1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41using namespace llvm;
42
43STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44
45//===----------------------------------------------------------------------===//
46//                      Pattern Matcher Implementation
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
51  /// SDValue's instead of register numbers for the leaves of the matched
52  /// tree.
53  struct X86ISelAddressMode {
54    enum {
55      RegBase,
56      FrameIndexBase
57    } BaseType;
58
59    // This is really a union, discriminated by BaseType!
60    SDValue Base_Reg;
61    int Base_FrameIndex;
62
63    unsigned Scale;
64    SDValue IndexReg;
65    int32_t Disp;
66    SDValue Segment;
67    const GlobalValue *GV;
68    const Constant *CP;
69    const BlockAddress *BlockAddr;
70    const char *ES;
71    int JT;
72    unsigned Align;    // CP alignment.
73    unsigned char SymbolFlags;  // X86II::MO_*
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
77        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
78        SymbolFlags(X86II::MO_NO_FLAG) {
79    }
80
81    bool hasSymbolicDisplacement() const {
82      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
83    }
84
85    bool hasBaseOrIndexReg() const {
86      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
87    }
88
89    /// isRIPRelative - Return true if this addressing mode is already RIP
90    /// relative.
91    bool isRIPRelative() const {
92      if (BaseType != RegBase) return false;
93      if (RegisterSDNode *RegNode =
94            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
95        return RegNode->getReg() == X86::RIP;
96      return false;
97    }
98
99    void setBaseReg(SDValue Reg) {
100      BaseType = RegBase;
101      Base_Reg = Reg;
102    }
103
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode() != 0)
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode() != 0)
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137  };
138}
139
140namespace {
141  //===--------------------------------------------------------------------===//
142  /// ISel - X86 specific code to select X86 machine instructions for
143  /// SelectionDAG operations.
144  ///
145  class X86DAGToDAGISel : public SelectionDAGISel {
146    /// X86Lowering - This object fully describes how to lower LLVM code to an
147    /// X86-specific SelectionDAG.
148    const X86TargetLowering &X86Lowering;
149
150    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
151    /// make the right decision when generating code for different targets.
152    const X86Subtarget *Subtarget;
153
154    /// OptForSize - If true, selector should try to optimize for code size
155    /// instead of performance.
156    bool OptForSize;
157
158  public:
159    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
160      : SelectionDAGISel(tm, OptLevel),
161        X86Lowering(*tm.getTargetLowering()),
162        Subtarget(&tm.getSubtarget<X86Subtarget>()),
163        OptForSize(false) {}
164
165    virtual const char *getPassName() const {
166      return "X86 DAG->DAG Instruction Selection";
167    }
168
169    virtual void EmitFunctionEntryCode();
170
171    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
172
173    virtual void PreprocessISelDAG();
174
175    inline bool immSext8(SDNode *N) const {
176      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
177    }
178
179    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
180    // sign extended field.
181    inline bool i64immSExt32(SDNode *N) const {
182      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
183      return (int64_t)v == (int32_t)v;
184    }
185
186// Include the pieces autogenerated from the target description.
187#include "X86GenDAGISel.inc"
188
189  private:
190    SDNode *Select(SDNode *N);
191    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
192    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
194
195    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
196    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
197    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
198    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
200                                 unsigned Depth);
201    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
202    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
203                    SDValue &Scale, SDValue &Index, SDValue &Disp,
204                    SDValue &Segment);
205    bool SelectLEAAddr(SDValue N, SDValue &Base,
206                       SDValue &Scale, SDValue &Index, SDValue &Disp,
207                       SDValue &Segment);
208    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
209                           SDValue &Scale, SDValue &Index, SDValue &Disp,
210                           SDValue &Segment);
211    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
212                             SDValue &Base, SDValue &Scale,
213                             SDValue &Index, SDValue &Disp,
214                             SDValue &Segment,
215                             SDValue &NodeWithChain);
216
217    bool TryFoldLoad(SDNode *P, SDValue N,
218                     SDValue &Base, SDValue &Scale,
219                     SDValue &Index, SDValue &Disp,
220                     SDValue &Segment);
221
222    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
223    /// inline asm expressions.
224    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
225                                              char ConstraintCode,
226                                              std::vector<SDValue> &OutOps);
227
228    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
229
230    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
231                                   SDValue &Scale, SDValue &Index,
232                                   SDValue &Disp, SDValue &Segment) {
233      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
234        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
235        AM.Base_Reg;
236      Scale = getI8Imm(AM.Scale);
237      Index = AM.IndexReg;
238      // These are 32-bit even in 64-bit mode since RIP relative offset
239      // is 32-bit.
240      if (AM.GV)
241        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
242                                              MVT::i32, AM.Disp,
243                                              AM.SymbolFlags);
244      else if (AM.CP)
245        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
246                                             AM.Align, AM.Disp, AM.SymbolFlags);
247      else if (AM.ES)
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      else if (AM.JT != -1)
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      else if (AM.BlockAddr)
252        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
253                                       true, AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                                  SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386  Ops.clear();
387  Ops.push_back(SDValue(Load.getNode(), 1));
388  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
389    Ops.push_back(Call.getOperand(i));
390  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
391}
392
393/// isCalleeLoad - Return true if call address is a load and it can be
394/// moved below CALLSEQ_START and the chains leading up to the call.
395/// Return the CALLSEQ_START by reference as a second output.
396/// In the case of a tail call, there isn't a callseq node between the call
397/// chain and the load.
398static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
399  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
400    return false;
401  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
402  if (!LD ||
403      LD->isVolatile() ||
404      LD->getAddressingMode() != ISD::UNINDEXED ||
405      LD->getExtensionType() != ISD::NON_EXTLOAD)
406    return false;
407
408  // Now let's find the callseq_start.
409  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
410    if (!Chain.hasOneUse())
411      return false;
412    Chain = Chain.getOperand(0);
413  }
414
415  if (!Chain.getNumOperands())
416    return false;
417  if (Chain.getOperand(0).getNode() == Callee.getNode())
418    return true;
419  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
420      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
421      Callee.getValue(1).hasOneUse())
422    return true;
423  return false;
424}
425
426void X86DAGToDAGISel::PreprocessISelDAG() {
427  // OptForSize is used in pattern predicates that isel is matching.
428  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
429
430  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
431       E = CurDAG->allnodes_end(); I != E; ) {
432    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
433
434    if (OptLevel != CodeGenOpt::None &&
435        (N->getOpcode() == X86ISD::CALL ||
436         N->getOpcode() == X86ISD::TC_RETURN)) {
437      /// Also try moving call address load from outside callseq_start to just
438      /// before the call to allow it to be folded.
439      ///
440      ///     [Load chain]
441      ///         ^
442      ///         |
443      ///       [Load]
444      ///       ^    ^
445      ///       |    |
446      ///      /      \--
447      ///     /          |
448      ///[CALLSEQ_START] |
449      ///     ^          |
450      ///     |          |
451      /// [LOAD/C2Reg]   |
452      ///     |          |
453      ///      \        /
454      ///       \      /
455      ///       [CALL]
456      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
457      SDValue Chain = N->getOperand(0);
458      SDValue Load  = N->getOperand(1);
459      if (!isCalleeLoad(Load, Chain, HasCallSeq))
460        continue;
461      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
462      ++NumLoadMoved;
463      continue;
464    }
465
466    // Lower fpround and fpextend nodes that target the FP stack to be store and
467    // load to the stack.  This is a gross hack.  We would like to simply mark
468    // these as being illegal, but when we do that, legalize produces these when
469    // it expands calls, then expands these in the same legalize pass.  We would
470    // like dag combine to be able to hack on these between the call expansion
471    // and the node legalization.  As such this pass basically does "really
472    // late" legalization of these inline with the X86 isel pass.
473    // FIXME: This should only happen when not compiled with -O0.
