1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegA, unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist,
128                                 SmallPtrSet<MachineInstr*, 8> &Processed);
129
130    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
131                  SmallPtrSet<MachineInstr*, 8> &Processed);
132
133    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
134                     SmallPtrSet<MachineInstr*, 8> &Processed);
135
136    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
137
138    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
139    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
140    /// sub-register references of the register defined by REG_SEQUENCE.
141    bool EliminateRegSequences();
142
143  public:
144    static char ID; // Pass identification, replacement for typeid
145    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
146      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
147    }
148
149    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
150      AU.setPreservesCFG();
151      AU.addRequired<AliasAnalysis>();
152      AU.addPreserved<LiveVariables>();
153      AU.addPreservedID(MachineLoopInfoID);
154      AU.addPreservedID(MachineDominatorsID);
155      AU.addPreservedID(PHIEliminationID);
156      MachineFunctionPass::getAnalysisUsage(AU);
157    }
158
159    /// runOnMachineFunction - Pass entry point.
160    bool runOnMachineFunction(MachineFunction&);
161  };
162}
163
164char TwoAddressInstructionPass::ID = 0;
165INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
166                "Two-Address instruction pass", false, false)
167INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
168INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
169                "Two-Address instruction pass", false, false)
170
171char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
172
173/// Sink3AddrInstruction - A two-address instruction has been converted to a
174/// three-address instruction to avoid clobbering a register. Try to sink it
175/// past the instruction that would kill the above mentioned register to reduce
176/// register pressure.
177bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
178                                           MachineInstr *MI, unsigned SavedReg,
179                                           MachineBasicBlock::iterator OldPos) {
180  // FIXME: Shouldn't we be trying to do this before we three-addressify the
181  // instruction?  After this transformation is done, we no longer need
182  // the instruction to be in three-address form.
183
184  // Check if it's safe to move this instruction.
185  bool SeenStore = true; // Be conservative.
186  if (!MI->isSafeToMove(TII, AA, SeenStore))
187    return false;
188
189  unsigned DefReg = 0;
190  SmallSet<unsigned, 4> UseRegs;
191
192  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
193    const MachineOperand &MO = MI->getOperand(i);
194    if (!MO.isReg())
195      continue;
196    unsigned MOReg = MO.getReg();
197    if (!MOReg)
198      continue;
199    if (MO.isUse() && MOReg != SavedReg)
200      UseRegs.insert(MO.getReg());
201    if (!MO.isDef())
202      continue;
203    if (MO.isImplicit())
204      // Don't try to move it if it implicitly defines a register.
205      return false;
206    if (DefReg)
207      // For now, don't move any instructions that define multiple registers.
208      return false;
209    DefReg = MO.getReg();
210  }
211
212  // Find the instruction that kills SavedReg.
213  MachineInstr *KillMI = NULL;
214  for (MachineRegisterInfo::use_nodbg_iterator
215         UI = MRI->use_nodbg_begin(SavedReg),
216         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
217    MachineOperand &UseMO = UI.getOperand();
218    if (!UseMO.isKill())
219      continue;
220    KillMI = UseMO.getParent();
221    break;
222  }
223
224  // If we find the instruction that kills SavedReg, and it is in an
225  // appropriate location, we can try to sink the current instruction
226  // past it.
227  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
228      KillMI->getDesc().isTerminator())
229    return false;
230
231  // If any of the definitions are used by another instruction between the
232  // position and the kill use, then it's not safe to sink it.
233  //
234  // FIXME: This can be sped up if there is an easy way to query whether an
235  // instruction is before or after another instruction. Then we can use
236  // MachineRegisterInfo def / use instead.
237  MachineOperand *KillMO = NULL;
238  MachineBasicBlock::iterator KillPos = KillMI;
239  ++KillPos;
240
241  unsigned NumVisited = 0;
242  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
243    MachineInstr *OtherMI = I;
244    // DBG_VALUE cannot be counted against the limit.
245    if (OtherMI->isDebugValue())
246      continue;
247    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
248      return false;
249    ++NumVisited;
250    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
251      MachineOperand &MO = OtherMI->getOperand(i);
252      if (!MO.isReg())
253        continue;
254      unsigned MOReg = MO.getReg();
255      if (!MOReg)
256        continue;
257      if (DefReg == MOReg)
258        return false;
259
260      if (MO.isKill()) {
261        if (OtherMI == KillMI && MOReg == SavedReg)
262          // Save the operand that kills the register. We want to unset the kill
263          // marker if we can sink MI past it.
264          KillMO = &MO;
265        else if (UseRegs.count(MOReg))
266          // One of the uses is killed before the destination.
267          return false;
268      }
269    }
270  }
271
272  // Update kill and LV information.
273  KillMO->setIsKill(false);
274  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
275  KillMO->setIsKill(true);
276
277  if (LV)
278    LV->replaceKillInstruction(SavedReg, KillMI, MI);
279
280  // Move instruction to its destination.
281  MBB->remove(MI);
282  MBB->insert(KillPos, MI);
283
284  ++Num3AddrSunk;
285  return true;
286}
287
288/// isTwoAddrUse - Return true if the specified MI is using the specified
289/// register as a two-address operand.
290static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
291  const MCInstrDesc &MCID = UseMI->getDesc();
292  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
293    MachineOperand &MO = UseMI->getOperand(i);
294    if (MO.isReg() && MO.getReg() == Reg &&
295        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
296      // Earlier use is a two-address one.
297      return true;
298  }
299  return false;
300}
301
302/// isProfitableToReMat - Return true if the heuristics determines it is likely
303/// to be profitable to re-materialize the definition of Reg rather than copy
304/// the register.
