1//===-- Sink.cpp - Code Sinking -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sink"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28STATISTIC(NumSunk, "Number of instructions sunk");
29
30namespace {
31  class Sinking : public FunctionPass {
32    DominatorTree *DT;
33    LoopInfo *LI;
34    AliasAnalysis *AA;
35
36  public:
37    static char ID; // Pass identification
38    Sinking() : FunctionPass(ID) {
39      initializeSinkingPass(*PassRegistry::getPassRegistry());
40    }
41
42    virtual bool runOnFunction(Function &F);
43
44    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45      AU.setPreservesCFG();
46      FunctionPass::getAnalysisUsage(AU);
47      AU.addRequired<AliasAnalysis>();
48      AU.addRequired<DominatorTree>();
49      AU.addRequired<LoopInfo>();
50      AU.addPreserved<DominatorTree>();
51      AU.addPreserved<LoopInfo>();
52    }
53  private:
54    bool ProcessBlock(BasicBlock &BB);
55    bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
56    bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
57  };
58} // end anonymous namespace
59
60char Sinking::ID = 0;
61INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
62INITIALIZE_PASS_DEPENDENCY(LoopInfo)
63INITIALIZE_PASS_DEPENDENCY(DominatorTree)
64INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
65INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
66
67FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
68
69/// AllUsesDominatedByBlock - Return true if all uses of the specified value
70/// occur in blocks dominated by the specified block.
71bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
72                                      BasicBlock *BB) const {
73  // Ignoring debug uses is necessary so debug info doesn't affect the code.
74  // This may leave a referencing dbg_value in the original block, before
75  // the definition of the vreg.  Dwarf generator handles this although the
76  // user might not get the right info at runtime.
77  for (Value::use_iterator I = Inst->use_begin(),
78       E = Inst->use_end(); I != E; ++I) {
79    // Determine the block of the use.
80    Instruction *UseInst = cast<Instruction>(*I);
81    BasicBlock *UseBlock = UseInst->getParent();
82    if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
83      // PHI nodes use the operand in the predecessor block, not the block with
84      // the PHI.
85      unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
86      UseBlock = PN->getIncomingBlock(Num);
87    }
88    // Check that it dominates.
89    if (!DT->dominates(BB, UseBlock))
90      return false;
91  }
92  return true;
93}
94
95bool Sinking::runOnFunction(Function &F) {
96  DT = &getAnalysis<DominatorTree>();
97  LI = &getAnalysis<LoopInfo>();
98  AA = &getAnalysis<AliasAnalysis>();
99
100  bool EverMadeChange = false;
101
102  while (1) {
103    bool MadeChange = false;
104
105    // Process all basic blocks.
106    for (Function::iterator I = F.begin(), E = F.end();
107         I != E; ++I)
108      MadeChange |= ProcessBlock(*I);
109
110    // If this iteration over the code changed anything, keep iterating.
111    if (!MadeChange) break;
112    EverMadeChange = true;
113  }
114  return EverMadeChange;
115}
116
117bool Sinking::ProcessBlock(BasicBlock &BB) {
118  // Can't sink anything out of a block that has less than two successors.
119  if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
120
121  // Don't bother sinking code out of unreachable blocks. In addition to being
122  // unprofitable, it can also lead to infinite looping, because in an unreachable
123  // loop there may be nowhere to stop.
124  if (!DT->isReachableFromEntry(&BB)) return false;
125
126  bool MadeChange = false;
127
128  // Walk the basic block bottom-up.  Remember if we saw a store.
129  BasicBlock::iterator I = BB.end();
130  --I;
131  bool ProcessedBegin = false;
132  SmallPtrSet<Instruction *, 8> Stores;
133  do {
134    Instruction *Inst = I;  // The instruction to sink.
135
136    // Predecrement I (if it's not begin) so that it isn't invalidated by
137    // sinking.
138    ProcessedBegin = I == BB.begin();
139    if (!ProcessedBegin)
140      --I;
141
142    if (isa<DbgInfoIntrinsic>(Inst))
143      continue;
144
145    if (SinkInstruction(Inst, Stores))
146      ++NumSunk, MadeChange = true;
147
148    // If we just processed the first instruction in the block, we're done.
