1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the CodeGenDAGPatterns class, which is used to read and 11// represent the patterns present in a .td file for instructions. 12// 13//===----------------------------------------------------------------------===// 14 15#include "CodeGenDAGPatterns.h" 16#include "llvm/TableGen/Error.h" 17#include "llvm/TableGen/Record.h" 18#include "llvm/ADT/StringExtras.h" 19#include "llvm/ADT/STLExtras.h" 20#include "llvm/Support/Debug.h" 21#include <set> 22#include <algorithm> 23using namespace llvm; 24 25//===----------------------------------------------------------------------===// 26// EEVT::TypeSet Implementation 27//===----------------------------------------------------------------------===// 28 29static inline bool isInteger(MVT::SimpleValueType VT) { 30 return EVT(VT).isInteger(); 31} 32static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 33 return EVT(VT).isFloatingPoint(); 34} 35static inline bool isVector(MVT::SimpleValueType VT) { 36 return EVT(VT).isVector(); 37} 38static inline bool isScalar(MVT::SimpleValueType VT) { 39 return !EVT(VT).isVector(); 40} 41 42EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 43 if (VT == MVT::iAny) 44 EnforceInteger(TP); 45 else if (VT == MVT::fAny) 46 EnforceFloatingPoint(TP); 47 else if (VT == MVT::vAny) 48 EnforceVector(TP); 49 else { 50 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 51 VT == MVT::iPTRAny) && "Not a concrete type!"); 52 TypeVec.push_back(VT); 53 } 54} 55 56 57EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 58 assert(!VTList.empty() && "empty list?"); 59 TypeVec.append(VTList.begin(), VTList.end()); 60 61 if (!VTList.empty()) 62 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 63 VTList[0] != MVT::fAny); 64 65 // Verify no duplicates. 66 array_pod_sort(TypeVec.begin(), TypeVec.end()); 67 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 68} 69 70/// FillWithPossibleTypes - Set to all legal types and return true, only valid 71/// on completely unknown type sets. 72bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 73 bool (*Pred)(MVT::SimpleValueType), 74 const char *PredicateName) { 75 assert(isCompletelyUnknown()); 76 const std::vector<MVT::SimpleValueType> &LegalTypes = 77 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 78 79 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 80 if (Pred == 0 || Pred(LegalTypes[i])) 81 TypeVec.push_back(LegalTypes[i]); 82 83 // If we have nothing that matches the predicate, bail out. 84 if (TypeVec.empty()) 85 TP.error("Type inference contradiction found, no " + 86 std::string(PredicateName) + " types found"); 87 // No need to sort with one element. 88 if (TypeVec.size() == 1) return true; 89 90 // Remove duplicates. 91 array_pod_sort(TypeVec.begin(), TypeVec.end()); 92 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 93 94 return true; 95} 96 97/// hasIntegerTypes - Return true if this TypeSet contains iAny or an 98/// integer value type. 99bool EEVT::TypeSet::hasIntegerTypes() const { 100 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 101 if (isInteger(TypeVec[i])) 102 return true; 103 return false; 104} 105 106/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 107/// a floating point value type. 108bool EEVT::TypeSet::hasFloatingPointTypes() const { 109 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 110 if (isFloatingPoint(TypeVec[i])) 111 return true; 112 return false; 113} 114 115/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 116/// value type. 117bool EEVT::TypeSet::hasVectorTypes() const { 118 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 119 if (isVector(TypeVec[i])) 120 return true; 121 return false; 122} 123 124 125std::string EEVT::TypeSet::getName() const { 126 if (TypeVec.empty()) return "<empty>"; 127 128 std::string Result; 129 130 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 131 std::string VTName = llvm::getEnumName(TypeVec[i]); 132 // Strip off MVT:: prefix if present. 133 if (VTName.substr(0,5) == "MVT::") 134 VTName = VTName.substr(5); 135 if (i) Result += ':'; 136 Result += VTName; 137 } 138 139 if (TypeVec.size() == 1) 140 return Result; 141 return "{" + Result + "}"; 142} 143 144/// MergeInTypeInfo - This merges in type information from the specified 145/// argument. If 'this' changes, it returns true. If the two types are 146/// contradictory (e.g. merge f32 into i32) then this throws an exception. 147bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 148 if (InVT.isCompletelyUnknown() || *this == InVT) 149 return false; 150 151 if (isCompletelyUnknown()) { 152 *this = InVT; 153 return true; 154 } 155 156 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 157 158 // Handle the abstract cases, seeing if we can resolve them better. 159 switch (TypeVec[0]) { 160 default: break; 161 case MVT::iPTR: 162 case MVT::iPTRAny: 163 if (InVT.hasIntegerTypes()) { 164 EEVT::TypeSet InCopy(InVT); 165 InCopy.EnforceInteger(TP); 166 InCopy.EnforceScalar(TP); 167 168 if (InCopy.isConcrete()) { 169 // If the RHS has one integer type, upgrade iPTR to i32. 170 TypeVec[0] = InVT.TypeVec[0]; 171 return true; 172 } 173 174 // If the input has multiple scalar integers, this doesn't add any info. 175 if (!InCopy.isCompletelyUnknown()) 176 return false; 177 } 178 break; 179 } 180 181 // If the input constraint is iAny/iPTR and this is an integer type list, 182 // remove non-integer types from the list. 183 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 184 hasIntegerTypes()) { 185 bool MadeChange = EnforceInteger(TP); 186 187 // If we're merging in iPTR/iPTRAny and the node currently has a list of 188 // multiple different integer types, replace them with a single iPTR. 189 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 190 TypeVec.size() != 1) { 191 TypeVec.resize(1); 192 TypeVec[0] = InVT.TypeVec[0]; 193 MadeChange = true; 194 } 195 196 return MadeChange; 197 } 198 199 // If this is a type list and the RHS is a typelist as well, eliminate entries 200 // from this list that aren't in the other one. 201 bool MadeChange = false; 202 TypeSet InputSet(*this); 203 204 for (unsigned i = 0; i != TypeVec.size(); ++i) { 205 bool InInVT = false; 206 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 207 if (TypeVec[i] == InVT.TypeVec[j]) { 208 InInVT = true; 209 break; 210 } 211 212 if (InInVT) continue; 213 TypeVec.erase(TypeVec.begin()+i--); 214 MadeChange = true; 215 } 216 217 // If we removed all of our types, we have a type contradiction. 218 if (!TypeVec.empty()) 219 return MadeChange; 220 221 // FIXME: Really want an SMLoc here! 222 TP.error("Type inference contradiction found, merging '" + 223 InVT.getName() + "' into '" + InputSet.getName() + "'"); 224 return true; // unreachable 225} 226 227/// EnforceInteger - Remove all non-integer types from this set. 228bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 229 // If we know nothing, then get the full set. 230 if (TypeVec.empty()) 231 return FillWithPossibleTypes(TP, isInteger, "integer"); 232 if (!hasFloatingPointTypes()) 233 return false; 234 235 TypeSet InputSet(*this); 236 237 // Filter out all the fp types. 238 for (unsigned i = 0; i != TypeVec.size(); ++i) 239 if (!isInteger(TypeVec[i])) 240 TypeVec.erase(TypeVec.begin()+i--); 241 242 if (TypeVec.empty()) 243 TP.error("Type inference contradiction found, '" + 244 InputSet.getName() + "' needs to be integer"); 245 return true; 246} 247 248/// EnforceFloatingPoint - Remove all integer types from this set. 249bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 250 // If we know nothing, then get the full set. 251 if (TypeVec.empty()) 252 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 253 254 if (!hasIntegerTypes()) 255 return false; 256 257 TypeSet InputSet(*this); 258 259 // Filter out all the fp types. 260 for (unsigned i = 0; i != TypeVec.size(); ++i) 261 if (!isFloatingPoint(TypeVec[i])) 262 TypeVec.erase(TypeVec.begin()+i--); 263 264 if (TypeVec.empty()) 265 TP.error("Type inference contradiction found, '" + 266 InputSet.getName() + "' needs to be floating point"); 267 return true; 268} 269 270/// EnforceScalar - Remove all vector types from this. 271bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 272 // If we know nothing, then get the full set. 273 if (TypeVec.empty()) 274 return FillWithPossibleTypes(TP, isScalar, "scalar"); 275 276 if (!hasVectorTypes()) 277 return false; 278 279 TypeSet InputSet(*this); 280 281 // Filter out all the vector types. 