1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  else if (!Regs.empty() &&
792           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
793    // Put the register class of the virtual registers in the flag word.  That
794    // way, later passes can recompute register class constraints for inline
795    // assembly as well as normal instructions.
796    // Don't do this for tied operands that can use the regclass information
797    // from the def.
798    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
799    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
800    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
801  }
802
803  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
804  Ops.push_back(Res);
805
806  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
807    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
808    EVT RegisterVT = RegVTs[Value];
809    for (unsigned i = 0; i != NumRegs; ++i) {
810      assert(Reg < Regs.size() && "Mismatch in # registers expected");
811      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
812    }
813  }
814}
815
816void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
817  AA = &aa;
818  GFI = gfi;
819  TD = DAG.getTarget().getTargetData();
820  LPadToCallSiteMap.clear();
821}
822
823/// clear - Clear out the current SelectionDAG and the associated
824/// state and prepare this SelectionDAGBuilder object to be used
825/// for a new block. This doesn't clear out information about
826/// additional blocks that are needed to complete switch lowering
827/// or PHI node updating; that information is cleared out as it is
828/// consumed.
829void SelectionDAGBuilder::clear() {
830  NodeMap.clear();
831  UnusedArgNodeMap.clear();
832  PendingLoads.clear();
833  PendingExports.clear();
834  CurDebugLoc = DebugLoc();
835  HasTailCall = false;
836}
837
838/// clearDanglingDebugInfo - Clear the dangling debug information
839/// map. This function is seperated from the clear so that debug
840/// information that is dangling in a basic block can be properly
841/// resolved in a different basic block. This allows the
842/// SelectionDAG to resolve dangling debug information attached
843/// to PHI nodes.
844void SelectionDAGBuilder::clearDanglingDebugInfo() {
845  DanglingDebugInfoMap.clear();
846}
847
848/// getRoot - Return the current virtual root of the Selection DAG,
849/// flushing any PendingLoad items. This must be done before emitting
850/// a store or any other node that may need to be ordered after any
851/// prior load instructions.
852///
853SDValue SelectionDAGBuilder::getRoot() {
854  if (PendingLoads.empty())
855    return DAG.getRoot();
856
857  if (PendingLoads.size() == 1) {
858    SDValue Root = PendingLoads[0];
859    DAG.setRoot(Root);
860    PendingLoads.clear();
861    return Root;
862  }
863
864  // Otherwise, we have to make a token factor node.
865  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
866                               &PendingLoads[0], PendingLoads.size());
867  PendingLoads.clear();
868  DAG.setRoot(Root);
869  return Root;
870}
871
872/// getControlRoot - Similar to getRoot, but instead of flushing all the
873/// PendingLoad items, flush all the PendingExports items. It is necessary
874/// to do this before emitting a terminator instruction.
875///
876SDValue SelectionDAGBuilder::getControlRoot() {
877  SDValue Root = DAG.getRoot();
878
879  if (PendingExports.empty())
880    return Root;
881
882  // Turn all of the CopyToReg chains into one factored node.
883  if (Root.getOpcode() != ISD::EntryToken) {
884    unsigned i = 0, e = PendingExports.size();
885    for (; i != e; ++i) {
886      assert(PendingExports[i].getNode()->getNumOperands() > 1);
887      if (PendingExports[i].getNode()->getOperand(0) == Root)
888        break;  // Don't add the root if we already indirectly depend on it.
889    }
890
891    if (i == e)
892      PendingExports.push_back(Root);
893  }
894
895  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
896                     &PendingExports[0],
897                     PendingExports.size());
898  PendingExports.clear();
899  DAG.setRoot(Root);
900  return Root;
901}
902
903void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
904  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
905  DAG.AssignOrdering(Node, SDNodeOrder);
906
907  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
908    AssignOrderingToNode(Node->getOperand(I).getNode());
909}
910
911void SelectionDAGBuilder::visit(const Instruction &I) {
912  // Set up outgoing PHI node register values before emitting the terminator.
913  if (isa<TerminatorInst>(&I))
914    HandlePHINodesInSuccessorBlocks(I.getParent());
915
916  CurDebugLoc = I.getDebugLoc();
917
918  visit(I.getOpcode(), I);
919
920  if (!isa<TerminatorInst>(&I) && !HasTailCall)
921    CopyToExportRegsIfNeeded(&I);
922
923  CurDebugLoc = DebugLoc();
924}
925
926void SelectionDAGBuilder::visitPHI(const PHINode &) {
927  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
928}
929
930void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
931  // Note: this doesn't use InstVisitor, because it has to work with
932  // ConstantExpr's in addition to instructions.
933  switch (Opcode) {
934  default: llvm_unreachable("Unknown instruction type encountered!");
935    // Build the switch statement using the Instruction.def file.
936#define HANDLE_INST(NUM, OPCODE, CLASS) \
937    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
938#include "llvm/Instruction.def"
939  }
940
941  // Assign the ordering to the freshly created DAG nodes.
942  if (NodeMap.count(&I)) {
943    ++SDNodeOrder;
944    AssignOrderingToNode(getValue(&I).getNode());
945  }
946}
947
948// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
949// generate the debug data structures now that we've seen its definition.
950void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
951                                                   SDValue Val) {
952  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
953  if (DDI.getDI()) {
954    const DbgValueInst *DI = DDI.getDI();
955    DebugLoc dl = DDI.getdl();
956    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
957    MDNode *Variable = DI->getVariable();
958    uint64_t Offset = DI->getOffset();
959    SDDbgValue *SDV;
960    if (Val.getNode()) {
961      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
962        SDV = DAG.getDbgValue(Variable, Val.getNode(),
963                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
964        DAG.AddDbgValue(SDV, Val.getNode(), false);
965      }
966    } else
967      DEBUG(dbgs() << "Dropping debug info for " << DI);
968    DanglingDebugInfoMap[V] = DanglingDebugInfo();
969  }
970}
971
972/// getValue - Return an SDValue for the given Value.
973SDValue SelectionDAGBuilder::getValue(const Value *V) {
974  // If we already have an SDValue for this value, use it. It's important
975  // to do this first, so that we don't create a CopyFromReg if we already
976  // have a regular SDValue.
977  SDValue &N = NodeMap[V];
978  if (N.getNode()) return N;
979
980  // If there's a virtual register allocated and initialized for this
981  // value, use it.
982  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
983  if (It != FuncInfo.ValueMap.end()) {
984    unsigned InReg = It->second;
985    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
986    SDValue Chain = DAG.getEntryNode();
987    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
988    resolveDanglingDebugInfo(V, N);
989    return N;
990  }
991
992  // Otherwise create a new SDValue and remember it.
993  SDValue Val = getValueImpl(V);
994  NodeMap[V] = Val;
995  resolveDanglingDebugInfo(V, Val);
996  return Val;
997}
998
999/// getNonRegisterValue - Return an SDValue for the given Value, but
1000/// don't look in FuncInfo.ValueMap for a virtual register.
1001SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1002  // If we already have an SDValue for this value, use it.
1003  SDValue &N = NodeMap[V];
1004  if (N.getNode()) return N;
1005
1006  // Otherwise create a new SDValue and remember it.
1007  SDValue Val = getValueImpl(V);
1008  NodeMap[V] = Val;
1009  resolveDanglingDebugInfo(V, Val);
1010  return Val;
1011}
1012
1013/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1014/// Create an SDValue for the given value.
1015SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1016  if (const Constant *C = dyn_cast<Constant>(V)) {
1017    EVT VT = TLI.getValueType(V->getType(), true);
1018
1019    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1020      return DAG.getConstant(*CI, VT);
1021
1022    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1023      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1024
1025    if (isa<ConstantPointerNull>(C))
1026      return DAG.getConstant(0, TLI.getPointerTy());
1027
1028    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1029      return DAG.getConstantFP(*CFP, VT);
1030
1031    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1032      return DAG.getUNDEF(VT);
1033
1034    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1035      visit(CE->getOpcode(), *CE);
1036      SDValue N1 = NodeMap[V];
1037      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1038      return N1;
1039    }
1040
1041    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1042      SmallVector<SDValue, 4> Constants;
1043      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1044           OI != OE; ++OI) {
1045        SDNode *Val = getValue(*OI).getNode();
1046        // If the operand is an empty aggregate, there are no values.
1047        if (!Val) continue;
1048        // Add each leaf value from the operand to the Constants list
1049        // to form a flattened list of all the values.
1050        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1051          Constants.push_back(SDValue(Val, i));
1052      }
1053
1054      return DAG.getMergeValues(&Constants[0], Constants.size(),
1055                                getCurDebugLoc());
1056    }
1057
1058    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1059      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1060             "Unknown struct or array constant!");
1061
1062      SmallVector<EVT, 4> ValueVTs;
1063      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1064      unsigned NumElts = ValueVTs.size();
1065      if (NumElts == 0)
1066        return SDValue(); // empty struct
1067      SmallVector<SDValue, 4> Constants(NumElts);
1068      for (unsigned i = 0; i != NumElts; ++i) {
1069        EVT EltVT = ValueVTs[i];
1070        if (isa<UndefValue>(C))
1071          Constants[i] = DAG.getUNDEF(EltVT);
1072        else if (EltVT.isFloatingPoint())
1073          Constants[i] = DAG.getConstantFP(0, EltVT);
1074        else
1075          Constants[i] = DAG.getConstant(0, EltVT);
1076      }
1077
1078      return DAG.getMergeValues(&Constants[0], NumElts,
1079                                getCurDebugLoc());
1080    }
1081
1082    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1083      return DAG.getBlockAddress(BA, VT);
1084
1085    VectorType *VecTy = cast<VectorType>(V->getType());
1086    unsigned NumElements = VecTy->getNumElements();
1087
1088    // Now that we know the number and type of the elements, get that number of
1089    // elements into the Ops array based on what kind of constant it is.
1090    SmallVector<SDValue, 16> Ops;
1091    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1092      for (unsigned i = 0; i != NumElements; ++i)
1093        Ops.push_back(getValue(CP->getOperand(i)));
1094    } else {
1095      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1096      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1097
1098      SDValue Op;
1099      if (EltVT.isFloatingPoint())
1100        Op = DAG.getConstantFP(0, EltVT);
1101      else
1102        Op = DAG.getConstant(0, EltVT);
1103      Ops.assign(NumElements, Op);
1104    }
1105
1106    // Create a BUILD_VECTOR node.
1107    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1108                                    VT, &Ops[0], Ops.size());
1109  }
1110
1111  // If this is a static alloca, generate it as the frameindex instead of
1112  // computation.
1113  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1114    DenseMap<const AllocaInst*, int>::iterator SI =
1115      FuncInfo.StaticAllocaMap.find(AI);
1116    if (SI != FuncInfo.StaticAllocaMap.end())
1117      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1118  }
1119
1120  // If this is an instruction which fast-isel has deferred, select it now.
1121  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1122    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1123    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1124    SDValue Chain = DAG.getEntryNode();
1125    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1126  }
1127
1128  llvm_unreachable("Can't get register for value!");
1129  return SDValue();
1130}
1131
1132void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1133  SDValue Chain = getControlRoot();
1134  SmallVector<ISD::OutputArg, 8> Outs;
1135  SmallVector<SDValue, 8> OutVals;
1136
1137  if (!FuncInfo.CanLowerReturn) {
1138    unsigned DemoteReg = FuncInfo.DemoteRegister;
1139    const Function *F = I.getParent()->getParent();
1140
1141    // Emit a store of the return value through the virtual register.
1142    // Leave Outs empty so that LowerReturn won't try to load return
1143    // registers the usual way.
1144    SmallVector<EVT, 1> PtrValueVTs;
1145    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1146                    PtrValueVTs);
1147
1148    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1149    SDValue RetOp = getValue(I.getOperand(0));
1150
1151    SmallVector<EVT, 4> ValueVTs;
1152    SmallVector<uint64_t, 4> Offsets;
1153    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1154    unsigned NumValues = ValueVTs.size();
1155
1156    SmallVector<SDValue, 4> Chains(NumValues);
1157    for (unsigned i = 0; i != NumValues; ++i) {
1158      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1159                                RetPtr.getValueType(), RetPtr,
1160                                DAG.getIntPtrConstant(Offsets[i]));
1161      Chains[i] =
1162        DAG.getStore(Chain, getCurDebugLoc(),
1163                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1164                     // FIXME: better loc info would be nice.
1165                     Add, MachinePointerInfo(), false, false, 0);
1166    }
1167
1168    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1169                        MVT::Other, &Chains[0], NumValues);
1170  } else if (I.getNumOperands() != 0) {
1171    SmallVector<EVT, 4> ValueVTs;
1172    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1173    unsigned NumValues = ValueVTs.size();
1174    if (NumValues) {
1175      SDValue RetOp = getValue(I.getOperand(0));
1176      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1177        EVT VT = ValueVTs[j];
1178
1179        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1180
1181        const Function *F = I.getParent()->getParent();
1182        if (F->paramHasAttr(0, Attribute::SExt))
1183          ExtendKind = ISD::SIGN_EXTEND;
1184        else if (F->paramHasAttr(0, Attribute::ZExt))
1185          ExtendKind = ISD::ZERO_EXTEND;
1186
1187        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1188          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1189
1190        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1191        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1192        SmallVector<SDValue, 4> Parts(NumParts);
1193        getCopyToParts(DAG, getCurDebugLoc(),
1194                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1195                       &Parts[0], NumParts, PartVT, ExtendKind);
1196
1197        // 'inreg' on function refers to return value
1198        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1199        if (F->paramHasAttr(0, Attribute::InReg))
1200          Flags.setInReg();
1201
1202        // Propagate extension type if any
1203        if (ExtendKind == ISD::SIGN_EXTEND)
1204          Flags.setSExt();
1205        else if (ExtendKind == ISD::ZERO_EXTEND)
1206          Flags.setZExt();
1207
1208        for (unsigned i = 0; i < NumParts; ++i) {
1209          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1210                                        /*isfixed=*/true));
1211          OutVals.push_back(Parts[i]);
1212        }
1213      }
1214    }
1215  }
1216
1217  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1218  CallingConv::ID CallConv =
1219    DAG.getMachineFunction().getFunction()->getCallingConv();
1220  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1221                          Outs, OutVals, getCurDebugLoc(), DAG);
1222
1223  // Verify that the target's LowerReturn behaved as expected.
1224  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1225         "LowerReturn didn't return a valid chain!");
1226
1227  // Update the DAG with the new chain value resulting from return lowering.
1228  DAG.setRoot(Chain);
1229}
1230
1231/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1232/// created for it, emit nodes to copy the value into the virtual
1233/// registers.
1234void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1235  // Skip empty types
1236  if (V->getType()->isEmptyTy())
1237    return;
1238
1239  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1240  if (VMI != FuncInfo.ValueMap.end()) {
1241    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1242    CopyValueToVirtualRegister(V, VMI->second);
1243  }
1244}
1245
1246/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1247/// the current basic block, add it to ValueMap now so that we'll get a
1248/// CopyTo/FromReg.
1249void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1250  // No need to export constants.
1251  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1252
1253  // Already exported?
1254  if (FuncInfo.isExportedInst(V)) return;
1255
1256  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1257  CopyValueToVirtualRegister(V, Reg);
1258}
1259
1260bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1261                                                     const BasicBlock *FromBB) {
1262  // The operands of the setcc have to be in this block.  We don't know
1263  // how to export them from some other block.
1264  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1265    // Can export from current BB.
1266    if (VI->getParent() == FromBB)
1267      return true;
1268
1269    // Is already exported, noop.
1270    return FuncInfo.isExportedInst(V);
1271  }
1272
1273  // If this is an argument, we can export it if the BB is the entry block or
1274  // if it is already exported.
1275  if (isa<Argument>(V)) {
1276    if (FromBB == &FromBB->getParent()->getEntryBlock())
1277      return true;
1278
1279    // Otherwise, can only export this if it is already exported.
1280    return FuncInfo.isExportedInst(V);
1281  }
1282
1283  // Otherwise, constants can always be exported.
1284  return true;
1285}
1286
1287/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1288uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1289                                            MachineBasicBlock *Dst) {
1290  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1291  if (!BPI)
1292    return 0;
1293  const BasicBlock *SrcBB = Src->getBasicBlock();
1294  const BasicBlock *DstBB = Dst->getBasicBlock();
1295  return BPI->getEdgeWeight(SrcBB, DstBB);
1296}
1297
1298void SelectionDAGBuilder::
1299addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1300                       uint32_t Weight /* = 0 */) {
1301  if (!Weight)
1302    Weight = getEdgeWeight(Src, Dst);
1303  Src->addSuccessor(Dst, Weight);
1304}
1305
1306
1307static bool InBlock(const Value *V, const BasicBlock *BB) {
1308  if (const Instruction *I = dyn_cast<Instruction>(V))
1309    return I->getParent() == BB;
1310  return true;
1311}
1312
1313/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1314/// This function emits a branch and is used at the leaves of an OR or an
1315/// AND operator tree.
1316///
1317void
1318SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1319                                                  MachineBasicBlock *TBB,
1320                                                  MachineBasicBlock *FBB,
1321                                                  MachineBasicBlock *CurBB,
1322                                                  MachineBasicBlock *SwitchBB) {
1323  const BasicBlock *BB = CurBB->getBasicBlock();
1324
1325  // If the leaf of the tree is a comparison, merge the condition into
1326  // the caseblock.
1327  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1328    // The operands of the cmp have to be in this block.  We don't know
1329    // how to export them from some other block.  If this is the first block
1330    // of the sequence, no exporting is needed.
1331    if (CurBB == SwitchBB ||
1332        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1333         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1334      ISD::CondCode Condition;
1335      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1336        Condition = getICmpCondCode(IC->getPredicate());
1337      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1338        Condition = getFCmpCondCode(FC->getPredicate());
1339      } else {
1340        Condition = ISD::SETEQ; // silence warning.
1341        llvm_unreachable("Unknown compare instruction");
1342      }
1343
1344      CaseBlock CB(Condition, BOp->getOperand(0),
1345                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1346      SwitchCases.push_back(CB);
1347      return;
1348    }
1349  }
1350
1351  // Create a CaseBlock record representing this branch.
1352  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1353               NULL, TBB, FBB, CurBB);
1354  SwitchCases.push_back(CB);
1355}
1356
1357/// FindMergedConditions - If Cond is an expression like
1358void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1359                                               MachineBasicBlock *TBB,
1360                                               MachineBasicBlock *FBB,
1361                                               MachineBasicBlock *CurBB,
1362                                               MachineBasicBlock *SwitchBB,
1363                                               unsigned Opc) {
1364  // If this node is not part of the or/and tree, emit it as a branch.
1365  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1366  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1367      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1368      BOp->getParent() != CurBB->getBasicBlock() ||
1369      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1370      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1371    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1372    return;
1373  }
1374
1375  //  Create TmpBB after CurBB.
1376  MachineFunction::iterator BBI = CurBB;
1377  MachineFunction &MF = DAG.getMachineFunction();
1378  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1379  CurBB->getParent()->insert(++BBI, TmpBB);
1380
1381  if (Opc == Instruction::Or) {
1382    // Codegen X | Y as:
1383    //   jmp_if_X TBB
1384    //   jmp TmpBB
1385    // TmpBB:
1386    //   jmp_if_Y TBB
1387    //   jmp FBB
1388    //
1389
1390    // Emit the LHS condition.
1391    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1392
1393    // Emit the RHS condition into TmpBB.
1394    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1395  } else {
1396    assert(Opc == Instruction::And && "Unknown merge op!");
1397    // Codegen X & Y as:
1398    //   jmp_if_X TmpBB
1399    //   jmp FBB
1400    // TmpBB:
1401    //   jmp_if_Y TBB
1402    //   jmp FBB
1403    //
1404    //  This requires creation of TmpBB after CurBB.
1405
1406    // Emit the LHS condition.
1407    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1408
1409    // Emit the RHS condition into TmpBB.
1410    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1411  }
1412}
1413
1414/// If the set of cases should be emitted as a series of branches, return true.
1415/// If we should emit this as a bunch of and/or'd together conditions, return
1416/// false.
1417bool
1418SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1419  if (Cases.size() != 2) return true;
1420
1421  // If this is two comparisons of the same values or'd or and'd together, they
1422  // will get folded into a single comparison, so don't emit two blocks.
1423  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1424       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1425      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1426       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1427    return false;
1428  }
1429
1430  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1431  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1432  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1433      Cases[0].CC == Cases[1].CC &&
1434      isa<Constant>(Cases[0].CmpRHS) &&
1435      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1436    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1437      return false;
1438    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1439      return false;
1440  }
1441
1442  return true;
1443}
1444
1445void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1446  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1447
1448  // Update machine-CFG edges.
1449  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1450
1451  // Figure out which block is immediately after the current one.
1452  MachineBasicBlock *NextBlock = 0;
1453  MachineFunction::iterator BBI = BrMBB;
1454  if (++BBI != FuncInfo.MF->end())
1455    NextBlock = BBI;
1456
1457  if (I.isUnconditional()) {
1458    // Update machine-CFG edges.
1459    BrMBB->addSuccessor(Succ0MBB);
1460
1461    // If this is not a fall-through branch, emit the branch.
1462    if (Succ0MBB != NextBlock)
1463      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1464                              MVT::Other, getControlRoot(),
1465                              DAG.getBasicBlock(Succ0MBB)));
1466
1467    return;
1468  }
1469
1470  // If this condition is one of the special cases we handle, do special stuff
1471  // now.
1472  const Value *CondVal = I.getCondition();
1473  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1474
1475  // If this is a series of conditions that are or'd or and'd together, emit
1476  // this as a sequence of branches instead of setcc's with and/or operations.
1477  // As long as jumps are not expensive, this should improve performance.
1478  // For example, instead of something like:
1479  //     cmp A, B
1480  //     C = seteq
1481  //     cmp D, E
1482  //     F = setle
1483  //     or C, F
1484  //     jnz foo
1485  // Emit:
1486  //     cmp A, B
1487  //     je foo
1488  //     cmp D, E
1489  //     jle foo
1490  //
1491  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1492    if (!TLI.isJumpExpensive() &&
1493        BOp->hasOneUse() &&
1494        (BOp->getOpcode() == Instruction::And ||
1495         BOp->getOpcode() == Instruction::Or)) {
1496      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1497                           BOp->getOpcode());
1498      // If the compares in later blocks need to use values not currently
1499      // exported from this block, export them now.  This block should always
1500      // be the first entry.
1501      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1502
1503      // Allow some cases to be rejected.
1504      if (ShouldEmitAsBranches(SwitchCases)) {
1505        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1506          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1507          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1508        }
1509
1510        // Emit the branch for this block.
1511        visitSwitchCase(SwitchCases[0], BrMBB);
1512        SwitchCases.erase(SwitchCases.begin());
1513        return;
1514      }
1515
1516      // Okay, we decided not to do this, remove any inserted MBB's and clear
1517      // SwitchCases.
1518      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1519        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1520
1521      SwitchCases.clear();
1522    }
1523  }
1524
1525  // Create a CaseBlock record representing this branch.
1526  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1527               NULL, Succ0MBB, Succ1MBB, BrMBB);
1528
1529  // Use visitSwitchCase to actually insert the fast branch sequence for this
1530  // cond branch.
1531  visitSwitchCase(CB, BrMBB);
1532}
1533
1534/// visitSwitchCase - Emits the necessary code to represent a single node in
1535/// the binary search tree resulting from lowering a switch instruction.
1536void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1537                                          MachineBasicBlock *SwitchBB) {
1538  SDValue Cond;
1539  SDValue CondLHS = getValue(CB.CmpLHS);
1540  DebugLoc dl = getCurDebugLoc();
1541
1542  // Build the setcc now.
1543  if (CB.CmpMHS == NULL) {
1544    // Fold "(X == true)" to X and "(X == false)" to !X to
1545    // handle common cases produced by branch lowering.
