdgeList() : fHead(nullptr), fTail(nullptr) {}
209    Edge* fHead;
210    Edge* fTail;
211};
212
213struct VertexList {
214    VertexList() : fHead(nullptr), fTail(nullptr) {}
215    Vertex* fHead;
216    Vertex* fTail;
217    void insert(Vertex* v, Vertex* prev, Vertex* next) {
218        list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
219    }
220    void append(Vertex* v) {
221        insert(v, fTail, nullptr);
222    }
223    void prepend(Vertex* v) {
224        insert(v, nullptr, fHead);
225    }
226};
227
228/**
229 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
230 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
231 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
232 * point). For speed, that case is only tested by the callers which require it (e.g.,
233 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
234 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
235 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
236 * a lot faster in the "not found" case.
237 *
238 * The coefficients of the line equation stored in double precision to avoid catastrphic
239 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
240 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
241 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
242 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
243 * this file).
244 */
245
246struct Edge {
247    Edge(Vertex* top, Vertex* bottom, int winding)
248        : fWinding(winding)
249        , fTop(top)
250        , fBottom(bottom)
251        , fLeft(nullptr)
252        , fRight(nullptr)
253        , fPrevEdgeAbove(nullptr)
254        , fNextEdgeAbove(nullptr)
255        , fPrevEdgeBelow(nullptr)
256        , fNextEdgeBelow(nullptr)
257        , fLeftPoly(nullptr)
258        , fRightPoly(nullptr) {
259            recompute();
260        }
261    int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
262    Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
263    Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
264    Edge*    fLeft;             // The linked list of edges in the active edge list.
265    Edge*    fRight;            // "
266    Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
267    Edge*    fNextEdgeAbove;    // "
268    Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
269    Edge*    fNextEdgeBelow;    // "
270    Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
271    Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
272    double   fDX;               // The line equation for this edge, in implicit form.
273    double   fDY;               // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
274    double   fC;
275    double dist(const SkPoint& p) const {
276        return fDY * p.fX - fDX * p.fY + fC;
277    }
278    bool isRightOf(Vertex* v) const {
279        return dist(v->fPoint) < 0.0;
280    }
281    bool isLeftOf(Vertex* v) const {
282        return dist(v->fPoint) > 0.0;
283    }
284    void recompute() {
285        fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
286        fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
287        fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
288             static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
289    }
290    bool intersect(const Edge& other, SkPoint* p) {
291        LOG("intersecting %g -> %g with %g -> %g\n",
292               fTop->fID, fBottom->fID,
293               other.fTop->fID, other.fBottom->fID);
294        if (fTop == other.fTop || fBottom == other.fBottom) {
295            return false;
296        }
297        double denom = fDX * other.fDY - fDY * other.fDX;
298        if (denom == 0.0) {
299            return false;
300        }
301        double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
302        double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
303        double sNumer = dy * other.fDX - dx * other.fDY;
304        double tNumer = dy * fDX - dx * fDY;
305        // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
306        // This saves us doing the divide below unless absolutely necessary.
307        if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
308                        : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
309            return false;
310        }
311        double s = sNumer / denom;
312        SkASSERT(s >= 0.0 && s <= 1.0);
313        p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
314        p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
315        return true;
316    }
317    bool isActive(EdgeList* activeEdges) const {
318        return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
319    }
320};
321
322/***************************************************************************************/
323
324struct Poly {
325    Poly(int winding)
326        : fWinding(winding)
327        , fHead(nullptr)
328        , fTail(nullptr)
329        , fActive(nullptr)
330        , fNext(nullptr)
331        , fPartner(nullptr)
332        , fCount(0)
333    {
334#if LOGGING_ENABLED
335        static int gID = 0;
336        fID = gID++;
337        LOG("*** created Poly %d\n", fID);
338#endif
339    }
340    typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
341    struct MonotonePoly {
342        MonotonePoly()
343            : fSide(kNeither_Side)
344            , fPrev(nullptr)
345            , fNext(nullptr) {}
346        Side          fSide;
347        VertexList    fVertices;
348        MonotonePoly* fPrev;
349        MonotonePoly* fNext;
350        bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
351            Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
352            bool done = false;
353            if (fSide == kNeither_Side) {
354                fSide = side;
355            } else {
356                done = side != fSide;
357            }
358            if (fSide == kRight_Side) {
359                fVertices.append(newV);
360            } else {
361                fVertices.prepend(newV);
362            }
363            return done;
364        }
365
366        SkPoint* emit(SkPoint* data) {
367            Vertex* first = fVertices.fHead;
368            Vertex* v = first->fNext;
369            while (v != fVertices.fTail) {
370                SkASSERT(v && v->fPrev && v->fNext);
371                Vertex* prev = v->fPrev;