282 for (unsigned i = 0; i != TypeVec.size(); ++i) 283 if (!isScalar(TypeVec[i])) 284 TypeVec.erase(TypeVec.begin()+i--); 285 286 if (TypeVec.empty()) 287 TP.error("Type inference contradiction found, '" + 288 InputSet.getName() + "' needs to be scalar"); 289 return true; 290} 291 292/// EnforceVector - Remove all vector types from this. 293bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 294 // If we know nothing, then get the full set. 295 if (TypeVec.empty()) 296 return FillWithPossibleTypes(TP, isVector, "vector"); 297 298 TypeSet InputSet(*this); 299 bool MadeChange = false; 300 301 // Filter out all the scalar types. 302 for (unsigned i = 0; i != TypeVec.size(); ++i) 303 if (!isVector(TypeVec[i])) { 304 TypeVec.erase(TypeVec.begin()+i--); 305 MadeChange = true; 306 } 307 308 if (TypeVec.empty()) 309 TP.error("Type inference contradiction found, '" + 310 InputSet.getName() + "' needs to be a vector"); 311 return MadeChange; 312} 313 314 315 316/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 317/// this an other based on this information. 318bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 319 // Both operands must be integer or FP, but we don't care which. 320 bool MadeChange = false; 321 322 if (isCompletelyUnknown()) 323 MadeChange = FillWithPossibleTypes(TP); 324 325 if (Other.isCompletelyUnknown()) 326 MadeChange = Other.FillWithPossibleTypes(TP); 327 328 // If one side is known to be integer or known to be FP but the other side has 329 // no information, get at least the type integrality info in there. 330 if (!hasFloatingPointTypes()) 331 MadeChange |= Other.EnforceInteger(TP); 332 else if (!hasIntegerTypes()) 333 MadeChange |= Other.EnforceFloatingPoint(TP); 334 if (!Other.hasFloatingPointTypes()) 335 MadeChange |= EnforceInteger(TP); 336 else if (!Other.hasIntegerTypes()) 337 MadeChange |= EnforceFloatingPoint(TP); 338 339 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 340 "Should have a type list now"); 341 342 // If one contains vectors but the other doesn't pull vectors out. 343 if (!hasVectorTypes()) 344 MadeChange |= Other.EnforceScalar(TP); 345 if (!hasVectorTypes()) 346 MadeChange |= EnforceScalar(TP); 347 348 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 349 // If we are down to concrete types, this code does not currently 350 // handle nodes which have multiple types, where some types are 351 // integer, and some are fp. Assert that this is not the case. 352 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 353 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 354 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 355 356 // Otherwise, if these are both vector types, either this vector 357 // must have a larger bitsize than the other, or this element type 358 // must be larger than the other. 359 EVT Type(TypeVec[0]); 360 EVT OtherType(Other.TypeVec[0]); 361 362 if (hasVectorTypes() && Other.hasVectorTypes()) { 363 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 364 if (Type.getVectorElementType().getSizeInBits() 365 >= OtherType.getVectorElementType().getSizeInBits()) 366 TP.error("Type inference contradiction found, '" + 367 getName() + "' element type not smaller than '" + 368 Other.getName() +"'!"); 369 } 370 else 371 // For scalar types, the bitsize of this type must be larger 372 // than that of the other. 373 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 374 TP.error("Type inference contradiction found, '" + 375 getName() + "' is not smaller than '" + 376 Other.getName() +"'!"); 377 378 } 379 380 381 // Handle int and fp as disjoint sets. This won't work for patterns 382 // that have mixed fp/int types but those are likely rare and would 383 // not have been accepted by this code previously. 