1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the TwoAddress instruction pass which is used 11// by most register allocators. Two-Address instructions are rewritten 12// from: 13// 14// A = B op C 15// 16// to: 17// 18// A = B 19// A op= C 20// 21// Note that if a register allocator chooses to use this pass, that it 22// has to be capable of handling the non-SSA nature of these rewritten 23// virtual registers. 24// 25// It is also worth noting that the duplicate operand of the two 26// address instruction is removed. 27// 28//===----------------------------------------------------------------------===// 29 30#define DEBUG_TYPE "twoaddrinstr" 31#include "llvm/CodeGen/Passes.h" 32#include "llvm/Function.h" 33#include "llvm/CodeGen/LiveVariables.h" 34#include "llvm/CodeGen/MachineFunctionPass.h" 35#include "llvm/CodeGen/MachineInstr.h" 36#include "llvm/CodeGen/MachineInstrBuilder.h" 37#include "llvm/CodeGen/MachineRegisterInfo.h" 38#include "llvm/Analysis/AliasAnalysis.h" 39#include "llvm/Target/TargetRegisterInfo.h" 40#include "llvm/Target/TargetInstrInfo.h" 41#include "llvm/Target/TargetMachine.h" 42#include "llvm/Target/TargetOptions.h" 43#include "llvm/Support/Debug.h" 44#include "llvm/Support/ErrorHandling.h" 45#include "llvm/ADT/BitVector.h" 46#include "llvm/ADT/DenseMap.h" 47#include "llvm/ADT/SmallSet.h" 48#include "llvm/ADT/Statistic.h" 49#include "llvm/ADT/STLExtras.h" 50using namespace llvm; 51 52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 53STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 54STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 56STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 57STATISTIC(NumReMats, "Number of instructions re-materialized"); 58STATISTIC(NumDeletes, "Number of dead instructions deleted"); 59 60namespace { 61 class TwoAddressInstructionPass : public MachineFunctionPass { 62 const TargetInstrInfo *TII; 63 const TargetRegisterInfo *TRI; 64 MachineRegisterInfo *MRI; 65 LiveVariables *LV; 66 AliasAnalysis *AA; 67 68 // DistanceMap - Keep track the distance of a MI from the start of the 69 // current basic block. 70 DenseMap<MachineInstr*, unsigned> DistanceMap; 71 72 // SrcRegMap - A map from virtual registers to physical registers which 73 // are likely targets to be coalesced to due to copies from physical 74 // registers to virtual registers. e.g. v1024 = move r0. 75 DenseMap<unsigned, unsigned> SrcRegMap; 76 77 // DstRegMap - A map from virtual registers to physical registers which 78 // are likely targets to be coalesced to due to copies to physical 79 // registers from virtual registers. e.g. r1 = move v1024. 80 DenseMap<unsigned, unsigned> DstRegMap; 81 82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen 83 /// during the initial walk of the machine function. 84 SmallVector<MachineInstr*, 16> RegSequences; 85 86 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, 87 unsigned Reg, 88 MachineBasicBlock::iterator OldPos); 89 90 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, 91 MachineInstr *MI, MachineInstr *DefMI, 92 MachineBasicBlock *MBB, unsigned Loc); 93 94 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist, 95 unsigned &LastDef); 96 97 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB, 98 unsigned Dist); 99 100 bool isProfitableToCommute(unsigned regB, unsigned regC, 101 MachineInstr *MI, MachineBasicBlock *MBB, 102 unsigned Dist); 103 104 bool CommuteInstruction(MachineBasicBlock::iterator &mi, 105 MachineFunction::iterator &mbbi, 106 unsigned RegB, unsigned RegC, unsigned Dist); 107 108 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 109 110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 111 MachineBasicBlock::iterator &nmi, 112 MachineFunction::iterator &mbbi, 113 unsigned RegA, unsigned RegB, unsigned Dist); 114 115 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill; 116 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 117 SmallVector<NewKill, 4> &NewKills, 118 MachineBasicBlock *MBB, unsigned Dist); 119 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 120 MachineBasicBlock::iterator &nmi, 121 MachineFunction::iterator &mbbi, unsigned Dist); 122 123 bool TryInstructionTransform(MachineBasicBlock::iterator &mi, 124 MachineBasicBlock::iterator &nmi, 125 MachineFunction::iterator &mbbi, 126 unsigned SrcIdx, unsigned DstIdx, 127 unsigned Dist, 128 SmallPtrSet<MachineInstr*, 8> &Processed); 129 130 void ScanUses(unsigned DstReg, MachineBasicBlock *MBB, 131 SmallPtrSet<MachineInstr*, 8> &Processed); 132 133 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB, 134 SmallPtrSet<MachineInstr*, 8> &Processed); 135 136 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg); 137 138 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 139 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as 140 /// sub-register references of the register defined by REG_SEQUENCE. 141 bool EliminateRegSequences(); 142 143 public: 144 static char ID; // Pass identification, replacement for typeid 145 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 146 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 147 } 148 149 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 150 AU.setPreservesCFG(); 151 AU.addRequired<AliasAnalysis>(); 152 AU.addPreserved<LiveVariables>(); 153 AU.addPreservedID(MachineLoopInfoID); 154 AU.addPreservedID(MachineDominatorsID); 155 AU.addPreservedID(PHIEliminationID); 156 MachineFunctionPass::getAnalysisUsage(AU); 157 } 158 159 /// runOnMachineFunction - Pass entry point. 160 bool runOnMachineFunction(MachineFunction&); 161 }; 162} 163 164char TwoAddressInstructionPass::ID = 0; 165INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 166 "Two-Address instruction pass", false, false) 167INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 168INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 169 "Two-Address instruction pass", false, false) 170 171char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 172 173/// Sink3AddrInstruction - A two-address instruction has been converted to a 174/// three-address instruction to avoid clobbering a register. Try to sink it 175/// past the instruction that would kill the above mentioned register to reduce 176/// register pressure. 177bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, 178 MachineInstr *MI, unsigned SavedReg, 179 MachineBasicBlock::iterator OldPos) { 180 // FIXME: Shouldn't we be trying to do this before we three-addressify the 181 // instruction? After this transformation is done, we no longer need 182 // the instruction to be in three-address form. 183 184 // Check if it's safe to move this instruction. 185 bool SeenStore = true; // Be conservative. 