372                Vertex* curr = v;
373                Vertex* next = v->fNext;
374                double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
375                double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
376                double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
377                double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
378                if (ax * by - ay * bx >= 0.0) {
379                    data = emit_triangle(prev, curr, next, data);
380                    v->fPrev->fNext = v->fNext;
381                    v->fNext->fPrev = v->fPrev;
382                    if (v->fPrev == first) {
383                        v = v->fNext;
384                    } else {
385                        v = v->fPrev;
386                    }
387                } else {
388                    v = v->fNext;
389                }
390            }
391            return data;
392        }
393    };
394    Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
395        LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
396               side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
397        Poly* partner = fPartner;
398        Poly* poly = this;
399        if (partner) {
400            fPartner = partner->fPartner = nullptr;
401        }
402        if (!fActive) {
403            fActive = ALLOC_NEW(MonotonePoly, (), alloc);
404        }
405        if (fActive->addVertex(v, side, alloc)) {
406            if (fTail) {
407                fActive->fPrev = fTail;
408                fTail->fNext = fActive;
409                fTail = fActive;
410            } else {
411                fHead = fTail = fActive;
412            }
413            if (partner) {
414                partner->addVertex(v, side, alloc);
415                poly = partner;
416            } else {
417                Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
418                               fActive->fVertices.fHead->fNext : fActive->fVertices.fTail->fPrev;
419                fActive = ALLOC_NEW(MonotonePoly, , alloc);
420                fActive->addVertex(prev, Poly::kNeither_Side, alloc);
421                fActive->addVertex(v, side, alloc);
422            }
423        }
424        fCount++;
425        return poly;
426    }
427    void end(Vertex* v, SkChunkAlloc& alloc) {
428        LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
429        if (fPartner) {
430            fPartner = fPartner->fPartner = nullptr;
431        }
432        addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
433    }
434    SkPoint* emit(SkPoint *data) {
435        if (fCount < 3) {
436            return data;
437        }
438        LOG("emit() %d, size %d\n", fID, fCount);
439        for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
440            data = m->emit(data);
441        }
442        return data;
443    }
444    int fWinding;
445    MonotonePoly* fHead;
446    MonotonePoly* fTail;
447    MonotonePoly* fActive;
448    Poly* fNext;
449    Poly* fPartner;
450    int fCount;
451#if LOGGING_ENABLED
452    int fID;
453#endif
454};
455
456/***************************************************************************************/
457
458bool coincident(const SkPoint& a, const SkPoint& b) {
459    return a == b;
460}
461
462Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
463    Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
464    poly->addVertex(v, Poly::kNeither_Side, alloc);
465    poly->fNext = *head;
466    *head = poly;
467    return poly;
468}
469
470Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
471                                SkChunkAlloc& alloc) {
472    Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
473#if LOGGING_ENABLED
474    static float gID = 0.0f;
475    v->fID = gID++;
476#endif
477    if (prev) {
478        prev->fNext = v;
479        v->fPrev = prev;
480    } else {
481        *head = v;
482    }
483    return v;
484}
485
486Vertex* generate_quadratic_points(const SkPoint& p0,
487                                  const SkPoint& p1,
488                                  const SkPoint& p2,
489                                  SkScalar tolSqd,
490                                  Vertex* prev,
491                                  Vertex** head,
492                                  int pointsLeft,
493                                  SkChunkAlloc& alloc) {
494    SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
495    if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
496        return append_point_to_contour(p2, prev, head, alloc);
497    }
498
499    const SkPoint q[] = {
500        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
501        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
502    };
503    const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
504
505    pointsLeft >>= 1;
506    prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
507    prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
508    return prev;
509}
510
511Vertex* generate_cubic_points(const SkPoint& p0,
512                              const SkPoint& p1,
513                              const SkPoint& p2,
514                              const SkPoint& p3,
515                              SkScalar tolSqd,
516                              Vertex* prev,
517                              Vertex** head,
518                              int pointsLeft,
519                              SkChunkAlloc& alloc) {
520    SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
521    SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
522    if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
523        !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
524        return append_point_to_contour(p3, prev, head, alloc);
525    }
526    const SkPoint q[] = {
527        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
528        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
529        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
530    };
531    const SkPoint r[] = {
532        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
533        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
534    };
535    const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
536    pointsLeft >>= 1;