305bool
306TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
307                                         const TargetRegisterClass *RC,
308                                         MachineInstr *MI, MachineInstr *DefMI,
309                                         MachineBasicBlock *MBB, unsigned Loc) {
310  bool OtherUse = false;
311  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
312         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
313    MachineOperand &UseMO = UI.getOperand();
314    MachineInstr *UseMI = UseMO.getParent();
315    MachineBasicBlock *UseMBB = UseMI->getParent();
316    if (UseMBB == MBB) {
317      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
318      if (DI != DistanceMap.end() && DI->second == Loc)
319        continue;  // Current use.
320      OtherUse = true;
321      // There is at least one other use in the MBB that will clobber the
322      // register.
323      if (isTwoAddrUse(UseMI, Reg))
324        return true;
325    }
326  }
327
328  // If other uses in MBB are not two-address uses, then don't remat.
329  if (OtherUse)
330    return false;
331
332  // No other uses in the same block, remat if it's defined in the same
333  // block so it does not unnecessarily extend the live range.
334  return MBB == DefMI->getParent();
335}
336
337/// NoUseAfterLastDef - Return true if there are no intervening uses between the
338/// last instruction in the MBB that defines the specified register and the
339/// two-address instruction which is being processed. It also returns the last
340/// def location by reference
341bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
342                                           MachineBasicBlock *MBB, unsigned Dist,
343                                           unsigned &LastDef) {
344  LastDef = 0;
345  unsigned LastUse = Dist;
346  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
347         E = MRI->reg_end(); I != E; ++I) {
348    MachineOperand &MO = I.getOperand();
349    MachineInstr *MI = MO.getParent();
350    if (MI->getParent() != MBB || MI->isDebugValue())
351      continue;
352    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
353    if (DI == DistanceMap.end())
354      continue;
355    if (MO.isUse() && DI->second < LastUse)
356      LastUse = DI->second;
357    if (MO.isDef() && DI->second > LastDef)
358      LastDef = DI->second;
359  }
360
361  return !(LastUse > LastDef && LastUse < Dist);
362}
363
364MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
365                                                         MachineBasicBlock *MBB,
366                                                         unsigned Dist) {
367  unsigned LastUseDist = 0;
368  MachineInstr *LastUse = 0;
369  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
370         E = MRI->reg_end(); I != E; ++I) {
371    MachineOperand &MO = I.getOperand();
372    MachineInstr *MI = MO.getParent();
373    if (MI->getParent() != MBB || MI->isDebugValue())
374      continue;
375    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
376    if (DI == DistanceMap.end())
377      continue;
378    if (DI->second >= Dist)
379      continue;
380
381    if (MO.isUse() && DI->second > LastUseDist) {
382      LastUse = DI->first;
383      LastUseDist = DI->second;
384    }
385  }
386  return LastUse;
387}
388
389/// isCopyToReg - Return true if the specified MI is a copy instruction or
390/// a extract_subreg instruction. It also returns the source and destination
391/// registers and whether they are physical registers by reference.
392static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
393                        unsigned &SrcReg, unsigned &DstReg,
394                        bool &IsSrcPhys, bool &IsDstPhys) {
395  SrcReg = 0;
396  DstReg = 0;
397  if (MI.isCopy()) {
398    DstReg = MI.getOperand(0).getReg();
399    SrcReg = MI.getOperand(1).getReg();
400  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
401    DstReg = MI.getOperand(0).getReg();
402    SrcReg = MI.getOperand(2).getReg();
403  } else
404    return false;
405
406  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
407  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
408  return true;
409}
410
411/// isKilled - Test if the given register value, which is used by the given
412/// instruction, is killed by the given instruction. This looks through
413/// coalescable copies to see if the original value is potentially not killed.
414///
415/// For example, in this code:
416///
417///   %reg1034 = copy %reg1024
418///   %reg1035 = copy %reg1025<kill>
419///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
420///
421/// %reg1034 is not considered to be killed, since it is copied from a
422/// register which is not killed. Treating it as not killed lets the
423/// normal heuristics commute the (two-address) add, which lets
424/// coalescing eliminate the extra copy.
425///
426static bool isKilled(MachineInstr &MI, unsigned Reg,
427                     const MachineRegisterInfo *MRI,
428                     const TargetInstrInfo *TII) {
429  MachineInstr *DefMI = &MI;
430  for (;;) {
431    if (!DefMI->killsRegister(Reg))
432      return false;
433    if (TargetRegisterInfo::isPhysicalRegister(Reg))
434      return true;
435    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
436    // If there are multiple defs, we can't do a simple analysis, so just
437    // go with what the kill flag says.
438    if (llvm::next(Begin) != MRI->def_end())
439      return true;
440    DefMI = &*Begin;
441    bool IsSrcPhys, IsDstPhys;
442    unsigned SrcReg,  DstReg;
443    // If the def is something other than a copy, then it isn't going to
444    // be coalesced, so follow the kill flag.
445    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
446      return true;
447    Reg = SrcReg;
448  }
449}
450
451/// isTwoAddrUse - Return true if the specified MI uses the specified register
452/// as a two-address use. If so, return the destination register by reference.
453static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
454  const MCInstrDesc &MCID = MI.getDesc();
455  unsigned NumOps = MI.isInlineAsm()
456    ? MI.getNumOperands() : MCID.getNumOperands();
457  for (unsigned i = 0; i != NumOps; ++i) {
458    const MachineOperand &MO = MI.getOperand(i);
459    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
460      continue;
461    unsigned ti;
462    if (MI.isRegTiedToDefOperand(i, &ti)) {
463      DstReg = MI.getOperand(ti).getReg();
464      return true;
465    }
466  }
467  return false;
468}
469
470/// findOnlyInterestingUse - Given a register, if has a single in-basic block
471/// use, return the use instruction if it's a copy or a two-address use.
