1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Target/TargetLowering.h"
52#include <csetjmp>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumInvokes, "Number of invokes replaced");
57STATISTIC(NumUnwinds, "Number of unwinds replaced");
58STATISTIC(NumSpilled, "Number of registers live across unwind edges");
59
60static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
62
63namespace {
64  class LowerInvoke : public FunctionPass {
65    // Used for both models.
66    Constant *AbortFn;
67
68    // Used for expensive EH support.
69    StructType *JBLinkTy;
70    GlobalVariable *JBListHead;
71    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
72    bool useExpensiveEHSupport;
73
74    // We peek in TLI to grab the target's jmp_buf size and alignment
75    const TargetLowering *TLI;
76
77  public:
78    static char ID; // Pass identification, replacement for typeid
79    explicit LowerInvoke(const TargetLowering *tli = NULL,
80                         bool useExpensiveEHSupport = ExpensiveEHSupport)
81      : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport),
82        TLI(tli) {
83      initializeLowerInvokePass(*PassRegistry::getPassRegistry());
84    }
85    bool doInitialization(Module &M);
86    bool runOnFunction(Function &F);
87
88    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
89      // This is a cluster of orthogonal Transforms
90      AU.addPreserved("mem2reg");
91      AU.addPreservedID(LowerSwitchID);
92    }
93
94  private:
95    bool insertCheapEHSupport(Function &F);
96    void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
97    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
98                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
99                                SwitchInst *CatchSwitch);
100    bool insertExpensiveEHSupport(Function &F);
101  };
102}
103
104char LowerInvoke::ID = 0;
105INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
106                "Lower invoke and unwind, for unwindless code generators",
107                false, false)
108
109char &llvm::LowerInvokePassID = LowerInvoke::ID;
110
111// Public Interface To the LowerInvoke pass.
112FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
113  return new LowerInvoke(TLI, ExpensiveEHSupport);
114}
115FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
116                                          bool useExpensiveEHSupport) {
117  return new LowerInvoke(TLI, useExpensiveEHSupport);
118}
119
120// doInitialization - Make sure that there is a prototype for abort in the
121// current module.
122bool LowerInvoke::doInitialization(Module &M) {
123  Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
124  if (useExpensiveEHSupport) {
125    // Insert a type for the linked list of jump buffers.
126    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
127    JBSize = JBSize ? JBSize : 200;
128    Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
129
130    JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty");
131    Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
132    JBLinkTy->setBody(Elts);
133
134    Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
135
136    // Now that we've done that, insert the jmpbuf list head global, unless it
137    // already exists.
138    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
139      JBListHead = new GlobalVariable(M, PtrJBList, false,
140                                      GlobalValue::LinkOnceAnyLinkage,
141                                      Constant::getNullValue(PtrJBList),
142                                      "llvm.sjljeh.jblist");
143    }
144
145// VisualStudio defines setjmp as _setjmp
146#if defined(_MSC_VER) && defined(setjmp) && \
147                         !defined(setjmp_undefined_for_msvc)
148#  pragma push_macro("setjmp")
149#  undef setjmp
150#  define setjmp_undefined_for_msvc
151#endif
152
153    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
154
155#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
156   // let's return it to _setjmp state
157#  pragma pop_macro("setjmp")
158#  undef setjmp_undefined_for_msvc
159#endif
160
161    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
162    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
163    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
164  }
165
166  // We need the 'write' and 'abort' functions for both models.
167  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
168                                  (Type *)0);
169  return true;
170}
171
172bool LowerInvoke::insertCheapEHSupport(Function &F) {
173  bool Changed = false;
174  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
175    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
176      SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
177      // Insert a normal call instruction...
178      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
179                                           CallArgs, "", II);
180      NewCall->takeName(II);
181      NewCall->setCallingConv(II->getCallingConv());
182      NewCall->setAttributes(II->getAttributes());
183      NewCall->setDebugLoc(II->getDebugLoc());
184      II->replaceAllUsesWith(NewCall);
185
186      // Insert an unconditional branch to the normal destination.
187      BranchInst::Create(II->getNormalDest(), II);
188
189      // Remove any PHI node entries from the exception destination.
190      II->getUnwindDest()->removePredecessor(BB);
191
192      // Remove the invoke instruction now.
193      BB->getInstList().erase(II);
194
195      ++NumInvokes; Changed = true;
196    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
197      // Insert a call to abort()
198      CallInst::Create(AbortFn, "", UI)->setTailCall();
199
200      // Insert a return instruction.  This really should be a "barrier", as it
201      // is unreachable.