537    prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
538    prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
539    return prev;
540}
541
542// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
543
544void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
545                      Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
546    SkScalar toleranceSqd = tolerance * tolerance;
547
548    SkPoint pts[4];
549    bool done = false;
550    *isLinear = true;
551    SkPath::Iter iter(path, false);
552    Vertex* prev = nullptr;
553    Vertex* head = nullptr;
554    if (path.isInverseFillType()) {
555        SkPoint quad[4];
556        clipBounds.toQuad(quad);
557        for (int i = 3; i >= 0; i--) {
558            prev = append_point_to_contour(quad[i], prev, &head, alloc);
559        }
560        head->fPrev = prev;
561        prev->fNext = head;
562        *contours++ = head;
563        head = prev = nullptr;
564    }
565    SkAutoConicToQuads converter;
566    while (!done) {
567        SkPath::Verb verb = iter.next(pts);
568        switch (verb) {
569            case SkPath::kConic_Verb: {
570                SkScalar weight = iter.conicWeight();
571                const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
572                for (int i = 0; i < converter.countQuads(); ++i) {
573                    int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
574                    prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
575                                                     toleranceSqd, prev, &head, pointsLeft, alloc);
576                    quadPts += 2;
577                }
578                *isLinear = false;
579                break;
580            }
581            case SkPath::kMove_Verb:
582                if (head) {
583                    head->fPrev = prev;
584                    prev->fNext = head;
585                    *contours++ = head;
586                }
587                head = prev = nullptr;
588                prev = append_point_to_contour(pts[0], prev, &head, alloc);
589                break;
590            case SkPath::kLine_Verb: {
591                prev = append_point_to_contour(pts[1], prev, &head, alloc);
592                break;
593            }
594            case SkPath::kQuad_Verb: {
595                int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
596                prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
597                                                 &head, pointsLeft, alloc);
598                *isLinear = false;
599                break;
600            }
601            case SkPath::kCubic_Verb: {
602                int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
603                prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
604                                toleranceSqd, prev, &head, pointsLeft, alloc);
605                *isLinear = false;
606                break;
607            }
608            case SkPath::kClose_Verb:
609                if (head) {
610                    head->fPrev = prev;
611                    prev->fNext = head;
612                    *contours++ = head;
613                }
614                head = prev = nullptr;
615                break;
616            case SkPath::kDone_Verb:
617                if (head) {
618                    head->fPrev = prev;
619                    prev->fNext = head;
620                    *contours++ = head;
621                }
622                done = true;
623                break;
624        }
625    }
626}
627
628inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
629    switch (fillType) {
630        case SkPath::kWinding_FillType:
631            return winding != 0;
632        case SkPath::kEvenOdd_FillType:
633            return (winding & 1) != 0;
634        case SkPath::kInverseWinding_FillType:
635            return winding == 1;
636        case SkPath::kInverseEvenOdd_FillType:
637            return (winding & 1) == 1;
638        default:
639            SkASSERT(false);
640            return false;
641    }
642}
643
644Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
645    int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
646    Vertex* top = winding < 0 ? next : prev;
647    Vertex* bottom = winding < 0 ? prev : next;
648    return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
649}
650
651void remove_edge(Edge* edge, EdgeList* edges) {
652    LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
653    SkASSERT(edge->isActive(edges));
654    list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
655}
656
657void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
658    LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
659    SkASSERT(!edge->isActive(edges));
660    Edge* next = prev ? prev->fRight : edges->fHead;
661    list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
662}
663
664void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
665    if (v->fFirstEdgeAbove) {
666        *left = v->fFirstEdgeAbove->fLeft;
667        *right = v->fLastEdgeAbove->fRight;
668        return;
669    }
670    Edge* next = nullptr;
671    Edge* prev;
672    for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
673        if (prev->isLeftOf(v)) {
674            break;
675        }
676        next = prev;
677    }
678    *left = prev;
679    *right = next;
680}
681
682void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
683    Edge* prev = nullptr;
684    Edge* next;
685    for (next = edges->fHead; next != nullptr; next = next->fRight) {
686        if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
687            (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
688            (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
689             next->isRightOf(edge->fBottom)) ||
690            (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
691             edge->isLeftOf(next->fBottom))) {
692            break;
693        }
694        prev = next;
695    }
696    *left = prev;
697    *right = next;
698}
699
700void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
701    if (edge->isActive(activeEdges)) {
702        if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
703            remove_edge(edge, activeEdges);
704        }
705    } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