472static
473MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
474                                     MachineRegisterInfo *MRI,
475                                     const TargetInstrInfo *TII,
476                                     bool &IsCopy,
477                                     unsigned &DstReg, bool &IsDstPhys) {
478  if (!MRI->hasOneNonDBGUse(Reg))
479    // None or more than one use.
480    return 0;
481  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
482  if (UseMI.getParent() != MBB)
483    return 0;
484  unsigned SrcReg;
485  bool IsSrcPhys;
486  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
487    IsCopy = true;
488    return &UseMI;
489  }
490  IsDstPhys = false;
491  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
492    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
493    return &UseMI;
494  }
495  return 0;
496}
497
498/// getMappedReg - Return the physical register the specified virtual register
499/// might be mapped to.
500static unsigned
501getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
502  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
503    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
504    if (SI == RegMap.end())
505      return 0;
506    Reg = SI->second;
507  }
508  if (TargetRegisterInfo::isPhysicalRegister(Reg))
509    return Reg;
510  return 0;
511}
512
513/// regsAreCompatible - Return true if the two registers are equal or aliased.
514///
515static bool
516regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
517  if (RegA == RegB)
518    return true;
519  if (!RegA || !RegB)
520    return false;
521  return TRI->regsOverlap(RegA, RegB);
522}
523
524
525/// isProfitableToReMat - Return true if it's potentially profitable to commute
526/// the two-address instruction that's being processed.
527bool
528TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
529                                       MachineInstr *MI, MachineBasicBlock *MBB,
530                                       unsigned Dist) {
531  // Determine if it's profitable to commute this two address instruction. In
532  // general, we want no uses between this instruction and the definition of
533  // the two-address register.
534  // e.g.
535  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
536  // %reg1029<def> = MOV8rr %reg1028
537  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
538  // insert => %reg1030<def> = MOV8rr %reg1028
539  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
540  // In this case, it might not be possible to coalesce the second MOV8rr
541  // instruction if the first one is coalesced. So it would be profitable to
542  // commute it:
543  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
544  // %reg1029<def> = MOV8rr %reg1028
545  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
546  // insert => %reg1030<def> = MOV8rr %reg1029
547  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
548
549  if (!MI->killsRegister(regC))
550    return false;
551
552  // Ok, we have something like:
553  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
554  // let's see if it's worth commuting it.
555
556  // Look for situations like this:
557  // %reg1024<def> = MOV r1
558  // %reg1025<def> = MOV r0
559  // %reg1026<def> = ADD %reg1024, %reg1025
560  // r0            = MOV %reg1026
561  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
562  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
563  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
564  unsigned ToRegB = getMappedReg(regB, DstRegMap);
565  unsigned ToRegC = getMappedReg(regC, DstRegMap);
566  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
567      ((!FromRegC && !ToRegC) ||
568       regsAreCompatible(FromRegB, ToRegC, TRI) ||
569       regsAreCompatible(FromRegC, ToRegB, TRI)))
570    return true;
571
572  // If there is a use of regC between its last def (could be livein) and this
573  // instruction, then bail.
574  unsigned LastDefC = 0;
575  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
576    return false;
577
578  // If there is a use of regB between its last def (could be livein) and this
579  // instruction, then go ahead and make this transformation.
580  unsigned LastDefB = 0;
581  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
582    return true;
583
584  // Since there are no intervening uses for both registers, then commute
585  // if the def of regC is closer. Its live interval is shorter.
586  return LastDefB && LastDefC && LastDefC > LastDefB;
587}
588
589/// CommuteInstruction - Commute a two-address instruction and update the basic
590/// block, distance map, and live variables if needed. Return true if it is
591/// successful.
592bool
593TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
594                               MachineFunction::iterator &mbbi,
595                               unsigned RegB, unsigned RegC, unsigned Dist) {
596  MachineInstr *MI = mi;
597  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
598  MachineInstr *NewMI = TII->commuteInstruction(MI);
599
600  if (NewMI == 0) {
601    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
602    return false;
603  }
604
605  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
606  // If the instruction changed to commute it, update livevar.
607  if (NewMI != MI) {
608    if (LV)
609      // Update live variables
610      LV->replaceKillInstruction(RegC, MI, NewMI);
611
612    mbbi->insert(mi, NewMI);           // Insert the new inst
613    mbbi->erase(mi);                   // Nuke the old inst.
614    mi = NewMI;
615    DistanceMap.insert(std::make_pair(NewMI, Dist));
616  }
617
618  // Update source register map.
619  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
620  if (FromRegC) {
621    unsigned RegA = MI->getOperand(0).getReg();
622    SrcRegMap[RegA] = FromRegC;
623  }
624
625  return true;
626}
627
628/// isProfitableToConv3Addr - Return true if it is profitable to convert the
629/// given 2-address instruction to a 3-address one.
630bool
631TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
632  // Look for situations like this:
633  // %reg1024<def> = MOV r1
634  // %reg1025<def> = MOV r0
635  // %reg1026<def> = ADD %reg1024, %reg1025
636  // r2            = MOV %reg1026
637  // Turn ADD into a 3-address instruction to avoid a copy.
638  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
639  if (!FromRegB)
640    return false;
641  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
642  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
643}
644
645/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
646/// three address one. Return true if this transformation was successful.