1546    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1547        CB.CC == ISD::SETEQ)
1548      Cond = CondLHS;
1549    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1550             CB.CC == ISD::SETEQ) {
1551      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1552      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1553    } else
1554      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1555  } else {
1556    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1557
1558    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1559    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1560
1561    SDValue CmpOp = getValue(CB.CmpMHS);
1562    EVT VT = CmpOp.getValueType();
1563
1564    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1565      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1566                          ISD::SETLE);
1567    } else {
1568      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1569                                VT, CmpOp, DAG.getConstant(Low, VT));
1570      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1571                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1572    }
1573  }
1574
1575  // Update successor info
1576  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1577  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1578
1579  // Set NextBlock to be the MBB immediately after the current one, if any.
1580  // This is used to avoid emitting unnecessary branches to the next block.
1581  MachineBasicBlock *NextBlock = 0;
1582  MachineFunction::iterator BBI = SwitchBB;
1583  if (++BBI != FuncInfo.MF->end())
1584    NextBlock = BBI;
1585
1586  // If the lhs block is the next block, invert the condition so that we can
1587  // fall through to the lhs instead of the rhs block.
1588  if (CB.TrueBB == NextBlock) {
1589    std::swap(CB.TrueBB, CB.FalseBB);
1590    SDValue True = DAG.getConstant(1, Cond.getValueType());
1591    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1592  }
1593
1594  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1595                               MVT::Other, getControlRoot(), Cond,
1596                               DAG.getBasicBlock(CB.TrueBB));
1597
1598  // Insert the false branch. Do this even if it's a fall through branch,
1599  // this makes it easier to do DAG optimizations which require inverting
1600  // the branch condition.
1601  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1602                       DAG.getBasicBlock(CB.FalseBB));
1603
1604  DAG.setRoot(BrCond);
1605}
1606
1607/// visitJumpTable - Emit JumpTable node in the current MBB
1608void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1609  // Emit the code for the jump table
1610  assert(JT.Reg != -1U && "Should lower JT Header first!");
1611  EVT PTy = TLI.getPointerTy();
1612  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1613                                     JT.Reg, PTy);
1614  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1615  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1616                                    MVT::Other, Index.getValue(1),
1617                                    Table, Index);
1618  DAG.setRoot(BrJumpTable);
1619}
1620
1621/// visitJumpTableHeader - This function emits necessary code to produce index
1622/// in the JumpTable from switch case.
1623void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1624                                               JumpTableHeader &JTH,
1625                                               MachineBasicBlock *SwitchBB) {
1626  // Subtract the lowest switch case value from the value being switched on and
1627  // conditional branch to default mbb if the result is greater than the
1628  // difference between smallest and largest cases.
1629  SDValue SwitchOp = getValue(JTH.SValue);
1630  EVT VT = SwitchOp.getValueType();
1631  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1632                            DAG.getConstant(JTH.First, VT));
1633
1634  // The SDNode we just created, which holds the value being switched on minus
1635  // the smallest case value, needs to be copied to a virtual register so it
1636  // can be used as an index into the jump table in a subsequent basic block.
1637  // This value may be smaller or larger than the target's pointer type, and
1638  // therefore require extension or truncating.
1639  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1640
1641  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1642  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1643                                    JumpTableReg, SwitchOp);
1644  JT.Reg = JumpTableReg;
1645
1646  // Emit the range check for the jump table, and branch to the default block
1647  // for the switch statement if the value being switched on exceeds the largest
1648  // case in the switch.
1649  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1650                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1651                             DAG.getConstant(JTH.Last-JTH.First,VT),
1652                             ISD::SETUGT);
1653
1654  // Set NextBlock to be the MBB immediately after the current one, if any.
1655  // This is used to avoid emitting unnecessary branches to the next block.
1656  MachineBasicBlock *NextBlock = 0;
1657  MachineFunction::iterator BBI = SwitchBB;
1658
1659  if (++BBI != FuncInfo.MF->end())
1660    NextBlock = BBI;
1661
1662  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                               MVT::Other, CopyTo, CMP,
1664                               DAG.getBasicBlock(JT.Default));
1665
1666  if (JT.MBB != NextBlock)
1667    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1668                         DAG.getBasicBlock(JT.MBB));
1669
1670  DAG.setRoot(BrCond);
1671}
1672
1673/// visitBitTestHeader - This function emits necessary code to produce value
1674/// suitable for "bit tests"
1675void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1676                                             MachineBasicBlock *SwitchBB) {
1677  // Subtract the minimum value
1678  SDValue SwitchOp = getValue(B.SValue);
1679  EVT VT = SwitchOp.getValueType();
1680  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1681                            DAG.getConstant(B.First, VT));
1682
1683  // Check range
1684  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1685                                  TLI.getSetCCResultType(Sub.getValueType()),
1686                                  Sub, DAG.getConstant(B.Range, VT),
1687                                  ISD::SETUGT);
1688
1689  // Determine the type of the test operands.
1690  bool UsePtrType = false;
1691  if (!TLI.isTypeLegal(VT))
1692    UsePtrType = true;
1693  else {
1694    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1695      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1696        // Switch table case range are encoded into series of masks.
1697        // Just use pointer type, it's guaranteed to fit.
1698        UsePtrType = true;
1699        break;
1700      }
1701  }
1702  if (UsePtrType) {
1703    VT = TLI.getPointerTy();
1704    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1705  }
1706
1707  B.RegVT = VT;
1708  B.Reg = FuncInfo.CreateReg(VT);
1709  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1710                                    B.Reg, Sub);
1711
1712  // Set NextBlock to be the MBB immediately after the current one, if any.
1713  // This is used to avoid emitting unnecessary branches to the next block.
1714  MachineBasicBlock *NextBlock = 0;
1715  MachineFunction::iterator BBI = SwitchBB;
1716  if (++BBI != FuncInfo.MF->end())
1717    NextBlock = BBI;
1718
1719  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1720
1721  addSuccessorWithWeight(SwitchBB, B.Default);
1722  addSuccessorWithWeight(SwitchBB, MBB);
1723
1724  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1725                                MVT::Other, CopyTo, RangeCmp,
1726                                DAG.getBasicBlock(B.Default));
1727
1728  if (MBB != NextBlock)
1729    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1730                          DAG.getBasicBlock(MBB));
1731
1732  DAG.setRoot(BrRange);
1733}
1734
1735/// visitBitTestCase - this function produces one "bit test"
1736void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1737                                           MachineBasicBlock* NextMBB,
1738                                           unsigned Reg,
1739                                           BitTestCase &B,
1740                                           MachineBasicBlock *SwitchBB) {
1741  EVT VT = BB.RegVT;
1742  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1743                                       Reg, VT);
1744  SDValue Cmp;
1745  unsigned PopCount = CountPopulation_64(B.Mask);
1746  if (PopCount == 1) {
1747    // Testing for a single bit; just compare the shift count with what it
1748    // would need to be to shift a 1 bit in that position.
1749    Cmp = DAG.getSetCC(getCurDebugLoc(),
1750                       TLI.getSetCCResultType(VT),
1751                       ShiftOp,
1752                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1753                       ISD::SETEQ);
1754  } else if (PopCount == BB.Range) {
1755    // There is only one zero bit in the range, test for it directly.
1756    Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                       TLI.getSetCCResultType(VT),
1758                       ShiftOp,
1759                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1760                       ISD::SETNE);
1761  } else {
1762    // Make desired shift
1763    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1764                                    DAG.getConstant(1, VT), ShiftOp);
1765
1766    // Emit bit tests and jumps
1767    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1768                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1769    Cmp = DAG.getSetCC(getCurDebugLoc(),
1770                       TLI.getSetCCResultType(VT),
1771                       AndOp, DAG.getConstant(0, VT),
1772                       ISD::SETNE);
1773  }
1774
1775  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1776  addSuccessorWithWeight(SwitchBB, NextMBB);
1777
1778  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1779                              MVT::Other, getControlRoot(),
1780                              Cmp, DAG.getBasicBlock(B.TargetBB));
1781
1782  // Set NextBlock to be the MBB immediately after the current one, if any.
1783  // This is used to avoid emitting unnecessary branches to the next block.
1784  MachineBasicBlock *NextBlock = 0;
1785  MachineFunction::iterator BBI = SwitchBB;
1786  if (++BBI != FuncInfo.MF->end())
1787    NextBlock = BBI;
1788
1789  if (NextMBB != NextBlock)
1790    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1791                        DAG.getBasicBlock(NextMBB));
1792
1793  DAG.setRoot(BrAnd);
1794}
1795
1796void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1797  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1798
1799  // Retrieve successors.
1800  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1801  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1802
1803  const Value *Callee(I.getCalledValue());
1804  if (isa<InlineAsm>(Callee))
1805    visitInlineAsm(&I);
1806  else
1807    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1808
1809  // If the value of the invoke is used outside of its defining block, make it
1810  // available as a virtual register.
1811  CopyToExportRegsIfNeeded(&I);
1812
1813  // Update successor info
1814  InvokeMBB->addSuccessor(Return);
1815  InvokeMBB->addSuccessor(LandingPad);
1816
1817  // Drop into normal successor.
1818  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1819                          MVT::Other, getControlRoot(),
1820                          DAG.getBasicBlock(Return)));
1821}
1822
1823void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1824}
1825
1826void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1827  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1828}
1829
1830void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1831  assert(FuncInfo.MBB->isLandingPad() &&
1832         "Call to landingpad not in landing pad!");
1833
1834  MachineBasicBlock *MBB = FuncInfo.MBB;
1835  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1836  AddLandingPadInfo(LP, MMI, MBB);
1837
1838  SmallVector<EVT, 2> ValueVTs;
1839  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1840
1841  // Insert the EXCEPTIONADDR instruction.
1842  assert(FuncInfo.MBB->isLandingPad() &&
1843         "Call to eh.exception not in landing pad!");
1844  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1845  SDValue Ops[2];
1846  Ops[0] = DAG.getRoot();
1847  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1848  SDValue Chain = Op1.getValue(1);
1849
1850  // Insert the EHSELECTION instruction.
1851  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1852  Ops[0] = Op1;
1853  Ops[1] = Chain;
1854  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1855  Chain = Op2.getValue(1);
1856  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1857
1858  Ops[0] = Op1;
1859  Ops[1] = Op2;
1860  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1861                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1862                            &Ops[0], 2);
1863
1864  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1865  setValue(&LP, RetPair.first);
1866  DAG.setRoot(RetPair.second);
1867}
1868
1869/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1870/// small case ranges).
1871bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1872                                                 CaseRecVector& WorkList,
1873                                                 const Value* SV,
1874                                                 MachineBasicBlock *Default,
1875                                                 MachineBasicBlock *SwitchBB) {
1876  Case& BackCase  = *(CR.Range.second-1);
1877
1878  // Size is the number of Cases represented by this range.
1879  size_t Size = CR.Range.second - CR.Range.first;
1880  if (Size > 3)
1881    return false;
1882
1883  // Get the MachineFunction which holds the current MBB.  This is used when
1884  // inserting any additional MBBs necessary to represent the switch.
1885  MachineFunction *CurMF = FuncInfo.MF;
1886
1887  // Figure out which block is immediately after the current one.
1888  MachineBasicBlock *NextBlock = 0;
1889  MachineFunction::iterator BBI = CR.CaseBB;
1890
1891  if (++BBI != FuncInfo.MF->end())
1892    NextBlock = BBI;
1893
1894  // If any two of the cases has the same destination, and if one value
1895  // is the same as the other, but has one bit unset that the other has set,
1896  // use bit manipulation to do two compares at once.  For example:
1897  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1898  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1899  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1900  if (Size == 2 && CR.CaseBB == SwitchBB) {
1901    Case &Small = *CR.Range.first;
1902    Case &Big = *(CR.Range.second-1);
1903
1904    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1905      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1906      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1907
1908      // Check that there is only one bit different.
1909      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1910          (SmallValue | BigValue) == BigValue) {
1911        // Isolate the common bit.
1912        APInt CommonBit = BigValue & ~SmallValue;
1913        assert((SmallValue | CommonBit) == BigValue &&
1914               CommonBit.countPopulation() == 1 && "Not a common bit?");
1915
1916        SDValue CondLHS = getValue(SV);
1917        EVT VT = CondLHS.getValueType();
1918        DebugLoc DL = getCurDebugLoc();
1919
1920        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1921                                 DAG.getConstant(CommonBit, VT));
1922        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1923                                    Or, DAG.getConstant(BigValue, VT),
1924                                    ISD::SETEQ);
1925
1926        // Update successor info.
1927        addSuccessorWithWeight(SwitchBB, Small.BB);
1928        addSuccessorWithWeight(SwitchBB, Default);
1929
1930        // Insert the true branch.
1931        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1932                                     getControlRoot(), Cond,
1933                                     DAG.getBasicBlock(Small.BB));
1934
1935        // Insert the false branch.
1936        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1937                             DAG.getBasicBlock(Default));
1938
1939        DAG.setRoot(BrCond);
1940        return true;
1941      }
1942    }
1943  }
1944
1945  // Rearrange the case blocks so that the last one falls through if possible.
1946  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1947    // The last case block won't fall through into 'NextBlock' if we emit the
1948    // branches in this order.  See if rearranging a case value would help.
1949    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1950      if (I->BB == NextBlock) {
1951        std::swap(*I, BackCase);
1952        break;
1953      }
1954    }
1955  }
1956
1957  // Create a CaseBlock record representing a conditional branch to
1958  // the Case's target mbb if the value being switched on SV is equal
1959  // to C.
1960  MachineBasicBlock *CurBlock = CR.CaseBB;
1961  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1962    MachineBasicBlock *FallThrough;
1963    if (I != E-1) {
1964      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1965      CurMF->insert(BBI, FallThrough);
1966
1967      // Put SV in a virtual register to make it available from the new blocks.
1968      ExportFromCurrentBlock(SV);
1969    } else {
1970      // If the last case doesn't match, go to the default block.
1971      FallThrough = Default;
1972    }
1973
1974    const Value *RHS, *LHS, *MHS;
1975    ISD::CondCode CC;
1976    if (I->High == I->Low) {
1977      // This is just small small case range :) containing exactly 1 case
1978      CC = ISD::SETEQ;
1979      LHS = SV; RHS = I->High; MHS = NULL;
1980    } else {
1981      CC = ISD::SETLE;
1982      LHS = I->Low; MHS = SV; RHS = I->High;
1983    }
1984
1985    uint32_t ExtraWeight = I->ExtraWeight;
1986    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1987                 /* me */ CurBlock,
1988                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1989
1990    // If emitting the first comparison, just call visitSwitchCase to emit the
1991    // code into the current block.  Otherwise, push the CaseBlock onto the
1992    // vector to be later processed by SDISel, and insert the node's MBB
1993    // before the next MBB.
1994    if (CurBlock == SwitchBB)
1995      visitSwitchCase(CB, SwitchBB);
1996    else
1997      SwitchCases.push_back(CB);
1998
1999    CurBlock = FallThrough;
2000  }
2001
2002  return true;
2003}
2004
2005static inline bool areJTsAllowed(const TargetLowering &TLI) {
2006  return !DisableJumpTables &&
2007          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2008           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2009}
2010
2011static APInt ComputeRange(const APInt &First, const APInt &Last) {
2012  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2013  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2014  return (LastExt - FirstExt + 1ULL);
2015}
2016
2017/// handleJTSwitchCase - Emit jumptable for current switch case range
2018bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2019                                             CaseRecVector &WorkList,
2020                                             const Value *SV,
2021                                             MachineBasicBlock *Default,
2022                                             MachineBasicBlock *SwitchBB) {
2023  Case& FrontCase = *CR.Range.first;
2024  Case& BackCase  = *(CR.Range.second-1);
2025
2026  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2027  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2028
2029  APInt TSize(First.getBitWidth(), 0);
2030  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2031    TSize += I->size();
2032
2033  if (!areJTsAllowed(TLI) || TSize.ult(4))
2034    return false;
2035
2036  APInt Range = ComputeRange(First, Last);
2037  // The density is TSize / Range. Require at least 40%.
2038  // It should not be possible for IntTSize to saturate for sane code, but make
2039  // sure we handle Range saturation correctly.
2040  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2041  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2042  if (IntTSize * 10 < IntRange * 4)
2043    return false;
2044
2045  DEBUG(dbgs() << "Lowering jump table\n"
2046               << "First entry: " << First << ". Last entry: " << Last << '\n'
2047               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2048
2049  // Get the MachineFunction which holds the current MBB.  This is used when
2050  // inserting any additional MBBs necessary to represent the switch.
2051  MachineFunction *CurMF = FuncInfo.MF;
2052
2053  // Figure out which block is immediately after the current one.
2054  MachineFunction::iterator BBI = CR.CaseBB;
2055  ++BBI;
2056
2057  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2058
2059  // Create a new basic block to hold the code for loading the address
2060  // of the jump table, and jumping to it.  Update successor information;
2061  // we will either branch to the default case for the switch, or the jump
2062  // table.
2063  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2064  CurMF->insert(BBI, JumpTableBB);
2065
2066  addSuccessorWithWeight(CR.CaseBB, Default);
2067  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2068
2069  // Build a vector of destination BBs, corresponding to each target
2070  // of the jump table. If the value of the jump table slot corresponds to
2071  // a case statement, push the case's BB onto the vector, otherwise, push
2072  // the default BB.
2073  std::vector<MachineBasicBlock*> DestBBs;
2074  APInt TEI = First;
2075  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2076    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2077    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2078
2079    if (Low.sle(TEI) && TEI.sle(High)) {
2080      DestBBs.push_back(I->BB);
2081      if (TEI==High)
2082        ++I;
2083    } else {
2084      DestBBs.push_back(Default);
2085    }
2086  }
2087
2088  // Update successor info. Add one edge to each unique successor.
2089  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2090  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2091         E = DestBBs.end(); I != E; ++I) {
2092    if (!SuccsHandled[(*I)->getNumber()]) {
2093      SuccsHandled[(*I)->getNumber()] = true;
2094      addSuccessorWithWeight(JumpTableBB, *I);
2095    }
2096  }
2097
2098  // Create a jump table index for this jump table.
2099  unsigned JTEncoding = TLI.getJumpTableEncoding();
2100  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2101                       ->createJumpTableIndex(DestBBs);
2102
2103  // Set the jump table information so that we can codegen it as a second
2104  // MachineBasicBlock
2105  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2106  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2107  if (CR.CaseBB == SwitchBB)
2108    visitJumpTableHeader(JT, JTH, SwitchBB);
2109
2110  JTCases.push_back(JumpTableBlock(JTH, JT));
2111  return true;
2112}
2113
2114/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2115/// 2 subtrees.
2116bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2117                                                  CaseRecVector& WorkList,
2118                                                  const Value* SV,
2119                                                  MachineBasicBlock *Default,
2120                                                  MachineBasicBlock *SwitchBB) {
2121  // Get the MachineFunction which holds the current MBB.  This is used when
2122  // inserting any additional MBBs necessary to represent the switch.
2123  MachineFunction *CurMF = FuncInfo.MF;
2124
2125  // Figure out which block is immediately after the current one.
2126  MachineFunction::iterator BBI = CR.CaseBB;
2127  ++BBI;
2128
2129  Case& FrontCase = *CR.Range.first;
2130  Case& BackCase  = *(CR.Range.second-1);
2131  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2132
2133  // Size is the number of Cases represented by this range.
2134  unsigned Size = CR.Range.second - CR.Range.first;
2135
2136  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2137  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2138  double FMetric = 0;
2139  CaseItr Pivot = CR.Range.first + Size/2;
2140
2141  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2142  // (heuristically) allow us to emit JumpTable's later.
2143  APInt TSize(First.getBitWidth(), 0);
2144  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2145       I!=E; ++I)
2146    TSize += I->size();
2147
2148  APInt LSize = FrontCase.size();
2149  APInt RSize = TSize-LSize;
2150  DEBUG(dbgs() << "Selecting best pivot: \n"
2151               << "First: " << First << ", Last: " << Last <<'\n'
2152               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2153  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2154       J!=E; ++I, ++J) {
2155    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2156    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2157    APInt Range = ComputeRange(LEnd, RBegin);
2158    assert((Range - 2ULL).isNonNegative() &&
2159           "Invalid case distance");
2160    // Use volatile double here to avoid excess precision issues on some hosts,
2161    // e.g. that use 80-bit X87 registers.
2162    volatile double LDensity =
2163       (double)LSize.roundToDouble() /
2164                           (LEnd - First + 1ULL).roundToDouble();
2165    volatile double RDensity =
2166      (double)RSize.roundToDouble() /
2167                           (Last - RBegin + 1ULL).roundToDouble();
2168    double Metric = Range.logBase2()*(LDensity+RDensity);
2169    // Should always split in some non-trivial place
2170    DEBUG(dbgs() <<"=>Step\n"
2171                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2172                 << "LDensity: " << LDensity
2173                 << ", RDensity: " << RDensity << '\n'
2174                 << "Metric: " << Metric << '\n');
2175    if (FMetric < Metric) {
2176      Pivot = J;
2177      FMetric = Metric;
2178      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2179    }
2180
2181    LSize += J->size();
2182    RSize -= J->size();
2183  }
2184  if (areJTsAllowed(TLI)) {
2185    // If our case is dense we *really* should handle it earlier!
2186    assert((FMetric > 0) && "Should handle dense range earlier!");
2187  } else {
2188    Pivot = CR.Range.first + Size/2;
2189  }
2190
2191  CaseRange LHSR(CR.Range.first, Pivot);
2192  CaseRange RHSR(Pivot, CR.Range.second);
2193  Constant *C = Pivot->Low;
2194  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2195
2196  // We know that we branch to the LHS if the Value being switched on is
2197  // less than the Pivot value, C.  We use this to optimize our binary
2198  // tree a bit, by recognizing that if SV is greater than or equal to the
2199  // LHS's Case Value, and that Case Value is exactly one less than the
2200  // Pivot's Value, then we can branch directly to the LHS's Target,
2201  // rather than creating a leaf node for it.
2202  if ((LHSR.second - LHSR.first) == 1 &&
2203      LHSR.first->High == CR.GE &&
2204      cast<ConstantInt>(C)->getValue() ==
2205      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2206    TrueBB = LHSR.first->BB;
2207  } else {
2208    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2209    CurMF->insert(BBI, TrueBB);
2210    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2211
2212    // Put SV in a virtual register to make it available from the new blocks.
2213    ExportFromCurrentBlock(SV);
2214  }
2215
2216  // Similar to the optimization above, if the Value being switched on is
2217  // known to be less than the Constant CR.LT, and the current Case Value
2218  // is CR.LT - 1, then we can branch directly to the target block for
2219  // the current Case Value, rather than emitting a RHS leaf node for it.
2220  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2221      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2222      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2223    FalseBB = RHSR.first->BB;
2224  } else {
2225    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2226    CurMF->insert(BBI, FalseBB);
2227    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2228
2229    // Put SV in a virtual register to make it available from the new blocks.
2230    ExportFromCurrentBlock(SV);
2231  }
2232
2233  // Create a CaseBlock record representing a conditional branch to
2234  // the LHS node if the value being switched on SV is less than C.
2235  // Otherwise, branch to LHS.
2236  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2237
2238  if (CR.CaseBB == SwitchBB)
2239    visitSwitchCase(CB, SwitchBB);
2240  else
2241    SwitchCases.push_back(CB);
2242
2243  return true;
2244}
2245
2246/// handleBitTestsSwitchCase - if current case range has few destination and
2247/// range span less, than machine word bitwidth, encode case range into series
2248/// of masks and emit bit tests with these masks.