706        Edge* left;
707        Edge* right;
708        find_enclosing_edges(edge, activeEdges, c, &left, &right);
709        insert_edge(edge, left, activeEdges);
710    }
711}
712
713void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
714    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
715        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
716        return;
717    }
718    LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
719    Edge* prev = nullptr;
720    Edge* next;
721    for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
722        if (next->isRightOf(edge->fTop)) {
723            break;
724        }
725        prev = next;
726    }
727    list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
728        edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
729}
730
731void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
732    if (edge->fTop->fPoint == edge->fBottom->fPoint ||
733        c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
734        return;
735    }
736    LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
737    Edge* prev = nullptr;
738    Edge* next;
739    for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
740        if (next->isRightOf(edge->fBottom)) {
741            break;
742        }
743        prev = next;
744    }
745    list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
746        edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
747}
748
749void remove_edge_above(Edge* edge) {
750    LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
751        edge->fBottom->fID);
752    list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
753        edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
754}
755
756void remove_edge_below(Edge* edge) {
757    LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
758        edge->fTop->fID);
759    list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
760        edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
761}
762
763void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
764    if (edge->fWinding != 0) {
765        return;
766    }
767    LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
768    remove_edge_above(edge);
769    remove_edge_below(edge);
770    if (edge->isActive(edges)) {
771        remove_edge(edge, edges);
772    }
773}
774
775void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
776
777void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
778    remove_edge_below(edge);
779    edge->fTop = v;
780    edge->recompute();
781    insert_edge_below(edge, v, c);
782    fix_active_state(edge, activeEdges, c);
783    merge_collinear_edges(edge, activeEdges, c);
784}
785
786void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
787    remove_edge_above(edge);
788    edge->fBottom = v;
789    edge->recompute();
790    insert_edge_above(edge, v, c);
791    fix_active_state(edge, activeEdges, c);
792    merge_collinear_edges(edge, activeEdges, c);
793}
794
795void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
796    if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
797        LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
798            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
799            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
800        other->fWinding += edge->fWinding;
801        erase_edge_if_zero_winding(other, activeEdges);
802        edge->fWinding = 0;
803        erase_edge_if_zero_winding(edge, activeEdges);
804    } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
805        other->fWinding += edge->fWinding;
806        erase_edge_if_zero_winding(other, activeEdges);
807        set_bottom(edge, other->fTop, activeEdges, c);
808    } else {
809        edge->fWinding += other->fWinding;
810        erase_edge_if_zero_winding(edge, activeEdges);
811        set_bottom(other, edge->fTop, activeEdges, c);
812    }
813}
814
815void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
816    if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
817        LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
818            edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
819            edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
820        other->fWinding += edge->fWinding;
821        erase_edge_if_zero_winding(other, activeEdges);
822        edge->fWinding = 0;
823        erase_edge_if_zero_winding(edge, activeEdges);
824    } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
825        edge->fWinding += other->fWinding;
826        erase_edge_if_zero_winding(edge, activeEdges);
827        set_top(other, edge->fBottom, activeEdges, c);
828    } else {
829        other->fWinding += edge->fWinding;
830        erase_edge_if_zero_winding(other, activeEdges);
831        set_top(edge, other->fBottom, activeEdges, c);
832    }
833}
834
835void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
836    if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
837                                 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
838        merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
839    } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
840                                        !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
841        merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
842    }
843    if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
844                                 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
845        merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
846    } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
847                                        !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
848        merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
849    }
850}
851
852void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
853
854void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
855    Vertex* top = edge->fTop;
856    Vertex* bottom = edge->fBottom;
857    if (edge->fLeft) {
858        Vertex* leftTop = edge->fLeft->fTop;
859        Vertex* leftBottom = edge->fLeft->fBottom;
860        if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
861            split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