647bool
648TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
649                                              MachineBasicBlock::iterator &nmi,
650                                              MachineFunction::iterator &mbbi,
651                                              unsigned RegA, unsigned RegB,
652                                              unsigned Dist) {
653  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
654  if (NewMI) {
655    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
656    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
657    bool Sunk = false;
658
659    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
660      // FIXME: Temporary workaround. If the new instruction doesn't
661      // uses RegB, convertToThreeAddress must have created more
662      // then one instruction.
663      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
664
665    mbbi->erase(mi); // Nuke the old inst.
666
667    if (!Sunk) {
668      DistanceMap.insert(std::make_pair(NewMI, Dist));
669      mi = NewMI;
670      nmi = llvm::next(mi);
671    }
672
673    // Update source and destination register maps.
674    SrcRegMap.erase(RegA);
675    DstRegMap.erase(RegB);
676    return true;
677  }
678
679  return false;
680}
681
682/// ScanUses - Scan forward recursively for only uses, update maps if the use
683/// is a copy or a two-address instruction.
684void
685TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
686                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
687  SmallVector<unsigned, 4> VirtRegPairs;
688  bool IsDstPhys;
689  bool IsCopy = false;
690  unsigned NewReg = 0;
691  unsigned Reg = DstReg;
692  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
693                                                      NewReg, IsDstPhys)) {
694    if (IsCopy && !Processed.insert(UseMI))
695      break;
696
697    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
698    if (DI != DistanceMap.end())
699      // Earlier in the same MBB.Reached via a back edge.
700      break;
701
702    if (IsDstPhys) {
703      VirtRegPairs.push_back(NewReg);
704      break;
705    }
706    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
707    if (!isNew)
708      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
709    VirtRegPairs.push_back(NewReg);
710    Reg = NewReg;
711  }
712
713  if (!VirtRegPairs.empty()) {
714    unsigned ToReg = VirtRegPairs.back();
715    VirtRegPairs.pop_back();
716    while (!VirtRegPairs.empty()) {
717      unsigned FromReg = VirtRegPairs.back();
718      VirtRegPairs.pop_back();
719      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
720      if (!isNew)
721        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
722      ToReg = FromReg;
723    }
724    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
725    if (!isNew)
726      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
727  }
728}
729
730/// ProcessCopy - If the specified instruction is not yet processed, process it
731/// if it's a copy. For a copy instruction, we find the physical registers the
732/// source and destination registers might be mapped to. These are kept in
733/// point-to maps used to determine future optimizations. e.g.
734/// v1024 = mov r0
735/// v1025 = mov r1
736/// v1026 = add v1024, v1025
737/// r1    = mov r1026
738/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
739/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
740/// potentially joined with r1 on the output side. It's worthwhile to commute
741/// 'add' to eliminate a copy.
742void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
743                                     MachineBasicBlock *MBB,
744                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
745  if (Processed.count(MI))
746    return;
747
748  bool IsSrcPhys, IsDstPhys;
749  unsigned SrcReg, DstReg;
750  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
751    return;
752
753  if (IsDstPhys && !IsSrcPhys)
754    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
755  else if (!IsDstPhys && IsSrcPhys) {
756    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
757    if (!isNew)
758      assert(SrcRegMap[DstReg] == SrcReg &&
759             "Can't map to two src physical registers!");
760
761    ScanUses(DstReg, MBB, Processed);
762  }
763
764  Processed.insert(MI);
765  return;
766}
767
768/// isSafeToDelete - If the specified instruction does not produce any side
769/// effects and all of its defs are dead, then it's safe to delete.
770static bool isSafeToDelete(MachineInstr *MI,
771                           const TargetInstrInfo *TII,
772                           SmallVector<unsigned, 4> &Kills) {
773  const MCInstrDesc &MCID = MI->getDesc();
774  if (MCID.mayStore() || MCID.isCall())
775    return false;
776  if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
777    return false;
778
779  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
780    MachineOperand &MO = MI->getOperand(i);
781    if (!MO.isReg())
782      continue;
783    if (MO.isDef() && !MO.isDead())
784      return false;
785    if (MO.isUse() && MO.isKill())
786      Kills.push_back(MO.getReg());
787  }
788  return true;
789}
790
791/// canUpdateDeletedKills - Check if all the registers listed in Kills are
792/// killed by instructions in MBB preceding the current instruction at
793/// position Dist.  If so, return true and record information about the
794/// preceding kills in NewKills.
795bool TwoAddressInstructionPass::
796canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
797                      SmallVector<NewKill, 4> &NewKills,
798                      MachineBasicBlock *MBB, unsigned Dist) {
799  while (!Kills.empty()) {
800    unsigned Kill = Kills.back();
801    Kills.pop_back();
802    if (TargetRegisterInfo::isPhysicalRegister(Kill))
803      return false;
804
805    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
806    if (!LastKill)
807      return false;
808
809    bool isModRef = LastKill->definesRegister(Kill);
810    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
811                                      LastKill));
812  }
813  return true;
814}
815
816/// DeleteUnusedInstr - If an instruction with a tied register operand can
817/// be safely deleted, just delete it.
818bool
819TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
820                                             MachineBasicBlock::iterator &nmi,
821                                             MachineFunction::iterator &mbbi,
822                                             unsigned Dist) {
823  // Check if the instruction has no side effects and if all its defs are dead.
824  SmallVector<unsigned, 4> Kills;
825  if (!isSafeToDelete(mi, TII, Kills))
826    return false;
827
828  // If this instruction kills some virtual registers, we need to
829  // update the kill information. If it's not possible to do so,
830  // then bail out.