2249bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2250                                                   CaseRecVector& WorkList,
2251                                                   const Value* SV,
2252                                                   MachineBasicBlock* Default,
2253                                                   MachineBasicBlock *SwitchBB){
2254  EVT PTy = TLI.getPointerTy();
2255  unsigned IntPtrBits = PTy.getSizeInBits();
2256
2257  Case& FrontCase = *CR.Range.first;
2258  Case& BackCase  = *(CR.Range.second-1);
2259
2260  // Get the MachineFunction which holds the current MBB.  This is used when
2261  // inserting any additional MBBs necessary to represent the switch.
2262  MachineFunction *CurMF = FuncInfo.MF;
2263
2264  // If target does not have legal shift left, do not emit bit tests at all.
2265  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2266    return false;
2267
2268  size_t numCmps = 0;
2269  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2270       I!=E; ++I) {
2271    // Single case counts one, case range - two.
2272    numCmps += (I->Low == I->High ? 1 : 2);
2273  }
2274
2275  // Count unique destinations
2276  SmallSet<MachineBasicBlock*, 4> Dests;
2277  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2278    Dests.insert(I->BB);
2279    if (Dests.size() > 3)
2280      // Don't bother the code below, if there are too much unique destinations
2281      return false;
2282  }
2283  DEBUG(dbgs() << "Total number of unique destinations: "
2284        << Dests.size() << '\n'
2285        << "Total number of comparisons: " << numCmps << '\n');
2286
2287  // Compute span of values.
2288  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2289  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2290  APInt cmpRange = maxValue - minValue;
2291
2292  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2293               << "Low bound: " << minValue << '\n'
2294               << "High bound: " << maxValue << '\n');
2295
2296  if (cmpRange.uge(IntPtrBits) ||
2297      (!(Dests.size() == 1 && numCmps >= 3) &&
2298       !(Dests.size() == 2 && numCmps >= 5) &&
2299       !(Dests.size() >= 3 && numCmps >= 6)))
2300    return false;
2301
2302  DEBUG(dbgs() << "Emitting bit tests\n");
2303  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2304
2305  // Optimize the case where all the case values fit in a
2306  // word without having to subtract minValue. In this case,
2307  // we can optimize away the subtraction.
2308  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2309    cmpRange = maxValue;
2310  } else {
2311    lowBound = minValue;
2312  }
2313
2314  CaseBitsVector CasesBits;
2315  unsigned i, count = 0;
2316
2317  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2318    MachineBasicBlock* Dest = I->BB;
2319    for (i = 0; i < count; ++i)
2320      if (Dest == CasesBits[i].BB)
2321        break;
2322
2323    if (i == count) {
2324      assert((count < 3) && "Too much destinations to test!");
2325      CasesBits.push_back(CaseBits(0, Dest, 0));
2326      count++;
2327    }
2328
2329    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2330    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2331
2332    uint64_t lo = (lowValue - lowBound).getZExtValue();
2333    uint64_t hi = (highValue - lowBound).getZExtValue();
2334
2335    for (uint64_t j = lo; j <= hi; j++) {
2336      CasesBits[i].Mask |=  1ULL << j;
2337      CasesBits[i].Bits++;
2338    }
2339
2340  }
2341  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2342
2343  BitTestInfo BTC;
2344
2345  // Figure out which block is immediately after the current one.
2346  MachineFunction::iterator BBI = CR.CaseBB;
2347  ++BBI;
2348
2349  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2350
2351  DEBUG(dbgs() << "Cases:\n");
2352  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2353    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2354                 << ", Bits: " << CasesBits[i].Bits
2355                 << ", BB: " << CasesBits[i].BB << '\n');
2356
2357    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2358    CurMF->insert(BBI, CaseBB);
2359    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2360                              CaseBB,
2361                              CasesBits[i].BB));
2362
2363    // Put SV in a virtual register to make it available from the new blocks.
2364    ExportFromCurrentBlock(SV);
2365  }
2366
2367  BitTestBlock BTB(lowBound, cmpRange, SV,
2368                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2369                   CR.CaseBB, Default, BTC);
2370
2371  if (CR.CaseBB == SwitchBB)
2372    visitBitTestHeader(BTB, SwitchBB);
2373
2374  BitTestCases.push_back(BTB);
2375
2376  return true;
2377}
2378
2379/// Clusterify - Transform simple list of Cases into list of CaseRange's
2380size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2381                                       const SwitchInst& SI) {
2382  size_t numCmps = 0;
2383
2384  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2385  // Start with "simple" cases
2386  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2387    BasicBlock *SuccBB = SI.getSuccessor(i);
2388    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2389
2390    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2391
2392    Cases.push_back(Case(SI.getSuccessorValue(i),
2393                         SI.getSuccessorValue(i),
2394                         SMBB, ExtraWeight));
2395  }
2396  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2397
2398  // Merge case into clusters
2399  if (Cases.size() >= 2)
2400    // Must recompute end() each iteration because it may be
2401    // invalidated by erase if we hold on to it
2402    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2403         J != Cases.end(); ) {
2404      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2405      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2406      MachineBasicBlock* nextBB = J->BB;
2407      MachineBasicBlock* currentBB = I->BB;
2408
2409      // If the two neighboring cases go to the same destination, merge them
2410      // into a single case.
2411      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2412        I->High = J->High;
2413        J = Cases.erase(J);
2414
2415        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2416          uint32_t CurWeight = currentBB->getBasicBlock() ?
2417            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2418          uint32_t NextWeight = nextBB->getBasicBlock() ?
2419            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2420
2421          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2422                             CurWeight + NextWeight);
2423        }
2424      } else {
2425        I = J++;
2426      }
2427    }
2428
2429  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2430    if (I->Low != I->High)
2431      // A range counts double, since it requires two compares.
2432      ++numCmps;
2433  }
2434
2435  return numCmps;
2436}
2437
2438void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2439                                           MachineBasicBlock *Last) {
2440  // Update JTCases.
2441  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2442    if (JTCases[i].first.HeaderBB == First)
2443      JTCases[i].first.HeaderBB = Last;
2444
2445  // Update BitTestCases.
2446  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2447    if (BitTestCases[i].Parent == First)
2448      BitTestCases[i].Parent = Last;
2449}
2450
2451void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2452  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2453
2454  // Figure out which block is immediately after the current one.
2455  MachineBasicBlock *NextBlock = 0;
2456  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2457
2458  // If there is only the default destination, branch to it if it is not the
2459  // next basic block.  Otherwise, just fall through.
2460  if (SI.getNumCases() == 1) {
2461    // Update machine-CFG edges.
2462
2463    // If this is not a fall-through branch, emit the branch.
2464    SwitchMBB->addSuccessor(Default);
2465    if (Default != NextBlock)
2466      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2467                              MVT::Other, getControlRoot(),
2468                              DAG.getBasicBlock(Default)));
2469
2470    return;
2471  }
2472
2473  // If there are any non-default case statements, create a vector of Cases
2474  // representing each one, and sort the vector so that we can efficiently
2475  // create a binary search tree from them.
2476  CaseVector Cases;
2477  size_t numCmps = Clusterify(Cases, SI);
2478  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2479               << ". Total compares: " << numCmps << '\n');
2480  (void)numCmps;
2481
2482  // Get the Value to be switched on and default basic blocks, which will be
2483  // inserted into CaseBlock records, representing basic blocks in the binary
2484  // search tree.
2485  const Value *SV = SI.getCondition();
2486
2487  // Push the initial CaseRec onto the worklist
2488  CaseRecVector WorkList;
2489  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2490                             CaseRange(Cases.begin(),Cases.end())));
2491
2492  while (!WorkList.empty()) {
2493    // Grab a record representing a case range to process off the worklist
2494    CaseRec CR = WorkList.back();
2495    WorkList.pop_back();
2496
2497    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2498      continue;
2499
2500    // If the range has few cases (two or less) emit a series of specific
2501    // tests.
2502    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2503      continue;
2504
2505    // If the switch has more than 5 blocks, and at least 40% dense, and the
2506    // target supports indirect branches, then emit a jump table rather than
2507    // lowering the switch to a binary tree of conditional branches.
2508    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2509      continue;
2510
2511    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2512    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2513    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2514  }
2515}
2516
2517void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2518  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2519
2520  // Update machine-CFG edges with unique successors.
2521  SmallVector<BasicBlock*, 32> succs;
2522  succs.reserve(I.getNumSuccessors());
2523  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2524    succs.push_back(I.getSuccessor(i));
2525  array_pod_sort(succs.begin(), succs.end());
2526  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2527  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2528    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2529    addSuccessorWithWeight(IndirectBrMBB, Succ);
2530  }
2531
2532  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2533                          MVT::Other, getControlRoot(),
2534                          getValue(I.getAddress())));
2535}
2536
2537void SelectionDAGBuilder::visitFSub(const User &I) {
2538  // -0.0 - X --> fneg
2539  Type *Ty = I.getType();
2540  if (isa<Constant>(I.getOperand(0)) &&
2541      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2542    SDValue Op2 = getValue(I.getOperand(1));
2543    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2544                             Op2.getValueType(), Op2));
2545    return;
2546  }
2547
2548  visitBinary(I, ISD::FSUB);
2549}
2550
2551void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2552  SDValue Op1 = getValue(I.getOperand(0));
2553  SDValue Op2 = getValue(I.getOperand(1));
2554  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2555                           Op1.getValueType(), Op1, Op2));
2556}
2557
2558void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2559  SDValue Op1 = getValue(I.getOperand(0));
2560  SDValue Op2 = getValue(I.getOperand(1));
2561
2562  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2563
2564  // Coerce the shift amount to the right type if we can.
2565  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2566    unsigned ShiftSize = ShiftTy.getSizeInBits();
2567    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2568    DebugLoc DL = getCurDebugLoc();
2569
2570    // If the operand is smaller than the shift count type, promote it.
2571    if (ShiftSize > Op2Size)
2572      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2573
2574    // If the operand is larger than the shift count type but the shift
2575    // count type has enough bits to represent any shift value, truncate
2576    // it now. This is a common case and it exposes the truncate to
2577    // optimization early.
2578    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2579      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2580    // Otherwise we'll need to temporarily settle for some other convenient
2581    // type.  Type legalization will make adjustments once the shiftee is split.
2582    else
2583      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2584  }
2585
2586  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2587                           Op1.getValueType(), Op1, Op2));
2588}
2589
2590void SelectionDAGBuilder::visitSDiv(const User &I) {
2591  SDValue Op1 = getValue(I.getOperand(0));
2592  SDValue Op2 = getValue(I.getOperand(1));
2593
2594  // Turn exact SDivs into multiplications.
2595  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2596  // exact bit.
2597  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2598      !isa<ConstantSDNode>(Op1) &&
2599      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2600    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2601  else
2602    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2603                             Op1, Op2));
2604}
2605
2606void SelectionDAGBuilder::visitICmp(const User &I) {
2607  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2608  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2609    predicate = IC->getPredicate();
2610  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2611    predicate = ICmpInst::Predicate(IC->getPredicate());
2612  SDValue Op1 = getValue(I.getOperand(0));
2613  SDValue Op2 = getValue(I.getOperand(1));
2614  ISD::CondCode Opcode = getICmpCondCode(predicate);
2615
2616  EVT DestVT = TLI.getValueType(I.getType());
2617  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2618}
2619
2620void SelectionDAGBuilder::visitFCmp(const User &I) {
2621  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2622  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2623    predicate = FC->getPredicate();
2624  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2625    predicate = FCmpInst::Predicate(FC->getPredicate());
2626  SDValue Op1 = getValue(I.getOperand(0));
2627  SDValue Op2 = getValue(I.getOperand(1));
2628  ISD::CondCode Condition = getFCmpCondCode(predicate);
2629  EVT DestVT = TLI.getValueType(I.getType());
2630  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2631}
2632
2633void SelectionDAGBuilder::visitSelect(const User &I) {
2634  SmallVector<EVT, 4> ValueVTs;
2635  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2636  unsigned NumValues = ValueVTs.size();
2637  if (NumValues == 0) return;
2638
2639  SmallVector<SDValue, 4> Values(NumValues);
2640  SDValue Cond     = getValue(I.getOperand(0));
2641  SDValue TrueVal  = getValue(I.getOperand(1));
2642  SDValue FalseVal = getValue(I.getOperand(2));
2643  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2644    ISD::VSELECT : ISD::SELECT;
2645
2646  for (unsigned i = 0; i != NumValues; ++i)
2647    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2648                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2649                            Cond,
2650                            SDValue(TrueVal.getNode(),
2651                                    TrueVal.getResNo() + i),
2652                            SDValue(FalseVal.getNode(),
2653                                    FalseVal.getResNo() + i));
2654
2655  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2656                           DAG.getVTList(&ValueVTs[0], NumValues),
2657                           &Values[0], NumValues));
2658}
2659
2660void SelectionDAGBuilder::visitTrunc(const User &I) {
2661  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2662  SDValue N = getValue(I.getOperand(0));
2663  EVT DestVT = TLI.getValueType(I.getType());
2664  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2665}
2666
2667void SelectionDAGBuilder::visitZExt(const User &I) {
2668  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2669  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2670  SDValue N = getValue(I.getOperand(0));
2671  EVT DestVT = TLI.getValueType(I.getType());
2672  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2673}
2674
2675void SelectionDAGBuilder::visitSExt(const User &I) {
2676  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2677  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2678  SDValue N = getValue(I.getOperand(0));
2679  EVT DestVT = TLI.getValueType(I.getType());
2680  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2681}
2682
2683void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2684  // FPTrunc is never a no-op cast, no need to check
2685  SDValue N = getValue(I.getOperand(0));
2686  EVT DestVT = TLI.getValueType(I.getType());
2687  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2688                           DestVT, N, DAG.getIntPtrConstant(0)));
2689}
2690
2691void SelectionDAGBuilder::visitFPExt(const User &I){
2692  // FPTrunc is never a no-op cast, no need to check
2693  SDValue N = getValue(I.getOperand(0));
2694  EVT DestVT = TLI.getValueType(I.getType());
2695  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2696}
2697
2698void SelectionDAGBuilder::visitFPToUI(const User &I) {
2699  // FPToUI is never a no-op cast, no need to check
2700  SDValue N = getValue(I.getOperand(0));
2701  EVT DestVT = TLI.getValueType(I.getType());
2702  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2703}
2704
2705void SelectionDAGBuilder::visitFPToSI(const User &I) {
2706  // FPToSI is never a no-op cast, no need to check
2707  SDValue N = getValue(I.getOperand(0));
2708  EVT DestVT = TLI.getValueType(I.getType());
2709  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2710}
2711
2712void SelectionDAGBuilder::visitUIToFP(const User &I) {
2713  // UIToFP is never a no-op cast, no need to check
2714  SDValue N = getValue(I.getOperand(0));
2715  EVT DestVT = TLI.getValueType(I.getType());
2716  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2717}
2718
2719void SelectionDAGBuilder::visitSIToFP(const User &I){
2720  // SIToFP is never a no-op cast, no need to check
2721  SDValue N = getValue(I.getOperand(0));
2722  EVT DestVT = TLI.getValueType(I.getType());
2723  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2724}
2725
2726void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2727  // What to do depends on the size of the integer and the size of the pointer.
2728  // We can either truncate, zero extend, or no-op, accordingly.
2729  SDValue N = getValue(I.getOperand(0));
2730  EVT DestVT = TLI.getValueType(I.getType());
2731  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2732}
2733
2734void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2735  // What to do depends on the size of the integer and the size of the pointer.
2736  // We can either truncate, zero extend, or no-op, accordingly.
2737  SDValue N = getValue(I.getOperand(0));
2738  EVT DestVT = TLI.getValueType(I.getType());
2739  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2740}
2741
2742void SelectionDAGBuilder::visitBitCast(const User &I) {
2743  SDValue N = getValue(I.getOperand(0));
2744  EVT DestVT = TLI.getValueType(I.getType());
2745
2746  // BitCast assures us that source and destination are the same size so this is
2747  // either a BITCAST or a no-op.
2748  if (DestVT != N.getValueType())
2749    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2750                             DestVT, N)); // convert types.
2751  else
2752    setValue(&I, N);            // noop cast.
2753}
2754
2755void SelectionDAGBuilder::visitInsertElement(const User &I) {
2756  SDValue InVec = getValue(I.getOperand(0));
2757  SDValue InVal = getValue(I.getOperand(1));
2758  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2759                              TLI.getPointerTy(),
2760                              getValue(I.getOperand(2)));
2761  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2762                           TLI.getValueType(I.getType()),
2763                           InVec, InVal, InIdx));
2764}
2765
2766void SelectionDAGBuilder::visitExtractElement(const User &I) {
2767  SDValue InVec = getValue(I.getOperand(0));
2768  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2769                              TLI.getPointerTy(),
2770                              getValue(I.getOperand(1)));
2771  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2772                           TLI.getValueType(I.getType()), InVec, InIdx));
2773}
2774
2775// Utility for visitShuffleVector - Returns true if the mask is mask starting
2776// from SIndx and increasing to the element length (undefs are allowed).
2777static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2778  unsigned MaskNumElts = Mask.size();
2779  for (unsigned i = 0; i != MaskNumElts; ++i)
2780    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2781      return false;
2782  return true;
2783}
2784
2785void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2786  SmallVector<int, 8> Mask;
2787  SDValue Src1 = getValue(I.getOperand(0));
2788  SDValue Src2 = getValue(I.getOperand(1));
2789
2790  // Convert the ConstantVector mask operand into an array of ints, with -1
2791  // representing undef values.
2792  SmallVector<Constant*, 8> MaskElts;
2793  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2794  unsigned MaskNumElts = MaskElts.size();
2795  for (unsigned i = 0; i != MaskNumElts; ++i) {
2796    if (isa<UndefValue>(MaskElts[i]))
2797      Mask.push_back(-1);
2798    else
2799      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2800  }
2801
2802  EVT VT = TLI.getValueType(I.getType());
2803  EVT SrcVT = Src1.getValueType();
2804  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2805
2806  if (SrcNumElts == MaskNumElts) {
2807    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2808                                      &Mask[0]));
2809    return;
2810  }
2811
2812  // Normalize the shuffle vector since mask and vector length don't match.
2813  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2814    // Mask is longer than the source vectors and is a multiple of the source
2815    // vectors.  We can use concatenate vector to make the mask and vectors
2816    // lengths match.
2817    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2818      // The shuffle is concatenating two vectors together.
2819      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2820                               VT, Src1, Src2));
2821      return;
2822    }
2823
2824    // Pad both vectors with undefs to make them the same length as the mask.
2825    unsigned NumConcat = MaskNumElts / SrcNumElts;
2826    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2827    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2828    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2829
2830    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2831    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2832    MOps1[0] = Src1;
2833    MOps2[0] = Src2;
2834
2835    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2836                                                  getCurDebugLoc(), VT,
2837                                                  &MOps1[0], NumConcat);
2838    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2839                                                  getCurDebugLoc(), VT,
2840                                                  &MOps2[0], NumConcat);
2841
2842    // Readjust mask for new input vector length.
2843    SmallVector<int, 8> MappedOps;
2844    for (unsigned i = 0; i != MaskNumElts; ++i) {
2845      int Idx = Mask[i];
2846      if (Idx < (int)SrcNumElts)
2847        MappedOps.push_back(Idx);
2848      else
2849        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2850    }
2851
2852    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2853                                      &MappedOps[0]));
2854    return;
2855  }
2856
2857  if (SrcNumElts > MaskNumElts) {
2858    // Analyze the access pattern of the vector to see if we can extract
2859    // two subvectors and do the shuffle. The analysis is done by calculating
2860    // the range of elements the mask access on both vectors.
2861    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2862                        static_cast<int>(SrcNumElts+1)};
2863    int MaxRange[2] = {-1, -1};
2864
2865    for (unsigned i = 0; i != MaskNumElts; ++i) {
2866      int Idx = Mask[i];
2867      int Input = 0;
2868      if (Idx < 0)
2869        continue;
2870
2871      if (Idx >= (int)SrcNumElts) {
2872        Input = 1;
2873        Idx -= SrcNumElts;
2874      }
2875      if (Idx > MaxRange[Input])
2876        MaxRange[Input] = Idx;
2877      if (Idx < MinRange[Input])
2878        MinRange[Input] = Idx;
2879    }
2880
2881    // Check if the access is smaller than the vector size and can we find
2882    // a reasonable extract index.
2883    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2884                                 // Extract.
2885    int StartIdx[2];  // StartIdx to extract from
2886    for (int Input=0; Input < 2; ++Input) {
2887      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2888        RangeUse[Input] = 0; // Unused
2889        StartIdx[Input] = 0;
2890      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2891        // Fits within range but we should see if we can find a good
2892        // start index that is a multiple of the mask length.
2893        if (MaxRange[Input] < (int)MaskNumElts) {
2894          RangeUse[Input] = 1; // Extract from beginning of the vector
2895          StartIdx[Input] = 0;
2896        } else {
2897          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2898          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2899              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2900            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2901        }
2902      }
2903    }
2904
2905    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2906      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2907      return;
2908    }
2909    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2910      // Extract appropriate subvector and generate a vector shuffle
2911      for (int Input=0; Input < 2; ++Input) {
2912        SDValue &Src = Input == 0 ? Src1 : Src2;
2913        if (RangeUse[Input] == 0)
2914          Src = DAG.getUNDEF(VT);
2915        else
2916          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2917                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2918      }
2919
2920      // Calculate new mask.
2921      SmallVector<int, 8> MappedOps;
2922      for (unsigned i = 0; i != MaskNumElts; ++i) {
2923        int Idx = Mask[i];
2924        if (Idx < 0)
2925          MappedOps.push_back(Idx);
2926        else if (Idx < (int)SrcNumElts)
2927          MappedOps.push_back(Idx - StartIdx[0]);
2928        else
2929          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2930      }
2931
2932      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2933                                        &MappedOps[0]));
2934      return;
2935    }
2936  }
2937
2938  // We can't use either concat vectors or extract subvectors so fall back to
2939  // replacing the shuffle with extract and build vector.
2940  // to insert and build vector.
2941  EVT EltVT = VT.getVectorElementType();
2942  EVT PtrVT = TLI.getPointerTy();
2943  SmallVector<SDValue,8> Ops;
2944  for (unsigned i = 0; i != MaskNumElts; ++i) {
2945    if (Mask[i] < 0) {
2946      Ops.push_back(DAG.getUNDEF(EltVT));
2947    } else {
2948      int Idx = Mask[i];
2949      SDValue Res;
2950
2951      if (Idx < (int)SrcNumElts)
2952        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2953                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2954      else
2955        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2956                          EltVT, Src2,
2957                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2958
2959      Ops.push_back(Res);
2960    }
2961  }
2962
2963  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2964                           VT, &Ops[0], Ops.size()));
2965}
2966
2967void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2968  const Value *Op0 = I.getOperand(0);
2969  const Value *Op1 = I.getOperand(1);
2970  Type *AggTy = I.getType();
2971  Type *ValTy = Op1->getType();
2972  bool IntoUndef = isa<UndefValue>(Op0);
2973  bool FromUndef = isa<UndefValue>(Op1);
2974
2975  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2976
2977  SmallVector<EVT, 4> AggValueVTs;
2978  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2979  SmallVector<EVT, 4> ValValueVTs;
2980  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2981
2982  unsigned NumAggValues = AggValueVTs.size();
2983  unsigned NumValValues = ValValueVTs.size();
2984  SmallVector<SDValue, 4> Values(NumAggValues);
2985
2986  SDValue Agg = getValue(Op0);
2987  unsigned i = 0;
2988  // Copy the beginning value(s) from the original aggregate.
2989  for (; i != LinearIndex; ++i)
2990    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2991                SDValue(Agg.getNode(), Agg.getResNo() + i);
2992  // Copy values from the inserted value(s).
2993  if (NumValValues) {
2994    SDValue Val = getValue(Op1);
2995    for (; i != LinearIndex + NumValValues; ++i)
2996      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2997                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2998  }
2999  // Copy remaining value(s) from the original aggregate.