862        } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
863            split_edge(edge, leftTop, activeEdges, c, alloc);
864        } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
865                   !edge->fLeft->isLeftOf(bottom)) {
866            split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
867        } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
868            split_edge(edge, leftBottom, activeEdges, c, alloc);
869        }
870    }
871    if (edge->fRight) {
872        Vertex* rightTop = edge->fRight->fTop;
873        Vertex* rightBottom = edge->fRight->fBottom;
874        if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
875            split_edge(edge->fRight, top, activeEdges, c, alloc);
876        } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
877            split_edge(edge, rightTop, activeEdges, c, alloc);
878        } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
879                   !edge->fRight->isRightOf(bottom)) {
880            split_edge(edge->fRight, bottom, activeEdges, c, alloc);
881        } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
882                   !edge->isLeftOf(rightBottom)) {
883            split_edge(edge, rightBottom, activeEdges, c, alloc);
884        }
885    }
886}
887
888void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
889    LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
890        edge->fTop->fID, edge->fBottom->fID,
891        v->fID, v->fPoint.fX, v->fPoint.fY);
892    if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
893        set_top(edge, v, activeEdges, c);
894    } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
895        set_bottom(edge, v, activeEdges, c);
896    } else {
897        Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
898        insert_edge_below(newEdge, v, c);
899        insert_edge_above(newEdge, edge->fBottom, c);
900        set_bottom(edge, v, activeEdges, c);
901        cleanup_active_edges(edge, activeEdges, c, alloc);
902        fix_active_state(newEdge, activeEdges, c);
903        merge_collinear_edges(newEdge, activeEdges, c);
904    }
905}
906
907void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
908    LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
909        src->fID, dst->fID);
910    for (Edge* edge = src->fFirstEdgeAbove; edge;) {
911        Edge* next = edge->fNextEdgeAbove;
912        set_bottom(edge, dst, nullptr, c);
913        edge = next;
914    }
915    for (Edge* edge = src->fFirstEdgeBelow; edge;) {
916        Edge* next = edge->fNextEdgeBelow;
917        set_top(edge, dst, nullptr, c);
918        edge = next;
919    }
920    list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
921}
922
923Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
924                               SkChunkAlloc& alloc) {
925    SkPoint p;
926    if (!edge || !other) {
927        return nullptr;
928    }
929    if (edge->intersect(*other, &p)) {
930        Vertex* v;
931        LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
932        if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
933            split_edge(other, edge->fTop, activeEdges, c, alloc);
934            v = edge->fTop;
935        } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
936            split_edge(other, edge->fBottom, activeEdges, c, alloc);
937            v = edge->fBottom;
938        } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
939            split_edge(edge, other->fTop, activeEdges, c, alloc);
940            v = other->fTop;
941        } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
942            split_edge(edge, other->fBottom, activeEdges, c, alloc);
943            v = other->fBottom;
944        } else {
945            Vertex* nextV = edge->fTop;
946            while (c.sweep_lt(p, nextV->fPoint)) {
947                nextV = nextV->fPrev;
948            }
949            while (c.sweep_lt(nextV->fPoint, p)) {
950                nextV = nextV->fNext;
951            }
952            Vertex* prevV = nextV->fPrev;
953            if (coincident(prevV->fPoint, p)) {
954                v = prevV;
955            } else if (coincident(nextV->fPoint, p)) {
956                v = nextV;
957            } else {
958                v = ALLOC_NEW(Vertex, (p), alloc);
959                LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
960                    prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
961                    nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
962#if LOGGING_ENABLED
963                v->fID = (nextV->fID + prevV->fID) * 0.5f;
964#endif
965                v->fPrev = prevV;
966                v->fNext = nextV;
967                prevV->fNext = v;
968                nextV->fPrev = v;
969            }
970            split_edge(edge, v, activeEdges, c, alloc);
971            split_edge(other, v, activeEdges, c, alloc);
972        }
973        return v;
974    }
975    return nullptr;
976}
977
978void sanitize_contours(Vertex** contours, int contourCnt) {
979    for (int i = 0; i < contourCnt; ++i) {
980        SkASSERT(contours[i]);
981        for (Vertex* v = contours[i];;) {
982            if (coincident(v->fPrev->fPoint, v->fPoint)) {
983                LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
984                if (v->fPrev == v) {
985                    contours[i] = nullptr;
986                    break;
987                }
988                v->fPrev->fNext = v->fNext;
989                v->fNext->fPrev = v->fPrev;
990                if (contours[i] == v) {
991                    contours[i] = v->fNext;
992                }
993                v = v->fPrev;
994            } else {
995                v = v->fNext;
996                if (v == contours[i]) break;
997            }
998        }
999    }
1000}
1001
1002void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
1003    for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
1004        if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1005            v->fPoint = v->fPrev->fPoint;
1006        }
1007        if (coincident(v->fPrev->fPoint, v->fPoint)) {
1008            merge_vertices(v->fPrev, v, vertices, c, alloc);
1009        }
1010    }
1011}
1012
1013// Stage 2: convert the contours to a mesh of edges connecting the vertices.