384 385 // Okay, find the smallest type from the current set and remove it from the 386 // largest set. 387 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 388 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 389 if (isInteger(TypeVec[i])) { 390 SmallestInt = TypeVec[i]; 391 break; 392 } 393 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 394 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 395 SmallestInt = TypeVec[i]; 396 397 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 398 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 399 if (isFloatingPoint(TypeVec[i])) { 400 SmallestFP = TypeVec[i]; 401 break; 402 } 403 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 404 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 405 SmallestFP = TypeVec[i]; 406 407 int OtherIntSize = 0; 408 int OtherFPSize = 0; 409 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 410 Other.TypeVec.begin(); 411 TVI != Other.TypeVec.end(); 412 /* NULL */) { 413 if (isInteger(*TVI)) { 414 ++OtherIntSize; 415 if (*TVI == SmallestInt) { 416 TVI = Other.TypeVec.erase(TVI); 417 --OtherIntSize; 418 MadeChange = true; 419 continue; 420 } 421 } 422 else if (isFloatingPoint(*TVI)) { 423 ++OtherFPSize; 424 if (*TVI == SmallestFP) { 425 TVI = Other.TypeVec.erase(TVI); 426 --OtherFPSize; 427 MadeChange = true; 428 continue; 429 } 430 } 431 ++TVI; 432 } 433 434 // If this is the only type in the large set, the constraint can never be 435 // satisfied. 436 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 437 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) 438 TP.error("Type inference contradiction found, '" + 439 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 440 441 // Okay, find the largest type in the Other set and remove it from the 442 // current set. 443 MVT::SimpleValueType LargestInt = MVT::Other; 444 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 445 if (isInteger(Other.TypeVec[i])) { 446 LargestInt = Other.TypeVec[i]; 447 break; 448 } 449 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 450 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 451 LargestInt = Other.TypeVec[i]; 452 453 MVT::SimpleValueType LargestFP = MVT::Other; 454 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 455 if (isFloatingPoint(Other.TypeVec[i])) { 456 LargestFP = Other.TypeVec[i]; 457 break; 458 } 459 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 460 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 461 LargestFP = Other.TypeVec[i]; 462 463 int IntSize = 0; 464 int FPSize = 0; 465 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 466 TypeVec.begin(); 467 TVI != TypeVec.end(); 468 /* NULL */) { 469 if (isInteger(*TVI)) { 470 ++IntSize; 471 if (*TVI == LargestInt) { 472 TVI = TypeVec.erase(TVI); 473 --IntSize; 474 MadeChange = true; 475 continue; 476 } 477 } 478 else if (isFloatingPoint(*TVI)) { 479 ++FPSize; 480 if (*TVI == LargestFP) { 481 TVI = TypeVec.erase(TVI); 482 --FPSize; 483 MadeChange = true; 484 continue; 485 } 486 } 487 ++TVI; 488 } 489 490 // If this is the only type in the small set, the constraint can never be 491 // satisfied. 492 if ((hasIntegerTypes() && IntSize == 0) 493 || (hasFloatingPointTypes() && FPSize == 0)) 494 TP.error("Type inference contradiction found, '" + 495 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 496 497 return MadeChange; 498} 499 500/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 501/// whose element is specified by VTOperand. 502bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 503 TreePattern &TP) { 504 // "This" must be a vector and "VTOperand" must be a scalar. 505 bool MadeChange = false; 506 MadeChange |= EnforceVector(TP); 507 MadeChange |= VTOperand.EnforceScalar(TP); 508 509 // If we know the vector type, it forces the scalar to agree. 510 if (isConcrete()) { 511 EVT IVT = getConcrete(); 512 IVT = IVT.getVectorElementType(); 513 return MadeChange | 514 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 515 } 516 517 // If the scalar type is known, filter out vector types whose element types 518 // disagree. 519 if (!VTOperand.isConcrete()) 520 return MadeChange; 521 522 MVT::SimpleValueType VT = VTOperand.getConcrete(); 523 524 TypeSet InputSet(*this); 525 526 // Filter out all the types which don't have the right element type. 527 for (unsigned i = 0; i != TypeVec.size(); ++i) { 528 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 529 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 530 TypeVec.erase(TypeVec.begin()+i--); 531 MadeChange = true; 532 } 533 } 534 535 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 536 TP.error("Type inference contradiction found, forcing '" + 537 InputSet.getName() + "' to have a vector element"); 538 return MadeChange; 539} 540 541/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 542/// vector type specified by VTOperand. 543bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 544 TreePattern &TP) { 545 // "This" must be a vector and "VTOperand" must be a vector. 546 bool MadeChange = false; 547 MadeChange |= EnforceVector(TP); 548 MadeChange |= VTOperand.EnforceVector(TP); 549 550 // "This" must be larger than "VTOperand." 551 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 552 553 // If we know the vector type, it forces the scalar types to agree. 554 if (isConcrete()) { 555 EVT IVT = getConcrete(); 556 IVT = IVT.getVectorElementType(); 557 558 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 559 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 560 } else if (VTOperand.isConcrete()) { 561 EVT IVT = VTOperand.getConcrete(); 562 IVT = IVT.getVectorElementType(); 563 564 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 565 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 566 } 567 568 return MadeChange; 569} 570 571//===----------------------------------------------------------------------===// 572// Helpers for working with extended types. 573 574bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 575 return LHS->getID() < RHS->getID(); 576} 577 578/// Dependent variable map for CodeGenDAGPattern variant generation 579typedef std::map<std::string, int> DepVarMap; 580 581/// Const iterator shorthand for DepVarMap 582typedef DepVarMap::const_iterator DepVarMap_citer; 583 584static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 585 if (N->isLeaf()) { 586 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) 587 DepMap[N->getName()]++; 588 } else { 589 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 590 FindDepVarsOf(N->getChild(i), DepMap); 591 } 592} 593 594/// Find dependent variables within child patterns 595static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 596 DepVarMap depcounts; 597 FindDepVarsOf(N, depcounts); 598 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 599 if (i->second > 1) // std::pair<std::string, int> 600 DepVars.insert(i->first); 601 } 602} 603 604#ifndef NDEBUG 605/// Dump the dependent variable set: 606static void DumpDepVars(MultipleUseVarSet &DepVars) { 607 if (DepVars.empty()) { 608 DEBUG(errs() << "<empty set>"); 609 } else { 610 DEBUG(errs() << "[ "); 611 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 612 e = DepVars.end(); i != e; ++i) { 613 DEBUG(errs() << (*i) << " "); 614 } 615 DEBUG(errs() << "]"); 616 } 617} 618#endif 619 620 621//===----------------------------------------------------------------------===// 622// TreePredicateFn Implementation 623//===----------------------------------------------------------------------===// 624 625/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 626TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 627 assert((getPredCode().empty() || getImmCode().empty()) && 628 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 629} 630 631std::string TreePredicateFn::getPredCode() const { 632 return PatFragRec->getRecord()->getValueAsCode("PredicateCode"); 633} 634 635std::string TreePredicateFn::getImmCode() const { 636 return PatFragRec->getRecord()->getValueAsCode("ImmediateCode"); 637} 638 639 640/// isAlwaysTrue - Return true if this is a noop predicate. 641bool TreePredicateFn::isAlwaysTrue() const { 642 return getPredCode().empty() && getImmCode().empty(); 643} 644 645/// Return the name to use in the generated code to reference this, this is 646/// "Predicate_foo" if from a pattern fragment "foo". 647std::string TreePredicateFn::getFnName() const { 648 return "Predicate_" + PatFragRec->getRecord()->getName(); 649} 650 651/// getCodeToRunOnSDNode - Return the code for the function body that 652/// evaluates this predicate. The argument is expected to be in "Node", 653/// not N. This handles casting and conversion to a concrete node type as 654/// appropriate. 655std::string TreePredicateFn::getCodeToRunOnSDNode() const { 656 // Handle immediate predicates first. 657 std::string ImmCode = getImmCode(); 658 if (!ImmCode.empty()) { 659 std::string Result = 660 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 661 return Result + ImmCode; 662 } 663 664 // Handle arbitrary node predicates. 