3000  for (; i != NumAggValues; ++i)
3001    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3002                SDValue(Agg.getNode(), Agg.getResNo() + i);
3003
3004  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3005                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3006                           &Values[0], NumAggValues));
3007}
3008
3009void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3010  const Value *Op0 = I.getOperand(0);
3011  Type *AggTy = Op0->getType();
3012  Type *ValTy = I.getType();
3013  bool OutOfUndef = isa<UndefValue>(Op0);
3014
3015  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3016
3017  SmallVector<EVT, 4> ValValueVTs;
3018  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3019
3020  unsigned NumValValues = ValValueVTs.size();
3021
3022  // Ignore a extractvalue that produces an empty object
3023  if (!NumValValues) {
3024    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3025    return;
3026  }
3027
3028  SmallVector<SDValue, 4> Values(NumValValues);
3029
3030  SDValue Agg = getValue(Op0);
3031  // Copy out the selected value(s).
3032  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3033    Values[i - LinearIndex] =
3034      OutOfUndef ?
3035        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3036        SDValue(Agg.getNode(), Agg.getResNo() + i);
3037
3038  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3039                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3040                           &Values[0], NumValValues));
3041}
3042
3043void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3044  SDValue N = getValue(I.getOperand(0));
3045  Type *Ty = I.getOperand(0)->getType();
3046
3047  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3048       OI != E; ++OI) {
3049    const Value *Idx = *OI;
3050    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3051      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3052      if (Field) {
3053        // N = N + Offset
3054        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3055        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3056                        DAG.getIntPtrConstant(Offset));
3057      }
3058
3059      Ty = StTy->getElementType(Field);
3060    } else {
3061      Ty = cast<SequentialType>(Ty)->getElementType();
3062
3063      // If this is a constant subscript, handle it quickly.
3064      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3065        if (CI->isZero()) continue;
3066        uint64_t Offs =
3067            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3068        SDValue OffsVal;
3069        EVT PTy = TLI.getPointerTy();
3070        unsigned PtrBits = PTy.getSizeInBits();
3071        if (PtrBits < 64)
3072          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3073                                TLI.getPointerTy(),
3074                                DAG.getConstant(Offs, MVT::i64));
3075        else
3076          OffsVal = DAG.getIntPtrConstant(Offs);
3077
3078        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3079                        OffsVal);
3080        continue;
3081      }
3082
3083      // N = N + Idx * ElementSize;
3084      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3085                                TD->getTypeAllocSize(Ty));
3086      SDValue IdxN = getValue(Idx);
3087
3088      // If the index is smaller or larger than intptr_t, truncate or extend
3089      // it.
3090      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3091
3092      // If this is a multiply by a power of two, turn it into a shl
3093      // immediately.  This is a very common case.
3094      if (ElementSize != 1) {
3095        if (ElementSize.isPowerOf2()) {
3096          unsigned Amt = ElementSize.logBase2();
3097          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3098                             N.getValueType(), IdxN,
3099                             DAG.getConstant(Amt, TLI.getPointerTy()));
3100        } else {
3101          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3102          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3103                             N.getValueType(), IdxN, Scale);
3104        }
3105      }
3106
3107      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3108                      N.getValueType(), N, IdxN);
3109    }
3110  }
3111
3112  setValue(&I, N);
3113}
3114
3115void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3116  // If this is a fixed sized alloca in the entry block of the function,
3117  // allocate it statically on the stack.
3118  if (FuncInfo.StaticAllocaMap.count(&I))
3119    return;   // getValue will auto-populate this.
3120
3121  Type *Ty = I.getAllocatedType();
3122  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3123  unsigned Align =
3124    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3125             I.getAlignment());
3126
3127  SDValue AllocSize = getValue(I.getArraySize());
3128
3129  EVT IntPtr = TLI.getPointerTy();
3130  if (AllocSize.getValueType() != IntPtr)
3131    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3132
3133  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3134                          AllocSize,
3135                          DAG.getConstant(TySize, IntPtr));
3136
3137  // Handle alignment.  If the requested alignment is less than or equal to
3138  // the stack alignment, ignore it.  If the size is greater than or equal to
3139  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3140  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3141  if (Align <= StackAlign)
3142    Align = 0;
3143
3144  // Round the size of the allocation up to the stack alignment size
3145  // by add SA-1 to the size.
3146  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3147                          AllocSize.getValueType(), AllocSize,
3148                          DAG.getIntPtrConstant(StackAlign-1));
3149
3150  // Mask out the low bits for alignment purposes.
3151  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3152                          AllocSize.getValueType(), AllocSize,
3153                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3154
3155  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3156  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3157  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3158                            VTs, Ops, 3);
3159  setValue(&I, DSA);
3160  DAG.setRoot(DSA.getValue(1));
3161
3162  // Inform the Frame Information that we have just allocated a variable-sized
3163  // object.
3164  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3165}
3166
3167void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3168  if (I.isAtomic())
3169    return visitAtomicLoad(I);
3170
3171  const Value *SV = I.getOperand(0);
3172  SDValue Ptr = getValue(SV);
3173
3174  Type *Ty = I.getType();
3175
3176  bool isVolatile = I.isVolatile();
3177  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3178  unsigned Alignment = I.getAlignment();
3179  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3180
3181  SmallVector<EVT, 4> ValueVTs;
3182  SmallVector<uint64_t, 4> Offsets;
3183  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3184  unsigned NumValues = ValueVTs.size();
3185  if (NumValues == 0)
3186    return;
3187
3188  SDValue Root;
3189  bool ConstantMemory = false;
3190  if (I.isVolatile() || NumValues > MaxParallelChains)
3191    // Serialize volatile loads with other side effects.
3192    Root = getRoot();
3193  else if (AA->pointsToConstantMemory(
3194             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3195    // Do not serialize (non-volatile) loads of constant memory with anything.
3196    Root = DAG.getEntryNode();
3197    ConstantMemory = true;
3198  } else {
3199    // Do not serialize non-volatile loads against each other.
3200    Root = DAG.getRoot();
3201  }
3202
3203  SmallVector<SDValue, 4> Values(NumValues);
3204  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3205                                          NumValues));
3206  EVT PtrVT = Ptr.getValueType();
3207  unsigned ChainI = 0;
3208  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3209    // Serializing loads here may result in excessive register pressure, and
3210    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3211    // could recover a bit by hoisting nodes upward in the chain by recognizing
3212    // they are side-effect free or do not alias. The optimizer should really
3213    // avoid this case by converting large object/array copies to llvm.memcpy
3214    // (MaxParallelChains should always remain as failsafe).
3215    if (ChainI == MaxParallelChains) {
3216      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3217      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3218                                  MVT::Other, &Chains[0], ChainI);
3219      Root = Chain;
3220      ChainI = 0;
3221    }
3222    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3223                            PtrVT, Ptr,
3224                            DAG.getConstant(Offsets[i], PtrVT));
3225    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3226                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3227                            isNonTemporal, Alignment, TBAAInfo);
3228
3229    Values[i] = L;
3230    Chains[ChainI] = L.getValue(1);
3231  }
3232
3233  if (!ConstantMemory) {
3234    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3235                                MVT::Other, &Chains[0], ChainI);
3236    if (isVolatile)
3237      DAG.setRoot(Chain);
3238    else
3239      PendingLoads.push_back(Chain);
3240  }
3241
3242  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3243                           DAG.getVTList(&ValueVTs[0], NumValues),
3244                           &Values[0], NumValues));
3245}
3246
3247void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3248  if (I.isAtomic())
3249    return visitAtomicStore(I);
3250
3251  const Value *SrcV = I.getOperand(0);
3252  const Value *PtrV = I.getOperand(1);
3253
3254  SmallVector<EVT, 4> ValueVTs;
3255  SmallVector<uint64_t, 4> Offsets;
3256  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3257  unsigned NumValues = ValueVTs.size();
3258  if (NumValues == 0)
3259    return;
3260
3261  // Get the lowered operands. Note that we do this after
3262  // checking if NumResults is zero, because with zero results
3263  // the operands won't have values in the map.
3264  SDValue Src = getValue(SrcV);
3265  SDValue Ptr = getValue(PtrV);
3266
3267  SDValue Root = getRoot();
3268  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3269                                          NumValues));
3270  EVT PtrVT = Ptr.getValueType();
3271  bool isVolatile = I.isVolatile();
3272  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3273  unsigned Alignment = I.getAlignment();
3274  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3275
3276  unsigned ChainI = 0;
3277  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3278    // See visitLoad comments.
3279    if (ChainI == MaxParallelChains) {
3280      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3281                                  MVT::Other, &Chains[0], ChainI);
3282      Root = Chain;
3283      ChainI = 0;
3284    }
3285    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3286                              DAG.getConstant(Offsets[i], PtrVT));
3287    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3288                              SDValue(Src.getNode(), Src.getResNo() + i),
3289                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3290                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3291    Chains[ChainI] = St;
3292  }
3293
3294  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3295                                  MVT::Other, &Chains[0], ChainI);
3296  ++SDNodeOrder;
3297  AssignOrderingToNode(StoreNode.getNode());
3298  DAG.setRoot(StoreNode);
3299}
3300
3301static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3302                                    SynchronizationScope Scope,
3303                                    bool Before, DebugLoc dl,
3304                                    SelectionDAG &DAG,
3305                                    const TargetLowering &TLI) {
3306  // Fence, if necessary
3307  if (Before) {
3308    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3309      Order = Release;
3310    else if (Order == Acquire || Order == Monotonic)
3311      return Chain;
3312  } else {
3313    if (Order == AcquireRelease)
3314      Order = Acquire;
3315    else if (Order == Release || Order == Monotonic)
3316      return Chain;
3317  }
3318  SDValue Ops[3];
3319  Ops[0] = Chain;
3320  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3321  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3322  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3323}
3324
3325void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3326  DebugLoc dl = getCurDebugLoc();
3327  AtomicOrdering Order = I.getOrdering();
3328  SynchronizationScope Scope = I.getSynchScope();
3329
3330  SDValue InChain = getRoot();
3331
3332  if (TLI.getInsertFencesForAtomic())
3333    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3334                                   DAG, TLI);
3335
3336  SDValue L =
3337    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3338                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3339                  InChain,
3340                  getValue(I.getPointerOperand()),
3341                  getValue(I.getCompareOperand()),
3342                  getValue(I.getNewValOperand()),
3343                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3344                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3345                  Scope);
3346
3347  SDValue OutChain = L.getValue(1);
3348
3349  if (TLI.getInsertFencesForAtomic())
3350    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3351                                    DAG, TLI);
3352
3353  setValue(&I, L);
3354  DAG.setRoot(OutChain);
3355}
3356
3357void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3358  DebugLoc dl = getCurDebugLoc();
3359  ISD::NodeType NT;
3360  switch (I.getOperation()) {
3361  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3362  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3363  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3364  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3365  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3366  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3367  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3368  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3369  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3370  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3371  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3372  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3373  }
3374  AtomicOrdering Order = I.getOrdering();
3375  SynchronizationScope Scope = I.getSynchScope();
3376
3377  SDValue InChain = getRoot();
3378
3379  if (TLI.getInsertFencesForAtomic())
3380    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3381                                   DAG, TLI);
3382
3383  SDValue L =
3384    DAG.getAtomic(NT, dl,
3385                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3386                  InChain,
3387                  getValue(I.getPointerOperand()),
3388                  getValue(I.getValOperand()),
3389                  I.getPointerOperand(), 0 /* Alignment */,
3390                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3391                  Scope);
3392
3393  SDValue OutChain = L.getValue(1);
3394
3395  if (TLI.getInsertFencesForAtomic())
3396    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3397                                    DAG, TLI);
3398
3399  setValue(&I, L);
3400  DAG.setRoot(OutChain);
3401}
3402
3403void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3404  DebugLoc dl = getCurDebugLoc();
3405  SDValue Ops[3];
3406  Ops[0] = getRoot();
3407  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3408  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3409  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3410}
3411
3412void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3413  DebugLoc dl = getCurDebugLoc();
3414  AtomicOrdering Order = I.getOrdering();
3415  SynchronizationScope Scope = I.getSynchScope();
3416
3417  SDValue InChain = getRoot();
3418
3419  EVT VT = EVT::getEVT(I.getType());
3420
3421  if (I.getAlignment() * 8 < VT.getSizeInBits())
3422    report_fatal_error("Cannot generate unaligned atomic load");
3423
3424  SDValue L =
3425    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3426                  getValue(I.getPointerOperand()),
3427                  I.getPointerOperand(), I.getAlignment(),
3428                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3429                  Scope);
3430
3431  SDValue OutChain = L.getValue(1);
3432
3433  if (TLI.getInsertFencesForAtomic())
3434    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3435                                    DAG, TLI);
3436
3437  setValue(&I, L);
3438  DAG.setRoot(OutChain);
3439}
3440
3441void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3442  DebugLoc dl = getCurDebugLoc();
3443
3444  AtomicOrdering Order = I.getOrdering();
3445  SynchronizationScope Scope = I.getSynchScope();
3446
3447  SDValue InChain = getRoot();
3448
3449  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3450
3451  if (I.getAlignment() * 8 < VT.getSizeInBits())
3452    report_fatal_error("Cannot generate unaligned atomic store");
3453
3454  if (TLI.getInsertFencesForAtomic())
3455    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3456                                   DAG, TLI);
3457
3458  SDValue OutChain =
3459    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3460                  InChain,
3461                  getValue(I.getPointerOperand()),
3462                  getValue(I.getValueOperand()),
3463                  I.getPointerOperand(), I.getAlignment(),
3464                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3465                  Scope);
3466
3467  if (TLI.getInsertFencesForAtomic())
3468    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3469                                    DAG, TLI);
3470
3471  DAG.setRoot(OutChain);
3472}
3473
3474/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3475/// node.
3476void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3477                                               unsigned Intrinsic) {
3478  bool HasChain = !I.doesNotAccessMemory();
3479  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3480
3481  // Build the operand list.
3482  SmallVector<SDValue, 8> Ops;
3483  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3484    if (OnlyLoad) {
3485      // We don't need to serialize loads against other loads.
3486      Ops.push_back(DAG.getRoot());
3487    } else {
3488      Ops.push_back(getRoot());
3489    }
3490  }
3491
3492  // Info is set by getTgtMemInstrinsic
3493  TargetLowering::IntrinsicInfo Info;
3494  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3495
3496  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3497  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3498      Info.opc == ISD::INTRINSIC_W_CHAIN)
3499    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3500
3501  // Add all operands of the call to the operand list.
3502  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3503    SDValue Op = getValue(I.getArgOperand(i));
3504    assert(TLI.isTypeLegal(Op.getValueType()) &&
3505           "Intrinsic uses a non-legal type?");
3506    Ops.push_back(Op);
3507  }
3508
3509  SmallVector<EVT, 4> ValueVTs;
3510  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3511#ifndef NDEBUG
3512  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3513    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3514           "Intrinsic uses a non-legal type?");
3515  }
3516#endif // NDEBUG
3517
3518  if (HasChain)
3519    ValueVTs.push_back(MVT::Other);
3520
3521  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3522
3523  // Create the node.
3524  SDValue Result;
3525  if (IsTgtIntrinsic) {
3526    // This is target intrinsic that touches memory
3527    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3528                                     VTs, &Ops[0], Ops.size(),
3529                                     Info.memVT,
3530                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3531                                     Info.align, Info.vol,
3532                                     Info.readMem, Info.writeMem);
3533  } else if (!HasChain) {
3534    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3535                         VTs, &Ops[0], Ops.size());
3536  } else if (!I.getType()->isVoidTy()) {
3537    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3538                         VTs, &Ops[0], Ops.size());
3539  } else {
3540    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3541                         VTs, &Ops[0], Ops.size());
3542  }
3543
3544  if (HasChain) {
3545    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3546    if (OnlyLoad)
3547      PendingLoads.push_back(Chain);
3548    else
3549      DAG.setRoot(Chain);
3550  }
3551
3552  if (!I.getType()->isVoidTy()) {
3553    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3554      EVT VT = TLI.getValueType(PTy);
3555      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3556    }
3557
3558    setValue(&I, Result);
3559  }
3560}
3561
3562/// GetSignificand - Get the significand and build it into a floating-point
3563/// number with exponent of 1:
3564///
3565///   Op = (Op & 0x007fffff) | 0x3f800000;
3566///
3567/// where Op is the hexidecimal representation of floating point value.
3568static SDValue
3569GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3570  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3571                           DAG.getConstant(0x007fffff, MVT::i32));
3572  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3573                           DAG.getConstant(0x3f800000, MVT::i32));
3574  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3575}
3576
3577/// GetExponent - Get the exponent:
3578///
3579///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3580///
3581/// where Op is the hexidecimal representation of floating point value.
3582static SDValue
3583GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3584            DebugLoc dl) {
3585  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3586                           DAG.getConstant(0x7f800000, MVT::i32));
3587  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3588                           DAG.getConstant(23, TLI.getPointerTy()));
3589  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3590                           DAG.getConstant(127, MVT::i32));
3591  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3592}
3593
3594/// getF32Constant - Get 32-bit floating point constant.
3595static SDValue
3596getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3597  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3598}
3599
3600// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3601const char *
3602SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3603  SDValue Op1 = getValue(I.getArgOperand(0));
3604  SDValue Op2 = getValue(I.getArgOperand(1));
3605
3606  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3607  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3608  return 0;
3609}
3610
3611/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3612/// limited-precision mode.
3613void
3614SelectionDAGBuilder::visitExp(const CallInst &I) {
3615  SDValue result;
3616  DebugLoc dl = getCurDebugLoc();
3617
3618  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3619      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3620    SDValue Op = getValue(I.getArgOperand(0));
3621
3622    // Put the exponent in the right bit position for later addition to the
3623    // final result:
3624    //
3625    //   #define LOG2OFe 1.4426950f
3626    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3627    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3628                             getF32Constant(DAG, 0x3fb8aa3b));
3629    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3630
3631    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3632    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3633    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3634
3635    //   IntegerPartOfX <<= 23;
3636    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3637                                 DAG.getConstant(23, TLI.getPointerTy()));
3638
3639    if (LimitFloatPrecision <= 6) {
3640      // For floating-point precision of 6:
3641      //
3642      //   TwoToFractionalPartOfX =
3643      //     0.997535578f +
3644      //       (0.735607626f + 0.252464424f * x) * x;
3645      //
3646      // error 0.0144103317, which is 6 bits
3647      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3648                               getF32Constant(DAG, 0x3e814304));
3649      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3650                               getF32Constant(DAG, 0x3f3c50c8));
3651      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3652      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3653                               getF32Constant(DAG, 0x3f7f5e7e));
3654      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3655
3656      // Add the exponent into the result in integer domain.
3657      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3658                               TwoToFracPartOfX, IntegerPartOfX);
3659
3660      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3661    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3662      // For floating-point precision of 12:
3663      //
3664      //   TwoToFractionalPartOfX =
3665      //     0.999892986f +
3666      //       (0.696457318f +
3667      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3668      //
3669      // 0.000107046256 error, which is 13 to 14 bits
3670      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3671                               getF32Constant(DAG, 0x3da235e3));
3672      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3673                               getF32Constant(DAG, 0x3e65b8f3));
3674      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3675      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3676                               getF32Constant(DAG, 0x3f324b07));
3677      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3678      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3679                               getF32Constant(DAG, 0x3f7ff8fd));
3680      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3681
3682      // Add the exponent into the result in integer domain.
3683      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3684                               TwoToFracPartOfX, IntegerPartOfX);
3685
3686      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3687    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3688      // For floating-point precision of 18:
3689      //
3690      //   TwoToFractionalPartOfX =
3691      //     0.999999982f +
3692      //       (0.693148872f +
3693      //         (0.240227044f +
3694      //           (0.554906021e-1f +
3695      //             (0.961591928e-2f +
3696      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3697      //
3698      // error 2.47208000*10^(-7), which is better than 18 bits
3699      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3700                               getF32Constant(DAG, 0x3924b03e));
3701      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3702                               getF32Constant(DAG, 0x3ab24b87));
3703      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3704      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3705                               getF32Constant(DAG, 0x3c1d8c17));
3706      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3707      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3708                               getF32Constant(DAG, 0x3d634a1d));
3709      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3710      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3711                               getF32Constant(DAG, 0x3e75fe14));
3712      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3713      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3714                                getF32Constant(DAG, 0x3f317234));
3715      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3716      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3717                                getF32Constant(DAG, 0x3f800000));
3718      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3719                                             MVT::i32, t13);
3720
3721      // Add the exponent into the result in integer domain.
3722      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3723                                TwoToFracPartOfX, IntegerPartOfX);
3724
3725      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3726    }
3727  } else {
3728    // No special expansion.
3729    result = DAG.getNode(ISD::FEXP, dl,
3730                         getValue(I.getArgOperand(0)).getValueType(),
3731                         getValue(I.getArgOperand(0)));
3732  }
3733
3734  setValue(&I, result);
3735}
3736
3737/// visitLog - Lower a log intrinsic. Handles the special sequences for
3738/// limited-precision mode.
3739void
3740SelectionDAGBuilder::visitLog(const CallInst &I) {
3741  SDValue result;
3742  DebugLoc dl = getCurDebugLoc();
3743
3744  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3745      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3746    SDValue Op = getValue(I.getArgOperand(0));
3747    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3748
3749    // Scale the exponent by log(2) [0.69314718f].
3750    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3751    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3752                                        getF32Constant(DAG, 0x3f317218));
3753
3754    // Get the significand and build it into a floating-point number with
3755    // exponent of 1.
3756    SDValue X = GetSignificand(DAG, Op1, dl);
3757
3758    if (LimitFloatPrecision <= 6) {
3759      // For floating-point precision of 6:
3760      //
3761      //   LogofMantissa =
3762      //     -1.1609546f +
3763      //       (1.4034025f - 0.23903021f * x) * x;
3764      //
3765      // error 0.0034276066, which is better than 8 bits
3766      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3767                               getF32Constant(DAG, 0xbe74c456));
3768      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3769                               getF32Constant(DAG, 0x3fb3a2b1));
3770      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3771      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3772                                          getF32Constant(DAG, 0x3f949a29));
3773
3774      result = DAG.getNode(ISD::FADD, dl,
3775                           MVT::f32, LogOfExponent, LogOfMantissa);
3776    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3777      // For floating-point precision of 12:
3778      //
3779      //   LogOfMantissa =
3780      //     -1.7417939f +
3781      //       (2.8212026f +
3782      //         (-1.4699568f +
3783      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3784      //
3785      // error 0.000061011436, which is 14 bits
3786      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3787                               getF32Constant(DAG, 0xbd67b6d6));
3788      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3789                               getF32Constant(DAG, 0x3ee4f4b8));
3790      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3791      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3792                               getF32Constant(DAG, 0x3fbc278b));
3793      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3794      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3795                               getF32Constant(DAG, 0x40348e95));
3796      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3797      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3798                                          getF32Constant(DAG, 0x3fdef31a));
3799
3800      result = DAG.getNode(ISD::FADD, dl,
3801                           MVT::f32, LogOfExponent, LogOfMantissa);
3802    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3803      // For floating-point precision of 18:
3804      //
3805      //   LogOfMantissa =
3806      //     -2.1072184f +
3807      //       (4.2372794f +
3808      //         (-3.7029485f +
3809      //           (2.2781945f +
3810      //             (-0.87823314f +
3811      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3812      //
3813      // error 0.0000023660568, which is better than 18 bits
3814      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3815                               getF32Constant(DAG, 0xbc91e5ac));
3816      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3817                               getF32Constant(DAG, 0x3e4350aa));
3818      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3819      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3820                               getF32Constant(DAG, 0x3f60d3e3));
3821      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3822      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3823                               getF32Constant(DAG, 0x4011cdf0));
3824      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3825      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3826                               getF32Constant(DAG, 0x406cfd1c));
3827      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3828      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3829                               getF32Constant(DAG, 0x408797cb));
3830      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3831      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3832                                          getF32Constant(DAG, 0x4006dcab));
3833
3834      result = DAG.getNode(ISD::FADD, dl,
3835                           MVT::f32, LogOfExponent, LogOfMantissa);
3836    }
3837  } else {
3838    // No special expansion.