1014
1015Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1016    Vertex* vertices = nullptr;
1017    Vertex* prev = nullptr;
1018    for (int i = 0; i < contourCnt; ++i) {
1019        for (Vertex* v = contours[i]; v != nullptr;) {
1020            Vertex* vNext = v->fNext;
1021            Edge* edge = new_edge(v->fPrev, v, alloc, c);
1022            if (edge->fWinding > 0) {
1023                insert_edge_below(edge, v->fPrev, c);
1024                insert_edge_above(edge, v, c);
1025            } else {
1026                insert_edge_below(edge, v, c);
1027                insert_edge_above(edge, v->fPrev, c);
1028            }
1029            merge_collinear_edges(edge, nullptr, c);
1030            if (prev) {
1031                prev->fNext = v;
1032                v->fPrev = prev;
1033            } else {
1034                vertices = v;
1035            }
1036            prev = v;
1037            v = vNext;
1038            if (v == contours[i]) break;
1039        }
1040    }
1041    if (prev) {
1042        prev->fNext = vertices->fPrev = nullptr;
1043    }
1044    return vertices;
1045}
1046
1047// Stage 3: sort the vertices by increasing sweep direction.
1048
1049Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
1050
1051void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1052    Vertex* fast;
1053    Vertex* slow;
1054    if (!v || !v->fNext) {
1055        *pFront = v;
1056        *pBack = nullptr;
1057    } else {
1058        slow = v;
1059        fast = v->fNext;
1060
1061        while (fast != nullptr) {
1062            fast = fast->fNext;
1063            if (fast != nullptr) {
1064                slow = slow->fNext;
1065                fast = fast->fNext;
1066            }
1067        }
1068
1069        *pFront = v;
1070        *pBack = slow->fNext;
1071        slow->fNext->fPrev = nullptr;
1072        slow->fNext = nullptr;
1073    }
1074}
1075
1076void merge_sort(Vertex** head, Comparator& c) {
1077    if (!*head || !(*head)->fNext) {
1078        return;
1079    }
1080
1081    Vertex* a;
1082    Vertex* b;
1083    front_back_split(*head, &a, &b);
1084
1085    merge_sort(&a, c);
1086    merge_sort(&b, c);
1087
1088    *head = sorted_merge(a, b, c);
1089}
1090
1091Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
1092    VertexList vertices;
1093
1094    while (a && b) {
1095        if (c.sweep_lt(a->fPoint, b->fPoint)) {
1096            Vertex* next = a->fNext;
1097            vertices.append(a);
1098            a = next;
1099        } else {
1100            Vertex* next = b->fNext;
1101            vertices.append(b);
1102            b = next;
1103        }
1104    }
1105    if (a) {
1106        vertices.insert(a, vertices.fTail, a->fNext);
1107    }
1108    if (b) {
1109        vertices.insert(b, vertices.fTail, b->fNext);
1110    }
1111    return vertices.fHead;
1112}
1113
1114// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1115
1116void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
1117    LOG("simplifying complex polygons\n");
1118    EdgeList activeEdges;
1119    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1120        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1121            continue;
1122        }
1123#if LOGGING_ENABLED
1124        LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1125#endif
1126        Edge* leftEnclosingEdge = nullptr;
1127        Edge* rightEnclosingEdge = nullptr;
1128        bool restartChecks;
1129        do {
1130            restartChecks = false;
1131            find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1132            if (v->fFirstEdgeBelow) {
1133                for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = edge->fNextEdgeBelow) {
1134                    if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1135                        restartChecks = true;
1136                        break;
1137                    }
1138                    if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1139                        restartChecks = true;
1140                        break;
1141                    }
1142                }
1143            } else {
1144                if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1145                                                        &activeEdges, c, alloc)) {
1146                    if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1147                        v = pv;
1148                    }
1149                    restartChecks = true;
1150                }
1151
1152            }
1153        } while (restartChecks);
1154        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1155            remove_edge(e, &activeEdges);
1156        }
1157        Edge* leftEdge = leftEnclosingEdge;
1158        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1159            insert_edge(e, leftEdge, &activeEdges);
1160            leftEdge = e;
1161        }
1162        v->fProcessed = true;
1163    }
1164}
1165
1166// Stage 5: Tessellate the simplified mesh into monotone polygons.