186 if (!MI->isSafeToMove(TII, AA, SeenStore)) 187 return false; 188 189 unsigned DefReg = 0; 190 SmallSet<unsigned, 4> UseRegs; 191 192 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 193 const MachineOperand &MO = MI->getOperand(i); 194 if (!MO.isReg()) 195 continue; 196 unsigned MOReg = MO.getReg(); 197 if (!MOReg) 198 continue; 199 if (MO.isUse() && MOReg != SavedReg) 200 UseRegs.insert(MO.getReg()); 201 if (!MO.isDef()) 202 continue; 203 if (MO.isImplicit()) 204 // Don't try to move it if it implicitly defines a register. 205 return false; 206 if (DefReg) 207 // For now, don't move any instructions that define multiple registers. 208 return false; 209 DefReg = MO.getReg(); 210 } 211 212 // Find the instruction that kills SavedReg. 213 MachineInstr *KillMI = NULL; 214 for (MachineRegisterInfo::use_nodbg_iterator 215 UI = MRI->use_nodbg_begin(SavedReg), 216 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 217 MachineOperand &UseMO = UI.getOperand(); 218 if (!UseMO.isKill()) 219 continue; 220 KillMI = UseMO.getParent(); 221 break; 222 } 223 224 // If we find the instruction that kills SavedReg, and it is in an 225 // appropriate location, we can try to sink the current instruction 226 // past it. 227 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 228 KillMI->getDesc().isTerminator()) 229 return false; 230 231 // If any of the definitions are used by another instruction between the 232 // position and the kill use, then it's not safe to sink it. 233 // 234 // FIXME: This can be sped up if there is an easy way to query whether an 235 // instruction is before or after another instruction. Then we can use 236 // MachineRegisterInfo def / use instead. 237 MachineOperand *KillMO = NULL; 238 MachineBasicBlock::iterator KillPos = KillMI; 239 ++KillPos; 240 241 unsigned NumVisited = 0; 242 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) { 243 MachineInstr *OtherMI = I; 244 // DBG_VALUE cannot be counted against the limit. 245 if (OtherMI->isDebugValue()) 246 continue; 247 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 248 return false; 249 ++NumVisited; 250 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 251 MachineOperand &MO = OtherMI->getOperand(i); 252 if (!MO.isReg()) 253 continue; 254 unsigned MOReg = MO.getReg(); 255 if (!MOReg) 256 continue; 257 if (DefReg == MOReg) 258 return false; 259 260 if (MO.isKill()) { 261 if (OtherMI == KillMI && MOReg == SavedReg) 262 // Save the operand that kills the register. We want to unset the kill 263 // marker if we can sink MI past it. 264 KillMO = &MO; 265 else if (UseRegs.count(MOReg)) 266 // One of the uses is killed before the destination. 267 return false; 268 } 269 } 270 } 271 272 // Update kill and LV information. 273 KillMO->setIsKill(false); 274 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 275 KillMO->setIsKill(true); 276 277 if (LV) 278 LV->replaceKillInstruction(SavedReg, KillMI, MI); 279 280 // Move instruction to its destination. 281 MBB->remove(MI); 282 MBB->insert(KillPos, MI); 283 284 ++Num3AddrSunk; 285 return true; 286} 287 288/// isTwoAddrUse - Return true if the specified MI is using the specified 289/// register as a two-address operand. 290static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { 291 const MCInstrDesc &MCID = UseMI->getDesc(); 292 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 293 MachineOperand &MO = UseMI->getOperand(i); 294 if (MO.isReg() && MO.getReg() == Reg && 295 (MO.isDef() || UseMI->isRegTiedToDefOperand(i))) 296 // Earlier use is a two-address one. 297 return true; 298 } 299 return false; 300} 301 302/// isProfitableToReMat - Return true if the heuristics determines it is likely 303/// to be profitable to re-materialize the definition of Reg rather than copy 304/// the register. 305bool 306TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, 307 const TargetRegisterClass *RC, 308 MachineInstr *MI, MachineInstr *DefMI, 309 MachineBasicBlock *MBB, unsigned Loc) { 310 bool OtherUse = false; 311 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg), 312 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 313 MachineOperand &UseMO = UI.getOperand(); 314 MachineInstr *UseMI = UseMO.getParent(); 315 MachineBasicBlock *UseMBB = UseMI->getParent(); 316 if (UseMBB == MBB) { 317 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 318 if (DI != DistanceMap.end() && DI->second == Loc) 319 continue; // Current use. 320 OtherUse = true; 321 // There is at least one other use in the MBB that will clobber the 322 // register. 323 if (isTwoAddrUse(UseMI, Reg)) 324 return true; 325 } 326 } 327 328 // If other uses in MBB are not two-address uses, then don't remat. 329 if (OtherUse) 330 return false; 331 332 // No other uses in the same block, remat if it's defined in the same 333 // block so it does not unnecessarily extend the live range. 334 return MBB == DefMI->getParent(); 335} 336 337/// NoUseAfterLastDef - Return true if there are no intervening uses between the 338/// last instruction in the MBB that defines the specified register and the 339/// two-address instruction which is being processed. It also returns the last 340/// def location by reference 341bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg, 342 MachineBasicBlock *MBB, unsigned Dist, 343 unsigned &LastDef) { 344 LastDef = 0; 345 unsigned LastUse = Dist; 346 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 347 E = MRI->reg_end(); I != E; ++I) { 348 MachineOperand &MO = I.getOperand(); 349 MachineInstr *MI = MO.getParent(); 350 if (MI->getParent() != MBB || MI->isDebugValue()) 351 continue; 352 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 353 if (DI == DistanceMap.end()) 354 continue; 355 if (MO.isUse() && DI->second < LastUse) 356 LastUse = DI->second; 357 if (MO.isDef() && DI->second > LastDef) 358 LastDef = DI->second; 359 } 360 361 return !(LastUse > LastDef && LastUse < Dist); 362} 363 364MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg, 365 MachineBasicBlock *MBB, 366 unsigned Dist) { 367 unsigned LastUseDist = 0; 368 MachineInstr *LastUse = 0; 369 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg), 370 E = MRI->reg_end(); I != E; ++I) { 371 MachineOperand &MO = I.getOperand(); 372 MachineInstr *MI = MO.getParent(); 373 if (MI->getParent() != MBB || MI->isDebugValue()) 374 continue; 375 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 376 if (DI == DistanceMap.end()) 377 continue; 378 if (DI->second >= Dist) 379 continue; 380 381 if (MO.isUse() && DI->second > LastUseDist) { 382 LastUse = DI->first; 383 LastUseDist = DI->second; 384 } 385 } 386 return LastUse; 387} 388 389/// isCopyToReg - Return true if the specified MI is a copy instruction or 390/// a extract_subreg instruction. It also returns the source and destination 391/// registers and whether they are physical registers by reference. 