3839    result = DAG.getNode(ISD::FLOG, dl,
3840                         getValue(I.getArgOperand(0)).getValueType(),
3841                         getValue(I.getArgOperand(0)));
3842  }
3843
3844  setValue(&I, result);
3845}
3846
3847/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3848/// limited-precision mode.
3849void
3850SelectionDAGBuilder::visitLog2(const CallInst &I) {
3851  SDValue result;
3852  DebugLoc dl = getCurDebugLoc();
3853
3854  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3855      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3856    SDValue Op = getValue(I.getArgOperand(0));
3857    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3858
3859    // Get the exponent.
3860    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3861
3862    // Get the significand and build it into a floating-point number with
3863    // exponent of 1.
3864    SDValue X = GetSignificand(DAG, Op1, dl);
3865
3866    // Different possible minimax approximations of significand in
3867    // floating-point for various degrees of accuracy over [1,2].
3868    if (LimitFloatPrecision <= 6) {
3869      // For floating-point precision of 6:
3870      //
3871      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3872      //
3873      // error 0.0049451742, which is more than 7 bits
3874      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875                               getF32Constant(DAG, 0xbeb08fe0));
3876      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877                               getF32Constant(DAG, 0x40019463));
3878      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880                                           getF32Constant(DAG, 0x3fd6633d));
3881
3882      result = DAG.getNode(ISD::FADD, dl,
3883                           MVT::f32, LogOfExponent, Log2ofMantissa);
3884    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3885      // For floating-point precision of 12:
3886      //
3887      //   Log2ofMantissa =
3888      //     -2.51285454f +
3889      //       (4.07009056f +
3890      //         (-2.12067489f +
3891      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3892      //
3893      // error 0.0000876136000, which is better than 13 bits
3894      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3895                               getF32Constant(DAG, 0xbda7262e));
3896      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3897                               getF32Constant(DAG, 0x3f25280b));
3898      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3899      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3900                               getF32Constant(DAG, 0x4007b923));
3901      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3902      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3903                               getF32Constant(DAG, 0x40823e2f));
3904      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3905      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3906                                           getF32Constant(DAG, 0x4020d29c));
3907
3908      result = DAG.getNode(ISD::FADD, dl,
3909                           MVT::f32, LogOfExponent, Log2ofMantissa);
3910    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3911      // For floating-point precision of 18:
3912      //
3913      //   Log2ofMantissa =
3914      //     -3.0400495f +
3915      //       (6.1129976f +
3916      //         (-5.3420409f +
3917      //           (3.2865683f +
3918      //             (-1.2669343f +
3919      //               (0.27515199f -
3920      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3921      //
3922      // error 0.0000018516, which is better than 18 bits
3923      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924                               getF32Constant(DAG, 0xbcd2769e));
3925      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926                               getF32Constant(DAG, 0x3e8ce0b9));
3927      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929                               getF32Constant(DAG, 0x3fa22ae7));
3930      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3931      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3932                               getF32Constant(DAG, 0x40525723));
3933      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3934      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3935                               getF32Constant(DAG, 0x40aaf200));
3936      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3937      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3938                               getF32Constant(DAG, 0x40c39dad));
3939      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3940      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3941                                           getF32Constant(DAG, 0x4042902c));
3942
3943      result = DAG.getNode(ISD::FADD, dl,
3944                           MVT::f32, LogOfExponent, Log2ofMantissa);
3945    }
3946  } else {
3947    // No special expansion.
3948    result = DAG.getNode(ISD::FLOG2, dl,
3949                         getValue(I.getArgOperand(0)).getValueType(),
3950                         getValue(I.getArgOperand(0)));
3951  }
3952
3953  setValue(&I, result);
3954}
3955
3956/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3957/// limited-precision mode.
3958void
3959SelectionDAGBuilder::visitLog10(const CallInst &I) {
3960  SDValue result;
3961  DebugLoc dl = getCurDebugLoc();
3962
3963  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3964      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3965    SDValue Op = getValue(I.getArgOperand(0));
3966    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3967
3968    // Scale the exponent by log10(2) [0.30102999f].
3969    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3970    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3971                                        getF32Constant(DAG, 0x3e9a209a));
3972
3973    // Get the significand and build it into a floating-point number with
3974    // exponent of 1.
3975    SDValue X = GetSignificand(DAG, Op1, dl);
3976
3977    if (LimitFloatPrecision <= 6) {
3978      // For floating-point precision of 6:
3979      //
3980      //   Log10ofMantissa =
3981      //     -0.50419619f +
3982      //       (0.60948995f - 0.10380950f * x) * x;
3983      //
3984      // error 0.0014886165, which is 6 bits
3985      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3986                               getF32Constant(DAG, 0xbdd49a13));
3987      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3988                               getF32Constant(DAG, 0x3f1c0789));
3989      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3990      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3991                                            getF32Constant(DAG, 0x3f011300));
3992
3993      result = DAG.getNode(ISD::FADD, dl,
3994                           MVT::f32, LogOfExponent, Log10ofMantissa);
3995    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3996      // For floating-point precision of 12:
3997      //
3998      //   Log10ofMantissa =
3999      //     -0.64831180f +
4000      //       (0.91751397f +
4001      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4002      //
4003      // error 0.00019228036, which is better than 12 bits
4004      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4005                               getF32Constant(DAG, 0x3d431f31));
4006      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4007                               getF32Constant(DAG, 0x3ea21fb2));
4008      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4009      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4010                               getF32Constant(DAG, 0x3f6ae232));
4011      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4012      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4013                                            getF32Constant(DAG, 0x3f25f7c3));
4014
4015      result = DAG.getNode(ISD::FADD, dl,
4016                           MVT::f32, LogOfExponent, Log10ofMantissa);
4017    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4018      // For floating-point precision of 18:
4019      //
4020      //   Log10ofMantissa =
4021      //     -0.84299375f +
4022      //       (1.5327582f +
4023      //         (-1.0688956f +
4024      //           (0.49102474f +
4025      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4026      //
4027      // error 0.0000037995730, which is better than 18 bits
4028      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029                               getF32Constant(DAG, 0x3c5d51ce));
4030      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4031                               getF32Constant(DAG, 0x3e00685a));
4032      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4033      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4034                               getF32Constant(DAG, 0x3efb6798));
4035      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4036      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4037                               getF32Constant(DAG, 0x3f88d192));
4038      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4039      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4040                               getF32Constant(DAG, 0x3fc4316c));
4041      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4042      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4043                                            getF32Constant(DAG, 0x3f57ce70));
4044
4045      result = DAG.getNode(ISD::FADD, dl,
4046                           MVT::f32, LogOfExponent, Log10ofMantissa);
4047    }
4048  } else {
4049    // No special expansion.
4050    result = DAG.getNode(ISD::FLOG10, dl,
4051                         getValue(I.getArgOperand(0)).getValueType(),
4052                         getValue(I.getArgOperand(0)));
4053  }
4054
4055  setValue(&I, result);
4056}
4057
4058/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4059/// limited-precision mode.
4060void
4061SelectionDAGBuilder::visitExp2(const CallInst &I) {
4062  SDValue result;
4063  DebugLoc dl = getCurDebugLoc();
4064
4065  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4066      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4067    SDValue Op = getValue(I.getArgOperand(0));
4068
4069    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4070
4071    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4072    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4073    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4074
4075    //   IntegerPartOfX <<= 23;
4076    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4077                                 DAG.getConstant(23, TLI.getPointerTy()));
4078
4079    if (LimitFloatPrecision <= 6) {
4080      // For floating-point precision of 6:
4081      //
4082      //   TwoToFractionalPartOfX =
4083      //     0.997535578f +
4084      //       (0.735607626f + 0.252464424f * x) * x;
4085      //
4086      // error 0.0144103317, which is 6 bits
4087      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4088                               getF32Constant(DAG, 0x3e814304));
4089      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4090                               getF32Constant(DAG, 0x3f3c50c8));
4091      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4092      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4093                               getF32Constant(DAG, 0x3f7f5e7e));
4094      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4095      SDValue TwoToFractionalPartOfX =
4096        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4097
4098      result = DAG.getNode(ISD::BITCAST, dl,
4099                           MVT::f32, TwoToFractionalPartOfX);
4100    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4101      // For floating-point precision of 12:
4102      //
4103      //   TwoToFractionalPartOfX =
4104      //     0.999892986f +
4105      //       (0.696457318f +
4106      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4107      //
4108      // error 0.000107046256, which is 13 to 14 bits
4109      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                               getF32Constant(DAG, 0x3da235e3));
4111      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4112                               getF32Constant(DAG, 0x3e65b8f3));
4113      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4114      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4115                               getF32Constant(DAG, 0x3f324b07));
4116      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4117      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4118                               getF32Constant(DAG, 0x3f7ff8fd));
4119      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4120      SDValue TwoToFractionalPartOfX =
4121        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4122
4123      result = DAG.getNode(ISD::BITCAST, dl,
4124                           MVT::f32, TwoToFractionalPartOfX);
4125    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4126      // For floating-point precision of 18:
4127      //
4128      //   TwoToFractionalPartOfX =
4129      //     0.999999982f +
4130      //       (0.693148872f +
4131      //         (0.240227044f +
4132      //           (0.554906021e-1f +
4133      //             (0.961591928e-2f +
4134      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4135      // error 2.47208000*10^(-7), which is better than 18 bits
4136      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137                               getF32Constant(DAG, 0x3924b03e));
4138      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139                               getF32Constant(DAG, 0x3ab24b87));
4140      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142                               getF32Constant(DAG, 0x3c1d8c17));
4143      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4144      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4145                               getF32Constant(DAG, 0x3d634a1d));
4146      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4147      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4148                               getF32Constant(DAG, 0x3e75fe14));
4149      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4150      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4151                                getF32Constant(DAG, 0x3f317234));
4152      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4153      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4154                                getF32Constant(DAG, 0x3f800000));
4155      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4156      SDValue TwoToFractionalPartOfX =
4157        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4158
4159      result = DAG.getNode(ISD::BITCAST, dl,
4160                           MVT::f32, TwoToFractionalPartOfX);
4161    }
4162  } else {
4163    // No special expansion.
4164    result = DAG.getNode(ISD::FEXP2, dl,
4165                         getValue(I.getArgOperand(0)).getValueType(),
4166                         getValue(I.getArgOperand(0)));
4167  }
4168
4169  setValue(&I, result);
4170}
4171
4172/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4173/// limited-precision mode with x == 10.0f.
4174void
4175SelectionDAGBuilder::visitPow(const CallInst &I) {
4176  SDValue result;
4177  const Value *Val = I.getArgOperand(0);
4178  DebugLoc dl = getCurDebugLoc();
4179  bool IsExp10 = false;
4180
4181  if (getValue(Val).getValueType() == MVT::f32 &&
4182      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4183      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4184    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4185      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4186        APFloat Ten(10.0f);
4187        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4188      }
4189    }
4190  }
4191
4192  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4193    SDValue Op = getValue(I.getArgOperand(1));
4194
4195    // Put the exponent in the right bit position for later addition to the
4196    // final result:
4197    //
4198    //   #define LOG2OF10 3.3219281f
4199    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4200    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4201                             getF32Constant(DAG, 0x40549a78));
4202    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4203
4204    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4205    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4206    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4207
4208    //   IntegerPartOfX <<= 23;
4209    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4210                                 DAG.getConstant(23, TLI.getPointerTy()));
4211
4212    if (LimitFloatPrecision <= 6) {
4213      // For floating-point precision of 6:
4214      //
4215      //   twoToFractionalPartOfX =
4216      //     0.997535578f +
4217      //       (0.735607626f + 0.252464424f * x) * x;
4218      //
4219      // error 0.0144103317, which is 6 bits
4220      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4221                               getF32Constant(DAG, 0x3e814304));
4222      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4223                               getF32Constant(DAG, 0x3f3c50c8));
4224      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4225      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4226                               getF32Constant(DAG, 0x3f7f5e7e));
4227      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4228      SDValue TwoToFractionalPartOfX =
4229        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4230
4231      result = DAG.getNode(ISD::BITCAST, dl,
4232                           MVT::f32, TwoToFractionalPartOfX);
4233    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4234      // For floating-point precision of 12:
4235      //
4236      //   TwoToFractionalPartOfX =
4237      //     0.999892986f +
4238      //       (0.696457318f +
4239      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4240      //
4241      // error 0.000107046256, which is 13 to 14 bits
4242      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4243                               getF32Constant(DAG, 0x3da235e3));
4244      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4245                               getF32Constant(DAG, 0x3e65b8f3));
4246      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4247      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4248                               getF32Constant(DAG, 0x3f324b07));
4249      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4250      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4251                               getF32Constant(DAG, 0x3f7ff8fd));
4252      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4253      SDValue TwoToFractionalPartOfX =
4254        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4255
4256      result = DAG.getNode(ISD::BITCAST, dl,
4257                           MVT::f32, TwoToFractionalPartOfX);
4258    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4259      // For floating-point precision of 18:
4260      //
4261      //   TwoToFractionalPartOfX =
4262      //     0.999999982f +
4263      //       (0.693148872f +
4264      //         (0.240227044f +
4265      //           (0.554906021e-1f +
4266      //             (0.961591928e-2f +
4267      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4268      // error 2.47208000*10^(-7), which is better than 18 bits
4269      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4270                               getF32Constant(DAG, 0x3924b03e));
4271      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4272                               getF32Constant(DAG, 0x3ab24b87));
4273      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4274      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4275                               getF32Constant(DAG, 0x3c1d8c17));
4276      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4277      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4278                               getF32Constant(DAG, 0x3d634a1d));
4279      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4280      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4281                               getF32Constant(DAG, 0x3e75fe14));
4282      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4283      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4284                                getF32Constant(DAG, 0x3f317234));
4285      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4286      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4287                                getF32Constant(DAG, 0x3f800000));
4288      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4289      SDValue TwoToFractionalPartOfX =
4290        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4291
4292      result = DAG.getNode(ISD::BITCAST, dl,
4293                           MVT::f32, TwoToFractionalPartOfX);
4294    }
4295  } else {
4296    // No special expansion.
4297    result = DAG.getNode(ISD::FPOW, dl,
4298                         getValue(I.getArgOperand(0)).getValueType(),
4299                         getValue(I.getArgOperand(0)),
4300                         getValue(I.getArgOperand(1)));
4301  }
4302
4303  setValue(&I, result);
4304}
4305
4306
4307/// ExpandPowI - Expand a llvm.powi intrinsic.
4308static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4309                          SelectionDAG &DAG) {
4310  // If RHS is a constant, we can expand this out to a multiplication tree,
4311  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4312  // optimizing for size, we only want to do this if the expansion would produce
4313  // a small number of multiplies, otherwise we do the full expansion.
4314  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4315    // Get the exponent as a positive value.
4316    unsigned Val = RHSC->getSExtValue();
4317    if ((int)Val < 0) Val = -Val;
4318
4319    // powi(x, 0) -> 1.0
4320    if (Val == 0)
4321      return DAG.getConstantFP(1.0, LHS.getValueType());
4322
4323    const Function *F = DAG.getMachineFunction().getFunction();
4324    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4325        // If optimizing for size, don't insert too many multiplies.  This
4326        // inserts up to 5 multiplies.
4327        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4328      // We use the simple binary decomposition method to generate the multiply
4329      // sequence.  There are more optimal ways to do this (for example,
4330      // powi(x,15) generates one more multiply than it should), but this has
4331      // the benefit of being both really simple and much better than a libcall.
4332      SDValue Res;  // Logically starts equal to 1.0
4333      SDValue CurSquare = LHS;
4334      while (Val) {
4335        if (Val & 1) {
4336          if (Res.getNode())
4337            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4338          else
4339            Res = CurSquare;  // 1.0*CurSquare.
4340        }
4341
4342        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4343                                CurSquare, CurSquare);
4344        Val >>= 1;
4345      }
4346
4347      // If the original was negative, invert the result, producing 1/(x*x*x).
4348      if (RHSC->getSExtValue() < 0)
4349        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4350                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4351      return Res;
4352    }
4353  }
4354
4355  // Otherwise, expand to a libcall.
4356  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4357}
4358
4359// getTruncatedArgReg - Find underlying register used for an truncated
4360// argument.
4361static unsigned getTruncatedArgReg(const SDValue &N) {
4362  if (N.getOpcode() != ISD::TRUNCATE)
4363    return 0;
4364
4365  const SDValue &Ext = N.getOperand(0);
4366  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4367    const SDValue &CFR = Ext.getOperand(0);
4368    if (CFR.getOpcode() == ISD::CopyFromReg)
4369      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4370    else
4371      if (CFR.getOpcode() == ISD::TRUNCATE)
4372        return getTruncatedArgReg(CFR);
4373  }
4374  return 0;
4375}
4376
4377/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4378/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4379/// At the end of instruction selection, they will be inserted to the entry BB.
4380bool
4381SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4382                                              int64_t Offset,
4383                                              const SDValue &N) {
4384  const Argument *Arg = dyn_cast<Argument>(V);
4385  if (!Arg)
4386    return false;
4387
4388  MachineFunction &MF = DAG.getMachineFunction();
4389  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4390  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4391
4392  // Ignore inlined function arguments here.
4393  DIVariable DV(Variable);
4394  if (DV.isInlinedFnArgument(MF.getFunction()))
4395    return false;
4396
4397  unsigned Reg = 0;
4398  // Some arguments' frame index is recorded during argument lowering.
4399  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4400  if (Offset)
4401      Reg = TRI->getFrameRegister(MF);
4402
4403  if (!Reg && N.getNode()) {
4404    if (N.getOpcode() == ISD::CopyFromReg)
4405      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4406    else
4407      Reg = getTruncatedArgReg(N);
4408    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4409      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4410      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4411      if (PR)
4412        Reg = PR;
4413    }
4414  }
4415
4416  if (!Reg) {
4417    // Check if ValueMap has reg number.
4418    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4419    if (VMI != FuncInfo.ValueMap.end())
4420      Reg = VMI->second;
4421  }
4422
4423  if (!Reg && N.getNode()) {
4424    // Check if frame index is available.
4425    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4426      if (FrameIndexSDNode *FINode =
4427          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4428        Reg = TRI->getFrameRegister(MF);
4429        Offset = FINode->getIndex();
4430      }
4431  }
4432
4433  if (!Reg)
4434    return false;
4435
4436  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4437                                    TII->get(TargetOpcode::DBG_VALUE))
4438    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4439  FuncInfo.ArgDbgValues.push_back(&*MIB);
4440  return true;
4441}
4442
4443// VisualStudio defines setjmp as _setjmp
4444#if defined(_MSC_VER) && defined(setjmp) && \
4445                         !defined(setjmp_undefined_for_msvc)
4446#  pragma push_macro("setjmp")
4447#  undef setjmp
4448#  define setjmp_undefined_for_msvc
4449#endif
4450
4451/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4452/// we want to emit this as a call to a named external function, return the name
4453/// otherwise lower it and return null.
4454const char *
4455SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4456  DebugLoc dl = getCurDebugLoc();
4457  SDValue Res;
4458
4459  switch (Intrinsic) {
4460  default:
4461    // By default, turn this into a target intrinsic node.
4462    visitTargetIntrinsic(I, Intrinsic);
4463    return 0;
4464  case Intrinsic::vastart:  visitVAStart(I); return 0;
4465  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4466  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4467  case Intrinsic::returnaddress:
4468    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4469                             getValue(I.getArgOperand(0))));
4470    return 0;
4471  case Intrinsic::frameaddress:
4472    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4473                             getValue(I.getArgOperand(0))));
4474    return 0;
4475  case Intrinsic::setjmp:
4476    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4477  case Intrinsic::longjmp:
4478    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4479  case Intrinsic::memcpy: {
4480    // Assert for address < 256 since we support only user defined address
4481    // spaces.
4482    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4483           < 256 &&
4484           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4485           < 256 &&
4486           "Unknown address space");
4487    SDValue Op1 = getValue(I.getArgOperand(0));
4488    SDValue Op2 = getValue(I.getArgOperand(1));
4489    SDValue Op3 = getValue(I.getArgOperand(2));
4490    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4491    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4492    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4493                              MachinePointerInfo(I.getArgOperand(0)),
4494                              MachinePointerInfo(I.getArgOperand(1))));
4495    return 0;
4496  }
4497  case Intrinsic::memset: {
4498    // Assert for address < 256 since we support only user defined address
4499    // spaces.
4500    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4501           < 256 &&
4502           "Unknown address space");
4503    SDValue Op1 = getValue(I.getArgOperand(0));
4504    SDValue Op2 = getValue(I.getArgOperand(1));
4505    SDValue Op3 = getValue(I.getArgOperand(2));
4506    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4508    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4509                              MachinePointerInfo(I.getArgOperand(0))));
4510    return 0;
4511  }
4512  case Intrinsic::memmove: {
4513    // Assert for address < 256 since we support only user defined address
4514    // spaces.
4515    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4516           < 256 &&
4517           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4518           < 256 &&
4519           "Unknown address space");
4520    SDValue Op1 = getValue(I.getArgOperand(0));
4521    SDValue Op2 = getValue(I.getArgOperand(1));
4522    SDValue Op3 = getValue(I.getArgOperand(2));
4523    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4524    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4525    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4526                               MachinePointerInfo(I.getArgOperand(0)),
4527                               MachinePointerInfo(I.getArgOperand(1))));
4528    return 0;
4529  }
4530  case Intrinsic::dbg_declare: {
4531    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4532    MDNode *Variable = DI.getVariable();
4533    const Value *Address = DI.getAddress();
4534    if (!Address || !DIVariable(Variable).Verify())
4535      return 0;
4536
4537    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4538    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4539    // absolute, but not relative, values are different depending on whether
4540    // debug info exists.
4541    ++SDNodeOrder;
4542
4543    // Check if address has undef value.
4544    if (isa<UndefValue>(Address) ||
4545        (Address->use_empty() && !isa<Argument>(Address))) {
4546      DEBUG(dbgs() << "Dropping debug info for " << DI);
4547      return 0;
4548    }
4549
4550    SDValue &N = NodeMap[Address];
4551    if (!N.getNode() && isa<Argument>(Address))
4552      // Check unused arguments map.
4553      N = UnusedArgNodeMap[Address];
4554    SDDbgValue *SDV;
4555    if (N.getNode()) {
4556      // Parameters are handled specially.
4557      bool isParameter =
4558        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4559      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4560        Address = BCI->getOperand(0);
4561      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4562
4563      if (isParameter && !AI) {
4564        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4565        if (FINode)
4566          // Byval parameter.  We have a frame index at this point.
4567          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4568                                0, dl, SDNodeOrder);
4569        else {
4570          // Address is an argument, so try to emit its dbg value using
4571          // virtual register info from the FuncInfo.ValueMap.
4572          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4573          return 0;
4574        }
4575      } else if (AI)
4576        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4577                              0, dl, SDNodeOrder);
4578      else {
4579        // Can't do anything with other non-AI cases yet.
4580        DEBUG(dbgs() << "Dropping debug info for " << DI);
4581        return 0;
4582      }
4583      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4584    } else {
4585      // If Address is an argument then try to emit its dbg value using
4586      // virtual register info from the FuncInfo.ValueMap.
4587      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4588        // If variable is pinned by a alloca in dominating bb then
4589        // use StaticAllocaMap.