474    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
475      continue;
476
477    EVT SrcVT = N->getOperand(0).getValueType();
478    EVT DstVT = N->getValueType(0);
479
480    // If any of the sources are vectors, no fp stack involved.
481    if (SrcVT.isVector() || DstVT.isVector())
482      continue;
483
484    // If the source and destination are SSE registers, then this is a legal
485    // conversion that should not be lowered.
486    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
487    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
488    if (SrcIsSSE && DstIsSSE)
489      continue;
490
491    if (!SrcIsSSE && !DstIsSSE) {
492      // If this is an FPStack extension, it is a noop.
493      if (N->getOpcode() == ISD::FP_EXTEND)
494        continue;
495      // If this is a value-preserving FPStack truncation, it is a noop.
496      if (N->getConstantOperandVal(1))
497        continue;
498    }
499
500    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
501    // FPStack has extload and truncstore.  SSE can fold direct loads into other
502    // operations.  Based on this, decide what we want to do.
503    EVT MemVT;
504    if (N->getOpcode() == ISD::FP_ROUND)
505      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
506    else
507      MemVT = SrcIsSSE ? SrcVT : DstVT;
508
509    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
510    DebugLoc dl = N->getDebugLoc();
511
512    // FIXME: optimize the case where the src/dest is a load or store?
513    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
514                                          N->getOperand(0),
515                                          MemTmp, MachinePointerInfo(), MemVT,
516                                          false, false, 0);
517    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
518                                        MachinePointerInfo(),
519                                        MemVT, false, false, 0);
520
521    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
522    // extload we created.  This will cause general havok on the dag because
523    // anything below the conversion could be folded into other existing nodes.
524    // To avoid invalidating 'I', back it up to the convert node.
525    --I;
526    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
527
528    // Now that we did that, the node is dead.  Increment the iterator to the
529    // next node to process, then delete N.
530    ++I;
531    CurDAG->DeleteNode(N);
532  }
533}
534
535
536/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
537/// the main function.
538void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
539                                             MachineFrameInfo *MFI) {
540  const TargetInstrInfo *TII = TM.getInstrInfo();
541  if (Subtarget->isTargetCygMing()) {
542    unsigned CallOp =
543      Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
544    BuildMI(BB, DebugLoc(),
545            TII->get(CallOp)).addExternalSymbol("__main");
546  }
547}
548
549void X86DAGToDAGISel::EmitFunctionEntryCode() {
550  // If this is main, emit special code for main.
551  if (const Function *Fn = MF->getFunction())
552    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
553      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
554}
555
556static bool isDispSafeForFrameIndex(int64_t Val) {
557  // On 64-bit platforms, we can run into an issue where a frame index
558  // includes a displacement that, when added to the explicit displacement,
559  // will overflow the displacement field. Assuming that the frame index
560  // displacement fits into a 31-bit integer  (which is only slightly more
561  // aggressive than the current fundamental assumption that it fits into
562  // a 32-bit integer), a 31-bit disp should always be safe.
563  return isInt<31>(Val);
564}
565
566bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
567                                            X86ISelAddressMode &AM) {
568  int64_t Val = AM.Disp + Offset;
569  CodeModel::Model M = TM.getCodeModel();
570  if (Subtarget->is64Bit()) {
571    if (!X86::isOffsetSuitableForCodeModel(Val, M,
572                                           AM.hasSymbolicDisplacement()))
573      return true;
574    // In addition to the checks required for a register base, check that
575    // we do not try to use an unsafe Disp with a frame index.
576    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
577        !isDispSafeForFrameIndex(Val))
578      return true;
579  }
580  AM.Disp = Val;
581  return false;
582
583}
584
585bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
586  SDValue Address = N->getOperand(1);
587
588  // load gs:0 -> GS segment register.
589  // load fs:0 -> FS segment register.
590  //
591  // This optimization is valid because the GNU TLS model defines that
592  // gs:0 (or fs:0 on X86-64) contains its own address.
593  // For more information see http://people.redhat.com/drepper/tls.pdf
594  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
595    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
596        Subtarget->isTargetELF())
597      switch (N->getPointerInfo().getAddrSpace()) {
598      case 256:
599        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
600        return false;
601      case 257:
602        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
603        return false;
604      }
605
606  return true;
607}
608
609/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
610/// into an addressing mode.  These wrap things that will resolve down into a
611/// symbol reference.  If no match is possible, this returns true, otherwise it
612/// returns false.
613bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
614  // If the addressing mode already has a symbol as the displacement, we can
615  // never match another symbol.
616  if (AM.hasSymbolicDisplacement())
617    return true;
618
619  SDValue N0 = N.getOperand(0);
620  CodeModel::Model M = TM.getCodeModel();
621
622  // Handle X86-64 rip-relative addresses.  We check this before checking direct
623  // folding because RIP is preferable to non-RIP accesses.
624  if (Subtarget->is64Bit() &&
625      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
626      // they cannot be folded into immediate fields.
627      // FIXME: This can be improved for kernel and other models?
628      (M == CodeModel::Small || M == CodeModel::Kernel) &&
629      // Base and index reg must be 0 in order to use %rip as base and lowering
630      // must allow RIP.
631      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
632    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
633      X86ISelAddressMode Backup = AM;
634      AM.GV = G->getGlobal();
635      AM.SymbolFlags = G->getTargetFlags();
636      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
637        AM = Backup;
638        return true;
639      }
640    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
641      X86ISelAddressMode Backup = AM;
642      AM.CP = CP->getConstVal();
643      AM.Align = CP->getAlignment();
644      AM.SymbolFlags = CP->getTargetFlags();
645      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
646        AM = Backup;
647        return true;
648      }
649    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
650      AM.ES = S->getSymbol();
651      AM.SymbolFlags = S->getTargetFlags();
652    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
653      AM.JT = J->getIndex();
654      AM.SymbolFlags = J->getTargetFlags();
655    } else {
656      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
657      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
658    }
659
660    if (N.getOpcode() == X86ISD::WrapperRIP)
661      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
662    return false;
663  }
664
665  // Handle the case when globals fit in our immediate field: This is true for
666  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
667  // mode, this results in a non-RIP-relative computation.
668  if (!Subtarget->is64Bit() ||
669      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
670       TM.getRelocationModel() == Reloc::Static)) {
671    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
672      AM.GV = G->getGlobal();
673      AM.Disp += G->getOffset();
674      AM.SymbolFlags = G->getTargetFlags();
675    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
676      AM.CP = CP->getConstVal();
677      AM.Align = CP->getAlignment();
678      AM.Disp += CP->getOffset();
679      AM.SymbolFlags = CP->getTargetFlags();
680    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
681      AM.ES = S->getSymbol();
682      AM.SymbolFlags = S->getTargetFlags();
683    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
684      AM.JT = J->getIndex();
685      AM.SymbolFlags = J->getTargetFlags();
686    } else {
687      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
688      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
689    }
690    return false;
691  }
692
693  return true;
694}
695
696/// MatchAddress - Add the specified node to the specified addressing mode,
697/// returning true if it cannot be done.  This just pattern matches for the
698/// addressing mode.
699bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
700  if (MatchAddressRecursively(N, AM, 0))
701    return true;
702
703  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
704  // a smaller encoding and avoids a scaled-index.
705  if (AM.Scale == 2 &&
706      AM.BaseType == X86ISelAddressMode::RegBase &&
707      AM.Base_Reg.getNode() == 0) {
708    AM.Base_Reg = AM.IndexReg;
709    AM.Scale = 1;
710  }
711
712  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
713  // because it has a smaller encoding.
714  // TODO: Which other code models can use this?