831  SmallVector<NewKill, 4> NewKills;
832  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
833    return false;
834
835  if (LV) {
836    while (!NewKills.empty()) {
837      MachineInstr *NewKill = NewKills.back().second;
838      unsigned Kill = NewKills.back().first.first;
839      bool isDead = NewKills.back().first.second;
840      NewKills.pop_back();
841      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
842        if (isDead)
843          LV->addVirtualRegisterDead(Kill, NewKill);
844        else
845          LV->addVirtualRegisterKilled(Kill, NewKill);
846      }
847    }
848  }
849
850  mbbi->erase(mi); // Nuke the old inst.
851  mi = nmi;
852  return true;
853}
854
855/// TryInstructionTransform - For the case where an instruction has a single
856/// pair of tied register operands, attempt some transformations that may
857/// either eliminate the tied operands or improve the opportunities for
858/// coalescing away the register copy.  Returns true if the tied operands
859/// are eliminated altogether.
860bool TwoAddressInstructionPass::
861TryInstructionTransform(MachineBasicBlock::iterator &mi,
862                        MachineBasicBlock::iterator &nmi,
863                        MachineFunction::iterator &mbbi,
864                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
865                        SmallPtrSet<MachineInstr*, 8> &Processed) {
866  const MCInstrDesc &MCID = mi->getDesc();
867  unsigned regA = mi->getOperand(DstIdx).getReg();
868  unsigned regB = mi->getOperand(SrcIdx).getReg();
869
870  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
871         "cannot make instruction into two-address form");
872
873  // If regA is dead and the instruction can be deleted, just delete
874  // it so it doesn't clobber regB.
875  bool regBKilled = isKilled(*mi, regB, MRI, TII);
876  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
877      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
878    ++NumDeletes;
879    return true; // Done with this instruction.
880  }
881
882  // Check if it is profitable to commute the operands.
883  unsigned SrcOp1, SrcOp2;
884  unsigned regC = 0;
885  unsigned regCIdx = ~0U;
886  bool TryCommute = false;
887  bool AggressiveCommute = false;
888  if (MCID.isCommutable() && mi->getNumOperands() >= 3 &&
889      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
890    if (SrcIdx == SrcOp1)
891      regCIdx = SrcOp2;
892    else if (SrcIdx == SrcOp2)
893      regCIdx = SrcOp1;
894
895    if (regCIdx != ~0U) {
896      regC = mi->getOperand(regCIdx).getReg();
897      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
898        // If C dies but B does not, swap the B and C operands.
899        // This makes the live ranges of A and C joinable.
900        TryCommute = true;
901      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
902        TryCommute = true;
903        AggressiveCommute = true;
904      }
905    }
906  }
907
908  // If it's profitable to commute, try to do so.
909  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
910    ++NumCommuted;
911    if (AggressiveCommute)
912      ++NumAggrCommuted;
913    return false;
914  }
915
916  if (TargetRegisterInfo::isVirtualRegister(regA))
917    ScanUses(regA, &*mbbi, Processed);
918
919  if (MCID.isConvertibleTo3Addr()) {
920    // This instruction is potentially convertible to a true
921    // three-address instruction.  Check if it is profitable.
922    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
923      // Try to convert it.
924      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
925        ++NumConvertedTo3Addr;
926        return true; // Done with this instruction.
927      }
928    }
929  }
930
931  // If this is an instruction with a load folded into it, try unfolding
932  // the load, e.g. avoid this:
933  //   movq %rdx, %rcx
934  //   addq (%rax), %rcx
935  // in favor of this:
936  //   movq (%rax), %rcx
937  //   addq %rdx, %rcx
938  // because it's preferable to schedule a load than a register copy.
939  if (MCID.mayLoad() && !regBKilled) {
940    // Determine if a load can be unfolded.
941    unsigned LoadRegIndex;
942    unsigned NewOpc =
943      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
944                                      /*UnfoldLoad=*/true,
945                                      /*UnfoldStore=*/false,
946                                      &LoadRegIndex);
947    if (NewOpc != 0) {
948      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
949      if (UnfoldMCID.getNumDefs() == 1) {
950        MachineFunction &MF = *mbbi->getParent();
951
952        // Unfold the load.
953        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
954        const TargetRegisterClass *RC =
955          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
956        unsigned Reg = MRI->createVirtualRegister(RC);
957        SmallVector<MachineInstr *, 2> NewMIs;
958        if (!TII->unfoldMemoryOperand(MF, mi, Reg,
959                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
960                                      NewMIs)) {
961          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
962          return false;
963        }
964        assert(NewMIs.size() == 2 &&
965               "Unfolded a load into multiple instructions!");
966        // The load was previously folded, so this is the only use.
967        NewMIs[1]->addRegisterKilled(Reg, TRI);
968
969        // Tentatively insert the instructions into the block so that they
970        // look "normal" to the transformation logic.
971        mbbi->insert(mi, NewMIs[0]);
972        mbbi->insert(mi, NewMIs[1]);
973
974        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
975                     << "2addr:    NEW INST: " << *NewMIs[1]);
976
977        // Transform the instruction, now that it no longer has a load.
978        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
979        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
980        MachineBasicBlock::iterator NewMI = NewMIs[1];
981        bool TransformSuccess =
982          TryInstructionTransform(NewMI, mi, mbbi,
983                                  NewSrcIdx, NewDstIdx, Dist, Processed);
984        if (TransformSuccess ||
985            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
986          // Success, or at least we made an improvement. Keep the unfolded
987          // instructions and discard the original.