4590        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4591          if (AI->getParent() != DI.getParent()) {
4592            DenseMap<const AllocaInst*, int>::iterator SI =
4593              FuncInfo.StaticAllocaMap.find(AI);
4594            if (SI != FuncInfo.StaticAllocaMap.end()) {
4595              SDV = DAG.getDbgValue(Variable, SI->second,
4596                                    0, dl, SDNodeOrder);
4597              DAG.AddDbgValue(SDV, 0, false);
4598              return 0;
4599            }
4600          }
4601        }
4602        DEBUG(dbgs() << "Dropping debug info for " << DI);
4603      }
4604    }
4605    return 0;
4606  }
4607  case Intrinsic::dbg_value: {
4608    const DbgValueInst &DI = cast<DbgValueInst>(I);
4609    if (!DIVariable(DI.getVariable()).Verify())
4610      return 0;
4611
4612    MDNode *Variable = DI.getVariable();
4613    uint64_t Offset = DI.getOffset();
4614    const Value *V = DI.getValue();
4615    if (!V)
4616      return 0;
4617
4618    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4619    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4620    // absolute, but not relative, values are different depending on whether
4621    // debug info exists.
4622    ++SDNodeOrder;
4623    SDDbgValue *SDV;
4624    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4625      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4626      DAG.AddDbgValue(SDV, 0, false);
4627    } else {
4628      // Do not use getValue() in here; we don't want to generate code at
4629      // this point if it hasn't been done yet.
4630      SDValue N = NodeMap[V];
4631      if (!N.getNode() && isa<Argument>(V))
4632        // Check unused arguments map.
4633        N = UnusedArgNodeMap[V];
4634      if (N.getNode()) {
4635        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4636          SDV = DAG.getDbgValue(Variable, N.getNode(),
4637                                N.getResNo(), Offset, dl, SDNodeOrder);
4638          DAG.AddDbgValue(SDV, N.getNode(), false);
4639        }
4640      } else if (!V->use_empty() ) {
4641        // Do not call getValue(V) yet, as we don't want to generate code.
4642        // Remember it for later.
4643        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4644        DanglingDebugInfoMap[V] = DDI;
4645      } else {
4646        // We may expand this to cover more cases.  One case where we have no
4647        // data available is an unreferenced parameter.
4648        DEBUG(dbgs() << "Dropping debug info for " << DI);
4649      }
4650    }
4651
4652    // Build a debug info table entry.
4653    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4654      V = BCI->getOperand(0);
4655    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4656    // Don't handle byval struct arguments or VLAs, for example.
4657    if (!AI)
4658      return 0;
4659    DenseMap<const AllocaInst*, int>::iterator SI =
4660      FuncInfo.StaticAllocaMap.find(AI);
4661    if (SI == FuncInfo.StaticAllocaMap.end())
4662      return 0; // VLAs.
4663    int FI = SI->second;
4664
4665    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4666    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4667      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4668    return 0;
4669  }
4670  case Intrinsic::eh_exception: {
4671    // Insert the EXCEPTIONADDR instruction.
4672    assert(FuncInfo.MBB->isLandingPad() &&
4673           "Call to eh.exception not in landing pad!");
4674    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4675    SDValue Ops[1];
4676    Ops[0] = DAG.getRoot();
4677    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4678    setValue(&I, Op);
4679    DAG.setRoot(Op.getValue(1));
4680    return 0;
4681  }
4682
4683  case Intrinsic::eh_selector: {
4684    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4685    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4686    if (CallMBB->isLandingPad())
4687      AddCatchInfo(I, &MMI, CallMBB);
4688    else {
4689#ifndef NDEBUG
4690      FuncInfo.CatchInfoLost.insert(&I);
4691#endif
4692      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4693      unsigned Reg = TLI.getExceptionSelectorRegister();
4694      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4695    }
4696
4697    // Insert the EHSELECTION instruction.
4698    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4699    SDValue Ops[2];
4700    Ops[0] = getValue(I.getArgOperand(0));
4701    Ops[1] = getRoot();
4702    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4703    DAG.setRoot(Op.getValue(1));
4704    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4705    return 0;
4706  }
4707
4708  case Intrinsic::eh_typeid_for: {
4709    // Find the type id for the given typeinfo.
4710    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4711    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4712    Res = DAG.getConstant(TypeID, MVT::i32);
4713    setValue(&I, Res);
4714    return 0;
4715  }
4716
4717  case Intrinsic::eh_return_i32:
4718  case Intrinsic::eh_return_i64:
4719    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4720    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4721                            MVT::Other,
4722                            getControlRoot(),
4723                            getValue(I.getArgOperand(0)),
4724                            getValue(I.getArgOperand(1))));
4725    return 0;
4726  case Intrinsic::eh_unwind_init:
4727    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4728    return 0;
4729  case Intrinsic::eh_dwarf_cfa: {
4730    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4731                                        TLI.getPointerTy());
4732    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4733                                 TLI.getPointerTy(),
4734                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4735                                             TLI.getPointerTy()),
4736                                 CfaArg);
4737    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4738                             TLI.getPointerTy(),
4739                             DAG.getConstant(0, TLI.getPointerTy()));
4740    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4741                             FA, Offset));
4742    return 0;
4743  }
4744  case Intrinsic::eh_sjlj_callsite: {
4745    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4746    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4747    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4748    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4749
4750    MMI.setCurrentCallSite(CI->getZExtValue());
4751    return 0;
4752  }
4753  case Intrinsic::eh_sjlj_functioncontext: {
4754    // Get and store the index of the function context.
4755    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4756    AllocaInst *FnCtx =
4757      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4758    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4759    MFI->setFunctionContextIndex(FI);
4760    return 0;
4761  }
4762  case Intrinsic::eh_sjlj_setjmp: {
4763    SDValue Ops[2];
4764    Ops[0] = getRoot();
4765    Ops[1] = getValue(I.getArgOperand(0));
4766    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4767                             DAG.getVTList(MVT::i32, MVT::Other),
4768                             Ops, 2);
4769    setValue(&I, Op.getValue(0));
4770    DAG.setRoot(Op.getValue(1));
4771    return 0;
4772  }
4773  case Intrinsic::eh_sjlj_longjmp: {
4774    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4775                            getRoot(), getValue(I.getArgOperand(0))));
4776    return 0;
4777  }
4778  case Intrinsic::eh_sjlj_dispatch_setup: {
4779    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4780                            getRoot(), getValue(I.getArgOperand(0))));
4781    return 0;
4782  }
4783
4784  case Intrinsic::x86_mmx_pslli_w:
4785  case Intrinsic::x86_mmx_pslli_d:
4786  case Intrinsic::x86_mmx_pslli_q:
4787  case Intrinsic::x86_mmx_psrli_w:
4788  case Intrinsic::x86_mmx_psrli_d:
4789  case Intrinsic::x86_mmx_psrli_q:
4790  case Intrinsic::x86_mmx_psrai_w:
4791  case Intrinsic::x86_mmx_psrai_d: {
4792    SDValue ShAmt = getValue(I.getArgOperand(1));
4793    if (isa<ConstantSDNode>(ShAmt)) {
4794      visitTargetIntrinsic(I, Intrinsic);
4795      return 0;
4796    }
4797    unsigned NewIntrinsic = 0;
4798    EVT ShAmtVT = MVT::v2i32;
4799    switch (Intrinsic) {
4800    case Intrinsic::x86_mmx_pslli_w:
4801      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4802      break;
4803    case Intrinsic::x86_mmx_pslli_d:
4804      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4805      break;
4806    case Intrinsic::x86_mmx_pslli_q:
4807      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4808      break;
4809    case Intrinsic::x86_mmx_psrli_w:
4810      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4811      break;
4812    case Intrinsic::x86_mmx_psrli_d:
4813      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4814      break;
4815    case Intrinsic::x86_mmx_psrli_q:
4816      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4817      break;
4818    case Intrinsic::x86_mmx_psrai_w:
4819      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4820      break;
4821    case Intrinsic::x86_mmx_psrai_d:
4822      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4823      break;
4824    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4825    }
4826
4827    // The vector shift intrinsics with scalars uses 32b shift amounts but
4828    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4829    // to be zero.
4830    // We must do this early because v2i32 is not a legal type.
4831    DebugLoc dl = getCurDebugLoc();
4832    SDValue ShOps[2];
4833    ShOps[0] = ShAmt;
4834    ShOps[1] = DAG.getConstant(0, MVT::i32);
4835    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4836    EVT DestVT = TLI.getValueType(I.getType());
4837    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4838    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4839                       DAG.getConstant(NewIntrinsic, MVT::i32),
4840                       getValue(I.getArgOperand(0)), ShAmt);
4841    setValue(&I, Res);
4842    return 0;
4843  }
4844  case Intrinsic::convertff:
4845  case Intrinsic::convertfsi:
4846  case Intrinsic::convertfui:
4847  case Intrinsic::convertsif:
4848  case Intrinsic::convertuif:
4849  case Intrinsic::convertss:
4850  case Intrinsic::convertsu:
4851  case Intrinsic::convertus:
4852  case Intrinsic::convertuu: {
4853    ISD::CvtCode Code = ISD::CVT_INVALID;
4854    switch (Intrinsic) {
4855    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4856    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4857    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4858    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4859    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4860    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4861    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4862    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4863    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4864    }
4865    EVT DestVT = TLI.getValueType(I.getType());
4866    const Value *Op1 = I.getArgOperand(0);
4867    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4868                               DAG.getValueType(DestVT),
4869                               DAG.getValueType(getValue(Op1).getValueType()),
4870                               getValue(I.getArgOperand(1)),
4871                               getValue(I.getArgOperand(2)),
4872                               Code);
4873    setValue(&I, Res);
4874    return 0;
4875  }
4876  case Intrinsic::sqrt:
4877    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4878                             getValue(I.getArgOperand(0)).getValueType(),
4879                             getValue(I.getArgOperand(0))));
4880    return 0;
4881  case Intrinsic::powi:
4882    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4883                            getValue(I.getArgOperand(1)), DAG));
4884    return 0;
4885  case Intrinsic::sin:
4886    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4887                             getValue(I.getArgOperand(0)).getValueType(),
4888                             getValue(I.getArgOperand(0))));
4889    return 0;
4890  case Intrinsic::cos:
4891    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4892                             getValue(I.getArgOperand(0)).getValueType(),
4893                             getValue(I.getArgOperand(0))));
4894    return 0;
4895  case Intrinsic::log:
4896    visitLog(I);
4897    return 0;
4898  case Intrinsic::log2:
4899    visitLog2(I);
4900    return 0;
4901  case Intrinsic::log10:
4902    visitLog10(I);
4903    return 0;
4904  case Intrinsic::exp:
4905    visitExp(I);
4906    return 0;
4907  case Intrinsic::exp2:
4908    visitExp2(I);
4909    return 0;
4910  case Intrinsic::pow:
4911    visitPow(I);
4912    return 0;
4913  case Intrinsic::fma:
4914    setValue(&I, DAG.getNode(ISD::FMA, dl,
4915                             getValue(I.getArgOperand(0)).getValueType(),
4916                             getValue(I.getArgOperand(0)),
4917                             getValue(I.getArgOperand(1)),
4918                             getValue(I.getArgOperand(2))));
4919    return 0;
4920  case Intrinsic::convert_to_fp16:
4921    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4922                             MVT::i16, getValue(I.getArgOperand(0))));
4923    return 0;
4924  case Intrinsic::convert_from_fp16:
4925    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4926                             MVT::f32, getValue(I.getArgOperand(0))));
4927    return 0;
4928  case Intrinsic::pcmarker: {
4929    SDValue Tmp = getValue(I.getArgOperand(0));
4930    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4931    return 0;
4932  }
4933  case Intrinsic::readcyclecounter: {
4934    SDValue Op = getRoot();
4935    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4936                      DAG.getVTList(MVT::i64, MVT::Other),
4937                      &Op, 1);
4938    setValue(&I, Res);
4939    DAG.setRoot(Res.getValue(1));
4940    return 0;
4941  }
4942  case Intrinsic::bswap:
4943    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4944                             getValue(I.getArgOperand(0)).getValueType(),
4945                             getValue(I.getArgOperand(0))));
4946    return 0;
4947  case Intrinsic::cttz: {
4948    SDValue Arg = getValue(I.getArgOperand(0));
4949    EVT Ty = Arg.getValueType();
4950    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4951    return 0;
4952  }
4953  case Intrinsic::ctlz: {
4954    SDValue Arg = getValue(I.getArgOperand(0));
4955    EVT Ty = Arg.getValueType();
4956    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4957    return 0;
4958  }
4959  case Intrinsic::ctpop: {
4960    SDValue Arg = getValue(I.getArgOperand(0));
4961    EVT Ty = Arg.getValueType();
4962    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4963    return 0;
4964  }
4965  case Intrinsic::stacksave: {
4966    SDValue Op = getRoot();
4967    Res = DAG.getNode(ISD::STACKSAVE, dl,
4968                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4969    setValue(&I, Res);
4970    DAG.setRoot(Res.getValue(1));
4971    return 0;
4972  }
4973  case Intrinsic::stackrestore: {
4974    Res = getValue(I.getArgOperand(0));
4975    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4976    return 0;
4977  }
4978  case Intrinsic::stackprotector: {
4979    // Emit code into the DAG to store the stack guard onto the stack.
4980    MachineFunction &MF = DAG.getMachineFunction();
4981    MachineFrameInfo *MFI = MF.getFrameInfo();
4982    EVT PtrTy = TLI.getPointerTy();
4983
4984    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4985    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4986
4987    int FI = FuncInfo.StaticAllocaMap[Slot];
4988    MFI->setStackProtectorIndex(FI);
4989
4990    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4991
4992    // Store the stack protector onto the stack.
4993    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4994                       MachinePointerInfo::getFixedStack(FI),
4995                       true, false, 0);
4996    setValue(&I, Res);
4997    DAG.setRoot(Res);
4998    return 0;
4999  }
5000  case Intrinsic::objectsize: {
5001    // If we don't know by now, we're never going to know.
5002    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5003
5004    assert(CI && "Non-constant type in __builtin_object_size?");
5005
5006    SDValue Arg = getValue(I.getCalledValue());
5007    EVT Ty = Arg.getValueType();
5008
5009    if (CI->isZero())
5010      Res = DAG.getConstant(-1ULL, Ty);
5011    else
5012      Res = DAG.getConstant(0, Ty);
5013
5014    setValue(&I, Res);
5015    return 0;
5016  }
5017  case Intrinsic::var_annotation:
5018    // Discard annotate attributes
5019    return 0;
5020
5021  case Intrinsic::init_trampoline: {
5022    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5023
5024    SDValue Ops[6];
5025    Ops[0] = getRoot();
5026    Ops[1] = getValue(I.getArgOperand(0));
5027    Ops[2] = getValue(I.getArgOperand(1));
5028    Ops[3] = getValue(I.getArgOperand(2));
5029    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5030    Ops[5] = DAG.getSrcValue(F);
5031
5032    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5033
5034    DAG.setRoot(Res);
5035    return 0;
5036  }
5037  case Intrinsic::adjust_trampoline: {
5038    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5039                             TLI.getPointerTy(),
5040                             getValue(I.getArgOperand(0))));
5041    return 0;
5042  }
5043  case Intrinsic::gcroot:
5044    if (GFI) {
5045      const Value *Alloca = I.getArgOperand(0);
5046      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5047
5048      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5049      GFI->addStackRoot(FI->getIndex(), TypeMap);
5050    }
5051    return 0;
5052  case Intrinsic::gcread:
5053  case Intrinsic::gcwrite:
5054    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5055    return 0;
5056  case Intrinsic::flt_rounds:
5057    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5058    return 0;
5059
5060  case Intrinsic::expect: {
5061    // Just replace __builtin_expect(exp, c) with EXP.
5062    setValue(&I, getValue(I.getArgOperand(0)));
5063    return 0;
5064  }
5065
5066  case Intrinsic::trap: {
5067    StringRef TrapFuncName = getTrapFunctionName();
5068    if (TrapFuncName.empty()) {
5069      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5070      return 0;
5071    }
5072    TargetLowering::ArgListTy Args;
5073    std::pair<SDValue, SDValue> Result =
5074      TLI.LowerCallTo(getRoot(), I.getType(),
5075                 false, false, false, false, 0, CallingConv::C,
5076                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5077                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5078                 Args, DAG, getCurDebugLoc());
5079    DAG.setRoot(Result.second);
5080    return 0;
5081  }
5082  case Intrinsic::uadd_with_overflow:
5083    return implVisitAluOverflow(I, ISD::UADDO);
5084  case Intrinsic::sadd_with_overflow:
5085    return implVisitAluOverflow(I, ISD::SADDO);
5086  case Intrinsic::usub_with_overflow:
5087    return implVisitAluOverflow(I, ISD::USUBO);
5088  case Intrinsic::ssub_with_overflow:
5089    return implVisitAluOverflow(I, ISD::SSUBO);
5090  case Intrinsic::umul_with_overflow:
5091    return implVisitAluOverflow(I, ISD::UMULO);
5092  case Intrinsic::smul_with_overflow:
5093    return implVisitAluOverflow(I, ISD::SMULO);
5094
5095  case Intrinsic::prefetch: {
5096    SDValue Ops[5];
5097    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5098    Ops[0] = getRoot();
5099    Ops[1] = getValue(I.getArgOperand(0));
5100    Ops[2] = getValue(I.getArgOperand(1));
5101    Ops[3] = getValue(I.getArgOperand(2));
5102    Ops[4] = getValue(I.getArgOperand(3));
5103    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5104                                        DAG.getVTList(MVT::Other),
5105                                        &Ops[0], 5,
5106                                        EVT::getIntegerVT(*Context, 8),
5107                                        MachinePointerInfo(I.getArgOperand(0)),
5108                                        0, /* align */
5109                                        false, /* volatile */
5110                                        rw==0, /* read */
5111                                        rw==1)); /* write */
5112    return 0;
5113  }
5114
5115  case Intrinsic::invariant_start:
5116  case Intrinsic::lifetime_start:
5117    // Discard region information.
5118    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5119    return 0;
5120  case Intrinsic::invariant_end:
5121  case Intrinsic::lifetime_end:
5122    // Discard region information.
5123    return 0;
5124  }
5125}
5126
5127void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5128                                      bool isTailCall,
5129                                      MachineBasicBlock *LandingPad) {
5130  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5131  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5132  Type *RetTy = FTy->getReturnType();
5133  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5134  MCSymbol *BeginLabel = 0;
5135
5136  TargetLowering::ArgListTy Args;
5137  TargetLowering::ArgListEntry Entry;
5138  Args.reserve(CS.arg_size());
5139
5140  // Check whether the function can return without sret-demotion.
5141  SmallVector<ISD::OutputArg, 4> Outs;
5142  SmallVector<uint64_t, 4> Offsets;
5143  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5144                Outs, TLI, &Offsets);
5145
5146  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5147					   DAG.getMachineFunction(),
5148					   FTy->isVarArg(), Outs,
5149					   FTy->getContext());
5150
5151  SDValue DemoteStackSlot;
5152  int DemoteStackIdx = -100;
5153
5154  if (!CanLowerReturn) {
5155    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5156                      FTy->getReturnType());
5157    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5158                      FTy->getReturnType());
5159    MachineFunction &MF = DAG.getMachineFunction();
5160    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5161    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5162
5163    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5164    Entry.Node = DemoteStackSlot;
5165    Entry.Ty = StackSlotPtrType;
5166    Entry.isSExt = false;
5167    Entry.isZExt = false;
5168    Entry.isInReg = false;
5169    Entry.isSRet = true;
5170    Entry.isNest = false;
5171    Entry.isByVal = false;
5172    Entry.Alignment = Align;
5173    Args.push_back(Entry);
5174    RetTy = Type::getVoidTy(FTy->getContext());
5175  }
5176
5177  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5178       i != e; ++i) {
5179    const Value *V = *i;
5180
5181    // Skip empty types
5182    if (V->getType()->isEmptyTy())
5183      continue;
5184
5185    SDValue ArgNode = getValue(V);
5186    Entry.Node = ArgNode; Entry.Ty = V->getType();
5187
5188    unsigned attrInd = i - CS.arg_begin() + 1;
5189    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5190    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5191    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5192    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5193    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5194    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5195    Entry.Alignment = CS.getParamAlignment(attrInd);
5196    Args.push_back(Entry);
5197  }
5198
5199  if (LandingPad) {
5200    // Insert a label before the invoke call to mark the try range.  This can be
5201    // used to detect deletion of the invoke via the MachineModuleInfo.
5202    BeginLabel = MMI.getContext().CreateTempSymbol();
5203
5204    // For SjLj, keep track of which landing pads go with which invokes
5205    // so as to maintain the ordering of pads in the LSDA.
5206    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5207    if (CallSiteIndex) {
5208      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5209      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5210
5211      // Now that the call site is handled, stop tracking it.
5212      MMI.setCurrentCallSite(0);
5213    }
5214
5215    // Both PendingLoads and PendingExports must be flushed here;
5216    // this call might not return.
5217    (void)getRoot();
5218    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5219  }
5220
5221  // Check if target-independent constraints permit a tail call here.
5222  // Target-dependent constraints are checked within TLI.LowerCallTo.
5223  if (isTailCall &&
5224      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5225    isTailCall = false;
5226
5227  // If there's a possibility that fast-isel has already selected some amount
5228  // of the current basic block, don't emit a tail call.
5229  if (isTailCall && EnableFastISel)
5230    isTailCall = false;
5231
5232  std::pair<SDValue,SDValue> Result =
5233    TLI.LowerCallTo(getRoot(), RetTy,
5234                    CS.paramHasAttr(0, Attribute::SExt),
5235                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5236                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5237                    CS.getCallingConv(),
5238                    isTailCall,
5239                    !CS.getInstruction()->use_empty(),
5240                    Callee, Args, DAG, getCurDebugLoc());
5241  assert((isTailCall || Result.second.getNode()) &&
5242         "Non-null chain expected with non-tail call!");
5243  assert((Result.second.getNode() || !Result.first.getNode()) &&
5244         "Null value expected with tail call!");
5245  if (Result.first.getNode()) {
5246    setValue(CS.getInstruction(), Result.first);
5247  } else if (!CanLowerReturn && Result.second.getNode()) {
5248    // The instruction result is the result of loading from the
5249    // hidden sret parameter.
5250    SmallVector<EVT, 1> PVTs;
5251    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5252
5253    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5254    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5255    EVT PtrVT = PVTs[0];
5256    unsigned NumValues = Outs.size();
5257    SmallVector<SDValue, 4> Values(NumValues);
5258    SmallVector<SDValue, 4> Chains(NumValues);
5259
5260    for (unsigned i = 0; i < NumValues; ++i) {
5261      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5262                                DemoteStackSlot,
5263                                DAG.getConstant(Offsets[i], PtrVT));
5264      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5265                              Add,
5266                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5267                              false, false, 1);
5268      Values[i] = L;
5269      Chains[i] = L.getValue(1);
5270    }
5271
5272    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5273                                MVT::Other, &Chains[0], NumValues);
5274    PendingLoads.push_back(Chain);
5275
5276    // Collect the legal value parts into potentially illegal values
5277    // that correspond to the original function's return values.
5278    SmallVector<EVT, 4> RetTys;
5279    RetTy = FTy->getReturnType();
5280    ComputeValueVTs(TLI, RetTy, RetTys);
5281    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5282    SmallVector<SDValue, 4> ReturnValues;
5283    unsigned CurReg = 0;
5284    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5285      EVT VT = RetTys[I];
5286      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5287      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5288
5289      SDValue ReturnValue =
5290        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5291                         RegisterVT, VT, AssertOp);
5292      ReturnValues.push_back(ReturnValue);
5293      CurReg += NumRegs;
5294    }
5295
5296    setValue(CS.getInstruction(),
5297             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5298                         DAG.getVTList(&RetTys[0], RetTys.size()),
5299                         &ReturnValues[0], ReturnValues.size()));
5300  }
5301
5302  // Assign order to nodes here. If the call does not produce a result, it won't
5303  // be mapped to a SDNode and visit() will not assign it an order number.