715  if (TM.getCodeModel() == CodeModel::Small &&
716      Subtarget->is64Bit() &&
717      AM.Scale == 1 &&
718      AM.BaseType == X86ISelAddressMode::RegBase &&
719      AM.Base_Reg.getNode() == 0 &&
720      AM.IndexReg.getNode() == 0 &&
721      AM.SymbolFlags == X86II::MO_NO_FLAG &&
722      AM.hasSymbolicDisplacement())
723    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
724
725  return false;
726}
727
728bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
729                                              unsigned Depth) {
730  DebugLoc dl = N.getDebugLoc();
731  DEBUG({
732      dbgs() << "MatchAddress: ";
733      AM.dump();
734    });
735  // Limit recursion.
736  if (Depth > 5)
737    return MatchAddressBase(N, AM);
738
739  // If this is already a %rip relative address, we can only merge immediates
740  // into it.  Instead of handling this in every case, we handle it here.
741  // RIP relative addressing: %rip + 32-bit displacement!
742  if (AM.isRIPRelative()) {
743    // FIXME: JumpTable and ExternalSymbol address currently don't like
744    // displacements.  It isn't very important, but this should be fixed for
745    // consistency.
746    if (!AM.ES && AM.JT != -1) return true;
747
748    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
749      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
750        return false;
751    return true;
752  }
753
754  switch (N.getOpcode()) {
755  default: break;
756  case ISD::Constant: {
757    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
758    if (!FoldOffsetIntoAddress(Val, AM))
759      return false;
760    break;
761  }
762
763  case X86ISD::Wrapper:
764  case X86ISD::WrapperRIP:
765    if (!MatchWrapper(N, AM))
766      return false;
767    break;
768
769  case ISD::LOAD:
770    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
771      return false;
772    break;
773
774  case ISD::FrameIndex:
775    if (AM.BaseType == X86ISelAddressMode::RegBase &&
776        AM.Base_Reg.getNode() == 0 &&
777        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
778      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
779      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
780      return false;
781    }
782    break;
783
784  case ISD::SHL:
785    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
786      break;
787
788    if (ConstantSDNode
789          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
790      unsigned Val = CN->getZExtValue();
791      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
792      // that the base operand remains free for further matching. If
793      // the base doesn't end up getting used, a post-processing step
794      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
795      if (Val == 1 || Val == 2 || Val == 3) {
796        AM.Scale = 1 << Val;
797        SDValue ShVal = N.getNode()->getOperand(0);
798
799        // Okay, we know that we have a scale by now.  However, if the scaled
800        // value is an add of something and a constant, we can fold the
801        // constant into the disp field here.
802        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
803          AM.IndexReg = ShVal.getNode()->getOperand(0);
804          ConstantSDNode *AddVal =
805            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
806          uint64_t Disp = AddVal->getSExtValue() << Val;
807          if (!FoldOffsetIntoAddress(Disp, AM))
808            return false;
809        }
810
811        AM.IndexReg = ShVal;
812        return false;
813      }
814    break;
815    }
816
817  case ISD::SMUL_LOHI:
818  case ISD::UMUL_LOHI:
819    // A mul_lohi where we need the low part can be folded as a plain multiply.
820    if (N.getResNo() != 0) break;
821    // FALL THROUGH
822  case ISD::MUL:
823  case X86ISD::MUL_IMM:
824    // X*[3,5,9] -> X+X*[2,4,8]
825    if (AM.BaseType == X86ISelAddressMode::RegBase &&
826        AM.Base_Reg.getNode() == 0 &&
827        AM.IndexReg.getNode() == 0) {
828      if (ConstantSDNode
829            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
830        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
831            CN->getZExtValue() == 9) {
832          AM.Scale = unsigned(CN->getZExtValue())-1;
833
834          SDValue MulVal = N.getNode()->getOperand(0);
835          SDValue Reg;
836
837          // Okay, we know that we have a scale by now.  However, if the scaled
838          // value is an add of something and a constant, we can fold the
839          // constant into the disp field here.
840          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
841              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
842            Reg = MulVal.getNode()->getOperand(0);
843            ConstantSDNode *AddVal =
844              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
845            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
846            if (FoldOffsetIntoAddress(Disp, AM))
847              Reg = N.getNode()->getOperand(0);
848          } else {
849            Reg = N.getNode()->getOperand(0);
850          }
851
852          AM.IndexReg = AM.Base_Reg = Reg;
853          return false;
854        }
855    }
856    break;
857
858  case ISD::SUB: {
859    // Given A-B, if A can be completely folded into the address and
860    // the index field with the index field unused, use -B as the index.
861    // This is a win if a has multiple parts that can be folded into
862    // the address. Also, this saves a mov if the base register has
863    // other uses, since it avoids a two-address sub instruction, however
864    // it costs an additional mov if the index register has other uses.
865
866    // Add an artificial use to this node so that we can keep track of
867    // it if it gets CSE'd with a different node.
868    HandleSDNode Handle(N);
869
870    // Test if the LHS of the sub can be folded.
871    X86ISelAddressMode Backup = AM;
872    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
873      AM = Backup;
874      break;
875    }
876    // Test if the index field is free for use.
877    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
878      AM = Backup;
879      break;
880    }
881
882    int Cost = 0;
883    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
884    // If the RHS involves a register with multiple uses, this
885    // transformation incurs an extra mov, due to the neg instruction
886    // clobbering its operand.
887    if (!RHS.getNode()->hasOneUse() ||
888        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
889        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
890        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
891        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
892         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
893      ++Cost;
894    // If the base is a register with multiple uses, this
895    // transformation may save a mov.
896    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
897         AM.Base_Reg.getNode() &&
898         !AM.Base_Reg.getNode()->hasOneUse()) ||
899        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
900      --Cost;
901    // If the folded LHS was interesting, this transformation saves
902    // address arithmetic.
903    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
904        ((AM.Disp != 0) && (Backup.Disp == 0)) +
905        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
906      --Cost;
907    // If it doesn't look like it may be an overall win, don't do it.
908    if (Cost >= 0) {
909      AM = Backup;
910      break;
911    }
912
913    // Ok, the transformation is legal and appears profitable. Go for it.
914    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
915    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
916    AM.IndexReg = Neg;
917    AM.Scale = 1;
918
919    // Insert the new nodes into the topological ordering.
920    if (Zero.getNode()->getNodeId() == -1 ||
921        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
922      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
923      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
924    }
925    if (Neg.getNode()->getNodeId() == -1 ||
926        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
927      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
928      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
929    }
930    return false;
931  }
932
933  case ISD::ADD: {
934    // Add an artificial use to this node so that we can keep track of
935    // it if it gets CSE'd with a different node.
936    HandleSDNode Handle(N);
937
938    X86ISelAddressMode Backup = AM;
939    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
940        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
941      return false;
942    AM = Backup;
943
944    // Try again after commuting the operands.
945    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
946        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
947      return false;
948    AM = Backup;
949
950    // If we couldn't fold both operands into the address at the same time,
951    // see if we can just put each operand into a register and fold at least
952    // the add.
953    if (AM.BaseType == X86ISelAddressMode::RegBase &&
954        !AM.Base_Reg.getNode() &&
955        !AM.IndexReg.getNode()) {
956      N = Handle.getValue();
957      AM.Base_Reg = N.getOperand(0);
958      AM.IndexReg = N.getOperand(1);
959      AM.Scale = 1;
960      return false;
961    }
962    N = Handle.getValue();
963    break;
964  }
965
966  case ISD::OR:
967    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
968    if (CurDAG->isBaseWithConstantOffset(N)) {
969      X86ISelAddressMode Backup = AM;
970      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
971
972      // Start with the LHS as an addr mode.
973      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
974          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
975        return false;
976      AM = Backup;
977    }
978    break;
979
980  case ISD::AND: {
981    // Perform some heroic transforms on an and of a constant-count shift
982    // with a constant to enable use of the scaled offset field.
983
984    SDValue Shift = N.getOperand(0);
985    if (Shift.getNumOperands() != 2) break;
986
987    // Scale must not be used already.