392static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 393 unsigned &SrcReg, unsigned &DstReg, 394 bool &IsSrcPhys, bool &IsDstPhys) { 395 SrcReg = 0; 396 DstReg = 0; 397 if (MI.isCopy()) { 398 DstReg = MI.getOperand(0).getReg(); 399 SrcReg = MI.getOperand(1).getReg(); 400 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 401 DstReg = MI.getOperand(0).getReg(); 402 SrcReg = MI.getOperand(2).getReg(); 403 } else 404 return false; 405 406 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 407 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 408 return true; 409} 410 411/// isKilled - Test if the given register value, which is used by the given 412/// instruction, is killed by the given instruction. This looks through 413/// coalescable copies to see if the original value is potentially not killed. 414/// 415/// For example, in this code: 416/// 417/// %reg1034 = copy %reg1024 418/// %reg1035 = copy %reg1025<kill> 419/// %reg1036 = add %reg1034<kill>, %reg1035<kill> 420/// 421/// %reg1034 is not considered to be killed, since it is copied from a 422/// register which is not killed. Treating it as not killed lets the 423/// normal heuristics commute the (two-address) add, which lets 424/// coalescing eliminate the extra copy. 425/// 426static bool isKilled(MachineInstr &MI, unsigned Reg, 427 const MachineRegisterInfo *MRI, 428 const TargetInstrInfo *TII) { 429 MachineInstr *DefMI = &MI; 430 for (;;) { 431 if (!DefMI->killsRegister(Reg)) 432 return false; 433 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 434 return true; 435 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 436 // If there are multiple defs, we can't do a simple analysis, so just 437 // go with what the kill flag says. 438 if (llvm::next(Begin) != MRI->def_end()) 439 return true; 440 DefMI = &*Begin; 441 bool IsSrcPhys, IsDstPhys; 442 unsigned SrcReg, DstReg; 443 // If the def is something other than a copy, then it isn't going to 444 // be coalesced, so follow the kill flag. 445 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 446 return true; 447 Reg = SrcReg; 448 } 449} 450 451/// isTwoAddrUse - Return true if the specified MI uses the specified register 452/// as a two-address use. If so, return the destination register by reference. 453static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 454 const MCInstrDesc &MCID = MI.getDesc(); 455 unsigned NumOps = MI.isInlineAsm() 456 ? MI.getNumOperands() : MCID.getNumOperands(); 457 for (unsigned i = 0; i != NumOps; ++i) { 458 const MachineOperand &MO = MI.getOperand(i); 459 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 460 continue; 461 unsigned ti; 462 if (MI.isRegTiedToDefOperand(i, &ti)) { 463 DstReg = MI.getOperand(ti).getReg(); 464 return true; 465 } 466 } 467 return false; 468} 469 470/// findOnlyInterestingUse - Given a register, if has a single in-basic block 471/// use, return the use instruction if it's a copy or a two-address use. 472static 473MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 474 MachineRegisterInfo *MRI, 475 const TargetInstrInfo *TII, 476 bool &IsCopy, 477 unsigned &DstReg, bool &IsDstPhys) { 478 if (!MRI->hasOneNonDBGUse(Reg)) 479 // None or more than one use. 480 return 0; 481 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg); 482 if (UseMI.getParent() != MBB) 483 return 0; 484 unsigned SrcReg; 485 bool IsSrcPhys; 486 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 487 IsCopy = true; 488 return &UseMI; 489 } 490 IsDstPhys = false; 491 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 492 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 493 return &UseMI; 494 } 495 return 0; 496} 497 498/// getMappedReg - Return the physical register the specified virtual register 499/// might be mapped to. 500static unsigned 501getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 502 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 503 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 504 if (SI == RegMap.end()) 505 return 0; 506 Reg = SI->second; 507 } 508 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 509 return Reg; 510 return 0; 511} 512 513/// regsAreCompatible - Return true if the two registers are equal or aliased. 514/// 515static bool 516regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 517 if (RegA == RegB) 518 return true; 519 if (!RegA || !RegB) 520 return false; 521 return TRI->regsOverlap(RegA, RegB); 522} 523 524 525/// isProfitableToReMat - Return true if it's potentially profitable to commute 526/// the two-address instruction that's being processed. 527bool 528TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC, 529 MachineInstr *MI, MachineBasicBlock *MBB, 530 unsigned Dist) { 531 // Determine if it's profitable to commute this two address instruction. In 532 // general, we want no uses between this instruction and the definition of 533 // the two-address register. 534 // e.g. 535 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 536 // %reg1029<def> = MOV8rr %reg1028 537 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 538 // insert => %reg1030<def> = MOV8rr %reg1028 539 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 540 // In this case, it might not be possible to coalesce the second MOV8rr 541 // instruction if the first one is coalesced. So it would be profitable to 542 // commute it: 543 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 544 // %reg1029<def> = MOV8rr %reg1028 545 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 546 // insert => %reg1030<def> = MOV8rr %reg1029 547 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 548 549 if (!MI->killsRegister(regC)) 550 return false; 551 552 // Ok, we have something like: 553 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 554 // let's see if it's worth commuting it. 555 556 // Look for situations like this: 557 // %reg1024<def> = MOV r1 558 // %reg1025<def> = MOV r0 559 // %reg1026<def> = ADD %reg1024, %reg1025 560 // r0 = MOV %reg1026 561 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 562 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 563 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 564 unsigned ToRegB = getMappedReg(regB, DstRegMap); 565 unsigned ToRegC = getMappedReg(regC, DstRegMap); 566 if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) && 567 ((!FromRegC && !ToRegC) || 568 regsAreCompatible(FromRegB, ToRegC, TRI) || 569 regsAreCompatible(FromRegC, ToRegB, TRI))) 570 return true; 571 572 // If there is a use of regC between its last def (could be livein) and this 573 // instruction, then bail. 574 unsigned LastDefC = 0; 575 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC)) 576 return false; 577 578 // If there is a use of regB between its last def (could be livein) and this 579 // instruction, then go ahead and make this transformation. 