5304  if (!Result.second.getNode()) {
5305    // As a special case, a null chain means that a tail call has been emitted and
5306    // the DAG root is already updated.
5307    HasTailCall = true;
5308    ++SDNodeOrder;
5309    AssignOrderingToNode(DAG.getRoot().getNode());
5310  } else {
5311    DAG.setRoot(Result.second);
5312    ++SDNodeOrder;
5313    AssignOrderingToNode(Result.second.getNode());
5314  }
5315
5316  if (LandingPad) {
5317    // Insert a label at the end of the invoke call to mark the try range.  This
5318    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5319    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5320    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5321
5322    // Inform MachineModuleInfo of range.
5323    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5324  }
5325}
5326
5327/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5328/// value is equal or not-equal to zero.
5329static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5330  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5331       UI != E; ++UI) {
5332    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5333      if (IC->isEquality())
5334        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5335          if (C->isNullValue())
5336            continue;
5337    // Unknown instruction.
5338    return false;
5339  }
5340  return true;
5341}
5342
5343static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5344                             Type *LoadTy,
5345                             SelectionDAGBuilder &Builder) {
5346
5347  // Check to see if this load can be trivially constant folded, e.g. if the
5348  // input is from a string literal.
5349  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5350    // Cast pointer to the type we really want to load.
5351    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5352                                         PointerType::getUnqual(LoadTy));
5353
5354    if (const Constant *LoadCst =
5355          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5356                                       Builder.TD))
5357      return Builder.getValue(LoadCst);
5358  }
5359
5360  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5361  // still constant memory, the input chain can be the entry node.
5362  SDValue Root;
5363  bool ConstantMemory = false;
5364
5365  // Do not serialize (non-volatile) loads of constant memory with anything.
5366  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5367    Root = Builder.DAG.getEntryNode();
5368    ConstantMemory = true;
5369  } else {
5370    // Do not serialize non-volatile loads against each other.
5371    Root = Builder.DAG.getRoot();
5372  }
5373
5374  SDValue Ptr = Builder.getValue(PtrVal);
5375  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5376                                        Ptr, MachinePointerInfo(PtrVal),
5377                                        false /*volatile*/,
5378                                        false /*nontemporal*/, 1 /* align=1 */);
5379
5380  if (!ConstantMemory)
5381    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5382  return LoadVal;
5383}
5384
5385
5386/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5387/// If so, return true and lower it, otherwise return false and it will be
5388/// lowered like a normal call.
5389bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5390  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5391  if (I.getNumArgOperands() != 3)
5392    return false;
5393
5394  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5395  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5396      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5397      !I.getType()->isIntegerTy())
5398    return false;
5399
5400  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5401
5402  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5403  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5404  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5405    bool ActuallyDoIt = true;
5406    MVT LoadVT;
5407    Type *LoadTy;
5408    switch (Size->getZExtValue()) {
5409    default:
5410      LoadVT = MVT::Other;
5411      LoadTy = 0;
5412      ActuallyDoIt = false;
5413      break;
5414    case 2:
5415      LoadVT = MVT::i16;
5416      LoadTy = Type::getInt16Ty(Size->getContext());
5417      break;
5418    case 4:
5419      LoadVT = MVT::i32;
5420      LoadTy = Type::getInt32Ty(Size->getContext());
5421      break;
5422    case 8:
5423      LoadVT = MVT::i64;
5424      LoadTy = Type::getInt64Ty(Size->getContext());
5425      break;
5426        /*
5427    case 16:
5428      LoadVT = MVT::v4i32;
5429      LoadTy = Type::getInt32Ty(Size->getContext());
5430      LoadTy = VectorType::get(LoadTy, 4);
5431      break;
5432         */
5433    }
5434
5435    // This turns into unaligned loads.  We only do this if the target natively
5436    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5437    // we'll only produce a small number of byte loads.
5438
5439    // Require that we can find a legal MVT, and only do this if the target
5440    // supports unaligned loads of that type.  Expanding into byte loads would
5441    // bloat the code.
5442    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5443      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5444      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5445      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5446        ActuallyDoIt = false;
5447    }
5448
5449    if (ActuallyDoIt) {
5450      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5451      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5452
5453      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5454                                 ISD::SETNE);
5455      EVT CallVT = TLI.getValueType(I.getType(), true);
5456      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5457      return true;
5458    }
5459  }
5460
5461
5462  return false;
5463}
5464
5465
5466void SelectionDAGBuilder::visitCall(const CallInst &I) {
5467  // Handle inline assembly differently.
5468  if (isa<InlineAsm>(I.getCalledValue())) {
5469    visitInlineAsm(&I);
5470    return;
5471  }
5472
5473  // See if any floating point values are being passed to this function. This is
5474  // used to emit an undefined reference to fltused on Windows.
5475  FunctionType *FT =
5476    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5477  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5478  if (FT->isVarArg() &&
5479      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5480    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5481      Type* T = I.getArgOperand(i)->getType();
5482      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5483           i != e; ++i) {
5484        if (!i->isFloatingPointTy()) continue;
5485        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5486        break;
5487      }
5488    }
5489  }
5490
5491  const char *RenameFn = 0;
5492  if (Function *F = I.getCalledFunction()) {
5493    if (F->isDeclaration()) {
5494      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5495        if (unsigned IID = II->getIntrinsicID(F)) {
5496          RenameFn = visitIntrinsicCall(I, IID);
5497          if (!RenameFn)
5498            return;
5499        }
5500      }
5501      if (unsigned IID = F->getIntrinsicID()) {
5502        RenameFn = visitIntrinsicCall(I, IID);
5503        if (!RenameFn)
5504          return;
5505      }
5506    }
5507
5508    // Check for well-known libc/libm calls.  If the function is internal, it
5509    // can't be a library call.
5510    if (!F->hasLocalLinkage() && F->hasName()) {
5511      StringRef Name = F->getName();
5512      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5513        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5514            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5515            I.getType() == I.getArgOperand(0)->getType() &&
5516            I.getType() == I.getArgOperand(1)->getType()) {
5517          SDValue LHS = getValue(I.getArgOperand(0));
5518          SDValue RHS = getValue(I.getArgOperand(1));
5519          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5520                                   LHS.getValueType(), LHS, RHS));
5521          return;
5522        }
5523      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5524        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5525            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5526            I.getType() == I.getArgOperand(0)->getType()) {
5527          SDValue Tmp = getValue(I.getArgOperand(0));
5528          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5529                                   Tmp.getValueType(), Tmp));
5530          return;
5531        }
5532      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5533        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5534            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5535            I.getType() == I.getArgOperand(0)->getType() &&
5536            I.onlyReadsMemory()) {
5537          SDValue Tmp = getValue(I.getArgOperand(0));
5538          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5539                                   Tmp.getValueType(), Tmp));
5540          return;
5541        }
5542      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5543        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5544            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5545            I.getType() == I.getArgOperand(0)->getType() &&
5546            I.onlyReadsMemory()) {
5547          SDValue Tmp = getValue(I.getArgOperand(0));
5548          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5549                                   Tmp.getValueType(), Tmp));
5550          return;
5551        }
5552      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5553        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5554            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5555            I.getType() == I.getArgOperand(0)->getType() &&
5556            I.onlyReadsMemory()) {
5557          SDValue Tmp = getValue(I.getArgOperand(0));
5558          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5559                                   Tmp.getValueType(), Tmp));
5560          return;
5561        }
5562      } else if (Name == "memcmp") {
5563        if (visitMemCmpCall(I))
5564          return;
5565      }
5566    }
5567  }
5568
5569  SDValue Callee;
5570  if (!RenameFn)
5571    Callee = getValue(I.getCalledValue());
5572  else
5573    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5574
5575  // Check if we can potentially perform a tail call. More detailed checking is
5576  // be done within LowerCallTo, after more information about the call is known.
5577  LowerCallTo(&I, Callee, I.isTailCall());
5578}
5579
5580namespace {
5581
5582/// AsmOperandInfo - This contains information for each constraint that we are
5583/// lowering.
5584class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5585public:
5586  /// CallOperand - If this is the result output operand or a clobber
5587  /// this is null, otherwise it is the incoming operand to the CallInst.
5588  /// This gets modified as the asm is processed.
5589  SDValue CallOperand;
5590
5591  /// AssignedRegs - If this is a register or register class operand, this
5592  /// contains the set of register corresponding to the operand.
5593  RegsForValue AssignedRegs;
5594
5595  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5596    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5597  }
5598
5599  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5600  /// busy in OutputRegs/InputRegs.
5601  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5602                         std::set<unsigned> &OutputRegs,
5603                         std::set<unsigned> &InputRegs,
5604                         const TargetRegisterInfo &TRI) const {
5605    if (isOutReg) {
5606      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5607        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5608    }
5609    if (isInReg) {
5610      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5611        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5612    }
5613  }
5614
5615  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5616  /// corresponds to.  If there is no Value* for this operand, it returns
5617  /// MVT::Other.
5618  EVT getCallOperandValEVT(LLVMContext &Context,
5619                           const TargetLowering &TLI,
5620                           const TargetData *TD) const {
5621    if (CallOperandVal == 0) return MVT::Other;
5622
5623    if (isa<BasicBlock>(CallOperandVal))
5624      return TLI.getPointerTy();
5625
5626    llvm::Type *OpTy = CallOperandVal->getType();
5627
5628    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5629    // If this is an indirect operand, the operand is a pointer to the
5630    // accessed type.
5631    if (isIndirect) {
5632      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5633      if (!PtrTy)
5634        report_fatal_error("Indirect operand for inline asm not a pointer!");
5635      OpTy = PtrTy->getElementType();
5636    }
5637
5638    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5639    if (StructType *STy = dyn_cast<StructType>(OpTy))
5640      if (STy->getNumElements() == 1)
5641        OpTy = STy->getElementType(0);
5642
5643    // If OpTy is not a single value, it may be a struct/union that we
5644    // can tile with integers.
5645    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5646      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5647      switch (BitSize) {
5648      default: break;
5649      case 1:
5650      case 8:
5651      case 16:
5652      case 32:
5653      case 64:
5654      case 128:
5655        OpTy = IntegerType::get(Context, BitSize);
5656        break;
5657      }
5658    }
5659
5660    return TLI.getValueType(OpTy, true);
5661  }
5662
5663private:
5664  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5665  /// specified set.
5666  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5667                                const TargetRegisterInfo &TRI) {
5668    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5669    Regs.insert(Reg);
5670    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5671      for (; *Aliases; ++Aliases)
5672        Regs.insert(*Aliases);
5673  }
5674};
5675
5676typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5677
5678} // end anonymous namespace
5679
5680/// GetRegistersForValue - Assign registers (virtual or physical) for the
5681/// specified operand.  We prefer to assign virtual registers, to allow the
5682/// register allocator to handle the assignment process.  However, if the asm
5683/// uses features that we can't model on machineinstrs, we have SDISel do the
5684/// allocation.  This produces generally horrible, but correct, code.
5685///
5686///   OpInfo describes the operand.
5687///   Input and OutputRegs are the set of already allocated physical registers.
5688///
5689static void GetRegistersForValue(SelectionDAG &DAG,
5690                                 const TargetLowering &TLI,
5691                                 DebugLoc DL,
5692                                 SDISelAsmOperandInfo &OpInfo,
5693                                 std::set<unsigned> &OutputRegs,
5694                                 std::set<unsigned> &InputRegs) {
5695  LLVMContext &Context = *DAG.getContext();
5696
5697  // Compute whether this value requires an input register, an output register,
5698  // or both.
5699  bool isOutReg = false;
5700  bool isInReg = false;
5701  switch (OpInfo.Type) {
5702  case InlineAsm::isOutput:
5703    isOutReg = true;
5704
5705    // If there is an input constraint that matches this, we need to reserve
5706    // the input register so no other inputs allocate to it.
5707    isInReg = OpInfo.hasMatchingInput();
5708    break;
5709  case InlineAsm::isInput:
5710    isInReg = true;
5711    isOutReg = false;
5712    break;
5713  case InlineAsm::isClobber:
5714    isOutReg = true;
5715    isInReg = true;
5716    break;
5717  }
5718
5719
5720  MachineFunction &MF = DAG.getMachineFunction();
5721  SmallVector<unsigned, 4> Regs;
5722
5723  // If this is a constraint for a single physreg, or a constraint for a
5724  // register class, find it.
5725  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5726    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5727                                     OpInfo.ConstraintVT);
5728
5729  unsigned NumRegs = 1;
5730  if (OpInfo.ConstraintVT != MVT::Other) {
5731    // If this is a FP input in an integer register (or visa versa) insert a bit
5732    // cast of the input value.  More generally, handle any case where the input
5733    // value disagrees with the register class we plan to stick this in.
5734    if (OpInfo.Type == InlineAsm::isInput &&
5735        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5736      // Try to convert to the first EVT that the reg class contains.  If the
5737      // types are identical size, use a bitcast to convert (e.g. two differing
5738      // vector types).
5739      EVT RegVT = *PhysReg.second->vt_begin();
5740      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5741        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5742                                         RegVT, OpInfo.CallOperand);
5743        OpInfo.ConstraintVT = RegVT;
5744      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5745        // If the input is a FP value and we want it in FP registers, do a
5746        // bitcast to the corresponding integer type.  This turns an f64 value
5747        // into i64, which can be passed with two i32 values on a 32-bit
5748        // machine.
5749        RegVT = EVT::getIntegerVT(Context,
5750                                  OpInfo.ConstraintVT.getSizeInBits());
5751        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5752                                         RegVT, OpInfo.CallOperand);
5753        OpInfo.ConstraintVT = RegVT;
5754      }
5755    }
5756
5757    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5758  }
5759
5760  EVT RegVT;
5761  EVT ValueVT = OpInfo.ConstraintVT;
5762
5763  // If this is a constraint for a specific physical register, like {r17},
5764  // assign it now.
5765  if (unsigned AssignedReg = PhysReg.first) {
5766    const TargetRegisterClass *RC = PhysReg.second;
5767    if (OpInfo.ConstraintVT == MVT::Other)
5768      ValueVT = *RC->vt_begin();
5769
5770    // Get the actual register value type.  This is important, because the user
5771    // may have asked for (e.g.) the AX register in i32 type.  We need to
5772    // remember that AX is actually i16 to get the right extension.
5773    RegVT = *RC->vt_begin();
5774
5775    // This is a explicit reference to a physical register.
5776    Regs.push_back(AssignedReg);
5777
5778    // If this is an expanded reference, add the rest of the regs to Regs.
5779    if (NumRegs != 1) {
5780      TargetRegisterClass::iterator I = RC->begin();
5781      for (; *I != AssignedReg; ++I)
5782        assert(I != RC->end() && "Didn't find reg!");
5783
5784      // Already added the first reg.
5785      --NumRegs; ++I;
5786      for (; NumRegs; --NumRegs, ++I) {
5787        assert(I != RC->end() && "Ran out of registers to allocate!");
5788        Regs.push_back(*I);
5789      }
5790    }
5791
5792    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5793    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5794    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5795    return;
5796  }
5797
5798  // Otherwise, if this was a reference to an LLVM register class, create vregs
5799  // for this reference.
5800  if (const TargetRegisterClass *RC = PhysReg.second) {
5801    RegVT = *RC->vt_begin();
5802    if (OpInfo.ConstraintVT == MVT::Other)
5803      ValueVT = RegVT;
5804
5805    // Create the appropriate number of virtual registers.
5806    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5807    for (; NumRegs; --NumRegs)
5808      Regs.push_back(RegInfo.createVirtualRegister(RC));
5809
5810    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5811    return;
5812  }
5813
5814  // Otherwise, we couldn't allocate enough registers for this.
5815}
5816
5817/// visitInlineAsm - Handle a call to an InlineAsm object.
5818///
5819void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5820  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5821
5822  /// ConstraintOperands - Information about all of the constraints.
5823  SDISelAsmOperandInfoVector ConstraintOperands;
5824
5825  std::set<unsigned> OutputRegs, InputRegs;
5826
5827  TargetLowering::AsmOperandInfoVector
5828    TargetConstraints = TLI.ParseConstraints(CS);
5829
5830  bool hasMemory = false;
5831
5832  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5833  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5834  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5835    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5836    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5837
5838    EVT OpVT = MVT::Other;
5839
5840    // Compute the value type for each operand.
5841    switch (OpInfo.Type) {
5842    case InlineAsm::isOutput:
5843      // Indirect outputs just consume an argument.
5844      if (OpInfo.isIndirect) {
5845        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5846        break;
5847      }
5848
5849      // The return value of the call is this value.  As such, there is no
5850      // corresponding argument.
5851      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5852      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5853        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5854      } else {
5855        assert(ResNo == 0 && "Asm only has one result!");
5856        OpVT = TLI.getValueType(CS.getType());
5857      }
5858      ++ResNo;
5859      break;
5860    case InlineAsm::isInput:
5861      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5862      break;
5863    case InlineAsm::isClobber:
5864      // Nothing to do.
5865      break;
5866    }
5867
5868    // If this is an input or an indirect output, process the call argument.
5869    // BasicBlocks are labels, currently appearing only in asm's.
5870    if (OpInfo.CallOperandVal) {
5871      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5872        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5873      } else {
5874        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5875      }
5876
5877      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5878    }
5879
5880    OpInfo.ConstraintVT = OpVT;
5881
5882    // Indirect operand accesses access memory.
5883    if (OpInfo.isIndirect)
5884      hasMemory = true;
5885    else {
5886      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5887        TargetLowering::ConstraintType
5888          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5889        if (CType == TargetLowering::C_Memory) {
5890          hasMemory = true;
5891          break;
5892        }
5893      }
5894    }
5895  }
5896
5897  SDValue Chain, Flag;
5898
5899  // We won't need to flush pending loads if this asm doesn't touch
5900  // memory and is nonvolatile.
5901  if (hasMemory || IA->hasSideEffects())
5902    Chain = getRoot();
5903  else
5904    Chain = DAG.getRoot();
5905
5906  // Second pass over the constraints: compute which constraint option to use
5907  // and assign registers to constraints that want a specific physreg.
5908  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5909    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5910
5911    // If this is an output operand with a matching input operand, look up the
5912    // matching input. If their types mismatch, e.g. one is an integer, the
5913    // other is floating point, or their sizes are different, flag it as an
5914    // error.
5915    if (OpInfo.hasMatchingInput()) {
5916      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5917
5918      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5919	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5920	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5921                                           OpInfo.ConstraintVT);
5922	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5923	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5924                                           Input.ConstraintVT);
5925        if ((OpInfo.ConstraintVT.isInteger() !=
5926             Input.ConstraintVT.isInteger()) ||
5927            (MatchRC.second != InputRC.second)) {
5928          report_fatal_error("Unsupported asm: input constraint"
5929                             " with a matching output constraint of"
5930                             " incompatible type!");
5931        }
5932        Input.ConstraintVT = OpInfo.ConstraintVT;
5933      }
5934    }
5935
5936    // Compute the constraint code and ConstraintType to use.
5937    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5938
5939    // If this is a memory input, and if the operand is not indirect, do what we
5940    // need to to provide an address for the memory input.
5941    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5942        !OpInfo.isIndirect) {
5943      assert((OpInfo.isMultipleAlternative ||
5944              (OpInfo.Type == InlineAsm::isInput)) &&
5945             "Can only indirectify direct input operands!");
5946
5947      // Memory operands really want the address of the value.  If we don't have
5948      // an indirect input, put it in the constpool if we can, otherwise spill
5949      // it to a stack slot.
5950      // TODO: This isn't quite right. We need to handle these according to
5951      // the addressing mode that the constraint wants. Also, this may take
5952      // an additional register for the computation and we don't want that
5953      // either.
5954
5955      // If the operand is a float, integer, or vector constant, spill to a
5956      // constant pool entry to get its address.
5957      const Value *OpVal = OpInfo.CallOperandVal;
5958      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5959          isa<ConstantVector>(OpVal)) {
5960        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5961                                                 TLI.getPointerTy());
5962      } else {
5963        // Otherwise, create a stack slot and emit a store to it before the
5964        // asm.
5965        Type *Ty = OpVal->getType();
5966        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5967        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5968        MachineFunction &MF = DAG.getMachineFunction();
5969        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5970        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5971        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5972                             OpInfo.CallOperand, StackSlot,
5973                             MachinePointerInfo::getFixedStack(SSFI),
5974                             false, false, 0);
5975        OpInfo.CallOperand = StackSlot;
5976      }
5977
5978      // There is no longer a Value* corresponding to this operand.
5979      OpInfo.CallOperandVal = 0;
5980
5981      // It is now an indirect operand.
5982      OpInfo.isIndirect = true;
5983    }
5984
5985    // If this constraint is for a specific register, allocate it before
5986    // anything else.
5987    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5988      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5989                           InputRegs);
5990  }
5991
5992  // Second pass - Loop over all of the operands, assigning virtual or physregs
5993  // to register class operands.
5994  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5995    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5996
5997    // C_Register operands have already been allocated, Other/Memory don't need
5998    // to be.
5999    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6000      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6001                           InputRegs);
6002  }
6003
6004  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6005  std::vector<SDValue> AsmNodeOperands;
6006  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6007  AsmNodeOperands.push_back(
6008          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6009                                      TLI.getPointerTy()));
6010
6011  // If we have a !srcloc metadata node associated with it, we want to attach
6012  // this to the ultimately generated inline asm machineinstr.  To do this, we
6013  // pass in the third operand as this (potentially null) inline asm MDNode.
6014  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6015  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6016
6017  // Remember the HasSideEffect and AlignStack bits as operand 3.
6018  unsigned ExtraInfo = 0;
6019  if (IA->hasSideEffects())
6020    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6021  if (IA->isAlignStack())
6022    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6023  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6024                                                  TLI.getPointerTy()));
6025
6026  // Loop over all of the inputs, copying the operand values into the
6027  // appropriate registers and processing the output regs.
6028  RegsForValue RetValRegs;
6029
6030  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6031  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6032
6033  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6034    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6035
6036    switch (OpInfo.Type) {
6037    case InlineAsm::isOutput: {
6038      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6039          OpInfo.ConstraintType != TargetLowering::C_Register) {
6040        // Memory output, or 'other' output (e.g. 'X' constraint).
6041        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6042
6043        // Add information to the INLINEASM node to know about this output.
6044        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6045        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6046                                                        TLI.getPointerTy()));
6047        AsmNodeOperands.push_back(OpInfo.CallOperand);
6048        break;
6049      }
6050
6051      // Otherwise, this is a register or register class output.
6052
6053      // Copy the output from the appropriate register.  Find a register that
6054      // we can use.
6055      if (OpInfo.AssignedRegs.Regs.empty())
6056        report_fatal_error("Couldn't allocate output reg for constraint '" +
6057                           Twine(OpInfo.ConstraintCode) + "'!");
6058
6059      // If this is an indirect operand, store through the pointer after the
6060      // asm.
6061      if (OpInfo.isIndirect) {
6062        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6063                                                      OpInfo.CallOperandVal));
6064      } else {
6065        // This is the result value of the call.
6066        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6067        // Concatenate this output onto the outputs list.
6068        RetValRegs.append(OpInfo.AssignedRegs);
6069      }
6070
6071      // Add information to the INLINEASM node to know that this register is
6072      // set.
6073      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6074                                           InlineAsm::Kind_RegDefEarlyClobber :
6075                                               InlineAsm::Kind_RegDef,
6076                                               false,
6077                                               0,
6078                                               DAG,
6079                                               AsmNodeOperands);
6080      break;
6081    }
6082    case InlineAsm::isInput: {
6083      SDValue InOperandVal = OpInfo.CallOperand;
6084
6085      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6086        // If this is required to match an output register we have already set,
6087        // just use its register.