149  } while (!ProcessedBegin);
150
151  return MadeChange;
152}
153
154static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
155                         SmallPtrSet<Instruction *, 8> &Stores) {
156
157  if (Inst->mayWriteToMemory()) {
158    Stores.insert(Inst);
159    return false;
160  }
161
162  if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
163    AliasAnalysis::Location Loc = AA->getLocation(L);
164    for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
165         E = Stores.end(); I != E; ++I)
166      if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
167        return false;
168  }
169
170  if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
171    return false;
172
173  return true;
174}
175
176/// SinkInstruction - Determine whether it is safe to sink the specified machine
177/// instruction out of its current block into a successor.
178bool Sinking::SinkInstruction(Instruction *Inst,
179                              SmallPtrSet<Instruction *, 8> &Stores) {
180  // Check if it's safe to move the instruction.
181  if (!isSafeToMove(Inst, AA, Stores))
182    return false;
183
184  // FIXME: This should include support for sinking instructions within the
185  // block they are currently in to shorten the live ranges.  We often get
186  // instructions sunk into the top of a large block, but it would be better to
187  // also sink them down before their first use in the block.  This xform has to
188  // be careful not to *increase* register pressure though, e.g. sinking
189  // "x = y + z" down if it kills y and z would increase the live ranges of y
190  // and z and only shrink the live range of x.
191
192  // Loop over all the operands of the specified instruction.  If there is
193  // anything we can't handle, bail out.
194  BasicBlock *ParentBlock = Inst->getParent();
195
196  // SuccToSinkTo - This is the successor to sink this instruction to, once we
197  // decide.
198  BasicBlock *SuccToSinkTo = 0;
199
200  // FIXME: This picks a successor to sink into based on having one
201  // successor that dominates all the uses.  However, there are cases where
202  // sinking can happen but where the sink point isn't a successor.  For
203  // example:
204  //   x = computation
205  //   if () {} else {}
206  //   use x
207  // the instruction could be sunk over the whole diamond for the
208  // if/then/else (or loop, etc), allowing it to be sunk into other blocks
209  // after that.
210
211  // Instructions can only be sunk if all their uses are in blocks
212  // dominated by one of the successors.
213  // Look at all the successors and decide which one
214  // we should sink to.
215  for (succ_iterator SI = succ_begin(ParentBlock),
216       E = succ_end(ParentBlock); SI != E; ++SI) {
217    if (AllUsesDominatedByBlock(Inst, *SI)) {
218      SuccToSinkTo = *SI;
219      break;
220    }
221  }
222
223  // If we couldn't find a block to sink to, ignore this instruction.
224  if (SuccToSinkTo == 0)
225    return false;
226
227  // It is not possible to sink an instruction into its own block.  This can
228  // happen with loops.
229  if (Inst->getParent() == SuccToSinkTo)
230    return false;
231
232  DEBUG(dbgs() << "Sink instr " << *Inst);
233  DEBUG(dbgs() << "to block ";
234        WriteAsOperand(dbgs(), SuccToSinkTo, false));
235
236  // If the block has multiple predecessors, this would introduce computation on
237  // a path that it doesn't already exist.  We could split the critical edge,
238  // but for now we just punt.
239  // FIXME: Split critical edges if not backedges.
240  if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
241    // We cannot sink a load across a critical edge - there may be stores in
242    // other code paths.
243    if (!Inst->isSafeToSpeculativelyExecute()) {
244      DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
245      return false;
246    }
247
248    // We don't want to sink across a critical edge if we don't dominate the
249    // successor. We could be introducing calculations to new code paths.
250    if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
251      DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
252      return false;
253    }
254
255    // Don't sink instructions into a loop.
256    if (LI->isLoopHeader(SuccToSinkTo)) {
257      DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
258      return false;
259    }
260
261    // Otherwise we are OK with sinking along a critical edge.
262    DEBUG(dbgs() << "Sinking along critical edge.\n");
263  }
264
265  // Determine where to insert into.  Skip phi nodes.
266  BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
267  while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
268    ++InsertPos;
269
270  // Move the instruction.
271  Inst->moveBefore(InsertPos);
272  return true;
273}
274