988    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
989
990    SDValue X = Shift.getOperand(0);
991    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
992    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
993    if (!C1 || !C2) break;
994
995    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
996    // allows us to convert the shift and and into an h-register extract and
997    // a scaled index.
998    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
999      unsigned ScaleLog = 8 - C1->getZExtValue();
1000      if (ScaleLog > 0 && ScaleLog < 4 &&
1001          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1002        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1003        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1004        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1005                                      X, Eight);
1006        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1007                                      Srl, Mask);
1008        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1009        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1010                                      And, ShlCount);
1011
1012        // Insert the new nodes into the topological ordering.
1013        if (Eight.getNode()->getNodeId() == -1 ||
1014            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1015          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1016          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1017        }
1018        if (Mask.getNode()->getNodeId() == -1 ||
1019            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1020          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1021          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1022        }
1023        if (Srl.getNode()->getNodeId() == -1 ||
1024            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1025          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1026          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1027        }
1028        if (And.getNode()->getNodeId() == -1 ||
1029            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1030          CurDAG->RepositionNode(N.getNode(), And.getNode());
1031          And.getNode()->setNodeId(N.getNode()->getNodeId());
1032        }
1033        if (ShlCount.getNode()->getNodeId() == -1 ||
1034            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1035          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1036          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1037        }
1038        if (Shl.getNode()->getNodeId() == -1 ||
1039            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1040          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1041          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1042        }
1043        CurDAG->ReplaceAllUsesWith(N, Shl);
1044        AM.IndexReg = And;
1045        AM.Scale = (1 << ScaleLog);
1046        return false;
1047      }
1048    }
1049
1050    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1051    // allows us to fold the shift into this addressing mode.
1052    if (Shift.getOpcode() != ISD::SHL) break;
1053
1054    // Not likely to be profitable if either the AND or SHIFT node has more
1055    // than one use (unless all uses are for address computation). Besides,
1056    // isel mechanism requires their node ids to be reused.
1057    if (!N.hasOneUse() || !Shift.hasOneUse())
1058      break;
1059
1060    // Verify that the shift amount is something we can fold.
1061    unsigned ShiftCst = C1->getZExtValue();
1062    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1063      break;
1064
1065    // Get the new AND mask, this folds to a constant.
1066    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1067                                         SDValue(C2, 0), SDValue(C1, 0));
1068    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1069                                     NewANDMask);
1070    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1071                                       NewAND, SDValue(C1, 0));
1072
1073    // Insert the new nodes into the topological ordering.
1074    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1075      CurDAG->RepositionNode(X.getNode(), C1);
1076      C1->setNodeId(X.getNode()->getNodeId());
1077    }
1078    if (NewANDMask.getNode()->getNodeId() == -1 ||
1079        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1080      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1081      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1082    }
1083    if (NewAND.getNode()->getNodeId() == -1 ||
1084        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1085      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1086      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1087    }
1088    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1089        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1090      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1091      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1092    }
1093
1094    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1095
1096    AM.Scale = 1 << ShiftCst;
1097    AM.IndexReg = NewAND;
1098    return false;
1099  }
1100  }
1101
1102  return MatchAddressBase(N, AM);
1103}
1104
1105/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1106/// specified addressing mode without any further recursion.
1107bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1108  // Is the base register already occupied?
1109  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1110    // If so, check to see if the scale index register is set.
1111    if (AM.IndexReg.getNode() == 0) {
1112      AM.IndexReg = N;
1113      AM.Scale = 1;
1114      return false;
1115    }
1116
1117    // Otherwise, we cannot select it.
1118    return true;
1119  }
1120
1121  // Default, generate it as a register.
1122  AM.BaseType = X86ISelAddressMode::RegBase;
1123  AM.Base_Reg = N;
1124  return false;
1125}
1126
1127/// SelectAddr - returns true if it is able pattern match an addressing mode.
1128/// It returns the operands which make up the maximal addressing mode it can
1129/// match by reference.
1130///
1131/// Parent is the parent node of the addr operand that is being matched.  It
1132/// is always a load, store, atomic node, or null.  It is only null when
1133/// checking memory operands for inline asm nodes.
1134bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1135                                 SDValue &Scale, SDValue &Index,
1136                                 SDValue &Disp, SDValue &Segment) {
1137  X86ISelAddressMode AM;
1138
1139  if (Parent &&
1140      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1141      // that are not a MemSDNode, and thus don't have proper addrspace info.
1142      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1143      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1144      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1145    unsigned AddrSpace =
1146      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1147    // AddrSpace 256 -> GS, 257 -> FS.
1148    if (AddrSpace == 256)
1149      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1150    if (AddrSpace == 257)
1151      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1152  }
1153
1154  if (MatchAddress(N, AM))
1155    return false;
1156
1157  EVT VT = N.getValueType();
1158  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1159    if (!AM.Base_Reg.getNode())
1160      AM.Base_Reg = CurDAG->getRegister(0, VT);
1161  }
1162
1163  if (!AM.IndexReg.getNode())
1164    AM.IndexReg = CurDAG->getRegister(0, VT);
1165
1166  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1167  return true;
1168}
1169
1170/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1171/// match a load whose top elements are either undef or zeros.  The load flavor
1172/// is derived from the type of N, which is either v4f32 or v2f64.
1173///
1174/// We also return:
1175///   PatternChainNode: this is the matched node that has a chain input and
1176///   output.
1177bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1178                                          SDValue N, SDValue &Base,
1179                                          SDValue &Scale, SDValue &Index,
1180                                          SDValue &Disp, SDValue &Segment,
1181                                          SDValue &PatternNodeWithChain) {
1182  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1183    PatternNodeWithChain = N.getOperand(0);
1184    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1185        PatternNodeWithChain.hasOneUse() &&
1186        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1187        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1188      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1189      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1190        return false;
1191      return true;
1192    }
1193  }
1194
1195  // Also handle the case where we explicitly require zeros in the top
1196  // elements.  This is a vector shuffle from the zero vector.
1197  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1198      // Check to see if the top elements are all zeros (or bitcast of zeros).
1199      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1200      N.getOperand(0).getNode()->hasOneUse() &&
1201      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1202      N.getOperand(0).getOperand(0).hasOneUse() &&
1203      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1204      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1205    // Okay, this is a zero extending load.  Fold it.
1206    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1207    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1208      return false;
1209    PatternNodeWithChain = SDValue(LD, 0);
1210    return true;
1211  }
1212  return false;
1213}
1214
1215
1216/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1217/// mode it matches can be cost effectively emitted as an LEA instruction.
1218bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1219                                    SDValue &Base, SDValue &Scale,
1220                                    SDValue &Index, SDValue &Disp,
1221                                    SDValue &Segment) {
1222  X86ISelAddressMode AM;
1223
1224  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1225  // segments.
1226  SDValue Copy = AM.Segment;
1227  SDValue T = CurDAG->getRegister(0, MVT::i32);
1228  AM.Segment = T;
1229  if (MatchAddress(N, AM))
1230    return false;
1231  assert (T == AM.Segment);
1232  AM.Segment = Copy;
1233
1234  EVT VT = N.getValueType();
1235  unsigned Complexity = 0;
1236  if (AM.BaseType == X86ISelAddressMode::RegBase)
1237    if (AM.Base_Reg.getNode())
1238      Complexity = 1;
1239    else
1240      AM.Base_Reg = CurDAG->getRegister(0, VT);
1241  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1242    Complexity = 4;
1243
1244  if (AM.IndexReg.getNode())
1245    Complexity++;
1246  else
1247    AM.IndexReg = CurDAG->getRegister(0, VT);
1248
1249  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1250  // a simple shift.
1251  if (AM.Scale > 1)
1252    Complexity++;
1253
1254  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1255  // to a LEA. This is determined with some expermentation but is by no means
1256  // optimal (especially for code size consideration). LEA is nice because of
1257  // its three-address nature. Tweak the cost function again when we can run
1258  // convertToThreeAddress() at register allocation time.