6088        unsigned OperandNo = OpInfo.getMatchedOperand();
6089
6090        // Scan until we find the definition we already emitted of this operand.
6091        // When we find it, create a RegsForValue operand.
6092        unsigned CurOp = InlineAsm::Op_FirstOperand;
6093        for (; OperandNo; --OperandNo) {
6094          // Advance to the next operand.
6095          unsigned OpFlag =
6096            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6097          assert((InlineAsm::isRegDefKind(OpFlag) ||
6098                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6099                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6100          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6101        }
6102
6103        unsigned OpFlag =
6104          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6105        if (InlineAsm::isRegDefKind(OpFlag) ||
6106            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6107          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6108          if (OpInfo.isIndirect) {
6109            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6110            LLVMContext &Ctx = *DAG.getContext();
6111            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6112                          " don't know how to handle tied "
6113                          "indirect register inputs");
6114          }
6115
6116          RegsForValue MatchedRegs;
6117          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6118          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6119          MatchedRegs.RegVTs.push_back(RegVT);
6120          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6121          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6122               i != e; ++i)
6123            MatchedRegs.Regs.push_back
6124              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6125
6126          // Use the produced MatchedRegs object to
6127          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6128                                    Chain, &Flag);
6129          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6130                                           true, OpInfo.getMatchedOperand(),
6131                                           DAG, AsmNodeOperands);
6132          break;
6133        }
6134
6135        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6136        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6137               "Unexpected number of operands");
6138        // Add information to the INLINEASM node to know about this input.
6139        // See InlineAsm.h isUseOperandTiedToDef.
6140        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6141                                                    OpInfo.getMatchedOperand());
6142        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6143                                                        TLI.getPointerTy()));
6144        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6145        break;
6146      }
6147
6148      // Treat indirect 'X' constraint as memory.
6149      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6150          OpInfo.isIndirect)
6151        OpInfo.ConstraintType = TargetLowering::C_Memory;
6152
6153      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6154        std::vector<SDValue> Ops;
6155        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6156                                         Ops, DAG);
6157        if (Ops.empty())
6158          report_fatal_error("Invalid operand for inline asm constraint '" +
6159                             Twine(OpInfo.ConstraintCode) + "'!");
6160
6161        // Add information to the INLINEASM node to know about this input.
6162        unsigned ResOpType =
6163          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6164        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6165                                                        TLI.getPointerTy()));
6166        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6167        break;
6168      }
6169
6170      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6171        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6172        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6173               "Memory operands expect pointer values");
6174
6175        // Add information to the INLINEASM node to know about this input.
6176        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6177        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6178                                                        TLI.getPointerTy()));
6179        AsmNodeOperands.push_back(InOperandVal);
6180        break;
6181      }
6182
6183      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6184              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6185             "Unknown constraint type!");
6186      assert(!OpInfo.isIndirect &&
6187             "Don't know how to handle indirect register inputs yet!");
6188
6189      // Copy the input into the appropriate registers.
6190      if (OpInfo.AssignedRegs.Regs.empty())
6191        report_fatal_error("Couldn't allocate input reg for constraint '" +
6192                           Twine(OpInfo.ConstraintCode) + "'!");
6193
6194      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6195                                        Chain, &Flag);
6196
6197      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6198                                               DAG, AsmNodeOperands);
6199      break;
6200    }
6201    case InlineAsm::isClobber: {
6202      // Add the clobbered value to the operand list, so that the register
6203      // allocator is aware that the physreg got clobbered.
6204      if (!OpInfo.AssignedRegs.Regs.empty())
6205        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6206                                                 false, 0, DAG,
6207                                                 AsmNodeOperands);
6208      break;
6209    }
6210    }
6211  }
6212
6213  // Finish up input operands.  Set the input chain and add the flag last.
6214  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6215  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6216
6217  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6218                      DAG.getVTList(MVT::Other, MVT::Glue),
6219                      &AsmNodeOperands[0], AsmNodeOperands.size());
6220  Flag = Chain.getValue(1);
6221
6222  // If this asm returns a register value, copy the result from that register
6223  // and set it as the value of the call.
6224  if (!RetValRegs.Regs.empty()) {
6225    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6226                                             Chain, &Flag);
6227
6228    // FIXME: Why don't we do this for inline asms with MRVs?
6229    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6230      EVT ResultType = TLI.getValueType(CS.getType());
6231
6232      // If any of the results of the inline asm is a vector, it may have the
6233      // wrong width/num elts.  This can happen for register classes that can
6234      // contain multiple different value types.  The preg or vreg allocated may
6235      // not have the same VT as was expected.  Convert it to the right type
6236      // with bit_convert.
6237      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6238        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6239                          ResultType, Val);
6240
6241      } else if (ResultType != Val.getValueType() &&
6242                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6243        // If a result value was tied to an input value, the computed result may
6244        // have a wider width than the expected result.  Extract the relevant
6245        // portion.
6246        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6247      }
6248
6249      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6250    }
6251
6252    setValue(CS.getInstruction(), Val);
6253    // Don't need to use this as a chain in this case.
6254    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6255      return;
6256  }
6257
6258  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6259
6260  // Process indirect outputs, first output all of the flagged copies out of
6261  // physregs.
6262  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6263    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6264    const Value *Ptr = IndirectStoresToEmit[i].second;
6265    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6266                                             Chain, &Flag);
6267    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6268  }
6269
6270  // Emit the non-flagged stores from the physregs.
6271  SmallVector<SDValue, 8> OutChains;
6272  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6273    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6274                               StoresToEmit[i].first,
6275                               getValue(StoresToEmit[i].second),
6276                               MachinePointerInfo(StoresToEmit[i].second),
6277                               false, false, 0);
6278    OutChains.push_back(Val);
6279  }
6280
6281  if (!OutChains.empty())
6282    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6283                        &OutChains[0], OutChains.size());
6284
6285  DAG.setRoot(Chain);
6286}
6287
6288void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6289  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6290                          MVT::Other, getRoot(),
6291                          getValue(I.getArgOperand(0)),
6292                          DAG.getSrcValue(I.getArgOperand(0))));
6293}
6294
6295void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6296  const TargetData &TD = *TLI.getTargetData();
6297  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6298                           getRoot(), getValue(I.getOperand(0)),
6299                           DAG.getSrcValue(I.getOperand(0)),
6300                           TD.getABITypeAlignment(I.getType()));
6301  setValue(&I, V);
6302  DAG.setRoot(V.getValue(1));
6303}
6304
6305void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6306  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6307                          MVT::Other, getRoot(),
6308                          getValue(I.getArgOperand(0)),
6309                          DAG.getSrcValue(I.getArgOperand(0))));
6310}
6311
6312void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6313  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6314                          MVT::Other, getRoot(),
6315                          getValue(I.getArgOperand(0)),
6316                          getValue(I.getArgOperand(1)),
6317                          DAG.getSrcValue(I.getArgOperand(0)),
6318                          DAG.getSrcValue(I.getArgOperand(1))));
6319}
6320
6321/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6322/// implementation, which just calls LowerCall.
6323/// FIXME: When all targets are
6324/// migrated to using LowerCall, this hook should be integrated into SDISel.
6325std::pair<SDValue, SDValue>
6326TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6327                            bool RetSExt, bool RetZExt, bool isVarArg,
6328                            bool isInreg, unsigned NumFixedArgs,
6329                            CallingConv::ID CallConv, bool isTailCall,
6330                            bool isReturnValueUsed,
6331                            SDValue Callee,
6332                            ArgListTy &Args, SelectionDAG &DAG,
6333                            DebugLoc dl) const {
6334  // Handle all of the outgoing arguments.
6335  SmallVector<ISD::OutputArg, 32> Outs;
6336  SmallVector<SDValue, 32> OutVals;
6337  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6338    SmallVector<EVT, 4> ValueVTs;
6339    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6340    for (unsigned Value = 0, NumValues = ValueVTs.size();
6341         Value != NumValues; ++Value) {
6342      EVT VT = ValueVTs[Value];
6343      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6344      SDValue Op = SDValue(Args[i].Node.getNode(),
6345                           Args[i].Node.getResNo() + Value);
6346      ISD::ArgFlagsTy Flags;
6347      unsigned OriginalAlignment =
6348        getTargetData()->getABITypeAlignment(ArgTy);
6349
6350      if (Args[i].isZExt)
6351        Flags.setZExt();
6352      if (Args[i].isSExt)
6353        Flags.setSExt();
6354      if (Args[i].isInReg)
6355        Flags.setInReg();
6356      if (Args[i].isSRet)
6357        Flags.setSRet();
6358      if (Args[i].isByVal) {
6359        Flags.setByVal();
6360        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6361        Type *ElementTy = Ty->getElementType();
6362        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6363        // For ByVal, alignment should come from FE.  BE will guess if this
6364        // info is not there but there are cases it cannot get right.
6365        unsigned FrameAlign;
6366        if (Args[i].Alignment)
6367          FrameAlign = Args[i].Alignment;
6368        else
6369          FrameAlign = getByValTypeAlignment(ElementTy);
6370        Flags.setByValAlign(FrameAlign);
6371      }
6372      if (Args[i].isNest)
6373        Flags.setNest();
6374      Flags.setOrigAlign(OriginalAlignment);
6375
6376      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6377      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6378      SmallVector<SDValue, 4> Parts(NumParts);
6379      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6380
6381      if (Args[i].isSExt)
6382        ExtendKind = ISD::SIGN_EXTEND;
6383      else if (Args[i].isZExt)
6384        ExtendKind = ISD::ZERO_EXTEND;
6385
6386      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6387                     PartVT, ExtendKind);
6388
6389      for (unsigned j = 0; j != NumParts; ++j) {
6390        // if it isn't first piece, alignment must be 1
6391        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6392                               i < NumFixedArgs);
6393        if (NumParts > 1 && j == 0)
6394          MyFlags.Flags.setSplit();
6395        else if (j != 0)
6396          MyFlags.Flags.setOrigAlign(1);
6397
6398        Outs.push_back(MyFlags);
6399        OutVals.push_back(Parts[j]);
6400      }
6401    }
6402  }
6403
6404  // Handle the incoming return values from the call.
6405  SmallVector<ISD::InputArg, 32> Ins;
6406  SmallVector<EVT, 4> RetTys;
6407  ComputeValueVTs(*this, RetTy, RetTys);
6408  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6409    EVT VT = RetTys[I];
6410    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6411    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6412    for (unsigned i = 0; i != NumRegs; ++i) {
6413      ISD::InputArg MyFlags;
6414      MyFlags.VT = RegisterVT.getSimpleVT();
6415      MyFlags.Used = isReturnValueUsed;
6416      if (RetSExt)
6417        MyFlags.Flags.setSExt();
6418      if (RetZExt)
6419        MyFlags.Flags.setZExt();
6420      if (isInreg)
6421        MyFlags.Flags.setInReg();
6422      Ins.push_back(MyFlags);
6423    }
6424  }
6425
6426  SmallVector<SDValue, 4> InVals;
6427  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6428                    Outs, OutVals, Ins, dl, DAG, InVals);
6429
6430  // Verify that the target's LowerCall behaved as expected.
6431  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6432         "LowerCall didn't return a valid chain!");
6433  assert((!isTailCall || InVals.empty()) &&
6434         "LowerCall emitted a return value for a tail call!");
6435  assert((isTailCall || InVals.size() == Ins.size()) &&
6436         "LowerCall didn't emit the correct number of values!");
6437
6438  // For a tail call, the return value is merely live-out and there aren't
6439  // any nodes in the DAG representing it. Return a special value to
6440  // indicate that a tail call has been emitted and no more Instructions
6441  // should be processed in the current block.
6442  if (isTailCall) {
6443    DAG.setRoot(Chain);
6444    return std::make_pair(SDValue(), SDValue());
6445  }
6446
6447  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6448          assert(InVals[i].getNode() &&
6449                 "LowerCall emitted a null value!");
6450          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6451                 "LowerCall emitted a value with the wrong type!");
6452        });
6453
6454  // Collect the legal value parts into potentially illegal values
6455  // that correspond to the original function's return values.
6456  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6457  if (RetSExt)
6458    AssertOp = ISD::AssertSext;
6459  else if (RetZExt)
6460    AssertOp = ISD::AssertZext;
6461  SmallVector<SDValue, 4> ReturnValues;
6462  unsigned CurReg = 0;
6463  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6464    EVT VT = RetTys[I];
6465    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6466    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6467
6468    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6469                                            NumRegs, RegisterVT, VT,
6470                                            AssertOp));
6471    CurReg += NumRegs;
6472  }
6473
6474  // For a function returning void, there is no return value. We can't create
6475  // such a node, so we just return a null return value in that case. In
6476  // that case, nothing will actually look at the value.
6477  if (ReturnValues.empty())
6478    return std::make_pair(SDValue(), Chain);
6479
6480  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6481                            DAG.getVTList(&RetTys[0], RetTys.size()),
6482                            &ReturnValues[0], ReturnValues.size());
6483  return std::make_pair(Res, Chain);
6484}
6485
6486void TargetLowering::LowerOperationWrapper(SDNode *N,
6487                                           SmallVectorImpl<SDValue> &Results,
6488                                           SelectionDAG &DAG) const {
6489  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6490  if (Res.getNode())
6491    Results.push_back(Res);
6492}
6493
6494SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6495  llvm_unreachable("LowerOperation not implemented for this target!");
6496  return SDValue();
6497}
6498
6499void
6500SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6501  SDValue Op = getNonRegisterValue(V);
6502  assert((Op.getOpcode() != ISD::CopyFromReg ||
6503          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6504         "Copy from a reg to the same reg!");
6505  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6506
6507  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6508  SDValue Chain = DAG.getEntryNode();
6509  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6510  PendingExports.push_back(Chain);
6511}
6512
6513#include "llvm/CodeGen/SelectionDAGISel.h"
6514
6515/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6516/// entry block, return true.  This includes arguments used by switches, since
6517/// the switch may expand into multiple basic blocks.
6518static bool isOnlyUsedInEntryBlock(const Argument *A) {
6519  // With FastISel active, we may be splitting blocks, so force creation
6520  // of virtual registers for all non-dead arguments.
6521  if (EnableFastISel)
6522    return A->use_empty();
6523
6524  const BasicBlock *Entry = A->getParent()->begin();
6525  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6526       UI != E; ++UI) {
6527    const User *U = *UI;
6528    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6529      return false;  // Use not in entry block.
6530  }
6531  return true;
6532}
6533
6534void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6535  // If this is the entry block, emit arguments.
6536  const Function &F = *LLVMBB->getParent();
6537  SelectionDAG &DAG = SDB->DAG;
6538  DebugLoc dl = SDB->getCurDebugLoc();
6539  const TargetData *TD = TLI.getTargetData();
6540  SmallVector<ISD::InputArg, 16> Ins;
6541
6542  // Check whether the function can return without sret-demotion.
6543  SmallVector<ISD::OutputArg, 4> Outs;
6544  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6545                Outs, TLI);
6546
6547  if (!FuncInfo->CanLowerReturn) {
6548    // Put in an sret pointer parameter before all the other parameters.
6549    SmallVector<EVT, 1> ValueVTs;
6550    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6551
6552    // NOTE: Assuming that a pointer will never break down to more than one VT
6553    // or one register.
6554    ISD::ArgFlagsTy Flags;
6555    Flags.setSRet();
6556    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6557    ISD::InputArg RetArg(Flags, RegisterVT, true);
6558    Ins.push_back(RetArg);
6559  }
6560
6561  // Set up the incoming argument description vector.
6562  unsigned Idx = 1;
6563  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6564       I != E; ++I, ++Idx) {
6565    SmallVector<EVT, 4> ValueVTs;
6566    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6567    bool isArgValueUsed = !I->use_empty();
6568    for (unsigned Value = 0, NumValues = ValueVTs.size();
6569         Value != NumValues; ++Value) {
6570      EVT VT = ValueVTs[Value];
6571      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6572      ISD::ArgFlagsTy Flags;
6573      unsigned OriginalAlignment =
6574        TD->getABITypeAlignment(ArgTy);
6575
6576      if (F.paramHasAttr(Idx, Attribute::ZExt))
6577        Flags.setZExt();
6578      if (F.paramHasAttr(Idx, Attribute::SExt))
6579        Flags.setSExt();
6580      if (F.paramHasAttr(Idx, Attribute::InReg))
6581        Flags.setInReg();
6582      if (F.paramHasAttr(Idx, Attribute::StructRet))
6583        Flags.setSRet();
6584      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6585        Flags.setByVal();
6586        PointerType *Ty = cast<PointerType>(I->getType());
6587        Type *ElementTy = Ty->getElementType();
6588        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6589        // For ByVal, alignment should be passed from FE.  BE will guess if
6590        // this info is not there but there are cases it cannot get right.
6591        unsigned FrameAlign;
6592        if (F.getParamAlignment(Idx))
6593          FrameAlign = F.getParamAlignment(Idx);
6594        else
6595          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6596        Flags.setByValAlign(FrameAlign);
6597      }
6598      if (F.paramHasAttr(Idx, Attribute::Nest))
6599        Flags.setNest();
6600      Flags.setOrigAlign(OriginalAlignment);
6601
6602      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6603      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6604      for (unsigned i = 0; i != NumRegs; ++i) {
6605        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6606        if (NumRegs > 1 && i == 0)
6607          MyFlags.Flags.setSplit();
6608        // if it isn't first piece, alignment must be 1
6609        else if (i > 0)
6610          MyFlags.Flags.setOrigAlign(1);
6611        Ins.push_back(MyFlags);
6612      }
6613    }
6614  }
6615
6616  // Call the target to set up the argument values.
6617  SmallVector<SDValue, 8> InVals;
6618  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6619                                             F.isVarArg(), Ins,
6620                                             dl, DAG, InVals);
6621
6622  // Verify that the target's LowerFormalArguments behaved as expected.
6623  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6624         "LowerFormalArguments didn't return a valid chain!");
6625  assert(InVals.size() == Ins.size() &&
6626         "LowerFormalArguments didn't emit the correct number of values!");
6627  DEBUG({
6628      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6629        assert(InVals[i].getNode() &&
6630               "LowerFormalArguments emitted a null value!");
6631        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6632               "LowerFormalArguments emitted a value with the wrong type!");
6633      }
6634    });
6635
6636  // Update the DAG with the new chain value resulting from argument lowering.
6637  DAG.setRoot(NewRoot);
6638
6639  // Set up the argument values.
6640  unsigned i = 0;
6641  Idx = 1;
6642  if (!FuncInfo->CanLowerReturn) {
6643    // Create a virtual register for the sret pointer, and put in a copy
6644    // from the sret argument into it.
6645    SmallVector<EVT, 1> ValueVTs;
6646    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6647    EVT VT = ValueVTs[0];
6648    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6649    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6650    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6651                                        RegVT, VT, AssertOp);
6652
6653    MachineFunction& MF = SDB->DAG.getMachineFunction();
6654    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6655    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6656    FuncInfo->DemoteRegister = SRetReg;
6657    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6658                                    SRetReg, ArgValue);
6659    DAG.setRoot(NewRoot);
6660
6661    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6662    // Idx indexes LLVM arguments.  Don't touch it.
6663    ++i;
6664  }
6665
6666  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6667      ++I, ++Idx) {
6668    SmallVector<SDValue, 4> ArgValues;
6669    SmallVector<EVT, 4> ValueVTs;
6670    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6671    unsigned NumValues = ValueVTs.size();
6672
6673    // If this argument is unused then remember its value. It is used to generate
6674    // debugging information.
6675    if (I->use_empty() && NumValues)
6676      SDB->setUnusedArgValue(I, InVals[i]);
6677
6678    for (unsigned Val = 0; Val != NumValues; ++Val) {
6679      EVT VT = ValueVTs[Val];
6680      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6681      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6682
6683      if (!I->use_empty()) {
6684        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6685        if (F.paramHasAttr(Idx, Attribute::SExt))
6686          AssertOp = ISD::AssertSext;
6687        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6688          AssertOp = ISD::AssertZext;
6689
6690        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6691                                             NumParts, PartVT, VT,
6692                                             AssertOp));
6693      }
6694
6695      i += NumParts;
6696    }
6697
6698    // We don't need to do anything else for unused arguments.
6699    if (ArgValues.empty())
6700      continue;
6701
6702    // Note down frame index.
6703    if (FrameIndexSDNode *FI =
6704	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6705      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6706
6707    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6708                                     SDB->getCurDebugLoc());
6709
6710    SDB->setValue(I, Res);
6711    if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6712      if (LoadSDNode *LNode =
6713          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6714        if (FrameIndexSDNode *FI =
6715            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6716        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6717    }
6718
6719    // If this argument is live outside of the entry block, insert a copy from
6720    // wherever we got it to the vreg that other BB's will reference it as.
6721    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6722      // If we can, though, try to skip creating an unnecessary vreg.
6723      // FIXME: This isn't very clean... it would be nice to make this more
6724      // general.  It's also subtly incompatible with the hacks FastISel
6725      // uses with vregs.
6726      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6727      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6728        FuncInfo->ValueMap[I] = Reg;
6729        continue;
6730      }
6731    }
6732    if (!isOnlyUsedInEntryBlock(I)) {
6733      FuncInfo->InitializeRegForValue(I);
6734      SDB->CopyToExportRegsIfNeeded(I);
6735    }
6736  }
6737
6738  assert(i == InVals.size() && "Argument register count mismatch!");
6739
6740  // Finally, if the target has anything special to do, allow it to do so.
6741  // FIXME: this should insert code into the DAG!
6742  EmitFunctionEntryCode();
6743}
6744
6745/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6746/// ensure constants are generated when needed.  Remember the virtual registers
6747/// that need to be added to the Machine PHI nodes as input.  We cannot just
6748/// directly add them, because expansion might result in multiple MBB's for one
6749/// BB.  As such, the start of the BB might correspond to a different MBB than
6750/// the end.
6751///
6752void
6753SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6754  const TerminatorInst *TI = LLVMBB->getTerminator();
6755
6756  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6757
6758  // Check successor nodes' PHI nodes that expect a constant to be available
6759  // from this block.
6760  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6761    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6762    if (!isa<PHINode>(SuccBB->begin())) continue;
6763    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6764
6765    // If this terminator has multiple identical successors (common for
6766    // switches), only handle each succ once.
6767    if (!SuccsHandled.insert(SuccMBB)) continue;
6768
6769    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6770
6771    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6772    // nodes and Machine PHI nodes, but the incoming operands have not been
6773    // emitted yet.
6774    for (BasicBlock::const_iterator I = SuccBB->begin();
6775         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6776      // Ignore dead phi's.
6777      if (PN->use_empty()) continue;
6778
6779      // Skip empty types
6780      if (PN->getType()->isEmptyTy())
6781        continue;
6782
6783      unsigned Reg;
6784      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6785
6786      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6787        unsigned &RegOut = ConstantsOut[C];
6788        if (RegOut == 0) {
6789          RegOut = FuncInfo.CreateRegs(C->getType());
6790          CopyValueToVirtualRegister(C, RegOut);
6791        }
6792        Reg = RegOut;
6793      } else {
6794        DenseMap<const Value *, unsigned>::iterator I =
6795          FuncInfo.ValueMap.find(PHIOp);
6796        if (I != FuncInfo.ValueMap.end())
6797          Reg = I->second;
6798        else {
6799          assert(isa<AllocaInst>(PHIOp) &&
6800                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6801                 "Didn't codegen value into a register!??");
6802          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6803          CopyValueToVirtualRegister(PHIOp, Reg);
6804        }
6805      }
6806
6807      // Remember that this register needs to added to the machine PHI node as
6808      // the input for this MBB.
6809      SmallVector<EVT, 4> ValueVTs;
6810      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6811      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6812        EVT VT = ValueVTs[vti];
6813        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6814        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6815          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6816        Reg += NumRegisters;
6817      }
6818    }
6819  }
6820  ConstantsOut.clear();
6821}
6822