580 unsigned LastDefB = 0; 581 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB)) 582 return true; 583 584 // Since there are no intervening uses for both registers, then commute 585 // if the def of regC is closer. Its live interval is shorter. 586 return LastDefB && LastDefC && LastDefC > LastDefB; 587} 588 589/// CommuteInstruction - Commute a two-address instruction and update the basic 590/// block, distance map, and live variables if needed. Return true if it is 591/// successful. 592bool 593TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi, 594 MachineFunction::iterator &mbbi, 595 unsigned RegB, unsigned RegC, unsigned Dist) { 596 MachineInstr *MI = mi; 597 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 598 MachineInstr *NewMI = TII->commuteInstruction(MI); 599 600 if (NewMI == 0) { 601 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 602 return false; 603 } 604 605 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 606 // If the instruction changed to commute it, update livevar. 607 if (NewMI != MI) { 608 if (LV) 609 // Update live variables 610 LV->replaceKillInstruction(RegC, MI, NewMI); 611 612 mbbi->insert(mi, NewMI); // Insert the new inst 613 mbbi->erase(mi); // Nuke the old inst. 614 mi = NewMI; 615 DistanceMap.insert(std::make_pair(NewMI, Dist)); 616 } 617 618 // Update source register map. 619 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 620 if (FromRegC) { 621 unsigned RegA = MI->getOperand(0).getReg(); 622 SrcRegMap[RegA] = FromRegC; 623 } 624 625 return true; 626} 627 628/// isProfitableToConv3Addr - Return true if it is profitable to convert the 629/// given 2-address instruction to a 3-address one. 630bool 631TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 632 // Look for situations like this: 633 // %reg1024<def> = MOV r1 634 // %reg1025<def> = MOV r0 635 // %reg1026<def> = ADD %reg1024, %reg1025 636 // r2 = MOV %reg1026 637 // Turn ADD into a 3-address instruction to avoid a copy. 638 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 639 if (!FromRegB) 640 return false; 641 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 642 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 643} 644 645/// ConvertInstTo3Addr - Convert the specified two-address instruction into a 646/// three address one. Return true if this transformation was successful. 647bool 648TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi, 649 MachineBasicBlock::iterator &nmi, 650 MachineFunction::iterator &mbbi, 651 unsigned RegA, unsigned RegB, 652 unsigned Dist) { 653 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); 654 if (NewMI) { 655 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 656 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 657 bool Sunk = false; 658 659 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 660 // FIXME: Temporary workaround. If the new instruction doesn't 661 // uses RegB, convertToThreeAddress must have created more 662 // then one instruction. 663 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi); 664 665 mbbi->erase(mi); // Nuke the old inst. 666 667 if (!Sunk) { 668 DistanceMap.insert(std::make_pair(NewMI, Dist)); 669 mi = NewMI; 670 nmi = llvm::next(mi); 671 } 672 673 // Update source and destination register maps. 674 SrcRegMap.erase(RegA); 675 DstRegMap.erase(RegB); 676 return true; 677 } 678 679 return false; 680} 681 682/// ScanUses - Scan forward recursively for only uses, update maps if the use 683/// is a copy or a two-address instruction. 684void 685TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB, 686 SmallPtrSet<MachineInstr*, 8> &Processed) { 687 SmallVector<unsigned, 4> VirtRegPairs; 688 bool IsDstPhys; 689 bool IsCopy = false; 690 unsigned NewReg = 0; 691 unsigned Reg = DstReg; 692 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 693 NewReg, IsDstPhys)) { 694 if (IsCopy && !Processed.insert(UseMI)) 695 break; 696 697 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 698 if (DI != DistanceMap.end()) 699 // Earlier in the same MBB.Reached via a back edge. 700 break; 701 702 if (IsDstPhys) { 703 VirtRegPairs.push_back(NewReg); 704 break; 705 } 706 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 707 if (!isNew) 708 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 709 VirtRegPairs.push_back(NewReg); 710 Reg = NewReg; 711 } 712 713 if (!VirtRegPairs.empty()) { 714 unsigned ToReg = VirtRegPairs.back(); 715 VirtRegPairs.pop_back(); 716 while (!VirtRegPairs.empty()) { 717 unsigned FromReg = VirtRegPairs.back(); 718 VirtRegPairs.pop_back(); 719 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 720 if (!isNew) 721 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 722 ToReg = FromReg; 723 } 724 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 725 if (!isNew) 726 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 727 } 728} 729 730/// ProcessCopy - If the specified instruction is not yet processed, process it 731/// if it's a copy. For a copy instruction, we find the physical registers the 732/// source and destination registers might be mapped to. These are kept in 733/// point-to maps used to determine future optimizations. e.g. 734/// v1024 = mov r0 735/// v1025 = mov r1 736/// v1026 = add v1024, v1025 737/// r1 = mov r1026 738/// If 'add' is a two-address instruction, v1024, v1026 are both potentially 739/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 740/// potentially joined with r1 on the output side. It's worthwhile to commute 741/// 'add' to eliminate a copy. 742void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI, 743 MachineBasicBlock *MBB, 744 SmallPtrSet<MachineInstr*, 8> &Processed) { 745 if (Processed.count(MI)) 746 return; 747 748 bool IsSrcPhys, IsDstPhys; 749 unsigned SrcReg, DstReg; 750 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 751 return; 752 753 if (IsDstPhys && !IsSrcPhys) 754 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 755 else if (!IsDstPhys && IsSrcPhys) { 756 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 757 if (!isNew) 758 assert(SrcRegMap[DstReg] == SrcReg && 759 "Can't map to two src physical registers!"); 760 761 ScanUses(DstReg, MBB, Processed); 762 } 763 764 Processed.insert(MI); 765 return; 766} 767 768/// isSafeToDelete - If the specified instruction does not produce any side 769/// effects and all of its defs are dead, then it's safe to delete. 