1167
1168Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1169    LOG("tessellating simple polygons\n");
1170    EdgeList activeEdges;
1171    Poly* polys = nullptr;
1172    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1173        if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1174            continue;
1175        }
1176#if LOGGING_ENABLED
1177        LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1178#endif
1179        Edge* leftEnclosingEdge = nullptr;
1180        Edge* rightEnclosingEdge = nullptr;
1181        find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1182        Poly* leftPoly = nullptr;
1183        Poly* rightPoly = nullptr;
1184        if (v->fFirstEdgeAbove) {
1185            leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1186            rightPoly = v->fLastEdgeAbove->fRightPoly;
1187        } else {
1188            leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1189            rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1190        }
1191#if LOGGING_ENABLED
1192        LOG("edges above:\n");
1193        for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1194            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1195                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1196        }
1197        LOG("edges below:\n");
1198        for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1199            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1200                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1201        }
1202#endif
1203        if (v->fFirstEdgeAbove) {
1204            if (leftPoly) {
1205                leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1206            }
1207            if (rightPoly) {
1208                rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1209            }
1210            for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1211                Edge* leftEdge = e;
1212                Edge* rightEdge = e->fNextEdgeAbove;
1213                SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1214                remove_edge(leftEdge, &activeEdges);
1215                if (leftEdge->fRightPoly) {
1216                    leftEdge->fRightPoly->end(v, alloc);
1217                }
1218                if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1219                    rightEdge->fLeftPoly->end(v, alloc);
1220                }
1221            }
1222            remove_edge(v->fLastEdgeAbove, &activeEdges);
1223            if (!v->fFirstEdgeBelow) {
1224                if (leftPoly && rightPoly && leftPoly != rightPoly) {
1225                    SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1226                    rightPoly->fPartner = leftPoly;
1227                    leftPoly->fPartner = rightPoly;
1228                }
1229            }
1230        }
1231        if (v->fFirstEdgeBelow) {
1232            if (!v->fFirstEdgeAbove) {
1233                if (leftPoly && leftPoly == rightPoly) {
1234                    // Split the poly.
1235                    if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1236                        leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1237                                            alloc);
1238                        leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1239                        rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1240                        leftEnclosingEdge->fRightPoly = leftPoly;
1241                    } else {
1242                        rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1243                                             alloc);
1244                        rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1245                        leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1246                        rightEnclosingEdge->fLeftPoly = rightPoly;
1247                    }
1248                } else {
1249                    if (leftPoly) {
1250                        leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1251                    }
1252                    if (rightPoly) {
1253                        rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1254                    }
1255                }
1256            }
1257            Edge* leftEdge = v->fFirstEdgeBelow;
1258            leftEdge->fLeftPoly = leftPoly;
1259            insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1260            for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1261                 rightEdge = rightEdge->fNextEdgeBelow) {
1262                insert_edge(rightEdge, leftEdge, &activeEdges);
1263                int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1264                winding += leftEdge->fWinding;
1265                if (winding != 0) {
1266                    Poly* poly = new_poly(&polys, v, winding, alloc);
1267                    leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1268                }
1269                leftEdge = rightEdge;
1270            }
1271            v->fLastEdgeBelow->fRightPoly = rightPoly;
1272        }
1273#if LOGGING_ENABLED
1274        LOG("\nactive edges:\n");
1275        for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1276            LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1277                e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1278        }
1279#endif
1280    }
1281    return polys;
1282}
1283
1284// This is a driver function which calls stages 2-5 in turn.
1285
1286Poly* contours_to_polys(Vertex** contours, int contourCnt, const SkRect& pathBounds,
1287                        SkChunkAlloc& alloc) {
1288    Comparator c;
1289    if (pathBounds.width() > pathBounds.height()) {
1290        c.sweep_lt = sweep_lt_horiz;
1291        c.sweep_gt = sweep_gt_horiz;
1292    } else {
1293        c.sweep_lt = sweep_lt_vert;
1294        c.sweep_gt = sweep_gt_vert;
1295    }
1296#if LOGGING_ENABLED
1297    for (int i = 0; i < contourCnt; ++i) {
1298        Vertex* v = contours[i];
1299        SkASSERT(v);
1300        LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1301        for (v = v->fNext; v != contours[i]; v = v->fNext) {
1302            LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1303        }
1304    }
1305#endif
1306    sanitize_contours(contours, contourCnt);
1307    Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
1308    if (!vertices) {
1309        return nullptr;
1310    }
1311
1312    // Sort vertices in Y (secondarily in X).