202      ReturnInst::Create(F.getContext(),
203                         F.getReturnType()->isVoidTy() ?
204                          0 : Constant::getNullValue(F.getReturnType()), UI);
205
206      // Remove the unwind instruction now.
207      BB->getInstList().erase(UI);
208
209      ++NumUnwinds; Changed = true;
210    }
211  return Changed;
212}
213
214/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
215/// specified invoke instruction with a call.
216void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
217                                         AllocaInst *InvokeNum,
218                                         AllocaInst *StackPtr,
219                                         SwitchInst *CatchSwitch) {
220  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
221                                            InvokeNo);
222
223  // If the unwind edge has phi nodes, split the edge.
224  if (isa<PHINode>(II->getUnwindDest()->begin())) {
225    SplitCriticalEdge(II, 1, this);
226
227    // If there are any phi nodes left, they must have a single predecessor.
228    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
229      PN->replaceAllUsesWith(PN->getIncomingValue(0));
230      PN->eraseFromParent();
231    }
232  }
233
234  // Insert a store of the invoke num before the invoke and store zero into the
235  // location afterward.
236  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
237
238  // Insert a store of the stack ptr before the invoke, so we can restore it
239  // later in the exception case.
240  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
241  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
242
243  BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt();
244  // nonvolatile.
245  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
246                InvokeNum, false, NI);
247
248  Instruction* StackPtrLoad =
249    new LoadInst(StackPtr, "stackptr.restore", true,
250                 II->getUnwindDest()->getFirstInsertionPt());
251  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
252
253  // Add a switch case to our unwind block.
254  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
255
256  // Insert a normal call instruction.
257  SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
258  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
259                                       CallArgs, "", II);
260  NewCall->takeName(II);
261  NewCall->setCallingConv(II->getCallingConv());
262  NewCall->setAttributes(II->getAttributes());
263  NewCall->setDebugLoc(II->getDebugLoc());
264  II->replaceAllUsesWith(NewCall);
265
266  // Replace the invoke with an uncond branch.
267  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
268  II->eraseFromParent();
269}
270
271/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
272/// we reach blocks we've already seen.
273static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
274  if (!LiveBBs.insert(BB).second) return; // already been here.
275
276  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277    MarkBlocksLiveIn(*PI, LiveBBs);
278}
279
280// First thing we need to do is scan the whole function for values that are
281// live across unwind edges.  Each value that is live across an unwind edge
282// we spill into a stack location, guaranteeing that there is nothing live
283// across the unwind edge.  This process also splits all critical edges
284// coming out of invoke's.
285void LowerInvoke::
286splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
287  // First step, split all critical edges from invoke instructions.
288  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
289    InvokeInst *II = Invokes[i];
290    SplitCriticalEdge(II, 0, this);
291    SplitCriticalEdge(II, 1, this);
292    assert(!isa<PHINode>(II->getNormalDest()) &&
293           !isa<PHINode>(II->getUnwindDest()) &&
294           "critical edge splitting left single entry phi nodes?");
295  }
296
297  Function *F = Invokes.back()->getParent()->getParent();
298
299  // To avoid having to handle incoming arguments specially, we lower each arg
300  // to a copy instruction in the entry block.  This ensures that the argument
301  // value itself cannot be live across the entry block.
302  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
303  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
304        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
305    ++AfterAllocaInsertPt;
306  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
307       AI != E; ++AI) {
308    Type *Ty = AI->getType();
309    // Aggregate types can't be cast, but are legal argument types, so we have
310    // to handle them differently. We use an extract/insert pair as a
311    // lightweight method to achieve the same goal.
312    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
313      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
314      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
315      NI->insertAfter(EI);
316      AI->replaceAllUsesWith(NI);
317      // Set the operand of the instructions back to the AllocaInst.
318      EI->setOperand(0, AI);
319      NI->setOperand(0, AI);
320    } else {
321      // This is always a no-op cast because we're casting AI to AI->getType()
322      // so src and destination types are identical. BitCast is the only
323      // possibility.
324      CastInst *NC = new BitCastInst(
325        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
326      AI->replaceAllUsesWith(NC);
327      // Set the operand of the cast instruction back to the AllocaInst.
328      // Normally it's forbidden to replace a CastInst's operand because it
329      // could cause the opcode to reflect an illegal conversion. However,
330      // we're replacing it here with the same value it was constructed with.
331      // We do this because the above replaceAllUsesWith() clobbered the
332      // operand, but we want this one to remain.
333      NC->setOperand(0, AI);
334    }
335  }
336
337  // Finally, scan the code looking for instructions with bad live ranges.