770static bool isSafeToDelete(MachineInstr *MI, 771 const TargetInstrInfo *TII, 772 SmallVector<unsigned, 4> &Kills) { 773 const MCInstrDesc &MCID = MI->getDesc(); 774 if (MCID.mayStore() || MCID.isCall()) 775 return false; 776 if (MCID.isTerminator() || MI->hasUnmodeledSideEffects()) 777 return false; 778 779 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 780 MachineOperand &MO = MI->getOperand(i); 781 if (!MO.isReg()) 782 continue; 783 if (MO.isDef() && !MO.isDead()) 784 return false; 785 if (MO.isUse() && MO.isKill()) 786 Kills.push_back(MO.getReg()); 787 } 788 return true; 789} 790 791/// canUpdateDeletedKills - Check if all the registers listed in Kills are 792/// killed by instructions in MBB preceding the current instruction at 793/// position Dist. If so, return true and record information about the 794/// preceding kills in NewKills. 795bool TwoAddressInstructionPass:: 796canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills, 797 SmallVector<NewKill, 4> &NewKills, 798 MachineBasicBlock *MBB, unsigned Dist) { 799 while (!Kills.empty()) { 800 unsigned Kill = Kills.back(); 801 Kills.pop_back(); 802 if (TargetRegisterInfo::isPhysicalRegister(Kill)) 803 return false; 804 805 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist); 806 if (!LastKill) 807 return false; 808 809 bool isModRef = LastKill->definesRegister(Kill); 810 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef), 811 LastKill)); 812 } 813 return true; 814} 815 816/// DeleteUnusedInstr - If an instruction with a tied register operand can 817/// be safely deleted, just delete it. 818bool 819TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi, 820 MachineBasicBlock::iterator &nmi, 821 MachineFunction::iterator &mbbi, 822 unsigned Dist) { 823 // Check if the instruction has no side effects and if all its defs are dead. 824 SmallVector<unsigned, 4> Kills; 825 if (!isSafeToDelete(mi, TII, Kills)) 826 return false; 827 828 // If this instruction kills some virtual registers, we need to 829 // update the kill information. If it's not possible to do so, 830 // then bail out. 831 SmallVector<NewKill, 4> NewKills; 832 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist)) 833 return false; 834 835 if (LV) { 836 while (!NewKills.empty()) { 837 MachineInstr *NewKill = NewKills.back().second; 838 unsigned Kill = NewKills.back().first.first; 839 bool isDead = NewKills.back().first.second; 840 NewKills.pop_back(); 841 if (LV->removeVirtualRegisterKilled(Kill, mi)) { 842 if (isDead) 843 LV->addVirtualRegisterDead(Kill, NewKill); 844 else 845 LV->addVirtualRegisterKilled(Kill, NewKill); 846 } 847 } 848 } 849 850 mbbi->erase(mi); // Nuke the old inst. 851 mi = nmi; 852 return true; 853} 854 855/// TryInstructionTransform - For the case where an instruction has a single 856/// pair of tied register operands, attempt some transformations that may 857/// either eliminate the tied operands or improve the opportunities for 858/// coalescing away the register copy. Returns true if the tied operands 859/// are eliminated altogether. 860bool TwoAddressInstructionPass:: 861TryInstructionTransform(MachineBasicBlock::iterator &mi, 862 MachineBasicBlock::iterator &nmi, 863 MachineFunction::iterator &mbbi, 864 unsigned SrcIdx, unsigned DstIdx, unsigned Dist, 865 SmallPtrSet<MachineInstr*, 8> &Processed) { 866 const MCInstrDesc &MCID = mi->getDesc(); 867 unsigned regA = mi->getOperand(DstIdx).getReg(); 868 unsigned regB = mi->getOperand(SrcIdx).getReg(); 869 870 assert(TargetRegisterInfo::isVirtualRegister(regB) && 871 "cannot make instruction into two-address form"); 872 873 // If regA is dead and the instruction can be deleted, just delete 874 // it so it doesn't clobber regB. 875 bool regBKilled = isKilled(*mi, regB, MRI, TII); 876 if (!regBKilled && mi->getOperand(DstIdx).isDead() && 877 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) { 878 ++NumDeletes; 879 return true; // Done with this instruction. 880 } 881 882 // Check if it is profitable to commute the operands. 883 unsigned SrcOp1, SrcOp2; 884 unsigned regC = 0; 885 unsigned regCIdx = ~0U; 886 bool TryCommute = false; 887 bool AggressiveCommute = false; 888 if (MCID.isCommutable() && mi->getNumOperands() >= 3 && 889 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) { 890 if (SrcIdx == SrcOp1) 891 regCIdx = SrcOp2; 892 else if (SrcIdx == SrcOp2) 893 regCIdx = SrcOp1; 894 895 if (regCIdx != ~0U) { 896 regC = mi->getOperand(regCIdx).getReg(); 897 if (!regBKilled && isKilled(*mi, regC, MRI, TII)) 898 // If C dies but B does not, swap the B and C operands. 899 // This makes the live ranges of A and C joinable. 900 TryCommute = true; 901 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) { 902 TryCommute = true; 903 AggressiveCommute = true; 904 } 905 } 906 } 907 908 // If it's profitable to commute, try to do so. 909 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) { 910 ++NumCommuted; 911 if (AggressiveCommute) 912 ++NumAggrCommuted; 913 return false; 914 } 915 916 if (TargetRegisterInfo::isVirtualRegister(regA)) 917 ScanUses(regA, &*mbbi, Processed); 918 919 if (MCID.isConvertibleTo3Addr()) { 920 // This instruction is potentially convertible to a true 921 // three-address instruction. Check if it is profitable. 922 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 923 // Try to convert it. 924 if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) { 925 ++NumConvertedTo3Addr; 926 return true; // Done with this instruction. 927 } 928 } 929 } 930 931 // If this is an instruction with a load folded into it, try unfolding 932 // the load, e.g. avoid this: 933 // movq %rdx, %rcx 934 // addq (%rax), %rcx 935 // in favor of this: 936 // movq (%rax), %rcx 937 // addq %rdx, %rcx 938 // because it's preferable to schedule a load than a register copy. 939 if (MCID.mayLoad() && !regBKilled) { 940 // Determine if a load can be unfolded. 941 unsigned LoadRegIndex; 942 unsigned NewOpc = 943 TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(), 944 /*UnfoldLoad=*/true, 945 /*UnfoldStore=*/false, 946 &LoadRegIndex); 947 if (NewOpc != 0) { 948 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 949 if (UnfoldMCID.getNumDefs() == 1) { 950 MachineFunction &MF = *mbbi->getParent(); 951 952 // Unfold the load. 953 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi); 954 const TargetRegisterClass *RC = 955 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI); 956 unsigned Reg = MRI->createVirtualRegister(RC); 957 SmallVector<MachineInstr *, 2> NewMIs; 958 if (!TII->unfoldMemoryOperand(MF, mi, Reg, 959 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 960 NewMIs)) { 961 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 962 return false; 963 } 964 assert(NewMIs.size() == 2 && 965 "Unfolded a load into multiple instructions!"); 966 // The load was previously folded, so this is the only use. 967 NewMIs[1]->addRegisterKilled(Reg, TRI); 968 969 // Tentatively insert the instructions into the block so that they 970 // look "normal" to the transformation logic. 