1313    merge_sort(&vertices, c);
1314    merge_coincident_vertices(&vertices, c, alloc);
1315#if LOGGING_ENABLED
1316    for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1317        static float gID = 0.0f;
1318        v->fID = gID++;
1319    }
1320#endif
1321    simplify(vertices, c, alloc);
1322    return tessellate(vertices, alloc);
1323}
1324
1325Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1326                    int contourCnt, SkChunkAlloc& alloc, bool* isLinear) {
1327    SkPath::FillType fillType = path.getFillType();
1328    if (SkPath::IsInverseFillType(fillType)) {
1329        contourCnt++;
1330    }
1331    SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
1332
1333    path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1334    return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc);
1335}
1336
1337void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance, int* contourCnt,
1338                                         int* sizeEstimate) {
1339    int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance);
1340    if (maxPts <= 0) {
1341        *contourCnt = 0;
1342        return;
1343    }
1344    if (maxPts > ((int)SK_MaxU16 + 1)) {
1345        SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1346        *contourCnt = 0;
1347        return;
1348    }
1349    // For the initial size of the chunk allocator, estimate based on the point count:
1350    // one vertex per point for the initial passes, plus two for the vertices in the
1351    // resulting Polys, since the same point may end up in two Polys.  Assume minimal
1352    // connectivity of one Edge per Vertex (will grow for intersections).
1353    *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge));
1354}
1355
1356int count_points(Poly* polys, SkPath::FillType fillType) {
1357    int count = 0;
1358    for (Poly* poly = polys; poly; poly = poly->fNext) {
1359        if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1360            count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1361        }
1362    }
1363    return count;
1364}
1365
1366} // namespace
1367
1368namespace GrTessellator {
1369
1370// Stage 6: Triangulate the monotone polygons into a vertex buffer.
1371
1372int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1373                    GrResourceProvider* resourceProvider,
1374                    SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, bool* isLinear) {
1375    int contourCnt;
1376    int sizeEstimate;
1377    get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1378    if (contourCnt <= 0) {
1379        *isLinear = true;
1380        return 0;
1381    }
1382    SkChunkAlloc alloc(sizeEstimate);
1383    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, isLinear);
1384    SkPath::FillType fillType = path.getFillType();
1385    int count = count_points(polys, fillType);
1386    if (0 == count) {
1387        return 0;
1388    }
1389
1390    size_t size = count * sizeof(SkPoint);
1391    if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
1392        vertexBuffer.reset(resourceProvider->createVertexBuffer(
1393            size, GrResourceProvider::kStatic_BufferUsage, 0));
1394    }
1395    if (!vertexBuffer.get()) {
1396        SkDebugf("Could not allocate vertices\n");
1397        return 0;
1398    }
1399    SkPoint* verts;
1400    if (canMapVB) {
1401        verts = static_cast<SkPoint*>(vertexBuffer->map());
1402    } else {
1403        verts = new SkPoint[count];
1404    }
1405    SkPoint* end = verts;
1406    for (Poly* poly = polys; poly; poly = poly->fNext) {
1407        if (apply_fill_type(fillType, poly->fWinding)) {
1408            end = poly->emit(end);
1409        }
1410    }
1411    int actualCount = static_cast<int>(end - verts);
1412    LOG("actual count: %d\n", actualCount);
1413    SkASSERT(actualCount <= count);
1414    if (canMapVB) {
1415        vertexBuffer->unmap();
1416    } else {
1417        vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
1418        delete[] verts;
1419    }
1420
1421    return actualCount;
1422}
1423
1424int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1425                   GrTessellator::WindingVertex** verts) {
1426    int contourCnt;
1427    int sizeEstimate;
1428    get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1429    if (contourCnt <= 0) {
1430        return 0;
1431    }
1432    SkChunkAlloc alloc(sizeEstimate);
1433    bool isLinear;
1434    Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, &isLinear);
1435    SkPath::FillType fillType = path.getFillType();
1436    int count = count_points(polys, fillType);
1437    if (0 == count) {
1438        *verts = nullptr;
1439        return 0;
1440    }
1441
1442    *verts = new GrTessellator::WindingVertex[count];
1443    GrTessellator::WindingVertex* vertsEnd = *verts;
1444    SkPoint* points = new SkPoint[count];
1445    SkPoint* pointsEnd = points;
1446    for (Poly* poly = polys; poly; poly = poly->fNext) {
1447        if (apply_fill_type(fillType, poly->fWinding)) {
1448            SkPoint* start = pointsEnd;
1449            pointsEnd = poly->emit(pointsEnd);
1450            while (start != pointsEnd) {
1451                vertsEnd->fPos = *start;
1452                vertsEnd->fWinding = poly->fWinding;
1453                ++start;
1454                ++vertsEnd;
1455            }
1456        }
1457    }
1458    int actualCount = static_cast<int>(vertsEnd - *verts);
1459    SkASSERT(actualCount <= count);
1460    SkASSERT(pointsEnd - points == actualCount);
1461    delete[] points;
1462    return actualCount;
1463}
1464
1465} // namespace
1466