988          if (LV) {
989            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
990              MachineOperand &MO = mi->getOperand(i);
991              if (MO.isReg() &&
992                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
993                if (MO.isUse()) {
994                  if (MO.isKill()) {
995                    if (NewMIs[0]->killsRegister(MO.getReg()))
996                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
997                    else {
998                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
999                             "Kill missing after load unfold!");
1000                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
1001                    }
1002                  }
1003                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
1004                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1005                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1006                  else {
1007                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1008                           "Dead flag missing after load unfold!");
1009                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1010                  }
1011                }
1012              }
1013            }
1014            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1015          }
1016          mi->eraseFromParent();
1017          mi = NewMIs[1];
1018          if (TransformSuccess)
1019            return true;
1020        } else {
1021          // Transforming didn't eliminate the tie and didn't lead to an
1022          // improvement. Clean up the unfolded instructions and keep the
1023          // original.
1024          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1025          NewMIs[0]->eraseFromParent();
1026          NewMIs[1]->eraseFromParent();
1027        }
1028      }
1029    }
1030  }
1031
1032  return false;
1033}
1034
1035/// runOnMachineFunction - Reduce two-address instructions to two operands.
1036///
1037bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1038  DEBUG(dbgs() << "Machine Function\n");
1039  const TargetMachine &TM = MF.getTarget();
1040  MRI = &MF.getRegInfo();
1041  TII = TM.getInstrInfo();
1042  TRI = TM.getRegisterInfo();
1043  LV = getAnalysisIfAvailable<LiveVariables>();
1044  AA = &getAnalysis<AliasAnalysis>();
1045
1046  bool MadeChange = false;
1047
1048  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1049  DEBUG(dbgs() << "********** Function: "
1050        << MF.getFunction()->getName() << '\n');
1051
1052  // This pass takes the function out of SSA form.
1053  MRI->leaveSSA();
1054
1055  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1056  BitVector ReMatRegs(MRI->getNumVirtRegs());
1057
1058  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1059    TiedOperandMap;
1060  TiedOperandMap TiedOperands(4);
1061
1062  SmallPtrSet<MachineInstr*, 8> Processed;
1063  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1064       mbbi != mbbe; ++mbbi) {
1065    unsigned Dist = 0;
1066    DistanceMap.clear();
1067    SrcRegMap.clear();
1068    DstRegMap.clear();
1069    Processed.clear();
1070    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1071         mi != me; ) {
1072      MachineBasicBlock::iterator nmi = llvm::next(mi);
1073      if (mi->isDebugValue()) {
1074        mi = nmi;
1075        continue;
1076      }
1077
1078      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1079      if (mi->isRegSequence())
1080        RegSequences.push_back(&*mi);
1081
1082      const MCInstrDesc &MCID = mi->getDesc();
1083      bool FirstTied = true;
1084
1085      DistanceMap.insert(std::make_pair(mi, ++Dist));
1086
1087      ProcessCopy(&*mi, &*mbbi, Processed);
1088
1089      // First scan through all the tied register uses in this instruction
1090      // and record a list of pairs of tied operands for each register.
1091      unsigned NumOps = mi->isInlineAsm()
1092        ? mi->getNumOperands() : MCID.getNumOperands();
1093      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1094        unsigned DstIdx = 0;
1095        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1096          continue;
1097
1098        if (FirstTied) {
1099          FirstTied = false;
1100          ++NumTwoAddressInstrs;
1101          DEBUG(dbgs() << '\t' << *mi);
1102        }
1103
1104        assert(mi->getOperand(SrcIdx).isReg() &&
1105               mi->getOperand(SrcIdx).getReg() &&
1106               mi->getOperand(SrcIdx).isUse() &&
1107               "two address instruction invalid");
1108
1109        unsigned regB = mi->getOperand(SrcIdx).getReg();
1110        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1111      }
1112
1113      // Now iterate over the information collected above.
1114      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1115             OE = TiedOperands.end(); OI != OE; ++OI) {
1116        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1117
1118        // If the instruction has a single pair of tied operands, try some
1119        // transformations that may either eliminate the tied operands or
1120        // improve the opportunities for coalescing away the register copy.
1121        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1122          unsigned SrcIdx = TiedPairs[0].first;
1123          unsigned DstIdx = TiedPairs[0].second;
1124
1125          // If the registers are already equal, nothing needs to be done.
1126          if (mi->getOperand(SrcIdx).getReg() ==
1127              mi->getOperand(DstIdx).getReg())
1128            break; // Done with this instruction.
1129
1130          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1131                                      Processed))
1132            break; // The tied operands have been eliminated.
1133        }
1134
1135        bool IsEarlyClobber = false;
1136        bool RemovedKillFlag = false;
1137        bool AllUsesCopied = true;
1138        unsigned LastCopiedReg = 0;
1139        unsigned regB = OI->first;
1140        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1141          unsigned SrcIdx = TiedPairs[tpi].first;
1142          unsigned DstIdx = TiedPairs[tpi].second;
1143
1144          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1145          unsigned regA = DstMO.getReg();
1146          IsEarlyClobber |= DstMO.isEarlyClobber();
1147
1148          // Grab regB from the instruction because it may have changed if the
1149          // instruction was commuted.
1150          regB = mi->getOperand(SrcIdx).getReg();
1151
1152          if (regA == regB) {
1153            // The register is tied to multiple destinations (or else we would
1154            // not have continued this far), but this use of the register
1155            // already matches the tied destination.  Leave it.
1156            AllUsesCopied = false;
1157            continue;
1158          }
1159          LastCopiedReg = regA;
1160
1161          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1162                 "cannot make instruction into two-address form");
1163
1164#ifndef NDEBUG
1165          // First, verify that we don't have a use of "a" in the instruction
1166          // (a = b + a for example) because our transformation will not
1167          // work. This should never occur because we are in SSA form.
1168          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1169            assert(i == DstIdx ||
1170                   !mi->getOperand(i).isReg() ||
1171                   mi->getOperand(i).getReg() != regA);
1172#endif
1173
1174          // Emit a copy or rematerialize the definition.