971 mbbi->insert(mi, NewMIs[0]); 972 mbbi->insert(mi, NewMIs[1]); 973 974 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 975 << "2addr: NEW INST: " << *NewMIs[1]); 976 977 // Transform the instruction, now that it no longer has a load. 978 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 979 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 980 MachineBasicBlock::iterator NewMI = NewMIs[1]; 981 bool TransformSuccess = 982 TryInstructionTransform(NewMI, mi, mbbi, 983 NewSrcIdx, NewDstIdx, Dist, Processed); 984 if (TransformSuccess || 985 NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 986 // Success, or at least we made an improvement. Keep the unfolded 987 // instructions and discard the original. 988 if (LV) { 989 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 990 MachineOperand &MO = mi->getOperand(i); 991 if (MO.isReg() && 992 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 993 if (MO.isUse()) { 994 if (MO.isKill()) { 995 if (NewMIs[0]->killsRegister(MO.getReg())) 996 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]); 997 else { 998 assert(NewMIs[1]->killsRegister(MO.getReg()) && 999 "Kill missing after load unfold!"); 1000 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]); 1001 } 1002 } 1003 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) { 1004 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1005 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1006 else { 1007 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1008 "Dead flag missing after load unfold!"); 1009 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1010 } 1011 } 1012 } 1013 } 1014 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1015 } 1016 mi->eraseFromParent(); 1017 mi = NewMIs[1]; 1018 if (TransformSuccess) 1019 return true; 1020 } else { 1021 // Transforming didn't eliminate the tie and didn't lead to an 1022 // improvement. Clean up the unfolded instructions and keep the 1023 // original. 1024 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1025 NewMIs[0]->eraseFromParent(); 1026 NewMIs[1]->eraseFromParent(); 1027 } 1028 } 1029 } 1030 } 1031 1032 return false; 1033} 1034 1035/// runOnMachineFunction - Reduce two-address instructions to two operands. 1036/// 1037bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { 1038 DEBUG(dbgs() << "Machine Function\n"); 1039 const TargetMachine &TM = MF.getTarget(); 1040 MRI = &MF.getRegInfo(); 1041 TII = TM.getInstrInfo(); 1042 TRI = TM.getRegisterInfo(); 1043 LV = getAnalysisIfAvailable<LiveVariables>(); 1044 AA = &getAnalysis<AliasAnalysis>(); 1045 1046 bool MadeChange = false; 1047 1048 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1049 DEBUG(dbgs() << "********** Function: " 1050 << MF.getFunction()->getName() << '\n'); 1051 1052 // This pass takes the function out of SSA form. 1053 MRI->leaveSSA(); 1054 1055 // ReMatRegs - Keep track of the registers whose def's are remat'ed. 1056 BitVector ReMatRegs(MRI->getNumVirtRegs()); 1057 1058 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> > 1059 TiedOperandMap; 1060 TiedOperandMap TiedOperands(4); 1061 1062 SmallPtrSet<MachineInstr*, 8> Processed; 1063 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); 1064 mbbi != mbbe; ++mbbi) { 1065 unsigned Dist = 0; 1066 DistanceMap.clear(); 1067 SrcRegMap.clear(); 1068 DstRegMap.clear(); 1069 Processed.clear(); 1070 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); 1071 mi != me; ) { 1072 MachineBasicBlock::iterator nmi = llvm::next(mi); 1073 if (mi->isDebugValue()) { 1074 mi = nmi; 1075 continue; 1076 } 1077 1078 // Remember REG_SEQUENCE instructions, we'll deal with them later. 1079 if (mi->isRegSequence()) 1080 RegSequences.push_back(&*mi); 1081 1082 const MCInstrDesc &MCID = mi->getDesc(); 1083 bool FirstTied = true; 1084 1085 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1086 1087 ProcessCopy(&*mi, &*mbbi, Processed); 1088 1089 // First scan through all the tied register uses in this instruction 1090 // and record a list of pairs of tied operands for each register. 1091 unsigned NumOps = mi->isInlineAsm() 1092 ? mi->getNumOperands() : MCID.getNumOperands(); 1093 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1094 unsigned DstIdx = 0; 1095 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1096 continue; 1097 1098 if (FirstTied) { 1099 FirstTied = false; 1100 ++NumTwoAddressInstrs; 1101 DEBUG(dbgs() << '\t' << *mi); 1102 } 1103 1104 assert(mi->getOperand(SrcIdx).isReg() && 1105 mi->getOperand(SrcIdx).getReg() && 1106 mi->getOperand(SrcIdx).isUse() && 1107 "two address instruction invalid"); 1108 1109 unsigned regB = mi->getOperand(SrcIdx).getReg(); 1110 TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx)); 1111 } 1112 1113 // Now iterate over the information collected above. 1114 for (TiedOperandMap::iterator OI = TiedOperands.begin(), 1115 OE = TiedOperands.end(); OI != OE; ++OI) { 1116 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second; 1117 1118 // If the instruction has a single pair of tied operands, try some 1119 // transformations that may either eliminate the tied operands or 1120 // improve the opportunities for coalescing away the register copy. 1121 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) { 1122 unsigned SrcIdx = TiedPairs[0].first; 1123 unsigned DstIdx = TiedPairs[0].second; 1124 1125 // If the registers are already equal, nothing needs to be done. 1126 if (mi->getOperand(SrcIdx).getReg() == 1127 mi->getOperand(DstIdx).getReg()) 1128 break; // Done with this instruction. 1129 1130 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist, 1131 Processed)) 1132 break; // The tied operands have been eliminated. 1133 } 1134 1135 bool IsEarlyClobber = false; 1136 bool RemovedKillFlag = false; 1137 bool AllUsesCopied = true; 1138 unsigned LastCopiedReg = 0; 1139 unsigned regB = OI->first; 1140 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1141 unsigned SrcIdx = TiedPairs[tpi].first; 1142 unsigned DstIdx = TiedPairs[tpi].second; 1143 1144 const MachineOperand &DstMO = mi->getOperand(DstIdx); 1145 unsigned regA = DstMO.getReg(); 1146 IsEarlyClobber |= DstMO.isEarlyClobber(); 1147 1148 // Grab regB from the instruction because it may have changed if the 1149 // instruction was commuted. 1150 regB = mi->getOperand(SrcIdx).getReg(); 1151 1152 if (regA == regB) { 1153 // The register is tied to multiple destinations (or else we would 1154 // not have continued this far), but this use of the register 1155 // already matches the tied destination. Leave it. 1156 AllUsesCopied = false; 1157 continue; 1158 } 1159 LastCopiedReg = regA; 1160 1161 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1162 "cannot make instruction into two-address form"); 1163 1164#ifndef NDEBUG 1165 // First, verify that we don't have a use of "a" in the instruction 1166 // (a = b + a for example) because our transformation will not 1167 // work. This should never occur because we are in SSA form. 1168 for (unsigned i = 0; i != mi->getNumOperands(); ++i) 1169 assert(i == DstIdx || 1170 !mi->getOperand(i).isReg() || 1171 mi->getOperand(i).getReg() != regA); 1172#endif 1173 1174 // Emit a copy or rematerialize the definition. 