338  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
339    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
340      // Ignore obvious cases we don't have to handle.  In particular, most
341      // instructions either have no uses or only have a single use inside the
342      // current block.  Ignore them quickly.
343      Instruction *Inst = II;
344      if (Inst->use_empty()) continue;
345      if (Inst->hasOneUse() &&
346          cast<Instruction>(Inst->use_back())->getParent() == BB &&
347          !isa<PHINode>(Inst->use_back())) continue;
348
349      // If this is an alloca in the entry block, it's not a real register
350      // value.
351      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
352        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
353          continue;
354
355      // Avoid iterator invalidation by copying users to a temporary vector.
356      SmallVector<Instruction*,16> Users;
357      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
358           UI != E; ++UI) {
359        Instruction *User = cast<Instruction>(*UI);
360        if (User->getParent() != BB || isa<PHINode>(User))
361          Users.push_back(User);
362      }
363
364      // Scan all of the uses and see if the live range is live across an unwind
365      // edge.  If we find a use live across an invoke edge, create an alloca
366      // and spill the value.
367      std::set<InvokeInst*> InvokesWithStoreInserted;
368
369      // Find all of the blocks that this value is live in.
370      std::set<BasicBlock*> LiveBBs;
371      LiveBBs.insert(Inst->getParent());
372      while (!Users.empty()) {
373        Instruction *U = Users.back();
374        Users.pop_back();
375
376        if (!isa<PHINode>(U)) {
377          MarkBlocksLiveIn(U->getParent(), LiveBBs);
378        } else {
379          // Uses for a PHI node occur in their predecessor block.
380          PHINode *PN = cast<PHINode>(U);
381          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
382            if (PN->getIncomingValue(i) == Inst)
383              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
384        }
385      }
386
387      // Now that we know all of the blocks that this thing is live in, see if
388      // it includes any of the unwind locations.
389      bool NeedsSpill = false;
390      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
391        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
392        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
393          NeedsSpill = true;
394        }
395      }
396
397      // If we decided we need a spill, do it.
398      if (NeedsSpill) {
399        ++NumSpilled;
400        DemoteRegToStack(*Inst, true);
401      }
402    }
403}
404
405bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
406  SmallVector<ReturnInst*,16> Returns;
407  SmallVector<UnwindInst*,16> Unwinds;
408  SmallVector<InvokeInst*,16> Invokes;
409  UnreachableInst* UnreachablePlaceholder = 0;
410
411  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
412    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
413      // Remember all return instructions in case we insert an invoke into this
414      // function.
415      Returns.push_back(RI);
416    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
417      Invokes.push_back(II);
418    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
419      Unwinds.push_back(UI);
420    }
421
422  if (Unwinds.empty() && Invokes.empty()) return false;
423
424  NumInvokes += Invokes.size();
425  NumUnwinds += Unwinds.size();
426
427  // TODO: This is not an optimal way to do this.  In particular, this always
428  // inserts setjmp calls into the entries of functions with invoke instructions
429  // even though there are possibly paths through the function that do not
430  // execute any invokes.  In particular, for functions with early exits, e.g.
431  // the 'addMove' method in hexxagon, it would be nice to not have to do the
432  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
433  // would not be too hard to do.
434
435  // If we have an invoke instruction, insert a setjmp that dominates all
436  // invokes.  After the setjmp, use a cond branch that goes to the original
437  // code path on zero, and to a designated 'catch' block of nonzero.
438  Value *OldJmpBufPtr = 0;
439  if (!Invokes.empty()) {
440    // First thing we need to do is scan the whole function for values that are
441    // live across unwind edges.  Each value that is live across an unwind edge
442    // we spill into a stack location, guaranteeing that there is nothing live
443    // across the unwind edge.  This process also splits all critical edges
444    // coming out of invoke's.
445    splitLiveRangesLiveAcrossInvokes(Invokes);
446
447    BasicBlock *EntryBB = F.begin();
448
449    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
450    // that needs to be restored on all exits from the function.  This is an
451    // alloca because the value needs to be live across invokes.
452    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
453    AllocaInst *JmpBuf =
454      new AllocaInst(JBLinkTy, 0, Align,
455                     "jblink", F.begin()->begin());
456
457    Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
458                     ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
459    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf",
460                                             EntryBB->getTerminator());
461
462    // Copy the JBListHead to the alloca.
463    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
464                                 EntryBB->getTerminator());
465    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
466
467    // Add the new jumpbuf to the list.
