1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines several CodeGen-specific LLVM IR analysis utilties.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/Analysis.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Module.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetLowering.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28using namespace llvm;
29
30/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
31/// of insertvalue or extractvalue indices that identify a member, return
32/// the linearized index of the start of the member.
33///
34unsigned llvm::ComputeLinearIndex(Type *Ty,
35                                  const unsigned *Indices,
36                                  const unsigned *IndicesEnd,
37                                  unsigned CurIndex) {
38  // Base case: We're done.
39  if (Indices && Indices == IndicesEnd)
40    return CurIndex;
41
42  // Given a struct type, recursively traverse the elements.
43  if (StructType *STy = dyn_cast<StructType>(Ty)) {
44    for (StructType::element_iterator EB = STy->element_begin(),
45                                      EI = EB,
46                                      EE = STy->element_end();
47        EI != EE; ++EI) {
48      if (Indices && *Indices == unsigned(EI - EB))
49        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
50      CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
51    }
52    return CurIndex;
53  }
54  // Given an array type, recursively traverse the elements.
55  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
56    Type *EltTy = ATy->getElementType();
57    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
58      if (Indices && *Indices == i)
59        return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
60      CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
61    }
62    return CurIndex;
63  }
64  // We haven't found the type we're looking for, so keep searching.
65  return CurIndex + 1;
66}
67
68/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
69/// EVTs that represent all the individual underlying
70/// non-aggregate types that comprise it.
71///
72/// If Offsets is non-null, it points to a vector to be filled in
73/// with the in-memory offsets of each of the individual values.
74///
75void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
76                           SmallVectorImpl<EVT> &ValueVTs,
77                           SmallVectorImpl<uint64_t> *Offsets,
78                           uint64_t StartingOffset) {
79  // Given a struct type, recursively traverse the elements.
80  if (StructType *STy = dyn_cast<StructType>(Ty)) {
81    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
82    for (StructType::element_iterator EB = STy->element_begin(),
83                                      EI = EB,
84                                      EE = STy->element_end();
85         EI != EE; ++EI)
86      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
87                      StartingOffset + SL->getElementOffset(EI - EB));
88    return;
89  }
90  // Given an array type, recursively traverse the elements.
91  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
92    Type *EltTy = ATy->getElementType();
93    uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
94    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
95      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
96                      StartingOffset + i * EltSize);
97    return;
98  }
99  // Interpret void as zero return values.
100  if (Ty->isVoidTy())
101    return;
102  // Base case: we can get an EVT for this LLVM IR type.
103  ValueVTs.push_back(TLI.getValueType(Ty));
104  if (Offsets)
105    Offsets->push_back(StartingOffset);
106}
107
108/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
109GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
110  V = V->stripPointerCasts();
111  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
112
113  if (GV && GV->getName() == "llvm.eh.catch.all.value") {
114    assert(GV->hasInitializer() &&
115           "The EH catch-all value must have an initializer");
116    Value *Init = GV->getInitializer();
117    GV = dyn_cast<GlobalVariable>(Init);
118    if (!GV) V = cast<ConstantPointerNull>(Init);
119  }
120
121  assert((GV || isa<ConstantPointerNull>(V)) &&
122         "TypeInfo must be a global variable or NULL");
123  return GV;
124}
125
126/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
127/// processed uses a memory 'm' constraint.
128bool
129llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
130                                const TargetLowering &TLI) {
131  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
132    InlineAsm::ConstraintInfo &CI = CInfos[i];
133    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
134      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
135      if (CType == TargetLowering::C_Memory)
136        return true;
137    }
138
139    // Indirect operand accesses access memory.
140    if (CI.isIndirect)
141      return true;
142  }
143
144  return false;
145}
146
147/// getFCmpCondCode - Return the ISD condition code corresponding to
148/// the given LLVM IR floating-point condition code.  This includes
149/// consideration of global floating-point math flags.
150///
151ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
152  ISD::CondCode FPC, FOC;
153  switch (Pred) {
154  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
155  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
156  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
157  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
158  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
159  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
160  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
161  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
162  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
163  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
164  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
165  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
166  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
167  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
168  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
169  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
170  default:
171    llvm_unreachable("Invalid FCmp predicate opcode!");
172    FOC = FPC = ISD::SETFALSE;
173    break;
174  }
175  if (NoNaNsFPMath)
176    return FOC;
177  else
178    return FPC;
179}
180
181/// getICmpCondCode - Return the ISD condition code corresponding to
182/// the given LLVM IR integer condition code.