1175 const TargetRegisterClass *rc = MRI->getRegClass(regB); 1176 MachineInstr *DefMI = MRI->getVRegDef(regB); 1177 // If it's safe and profitable, remat the definition instead of 1178 // copying it. 1179 if (DefMI && 1180 DefMI->getDesc().isAsCheapAsAMove() && 1181 DefMI->isSafeToReMat(TII, AA, regB) && 1182 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){ 1183 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n"); 1184 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg(); 1185 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI); 1186 ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB)); 1187 ++NumReMats; 1188 } else { 1189 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY), 1190 regA).addReg(regB); 1191 } 1192 1193 MachineBasicBlock::iterator prevMI = prior(mi); 1194 // Update DistanceMap. 1195 DistanceMap.insert(std::make_pair(prevMI, Dist)); 1196 DistanceMap[mi] = ++Dist; 1197 1198 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI); 1199 1200 MachineOperand &MO = mi->getOperand(SrcIdx); 1201 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() && 1202 "inconsistent operand info for 2-reg pass"); 1203 if (MO.isKill()) { 1204 MO.setIsKill(false); 1205 RemovedKillFlag = true; 1206 } 1207 MO.setReg(regA); 1208 } 1209 1210 if (AllUsesCopied) { 1211 if (!IsEarlyClobber) { 1212 // Replace other (un-tied) uses of regB with LastCopiedReg. 1213 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1214 MachineOperand &MO = mi->getOperand(i); 1215 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1216 if (MO.isKill()) { 1217 MO.setIsKill(false); 1218 RemovedKillFlag = true; 1219 } 1220 MO.setReg(LastCopiedReg); 1221 } 1222 } 1223 } 1224 1225 // Update live variables for regB. 1226 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi)) 1227 LV->addVirtualRegisterKilled(regB, prior(mi)); 1228 1229 } else if (RemovedKillFlag) { 1230 // Some tied uses of regB matched their destination registers, so 1231 // regB is still used in this instruction, but a kill flag was 1232 // removed from a different tied use of regB, so now we need to add 1233 // a kill flag to one of the remaining uses of regB. 1234 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { 1235 MachineOperand &MO = mi->getOperand(i); 1236 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) { 1237 MO.setIsKill(true); 1238 break; 1239 } 1240 } 1241 } 1242 1243 // Schedule the source copy / remat inserted to form two-address 1244 // instruction. FIXME: Does it matter the distance map may not be 1245 // accurate after it's scheduled? 1246 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI); 1247 1248 MadeChange = true; 1249 1250 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1251 } 1252 1253 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1254 if (mi->isInsertSubreg()) { 1255 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1256 // To %reg:subidx = COPY %subreg 1257 unsigned SubIdx = mi->getOperand(3).getImm(); 1258 mi->RemoveOperand(3); 1259 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1260 mi->getOperand(0).setSubReg(SubIdx); 1261 mi->RemoveOperand(1); 1262 mi->setDesc(TII->get(TargetOpcode::COPY)); 1263 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1264 } 1265 1266 // Clear TiedOperands here instead of at the top of the loop 1267 // since most instructions do not have tied operands. 1268 TiedOperands.clear(); 1269 mi = nmi; 1270 } 1271 } 1272 1273 // Some remat'ed instructions are dead. 1274 for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) { 1275 unsigned VReg = TargetRegisterInfo::index2VirtReg(i); 1276 if (MRI->use_nodbg_empty(VReg)) { 1277 MachineInstr *DefMI = MRI->getVRegDef(VReg); 1278 DefMI->eraseFromParent(); 1279 } 1280 } 1281 1282 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve 1283 // SSA form. It's now safe to de-SSA. 1284 MadeChange |= EliminateRegSequences(); 1285 1286 return MadeChange; 1287} 1288 1289static void UpdateRegSequenceSrcs(unsigned SrcReg, 1290 unsigned DstReg, unsigned SubIdx, 1291 MachineRegisterInfo *MRI, 1292 const TargetRegisterInfo &TRI) { 1293 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), 1294 RE = MRI->reg_end(); RI != RE; ) { 1295 MachineOperand &MO = RI.getOperand(); 1296 ++RI; 1297 MO.substVirtReg(DstReg, SubIdx, TRI); 1298 } 1299} 1300 1301/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are 1302/// EXTRACT_SUBREG from the same register and to the same virtual register 1303/// with different sub-register indices, attempt to combine the 1304/// EXTRACT_SUBREGs and pre-coalesce them. e.g. 1305/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0 1306/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6 1307/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5 1308/// Since D subregs 5, 6 can combine to a Q register, we can coalesce 1309/// reg1026 to reg1029. 1310void 1311TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, 1312 unsigned DstReg) { 1313 SmallSet<unsigned, 4> Seen; 1314 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) { 1315 unsigned SrcReg = Srcs[i]; 1316 if (!Seen.insert(SrcReg)) 1317 continue; 1318 1319 // Check that the instructions are all in the same basic block. 1320 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg); 1321 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg); 1322 if (SrcDefMI->getParent() != DstDefMI->getParent()) 1323 continue; 1324 1325 // If there are no other uses than copies which feed into 1326 // the reg_sequence, then we might be able to coalesce them. 1327 bool CanCoalesce = true; 1328 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices; 1329 for (MachineRegisterInfo::use_nodbg_iterator 1330 UI = MRI->use_nodbg_begin(SrcReg), 1331 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1332 MachineInstr *UseMI = &*UI; 1333 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) { 1334 CanCoalesce = false; 1335 break; 1336 } 1337 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg()); 1338 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg()); 1339 } 1340 1341 if (!CanCoalesce || SrcSubIndices.size() < 2) 1342 continue; 1343 1344 // Check that the source subregisters can be combined. 1345 std::sort(SrcSubIndices.begin(), SrcSubIndices.end()); 1346 unsigned NewSrcSubIdx = 0; 1347 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices, 1348 NewSrcSubIdx)) 1349 continue; 1350 1351 // Check that the destination subregisters can also be combined. 