1259  if (AM.hasSymbolicDisplacement()) {
1260    // For X86-64, we should always use lea to materialize RIP relative
1261    // addresses.
1262    if (Subtarget->is64Bit())
1263      Complexity = 4;
1264    else
1265      Complexity += 2;
1266  }
1267
1268  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1269    Complexity++;
1270
1271  // If it isn't worth using an LEA, reject it.
1272  if (Complexity <= 2)
1273    return false;
1274
1275  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1276  return true;
1277}
1278
1279/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1280bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1281                                        SDValue &Scale, SDValue &Index,
1282                                        SDValue &Disp, SDValue &Segment) {
1283  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1284  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1285
1286  X86ISelAddressMode AM;
1287  AM.GV = GA->getGlobal();
1288  AM.Disp += GA->getOffset();
1289  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1290  AM.SymbolFlags = GA->getTargetFlags();
1291
1292  if (N.getValueType() == MVT::i32) {
1293    AM.Scale = 1;
1294    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1295  } else {
1296    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1297  }
1298
1299  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1300  return true;
1301}
1302
1303
1304bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1305                                  SDValue &Base, SDValue &Scale,
1306                                  SDValue &Index, SDValue &Disp,
1307                                  SDValue &Segment) {
1308  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1309      !IsProfitableToFold(N, P, P) ||
1310      !IsLegalToFold(N, P, P, OptLevel))
1311    return false;
1312
1313  return SelectAddr(N.getNode(),
1314                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1315}
1316
1317/// getGlobalBaseReg - Return an SDNode that returns the value of
1318/// the global base register. Output instructions required to
1319/// initialize the global base register, if necessary.
1320///
1321SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1322  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1323  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1324}
1325
1326SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1327  SDValue Chain = Node->getOperand(0);
1328  SDValue In1 = Node->getOperand(1);
1329  SDValue In2L = Node->getOperand(2);
1330  SDValue In2H = Node->getOperand(3);
1331  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1332  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1333    return NULL;
1334  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1335  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1336  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1337  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1338                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1339                                           array_lengthof(Ops));
1340  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1341  return ResNode;
1342}
1343
1344// FIXME: Figure out some way to unify this with the 'or' and other code
1345// below.
1346SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1347  if (Node->hasAnyUseOfValue(0))
1348    return 0;
1349
1350  // Optimize common patterns for __sync_add_and_fetch and
1351  // __sync_sub_and_fetch where the result is not used. This allows us
1352  // to use "lock" version of add, sub, inc, dec instructions.
1353  // FIXME: Do not use special instructions but instead add the "lock"
1354  // prefix to the target node somehow. The extra information will then be
1355  // transferred to machine instruction and it denotes the prefix.
1356  SDValue Chain = Node->getOperand(0);
1357  SDValue Ptr = Node->getOperand(1);
1358  SDValue Val = Node->getOperand(2);
1359  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1360  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1361    return 0;
1362
1363  bool isInc = false, isDec = false, isSub = false, isCN = false;
1364  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1365  if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
1366    isCN = true;
1367    int64_t CNVal = CN->getSExtValue();
1368    if (CNVal == 1)
1369      isInc = true;
1370    else if (CNVal == -1)
1371      isDec = true;
1372    else if (CNVal >= 0)
1373      Val = CurDAG->getTargetConstant(CNVal, NVT);
1374    else {
1375      isSub = true;
1376      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1377    }
1378  } else if (Val.hasOneUse() &&
1379             Val.getOpcode() == ISD::SUB &&
1380             X86::isZeroNode(Val.getOperand(0))) {
1381    isSub = true;
1382    Val = Val.getOperand(1);
1383  }
1384
1385  DebugLoc dl = Node->getDebugLoc();
1386  unsigned Opc = 0;
1387  switch (NVT.getSimpleVT().SimpleTy) {
1388  default: return 0;
1389  case MVT::i8:
1390    if (isInc)
1391      Opc = X86::LOCK_INC8m;
1392    else if (isDec)
1393      Opc = X86::LOCK_DEC8m;
1394    else if (isSub) {
1395      if (isCN)
1396        Opc = X86::LOCK_SUB8mi;
1397      else
1398        Opc = X86::LOCK_SUB8mr;
1399    } else {
1400      if (isCN)
1401        Opc = X86::LOCK_ADD8mi;
1402      else
1403        Opc = X86::LOCK_ADD8mr;
1404    }
1405    break;
1406  case MVT::i16:
1407    if (isInc)
1408      Opc = X86::LOCK_INC16m;
1409    else if (isDec)
1410      Opc = X86::LOCK_DEC16m;
1411    else if (isSub) {
1412      if (isCN) {
1413        if (immSext8(Val.getNode()))
1414          Opc = X86::LOCK_SUB16mi8;
1415        else
1416          Opc = X86::LOCK_SUB16mi;
1417      } else
1418        Opc = X86::LOCK_SUB16mr;
1419    } else {
1420      if (isCN) {
1421        if (immSext8(Val.getNode()))
1422          Opc = X86::LOCK_ADD16mi8;
1423        else
1424          Opc = X86::LOCK_ADD16mi;
1425      } else
1426        Opc = X86::LOCK_ADD16mr;
1427    }
1428    break;
1429  case MVT::i32:
1430    if (isInc)
1431      Opc = X86::LOCK_INC32m;
1432    else if (isDec)
1433      Opc = X86::LOCK_DEC32m;
1434    else if (isSub) {
1435      if (isCN) {
1436        if (immSext8(Val.getNode()))
1437          Opc = X86::LOCK_SUB32mi8;
1438        else
1439          Opc = X86::LOCK_SUB32mi;
1440      } else
1441        Opc = X86::LOCK_SUB32mr;
1442    } else {
1443      if (isCN) {
1444        if (immSext8(Val.getNode()))
1445          Opc = X86::LOCK_ADD32mi8;
1446        else
1447          Opc = X86::LOCK_ADD32mi;
1448      } else
1449        Opc = X86::LOCK_ADD32mr;
1450    }
1451    break;
1452  case MVT::i64:
1453    if (isInc)
1454      Opc = X86::LOCK_INC64m;
1455    else if (isDec)
1456      Opc = X86::LOCK_DEC64m;
1457    else if (isSub) {
1458      Opc = X86::LOCK_SUB64mr;
1459      if (isCN) {
1460        if (immSext8(Val.getNode()))
1461          Opc = X86::LOCK_SUB64mi8;
1462        else if (i64immSExt32(Val.getNode()))
1463          Opc = X86::LOCK_SUB64mi32;
1464      }
1465    } else {
1466      Opc = X86::LOCK_ADD64mr;
1467      if (isCN) {
1468        if (immSext8(Val.getNode()))
1469          Opc = X86::LOCK_ADD64mi8;
1470        else if (i64immSExt32(Val.getNode()))
1471          Opc = X86::LOCK_ADD64mi32;
1472      }
1473    }
1474    break;
1475  }
1476
1477  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1478                                                 dl, NVT), 0);
1479  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1480  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1481  if (isInc || isDec) {
1482    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1483    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1484    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1485    SDValue RetVals[] = { Undef, Ret };
1486    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1487  } else {
1488    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1489    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1490    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1491    SDValue RetVals[] = { Undef, Ret };
1492    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1493  }
1494}
1495
1496enum AtomicOpc {
1497  OR,
1498  AND,
1499  XOR,
1500  AtomicOpcEnd
1501};
1502
1503enum AtomicSz {
1504  ConstantI8,
1505  I8,
1506  SextConstantI16,
1507  ConstantI16,
1508  I16,
1509  SextConstantI32,
1510  ConstantI32,
1511  I32,
1512  SextConstantI64,
1513  ConstantI64,
1514  I64,
1515  AtomicSzEnd
1516};
1517
1518static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1519  {
1520    X86::LOCK_OR8mi,
1521    X86::LOCK_OR8mr,
1522    X86::LOCK_OR16mi8,
1523    X86::LOCK_OR16mi,
1524    X86::LOCK_OR16mr,
1525    X86::LOCK_OR32mi8,
1526    X86::LOCK_OR32mi,
1527    X86::LOCK_OR32mr,
1528    X86::LOCK_OR64mi8,
1529    X86::LOCK_OR64mi32,
1530    X86::LOCK_OR64mr
1531  },
1532  {
1533    X86::LOCK_AND8mi,
1534    X86::LOCK_AND8mr,
1535    X86::LOCK_AND16mi8,
1536    X86::LOCK_AND16mi,
1537    X86::LOCK_AND16mr,
1538    X86::LOCK_AND32mi8,
1539    X86::LOCK_AND32mi,
1540    X86::LOCK_AND32mr,
1541    X86::LOCK_AND64mi8,
1542    X86::LOCK_AND64mi32,
1543    X86::LOCK_AND64mr
1544  },
1545  {
1546    X86::LOCK_XOR8mi,
1547    X86::LOCK_XOR8mr,
1548    X86::LOCK_XOR16mi8,
1549    X86::LOCK_XOR16mi,
1550    X86::LOCK_XOR16mr,
1551    X86::LOCK_XOR32mi8,
1552    X86::LOCK_XOR32mi,
1553    X86::LOCK_XOR32mr,
1554    X86::LOCK_XOR64mi8,
1555    X86::LOCK_XOR64mi32,
1556    X86::LOCK_XOR64mr
1557  }
1558};
1559
1560SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1561  if (Node->hasAnyUseOfValue(0))
1562    return 0;
1563
1564  // Optimize common patterns for __sync_or_and_fetch and similar arith
1565  // operations where the result is not used. This allows us to use the "lock"
1566  // version of the arithmetic instruction.