1175          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1176          MachineInstr *DefMI = MRI->getVRegDef(regB);
1177          // If it's safe and profitable, remat the definition instead of
1178          // copying it.
1179          if (DefMI &&
1180              DefMI->getDesc().isAsCheapAsAMove() &&
1181              DefMI->isSafeToReMat(TII, AA, regB) &&
1182              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1183            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1184            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1185            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1186            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1187            ++NumReMats;
1188          } else {
1189            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1190                    regA).addReg(regB);
1191          }
1192
1193          MachineBasicBlock::iterator prevMI = prior(mi);
1194          // Update DistanceMap.
1195          DistanceMap.insert(std::make_pair(prevMI, Dist));
1196          DistanceMap[mi] = ++Dist;
1197
1198          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1199
1200          MachineOperand &MO = mi->getOperand(SrcIdx);
1201          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1202                 "inconsistent operand info for 2-reg pass");
1203          if (MO.isKill()) {
1204            MO.setIsKill(false);
1205            RemovedKillFlag = true;
1206          }
1207          MO.setReg(regA);
1208        }
1209
1210        if (AllUsesCopied) {
1211          if (!IsEarlyClobber) {
1212            // Replace other (un-tied) uses of regB with LastCopiedReg.
1213            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1214              MachineOperand &MO = mi->getOperand(i);
1215              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1216                if (MO.isKill()) {
1217                  MO.setIsKill(false);
1218                  RemovedKillFlag = true;
1219                }
1220                MO.setReg(LastCopiedReg);
1221              }
1222            }
1223          }
1224
1225          // Update live variables for regB.
1226          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1227            LV->addVirtualRegisterKilled(regB, prior(mi));
1228
1229        } else if (RemovedKillFlag) {
1230          // Some tied uses of regB matched their destination registers, so
1231          // regB is still used in this instruction, but a kill flag was
1232          // removed from a different tied use of regB, so now we need to add
1233          // a kill flag to one of the remaining uses of regB.
1234          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1235            MachineOperand &MO = mi->getOperand(i);
1236            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1237              MO.setIsKill(true);
1238              break;
1239            }
1240          }
1241        }
1242
1243        // Schedule the source copy / remat inserted to form two-address
1244        // instruction. FIXME: Does it matter the distance map may not be
1245        // accurate after it's scheduled?
1246        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1247
1248        MadeChange = true;
1249
1250        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1251      }
1252
1253      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1254      if (mi->isInsertSubreg()) {
1255        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1256        // To   %reg:subidx = COPY %subreg
1257        unsigned SubIdx = mi->getOperand(3).getImm();
1258        mi->RemoveOperand(3);
1259        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1260        mi->getOperand(0).setSubReg(SubIdx);
1261        mi->RemoveOperand(1);
1262        mi->setDesc(TII->get(TargetOpcode::COPY));
1263        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1264      }
1265
1266      // Clear TiedOperands here instead of at the top of the loop
1267      // since most instructions do not have tied operands.
1268      TiedOperands.clear();
1269      mi = nmi;
1270    }
1271  }
1272
1273  // Some remat'ed instructions are dead.
1274  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1275    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1276    if (MRI->use_nodbg_empty(VReg)) {
1277      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1278      DefMI->eraseFromParent();
1279    }
1280  }
1281
1282  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1283  // SSA form. It's now safe to de-SSA.
1284  MadeChange |= EliminateRegSequences();
1285
1286  return MadeChange;
1287}
1288
1289static void UpdateRegSequenceSrcs(unsigned SrcReg,
1290                                  unsigned DstReg, unsigned SubIdx,
1291                                  MachineRegisterInfo *MRI,
1292                                  const TargetRegisterInfo &TRI) {
1293  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1294         RE = MRI->reg_end(); RI != RE; ) {
1295    MachineOperand &MO = RI.getOperand();
1296    ++RI;
1297    MO.substVirtReg(DstReg, SubIdx, TRI);
1298  }
1299}
1300
1301/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1302/// EXTRACT_SUBREG from the same register and to the same virtual register
1303/// with different sub-register indices, attempt to combine the
1304/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1305/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1306/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1307/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1308/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1309/// reg1026 to reg1029.
1310void
1311TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1312                                              unsigned DstReg) {
1313  SmallSet<unsigned, 4> Seen;
1314  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1315    unsigned SrcReg = Srcs[i];
1316    if (!Seen.insert(SrcReg))
1317      continue;
1318
1319    // Check that the instructions are all in the same basic block.
1320    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1321    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1322    if (SrcDefMI->getParent() != DstDefMI->getParent())
1323      continue;
1324
1325    // If there are no other uses than copies which feed into
1326    // the reg_sequence, then we might be able to coalesce them.
1327    bool CanCoalesce = true;
1328    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1329    for (MachineRegisterInfo::use_nodbg_iterator
1330           UI = MRI->use_nodbg_begin(SrcReg),
1331           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1332      MachineInstr *UseMI = &*UI;
1333      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1334        CanCoalesce = false;
1335        break;
1336      }
1337      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1338      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1339    }
1340
1341    if (!CanCoalesce || SrcSubIndices.size() < 2)
1342      continue;
1343
1344    // Check that the source subregisters can be combined.
1345    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1346    unsigned NewSrcSubIdx = 0;
1347    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1348                                      NewSrcSubIdx))
1349      continue;
1350
1351    // Check that the destination subregisters can also be combined.
1352    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1353    unsigned NewDstSubIdx = 0;
1354    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1355                                      NewDstSubIdx))
1356      continue;
1357
1358    // If neither source nor destination can be combined to the full register,
1359    // just give up.  This could be improved if it ever matters.