1352 std::sort(DstSubIndices.begin(), DstSubIndices.end()); 1353 unsigned NewDstSubIdx = 0; 1354 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices, 1355 NewDstSubIdx)) 1356 continue; 1357 1358 // If neither source nor destination can be combined to the full register, 1359 // just give up. This could be improved if it ever matters. 1360 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0) 1361 continue; 1362 1363 // Now that we know that all the uses are extract_subregs and that those 1364 // subregs can somehow be combined, scan all the extract_subregs again to 1365 // make sure the subregs are in the right order and can be composed. 1366 MachineInstr *SomeMI = 0; 1367 CanCoalesce = true; 1368 for (MachineRegisterInfo::use_nodbg_iterator 1369 UI = MRI->use_nodbg_begin(SrcReg), 1370 UE = MRI->use_nodbg_end(); UI != UE; ++UI) { 1371 MachineInstr *UseMI = &*UI; 1372 assert(UseMI->isCopy()); 1373 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg(); 1374 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg(); 1375 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination"); 1376 if ((NewDstSubIdx == 0 && 1377 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) || 1378 (NewSrcSubIdx == 0 && 1379 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) { 1380 CanCoalesce = false; 1381 break; 1382 } 1383 // Keep track of one of the uses. 1384 SomeMI = UseMI; 1385 } 1386 if (!CanCoalesce) 1387 continue; 1388 1389 // Insert a copy to replace the original. 1390 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI, 1391 SomeMI->getDebugLoc(), 1392 TII->get(TargetOpcode::COPY)) 1393 .addReg(DstReg, RegState::Define, NewDstSubIdx) 1394 .addReg(SrcReg, 0, NewSrcSubIdx); 1395 1396 // Remove all the old extract instructions. 1397 for (MachineRegisterInfo::use_nodbg_iterator 1398 UI = MRI->use_nodbg_begin(SrcReg), 1399 UE = MRI->use_nodbg_end(); UI != UE; ) { 1400 MachineInstr *UseMI = &*UI; 1401 ++UI; 1402 if (UseMI == CopyMI) 1403 continue; 1404 assert(UseMI->isCopy()); 1405 // Move any kills to the new copy or extract instruction. 1406 if (UseMI->getOperand(1).isKill()) { 1407 CopyMI->getOperand(1).setIsKill(); 1408 if (LV) 1409 // Update live variables 1410 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI); 1411 } 1412 UseMI->eraseFromParent(); 1413 } 1414 } 1415} 1416 1417static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq, 1418 MachineRegisterInfo *MRI) { 1419 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), 1420 UE = MRI->use_end(); UI != UE; ++UI) { 1421 MachineInstr *UseMI = &*UI; 1422 if (UseMI != RegSeq && UseMI->isRegSequence()) 1423 return true; 1424 } 1425 return false; 1426} 1427 1428/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part 1429/// of the de-ssa process. This replaces sources of REG_SEQUENCE as 1430/// sub-register references of the register defined by REG_SEQUENCE. e.g. 1431/// 1432/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ... 1433/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6 1434/// => 1435/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... 1436bool TwoAddressInstructionPass::EliminateRegSequences() { 1437 if (RegSequences.empty()) 1438 return false; 1439 1440 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) { 1441 MachineInstr *MI = RegSequences[i]; 1442 unsigned DstReg = MI->getOperand(0).getReg(); 1443 if (MI->getOperand(0).getSubReg() || 1444 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1445 !(MI->getNumOperands() & 1)) { 1446 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1447 llvm_unreachable(0); 1448 } 1449 1450 bool IsImpDef = true; 1451 SmallVector<unsigned, 4> RealSrcs; 1452 SmallSet<unsigned, 4> Seen; 1453 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1454 unsigned SrcReg = MI->getOperand(i).getReg(); 1455 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1456 if (MI->getOperand(i).getSubReg() || 1457 TargetRegisterInfo::isPhysicalRegister(SrcReg)) { 1458 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1459 llvm_unreachable(0); 1460 } 1461 1462 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 1463 if (DefMI->isImplicitDef()) { 1464 DefMI->eraseFromParent(); 1465 continue; 1466 } 1467 IsImpDef = false; 1468 1469 // Remember COPY sources. These might be candidate for coalescing. 1470 if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg()) 1471 RealSrcs.push_back(DefMI->getOperand(1).getReg()); 1472 1473 bool isKill = MI->getOperand(i).isKill(); 1474 if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() || 1475 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) || 1476 !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), 1477 MRI->getRegClass(SrcReg), SubIdx)) { 1478 // REG_SEQUENCE cannot have duplicated operands, add a copy. 1479 // Also add an copy if the source is live-in the block. We don't want 1480 // to end up with a partial-redef of a livein, e.g. 1481 // BB0: 1482 // reg1051:10<def> = 1483 // ... 1484 // BB1: 1485 // ... = reg1051:10 1486 // BB2: 1487 // reg1051:9<def> = 1488 // LiveIntervalAnalysis won't like it. 1489 // 1490 // If the REG_SEQUENCE doesn't kill its source, keeping live variables 1491 // correctly up to date becomes very difficult. Insert a copy. 1492 1493 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1494 // might insert a COPY that uses SrcReg after is was killed. 1495 if (isKill) 1496 for (unsigned j = i + 2; j < e; j += 2) 1497 if (MI->getOperand(j).getReg() == SrcReg) { 1498 MI->getOperand(j).setIsKill(); 1499 isKill = false; 1500 break; 1501 } 1502 1503 MachineBasicBlock::iterator InsertLoc = MI; 1504 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc, 1505 MI->getDebugLoc(), TII->get(TargetOpcode::COPY)) 1506 .addReg(DstReg, RegState::Define, SubIdx) 1507 .addReg(SrcReg, getKillRegState(isKill)); 1508 MI->getOperand(i).setReg(0); 1509 if (LV && isKill) 1510 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1511 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1512 } 1513 } 1514 1515 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1516 unsigned SrcReg = MI->getOperand(i).getReg(); 1517 if (!SrcReg) continue; 1518 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1519 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI); 1520 } 1521 1522 if (IsImpDef) { 1523 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1524 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1525 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1526 MI->RemoveOperand(j); 1527 } else { 1528 DEBUG(dbgs() << "Eliminated: " << *MI); 1529 MI->eraseFromParent(); 1530 } 1531 1532 // Try coalescing some EXTRACT_SUBREG instructions. This can create 1533 // INSERT_SUBREG instructions that must have <undef> flags added by 1534 // LiveIntervalAnalysis, so only run it when LiveVariables is available. 1535 if (LV) 1536 CoalesceExtSubRegs(RealSrcs, DstReg); 1537 } 1538 1539 RegSequences.clear(); 1540 return true; 1541} 1542