183///
184ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
185  switch (Pred) {
186  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
187  case ICmpInst::ICMP_NE:  return ISD::SETNE;
188  case ICmpInst::ICMP_SLE: return ISD::SETLE;
189  case ICmpInst::ICMP_ULE: return ISD::SETULE;
190  case ICmpInst::ICMP_SGE: return ISD::SETGE;
191  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
192  case ICmpInst::ICMP_SLT: return ISD::SETLT;
193  case ICmpInst::ICMP_ULT: return ISD::SETULT;
194  case ICmpInst::ICMP_SGT: return ISD::SETGT;
195  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
196  default:
197    llvm_unreachable("Invalid ICmp predicate opcode!");
198    return ISD::SETNE;
199  }
200}
201
202/// Test if the given instruction is in a position to be optimized
203/// with a tail-call. This roughly means that it's in a block with
204/// a return and there's nothing that needs to be scheduled
205/// between it and the return.
206///
207/// This function only tests target-independent requirements.
208bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
209                                const TargetLowering &TLI) {
210  const Instruction *I = CS.getInstruction();
211  const BasicBlock *ExitBB = I->getParent();
212  const TerminatorInst *Term = ExitBB->getTerminator();
213  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
214
215  // The block must end in a return statement or unreachable.
216  //
217  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
218  // an unreachable, for now. The way tailcall optimization is currently
219  // implemented means it will add an epilogue followed by a jump. That is
220  // not profitable. Also, if the callee is a special function (e.g.
221  // longjmp on x86), it can end up causing miscompilation that has not
222  // been fully understood.
223  if (!Ret &&
224      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
225
226  // If I will have a chain, make sure no other instruction that will have a
227  // chain interposes between I and the return.
228  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
229      !I->isSafeToSpeculativelyExecute())
230    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
231         --BBI) {
232      if (&*BBI == I)
233        break;
234      // Debug info intrinsics do not get in the way of tail call optimization.
235      if (isa<DbgInfoIntrinsic>(BBI))
236        continue;
237      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
238          !BBI->isSafeToSpeculativelyExecute())
239        return false;
240    }
241
242  // If the block ends with a void return or unreachable, it doesn't matter
243  // what the call's return type is.
244  if (!Ret || Ret->getNumOperands() == 0) return true;
245
246  // If the return value is undef, it doesn't matter what the call's
247  // return type is.
248  if (isa<UndefValue>(Ret->getOperand(0))) return true;
249
250  // Conservatively require the attributes of the call to match those of
251  // the return. Ignore noalias because it doesn't affect the call sequence.
252  const Function *F = ExitBB->getParent();
253  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
254  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
255    return false;
256
257  // It's not safe to eliminate the sign / zero extension of the return value.
258  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
259    return false;
260
261  // Otherwise, make sure the unmodified return value of I is the return value.
262  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
263       U = dyn_cast<Instruction>(U->getOperand(0))) {
264    if (!U)
265      return false;
266    if (!U->hasOneUse())
267      return false;
268    if (U == I)
269      break;
270    // Check for a truly no-op truncate.
271    if (isa<TruncInst>(U) &&
272        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
273      continue;
274    // Check for a truly no-op bitcast.
275    if (isa<BitCastInst>(U) &&
276        (U->getOperand(0)->getType() == U->getType() ||
277         (U->getOperand(0)->getType()->isPointerTy() &&
278          U->getType()->isPointerTy())))
279      continue;
280    // Otherwise it's not a true no-op.
281    return false;
282  }
283
284  return true;
285}
286
287bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
288                                const TargetLowering &TLI) {
289  const Function *F = DAG.getMachineFunction().getFunction();
290
291  // Conservatively require the attributes of the call to match those of
292  // the return. Ignore noalias because it doesn't affect the call sequence.
293  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
294  if (CallerRetAttr & ~Attribute::NoAlias)
295    return false;
296
297  // It's not safe to eliminate the sign / zero extension of the return value.
298  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
299    return false;
300
301  // Check if the only use is a function return node.
302  return TLI.isUsedByReturnOnly(Node);
303}
304