1567  // FIXME: Same as for 'add' and 'sub', try to merge those down here.
1568  SDValue Chain = Node->getOperand(0);
1569  SDValue Ptr = Node->getOperand(1);
1570  SDValue Val = Node->getOperand(2);
1571  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1572  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1573    return 0;
1574
1575  // Which index into the table.
1576  enum AtomicOpc Op;
1577  switch (Node->getOpcode()) {
1578    case ISD::ATOMIC_LOAD_OR:
1579      Op = OR;
1580      break;
1581    case ISD::ATOMIC_LOAD_AND:
1582      Op = AND;
1583      break;
1584    case ISD::ATOMIC_LOAD_XOR:
1585      Op = XOR;
1586      break;
1587    default:
1588      return 0;
1589  }
1590
1591  bool isCN = false;
1592  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1593  if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
1594    isCN = true;
1595    Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1596  }
1597
1598  unsigned Opc = 0;
1599  switch (NVT.getSimpleVT().SimpleTy) {
1600    default: return 0;
1601    case MVT::i8:
1602      if (isCN)
1603        Opc = AtomicOpcTbl[Op][ConstantI8];
1604      else
1605        Opc = AtomicOpcTbl[Op][I8];
1606      break;
1607    case MVT::i16:
1608      if (isCN) {
1609        if (immSext8(Val.getNode()))
1610          Opc = AtomicOpcTbl[Op][SextConstantI16];
1611        else
1612          Opc = AtomicOpcTbl[Op][ConstantI16];
1613      } else
1614        Opc = AtomicOpcTbl[Op][I16];
1615      break;
1616    case MVT::i32:
1617      if (isCN) {
1618        if (immSext8(Val.getNode()))
1619          Opc = AtomicOpcTbl[Op][SextConstantI32];
1620        else
1621          Opc = AtomicOpcTbl[Op][ConstantI32];
1622      } else
1623        Opc = AtomicOpcTbl[Op][I32];
1624      break;
1625    case MVT::i64:
1626      Opc = AtomicOpcTbl[Op][I64];
1627      if (isCN) {
1628        if (immSext8(Val.getNode()))
1629          Opc = AtomicOpcTbl[Op][SextConstantI64];
1630        else if (i64immSExt32(Val.getNode()))
1631          Opc = AtomicOpcTbl[Op][ConstantI64];
1632      }
1633      break;
1634  }
1635
1636  assert(Opc != 0 && "Invalid arith lock transform!");
1637
1638  DebugLoc dl = Node->getDebugLoc();
1639  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1640                                                 dl, NVT), 0);
1641  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1642  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1643  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1644  SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1645  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1646  SDValue RetVals[] = { Undef, Ret };
1647  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1648}
1649
1650/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1651/// any uses which require the SF or OF bits to be accurate.
1652static bool HasNoSignedComparisonUses(SDNode *N) {
1653  // Examine each user of the node.
1654  for (SDNode::use_iterator UI = N->use_begin(),
1655         UE = N->use_end(); UI != UE; ++UI) {
1656    // Only examine CopyToReg uses.
1657    if (UI->getOpcode() != ISD::CopyToReg)
1658      return false;
1659    // Only examine CopyToReg uses that copy to EFLAGS.
1660    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1661          X86::EFLAGS)
1662      return false;
1663    // Examine each user of the CopyToReg use.
1664    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1665           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1666      // Only examine the Flag result.
1667      if (FlagUI.getUse().getResNo() != 1) continue;
1668      // Anything unusual: assume conservatively.
1669      if (!FlagUI->isMachineOpcode()) return false;
1670      // Examine the opcode of the user.
1671      switch (FlagUI->getMachineOpcode()) {
1672      // These comparisons don't treat the most significant bit specially.
1673      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1674      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1675      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1676      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1677      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1678      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1679      case X86::CMOVA16rr: case X86::CMOVA16rm:
1680      case X86::CMOVA32rr: case X86::CMOVA32rm:
1681      case X86::CMOVA64rr: case X86::CMOVA64rm:
1682      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1683      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1684      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1685      case X86::CMOVB16rr: case X86::CMOVB16rm:
1686      case X86::CMOVB32rr: case X86::CMOVB32rm:
1687      case X86::CMOVB64rr: case X86::CMOVB64rm:
1688      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1689      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1690      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1691      case X86::CMOVE16rr: case X86::CMOVE16rm:
1692      case X86::CMOVE32rr: case X86::CMOVE32rm:
1693      case X86::CMOVE64rr: case X86::CMOVE64rm:
1694      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1695      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1696      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1697      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1698      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1699      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1700      case X86::CMOVP16rr: case X86::CMOVP16rm:
1701      case X86::CMOVP32rr: case X86::CMOVP32rm:
1702      case X86::CMOVP64rr: case X86::CMOVP64rm:
1703        continue;
1704      // Anything else: assume conservatively.
1705      default: return false;
1706      }
1707    }
1708  }
1709  return true;
1710}
1711
1712SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1713  EVT NVT = Node->getValueType(0);
1714  unsigned Opc, MOpc;
1715  unsigned Opcode = Node->getOpcode();
1716  DebugLoc dl = Node->getDebugLoc();
1717
1718  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1719
1720  if (Node->isMachineOpcode()) {
1721    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1722    return NULL;   // Already selected.