468    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
469
470    // Create the catch block.  The catch block is basically a big switch
471    // statement that goes to all of the invoke catch blocks.
472    BasicBlock *CatchBB =
473            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
474
475    // Create an alloca which keeps track of the stack pointer before every
476    // invoke, this allows us to properly restore the stack pointer after
477    // long jumping.
478    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
479                                          "stackptr", EntryBB->begin());
480
481    // Create an alloca which keeps track of which invoke is currently
482    // executing.  For normal calls it contains zero.
483    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
484                                           "invokenum",EntryBB->begin());
485    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
486                  InvokeNum, true, EntryBB->getTerminator());
487
488    // Insert a load in the Catch block, and a switch on its value.  By default,
489    // we go to a block that just does an unwind (which is the correct action
490    // for a standard call). We insert an unreachable instruction here and
491    // modify the block to jump to the correct unwinding pad later.
492    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
493    UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB);
494
495    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
496    SwitchInst *CatchSwitch =
497      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
498
499    // Now that things are set up, insert the setjmp call itself.
500
501    // Split the entry block to insert the conditional branch for the setjmp.
502    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
503                                                     "setjmp.cont");
504
505    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
506    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf",
507                                                 EntryBB->getTerminator());
508    JmpBufPtr = new BitCastInst(JmpBufPtr,
509                        Type::getInt8PtrTy(F.getContext()),
510                                "tmp", EntryBB->getTerminator());
511    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
512                                    EntryBB->getTerminator());
513
514    // Compare the return value to zero.
515    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
516                                   ICmpInst::ICMP_EQ, SJRet,
517                                   Constant::getNullValue(SJRet->getType()),
518                                   "notunwind");
519    // Nuke the uncond branch.
520    EntryBB->getTerminator()->eraseFromParent();
521
522    // Put in a new condbranch in its place.
523    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
524
525    // At this point, we are all set up, rewrite each invoke instruction.
526    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
527      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
528  }
529
530  // We know that there is at least one unwind.
531
532  // Create three new blocks, the block to load the jmpbuf ptr and compare
533  // against null, the block to do the longjmp, and the error block for if it
534  // is null.  Add them at the end of the function because they are not hot.
535  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
536                                                "dounwind", &F);
537  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
538  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
539
540  // If this function contains an invoke, restore the old jumpbuf ptr.
541  Value *BufPtr;
542  if (OldJmpBufPtr) {
543    // Before the return, insert a copy from the saved value to the new value.
544    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
545    new StoreInst(BufPtr, JBListHead, UnwindHandler);
546  } else {
547    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
548  }
549
550  // Load the JBList, if it's null, then there was no catch!
551  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
552                                Constant::getNullValue(BufPtr->getType()),
553                                "notnull");
554  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
555
556  // Create the block to do the longjmp.
557  // Get a pointer to the jmpbuf and longjmp.
558  Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
559                   ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
560  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock);
561  Idx[0] = new BitCastInst(Idx[0],
562             Type::getInt8PtrTy(F.getContext()),
563                           "tmp", UnwindBlock);
564  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
565  CallInst::Create(LongJmpFn, Idx, "", UnwindBlock);
566  new UnreachableInst(F.getContext(), UnwindBlock);
567
568  // Set up the term block ("throw without a catch").
569  new UnreachableInst(F.getContext(), TermBlock);
570
571  // Insert a call to abort()
572  CallInst::Create(AbortFn, "",
573                   TermBlock->getTerminator())->setTailCall();
574
575
576  // Replace all unwinds with a branch to the unwind handler.
577  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
578    BranchInst::Create(UnwindHandler, Unwinds[i]);
579    Unwinds[i]->eraseFromParent();
580  }
581
582  // Replace the inserted unreachable with a branch to the unwind handler.
583  if (UnreachablePlaceholder) {
584    BranchInst::Create(UnwindHandler, UnreachablePlaceholder);
585    UnreachablePlaceholder->eraseFromParent();
586  }
587
588  // Finally, for any returns from this function, if this function contains an
589  // invoke, restore the old jmpbuf pointer to its input value.
590  if (OldJmpBufPtr) {
591    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
592      ReturnInst *R = Returns[i];
593
594      // Before the return, insert a copy from the saved value to the new value.
595      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
596      new StoreInst(OldBuf, JBListHead, true, R);
597    }
598  }
599
600  return true;
601}
602
603bool LowerInvoke::runOnFunction(Function &F) {
604  if (useExpensiveEHSupport)
605    return insertExpensiveEHSupport(F);
606  else
607    return insertCheapEHSupport(F);
608}
609