1360    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1361      continue;
1362
1363    // Now that we know that all the uses are extract_subregs and that those
1364    // subregs can somehow be combined, scan all the extract_subregs again to
1365    // make sure the subregs are in the right order and can be composed.
1366    MachineInstr *SomeMI = 0;
1367    CanCoalesce = true;
1368    for (MachineRegisterInfo::use_nodbg_iterator
1369           UI = MRI->use_nodbg_begin(SrcReg),
1370           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1371      MachineInstr *UseMI = &*UI;
1372      assert(UseMI->isCopy());
1373      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1374      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1375      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1376      if ((NewDstSubIdx == 0 &&
1377           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1378          (NewSrcSubIdx == 0 &&
1379           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1380        CanCoalesce = false;
1381        break;
1382      }
1383      // Keep track of one of the uses.
1384      SomeMI = UseMI;
1385    }
1386    if (!CanCoalesce)
1387      continue;
1388
1389    // Insert a copy to replace the original.
1390    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1391                                   SomeMI->getDebugLoc(),
1392                                   TII->get(TargetOpcode::COPY))
1393      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1394      .addReg(SrcReg, 0, NewSrcSubIdx);
1395
1396    // Remove all the old extract instructions.
1397    for (MachineRegisterInfo::use_nodbg_iterator
1398           UI = MRI->use_nodbg_begin(SrcReg),
1399           UE = MRI->use_nodbg_end(); UI != UE; ) {
1400      MachineInstr *UseMI = &*UI;
1401      ++UI;
1402      if (UseMI == CopyMI)
1403        continue;
1404      assert(UseMI->isCopy());
1405      // Move any kills to the new copy or extract instruction.
1406      if (UseMI->getOperand(1).isKill()) {
1407        CopyMI->getOperand(1).setIsKill();
1408        if (LV)
1409          // Update live variables
1410          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1411      }
1412      UseMI->eraseFromParent();
1413    }
1414  }
1415}
1416
1417static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1418                                    MachineRegisterInfo *MRI) {
1419  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1420         UE = MRI->use_end(); UI != UE; ++UI) {
1421    MachineInstr *UseMI = &*UI;
1422    if (UseMI != RegSeq && UseMI->isRegSequence())
1423      return true;
1424  }
1425  return false;
1426}
1427
1428/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1429/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1430/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1431///
1432/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1433/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1434/// =>
1435/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1436bool TwoAddressInstructionPass::EliminateRegSequences() {
1437  if (RegSequences.empty())
1438    return false;
1439
1440  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1441    MachineInstr *MI = RegSequences[i];
1442    unsigned DstReg = MI->getOperand(0).getReg();
1443    if (MI->getOperand(0).getSubReg() ||
1444        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1445        !(MI->getNumOperands() & 1)) {
1446      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1447      llvm_unreachable(0);
1448    }
1449
1450    bool IsImpDef = true;
1451    SmallVector<unsigned, 4> RealSrcs;
1452    SmallSet<unsigned, 4> Seen;
1453    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1454      unsigned SrcReg = MI->getOperand(i).getReg();
1455      unsigned SubIdx = MI->getOperand(i+1).getImm();
1456      if (MI->getOperand(i).getSubReg() ||
1457          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1458        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1459        llvm_unreachable(0);
1460      }
1461
1462      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1463      if (DefMI->isImplicitDef()) {
1464        DefMI->eraseFromParent();
1465        continue;
1466      }
1467      IsImpDef = false;
1468
1469      // Remember COPY sources. These might be candidate for coalescing.
1470      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1471        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1472
1473      bool isKill = MI->getOperand(i).isKill();
1474      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1475          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1476          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1477                                         MRI->getRegClass(SrcReg), SubIdx)) {
1478        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1479        // Also add an copy if the source is live-in the block. We don't want
1480        // to end up with a partial-redef of a livein, e.g.
1481        // BB0:
1482        // reg1051:10<def> =
1483        // ...
1484        // BB1:
1485        // ... = reg1051:10
1486        // BB2:
1487        // reg1051:9<def> =
1488        // LiveIntervalAnalysis won't like it.
1489        //
1490        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1491        // correctly up to date becomes very difficult. Insert a copy.
1492
1493        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1494        // might insert a COPY that uses SrcReg after is was killed.
1495        if (isKill)
1496          for (unsigned j = i + 2; j < e; j += 2)
1497            if (MI->getOperand(j).getReg() == SrcReg) {
1498              MI->getOperand(j).setIsKill();
1499              isKill = false;
1500              break;
1501            }
1502
1503        MachineBasicBlock::iterator InsertLoc = MI;
1504        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1505                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1506            .addReg(DstReg, RegState::Define, SubIdx)
1507            .addReg(SrcReg, getKillRegState(isKill));
1508        MI->getOperand(i).setReg(0);
1509        if (LV && isKill)
1510          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1511        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1512      }
1513    }
1514
1515    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1516      unsigned SrcReg = MI->getOperand(i).getReg();
1517      if (!SrcReg) continue;
1518      unsigned SubIdx = MI->getOperand(i+1).getImm();
1519      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1520    }
1521
1522    if (IsImpDef) {
1523      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1524      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1525      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1526        MI->RemoveOperand(j);
1527    } else {
1528      DEBUG(dbgs() << "Eliminated: " << *MI);
1529      MI->eraseFromParent();
1530    }
1531
1532    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1533    // INSERT_SUBREG instructions that must have <undef> flags added by
1534    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1535    if (LV)
1536      CoalesceExtSubRegs(RealSrcs, DstReg);
1537  }
1538
1539  RegSequences.clear();
1540  return true;
1541}
1542