1723  }
1724
1725  switch (Opcode) {
1726  default: break;
1727  case X86ISD::GlobalBaseReg:
1728    return getGlobalBaseReg();
1729
1730  case X86ISD::ATOMOR64_DAG:
1731    return SelectAtomic64(Node, X86::ATOMOR6432);
1732  case X86ISD::ATOMXOR64_DAG:
1733    return SelectAtomic64(Node, X86::ATOMXOR6432);
1734  case X86ISD::ATOMADD64_DAG:
1735    return SelectAtomic64(Node, X86::ATOMADD6432);
1736  case X86ISD::ATOMSUB64_DAG:
1737    return SelectAtomic64(Node, X86::ATOMSUB6432);
1738  case X86ISD::ATOMNAND64_DAG:
1739    return SelectAtomic64(Node, X86::ATOMNAND6432);
1740  case X86ISD::ATOMAND64_DAG:
1741    return SelectAtomic64(Node, X86::ATOMAND6432);
1742  case X86ISD::ATOMSWAP64_DAG:
1743    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1744
1745  case ISD::ATOMIC_LOAD_ADD: {
1746    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1747    if (RetVal)
1748      return RetVal;
1749    break;
1750  }
1751  case ISD::ATOMIC_LOAD_XOR:
1752  case ISD::ATOMIC_LOAD_AND:
1753  case ISD::ATOMIC_LOAD_OR: {
1754    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
1755    if (RetVal)
1756      return RetVal;
1757    break;
1758  }
1759  case ISD::AND:
1760  case ISD::OR:
1761  case ISD::XOR: {
1762    // For operations of the form (x << C1) op C2, check if we can use a smaller
1763    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1764    SDValue N0 = Node->getOperand(0);
1765    SDValue N1 = Node->getOperand(1);
1766
1767    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1768      break;
1769
1770    // i8 is unshrinkable, i16 should be promoted to i32.
1771    if (NVT != MVT::i32 && NVT != MVT::i64)
1772      break;
1773
1774    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1775    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1776    if (!Cst || !ShlCst)
1777      break;
1778
1779    int64_t Val = Cst->getSExtValue();
1780    uint64_t ShlVal = ShlCst->getZExtValue();
1781
1782    // Make sure that we don't change the operation by removing bits.
1783    // This only matters for OR and XOR, AND is unaffected.
1784    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1785      break;
1786
1787    unsigned ShlOp, Op = 0;
1788    EVT CstVT = NVT;
1789
1790    // Check the minimum bitwidth for the new constant.
1791    // TODO: AND32ri is the same as AND64ri32 with zext imm.
1792    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1793    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1794    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1795      CstVT = MVT::i8;
1796    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1797      CstVT = MVT::i32;
1798
1799    // Bail if there is no smaller encoding.
1800    if (NVT == CstVT)
1801      break;
1802
1803    switch (NVT.getSimpleVT().SimpleTy) {
1804    default: llvm_unreachable("Unsupported VT!");
1805    case MVT::i32:
1806      assert(CstVT == MVT::i8);
1807      ShlOp = X86::SHL32ri;
1808
1809      switch (Opcode) {
1810      case ISD::AND: Op = X86::AND32ri8; break;
1811      case ISD::OR:  Op =  X86::OR32ri8; break;
1812      case ISD::XOR: Op = X86::XOR32ri8; break;
1813      }
1814      break;
1815    case MVT::i64:
1816      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1817      ShlOp = X86::SHL64ri;
1818
1819      switch (Opcode) {
1820      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1821      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
1822      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
1823      }
1824      break;
1825    }
1826
1827    // Emit the smaller op and the shift.
1828    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
1829    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
1830    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
1831                                getI8Imm(ShlVal));
1832    break;
1833  }
1834  case X86ISD::UMUL: {
1835    SDValue N0 = Node->getOperand(0);
1836    SDValue N1 = Node->getOperand(1);
1837
1838    unsigned LoReg;
1839    switch (NVT.getSimpleVT().SimpleTy) {
1840    default: llvm_unreachable("Unsupported VT!");
1841    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
1842    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
1843    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1844    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1845    }
1846
1847    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1848                                          N0, SDValue()).getValue(1);
1849
1850    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1851    SDValue Ops[] = {N1, InFlag};
1852    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1853
1854    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1855    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1856    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1857    return NULL;
1858  }
1859
1860  case ISD::SMUL_LOHI:
1861  case ISD::UMUL_LOHI: {
1862    SDValue N0 = Node->getOperand(0);
1863    SDValue N1 = Node->getOperand(1);
1864
1865    bool isSigned = Opcode == ISD::SMUL_LOHI;
1866    if (!isSigned) {
1867      switch (NVT.getSimpleVT().SimpleTy) {
1868      default: llvm_unreachable("Unsupported VT!");
1869      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1870      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1871      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1872      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1873      }
1874    } else {
1875      switch (NVT.getSimpleVT().SimpleTy) {
1876      default: llvm_unreachable("Unsupported VT!");
1877      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1878      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1879      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1880      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1881      }
1882    }
1883
1884    unsigned LoReg, HiReg;
1885    switch (NVT.getSimpleVT().SimpleTy) {
1886    default: llvm_unreachable("Unsupported VT!");
1887    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1888    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1889    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1890    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1891    }
1892
1893    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1894    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1895    // Multiply is commmutative.
1896    if (!foldedLoad) {
1897      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1898      if (foldedLoad)
1899        std::swap(N0, N1);
1900    }
1901
1902    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1903                                            N0, SDValue()).getValue(1);
1904
1905    if (foldedLoad) {
1906      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1907                        InFlag };
1908      SDNode *CNode =
1909        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1910                               array_lengthof(Ops));
1911      InFlag = SDValue(CNode, 1);
1912
1913      // Update the chain.
1914      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1915    } else {
1916      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1917      InFlag = SDValue(CNode, 0);
1918    }
1919
1920    // Prevent use of AH in a REX instruction by referencing AX instead.
1921    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1922        !SDValue(Node, 1).use_empty()) {
1923      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1924                                              X86::AX, MVT::i16, InFlag);
1925      InFlag = Result.getValue(2);
1926      // Get the low part if needed. Don't use getCopyFromReg for aliasing
1927      // registers.
1928      if (!SDValue(Node, 0).use_empty())
1929        ReplaceUses(SDValue(Node, 1),
1930          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1931
1932      // Shift AX down 8 bits.
1933      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1934                                              Result,
1935                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1936      // Then truncate it down to i8.
1937      ReplaceUses(SDValue(Node, 1),
1938        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1939    }
1940    // Copy the low half of the result, if it is needed.
1941    if (!SDValue(Node, 0).use_empty()) {
1942      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1943                                                LoReg, NVT, InFlag);
1944      InFlag = Result.getValue(2);
1945      ReplaceUses(SDValue(Node, 0), Result);
1946      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1947    }
1948    // Copy the high half of the result, if it is needed.
1949    if (!SDValue(Node, 1).use_empty()) {
1950      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1951                                              HiReg, NVT, InFlag);
1952      InFlag = Result.getValue(2);
1953      ReplaceUses(SDValue(Node, 1), Result);
1954      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1955    }
1956
1957    return NULL;
1958  }
1959
1960  case ISD::SDIVREM:
1961  case ISD::UDIVREM: {
1962    SDValue N0 = Node->getOperand(0);
1963    SDValue N1 = Node->getOperand(1);
1964
1965    bool isSigned = Opcode == ISD::SDIVREM;
1966    if (!isSigned) {
1967      switch (NVT.getSimpleVT().SimpleTy) {
1968      default: llvm_unreachable("Unsupported VT!");
1969      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1970      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1971      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1972      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1973      }
1974    } else {
1975      switch (NVT.getSimpleVT().SimpleTy) {
1976      default: llvm_unreachable("Unsupported VT!");
1977      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1978      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1979      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1980      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1981      }
1982    }
1983
1984    unsigned LoReg, HiReg, ClrReg;
1985    unsigned ClrOpcode, SExtOpcode;
1986    switch (NVT.getSimpleVT().SimpleTy) {
1987    default: llvm_unreachable("Unsupported VT!");
1988    case MVT::i8:
1989      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1990      ClrOpcode  = 0;
1991      SExtOpcode = X86::CBW;
1992      break;
1993    case MVT::i16:
1994      LoReg = X86::AX;  HiReg = X86::DX;
1995      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1996      SExtOpcode = X86::CWD;
1997      break;
1998    case MVT::i32:
1999      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2000      ClrOpcode  = X86::MOV32r0;
2001      SExtOpcode = X86::CDQ;
2002      break;
2003    case MVT::i64:
2004      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2005      ClrOpcode  = X86::MOV64r0;
2006      SExtOpcode = X86::CQO;
2007      break;
2008    }
2009
2010    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2011    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2012    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2013
2014    SDValue InFlag;
2015    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2016      // Special case for div8, just use a move with zero extension to AX to
2017      // clear the upper 8 bits (AH).
2018      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2019      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2020        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2021        Move =
2022          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2023                                         MVT::Other, Ops,
2024                                         array_lengthof(Ops)), 0);
2025        Chain = Move.getValue(1);
2026        ReplaceUses(N0.getValue(1), Chain);
2027      } else {
2028        Move =
2029          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2030        Chain = CurDAG->getEntryNode();
2031      }
2032      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2033      InFlag = Chain.getValue(1);
2034    } else {
2035      InFlag =
2036        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2037                             LoReg, N0, SDValue()).getValue(1);
2038      if (isSigned && !signBitIsZero) {
2039        // Sign extend the low part into the high part.
2040        InFlag =
2041          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2042      } else {
2043        // Zero out the high part, effectively zero extending the input.
2044        SDValue ClrNode =
2045          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2046        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2047                                      ClrNode, InFlag).getValue(1);
2048      }
2049    }
2050
2051    if (foldedLoad) {
2052      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2053                        InFlag };
2054      SDNode *CNode =
2055        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2056                               array_lengthof(Ops));
2057      InFlag = SDValue(CNode, 1);
2058      // Update the chain.
2059      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2060    } else {
2061      InFlag =
2062        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2063    }
2064
2065    // Prevent use of AH in a REX instruction by referencing AX instead.
2066    // Shift it down 8 bits.
2067    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2068        !SDValue(Node, 1).use_empty()) {
2069      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2070                                              X86::AX, MVT::i16, InFlag);
2071      InFlag = Result.getValue(2);
2072
2073      // If we also need AL (the quotient), get it by extracting a subreg from
2074      // Result. The fast register allocator does not like multiple CopyFromReg
2075      // nodes using aliasing registers.
2076      if (!SDValue(Node, 0).use_empty())
2077        ReplaceUses(SDValue(Node, 0),
2078          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2079
2080      // Shift AX right by 8 bits instead of using AH.
2081      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2082                                         Result,
2083                                         CurDAG->getTargetConstant(8, MVT::i8)),
2084                       0);
2085      ReplaceUses(SDValue(Node, 1),
2086        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2087    }
2088    // Copy the division (low) result, if it is needed.
2089    if (!SDValue(Node, 0).use_empty()) {
2090      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2091                                                LoReg, NVT, InFlag);
2092      InFlag = Result.getValue(2);
2093      ReplaceUses(SDValue(Node, 0), Result);
2094      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2095    }
2096    // Copy the remainder (high) result, if it is needed.
2097    if (!SDValue(Node, 1).use_empty()) {
2098      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2099                                              HiReg, NVT, InFlag);
2100      InFlag = Result.getValue(2);
2101      ReplaceUses(SDValue(Node, 1), Result);
2102      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2103    }
2104    return NULL;
2105  }
2106
2107  case X86ISD::CMP: {
2108    SDValue N0 = Node->getOperand(0);
2109    SDValue N1 = Node->getOperand(1);
2110
2111    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2112    // use a smaller encoding.
2113    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2114        HasNoSignedComparisonUses(Node))
2115      // Look past the truncate if CMP is the only use of it.
2116      N0 = N0.getOperand(0);
2117    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2118        N0.getValueType() != MVT::i8 &&
2119        X86::isZeroNode(N1)) {
2120      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2121      if (!C) break;
2122
2123      // For example, convert "testl %eax, $8" to "testb %al, $8"
2124      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2125          (!(C->getZExtValue() & 0x80) ||
2126           HasNoSignedComparisonUses(Node))) {
2127        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2128        SDValue Reg = N0.getNode()->getOperand(0);
2129
2130        // On x86-32, only the ABCD registers have 8-bit subregisters.
2131        if (!Subtarget->is64Bit()) {
2132          TargetRegisterClass *TRC = 0;
2133          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2134          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2135          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2136          default: llvm_unreachable("Unsupported TEST operand type!");
2137          }
2138          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2139          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2140                                               Reg.getValueType(), Reg, RC), 0);
2141        }
2142
2143        // Extract the l-register.
2144        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2145                                                        MVT::i8, Reg);
2146
2147        // Emit a testb.
2148        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2149      }
2150
2151      // For example, "testl %eax, $2048" to "testb %ah, $8".
2152      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2153          (!(C->getZExtValue() & 0x8000) ||
2154           HasNoSignedComparisonUses(Node))) {
2155        // Shift the immediate right by 8 bits.
2156        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2157                                                       MVT::i8);
2158        SDValue Reg = N0.getNode()->getOperand(0);
2159
2160        // Put the value in an ABCD register.
2161        TargetRegisterClass *TRC = 0;
2162        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2163        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2164        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2165        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2166        default: llvm_unreachable("Unsupported TEST operand type!");
2167        }
2168        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2169        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2170                                             Reg.getValueType(), Reg, RC), 0);
2171
2172        // Extract the h-register.
2173        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2174                                                        MVT::i8, Reg);
2175
2176        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2177        // target GR8_NOREX registers, so make sure the register class is
2178        // forced.
2179        return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
2180                                      Subreg, ShiftedImm);
2181      }
2182
2183      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2184      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2185          N0.getValueType() != MVT::i16 &&
2186          (!(C->getZExtValue() & 0x8000) ||
2187           HasNoSignedComparisonUses(Node))) {
2188        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2189        SDValue Reg = N0.getNode()->getOperand(0);
2190
2191        // Extract the 16-bit subregister.
2192        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2193                                                        MVT::i16, Reg);
2194
2195        // Emit a testw.
2196        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2197      }
2198
2199      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2200      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2201          N0.getValueType() == MVT::i64 &&
2202          (!(C->getZExtValue() & 0x80000000) ||
2203           HasNoSignedComparisonUses(Node))) {
2204        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2205        SDValue Reg = N0.getNode()->getOperand(0);
2206
2207        // Extract the 32-bit subregister.
2208        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2209                                                        MVT::i32, Reg);
2210
2211        // Emit a testl.
2212        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2213      }
2214    }
2215    break;
2216  }
2217  }
2218
2219  SDNode *ResNode = SelectCode(Node);
2220
2221  DEBUG(dbgs() << "=> ";
2222        if (ResNode == NULL || ResNode == Node)
2223          Node->dump(CurDAG);
2224        else
2225          ResNode->dump(CurDAG);
2226        dbgs() << '\n');
2227
2228  return ResNode;
2229}
2230
2231bool X86DAGToDAGISel::
2232SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2233                             std::vector<SDValue> &OutOps) {
2234  SDValue Op0, Op1, Op2, Op3, Op4;
2235  switch (ConstraintCode) {
2236  case 'o':   // offsetable        ??
2237  case 'v':   // not offsetable    ??
2238  default: return true;
2239  case 'm':   // memory
2240    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2241      return true;
2242    break;
2243  }
2244
2245  OutOps.push_back(Op0);
2246  OutOps.push_back(Op1);
2247  OutOps.push_back(Op2);
2248  OutOps.push_back(Op3);
2249  OutOps.push_back(Op4);
2250  return false;
2251}
2252
2253/// createX86ISelDag - This pass converts a legalized DAG into a
2254/// X86-specific DAG, ready for instruction scheduling.
2255///
2256FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2257                                     llvm::CodeGenOpt::Level OptLevel) {
2258  return new X86DAGToDAGISel(TM, OptLevel);
2259}
2260