665 assert(!getPredCode().empty() && "Don't have any predicate code!"); 666 std::string ClassName; 667 if (PatFragRec->getOnlyTree()->isLeaf()) 668 ClassName = "SDNode"; 669 else { 670 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 671 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 672 } 673 std::string Result; 674 if (ClassName == "SDNode") 675 Result = " SDNode *N = Node;\n"; 676 else 677 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 678 679 return Result + getPredCode(); 680} 681 682//===----------------------------------------------------------------------===// 683// PatternToMatch implementation 684// 685 686 687/// getPatternSize - Return the 'size' of this pattern. We want to match large 688/// patterns before small ones. This is used to determine the size of a 689/// pattern. 690static unsigned getPatternSize(const TreePatternNode *P, 691 const CodeGenDAGPatterns &CGP) { 692 unsigned Size = 3; // The node itself. 693 // If the root node is a ConstantSDNode, increases its size. 694 // e.g. (set R32:$dst, 0). 695 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 696 Size += 2; 697 698 // FIXME: This is a hack to statically increase the priority of patterns 699 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 700 // Later we can allow complexity / cost for each pattern to be (optionally) 701 // specified. To get best possible pattern match we'll need to dynamically 702 // calculate the complexity of all patterns a dag can potentially map to. 703 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 704 if (AM) 705 Size += AM->getNumOperands() * 3; 706 707 // If this node has some predicate function that must match, it adds to the 708 // complexity of this node. 709 if (!P->getPredicateFns().empty()) 710 ++Size; 711 712 // Count children in the count if they are also nodes. 713 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 714 TreePatternNode *Child = P->getChild(i); 715 if (!Child->isLeaf() && Child->getNumTypes() && 716 Child->getType(0) != MVT::Other) 717 Size += getPatternSize(Child, CGP); 718 else if (Child->isLeaf()) { 719 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 720 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 721 else if (Child->getComplexPatternInfo(CGP)) 722 Size += getPatternSize(Child, CGP); 723 else if (!Child->getPredicateFns().empty()) 724 ++Size; 725 } 726 } 727 728 return Size; 729} 730 731/// Compute the complexity metric for the input pattern. This roughly 732/// corresponds to the number of nodes that are covered. 733unsigned PatternToMatch:: 734getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 735 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 736} 737 738 739/// getPredicateCheck - Return a single string containing all of this 740/// pattern's predicates concatenated with "&&" operators. 741/// 742std::string PatternToMatch::getPredicateCheck() const { 743 std::string PredicateCheck; 744 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 745 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 746 Record *Def = Pred->getDef(); 747 if (!Def->isSubClassOf("Predicate")) { 748#ifndef NDEBUG 749 Def->dump(); 750#endif 751 assert(0 && "Unknown predicate type!"); 752 } 753 if (!PredicateCheck.empty()) 754 PredicateCheck += " && "; 755 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 756 } 757 } 758 759 return PredicateCheck; 760} 761 762//===----------------------------------------------------------------------===// 763// SDTypeConstraint implementation 764// 765 766SDTypeConstraint::SDTypeConstraint(Record *R) { 767 OperandNo = R->getValueAsInt("OperandNum"); 768 769 if (R->isSubClassOf("SDTCisVT")) { 770 ConstraintType = SDTCisVT; 771 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 772 if (x.SDTCisVT_Info.VT == MVT::isVoid) 773 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 774 775 } else if (R->isSubClassOf("SDTCisPtrTy")) { 776 ConstraintType = SDTCisPtrTy; 777 } else if (R->isSubClassOf("SDTCisInt")) { 778 ConstraintType = SDTCisInt; 779 } else if (R->isSubClassOf("SDTCisFP")) { 780 ConstraintType = SDTCisFP; 781 } else if (R->isSubClassOf("SDTCisVec")) { 782 ConstraintType = SDTCisVec; 783 } else if (R->isSubClassOf("SDTCisSameAs")) { 784 ConstraintType = SDTCisSameAs; 785 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 786 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 787 ConstraintType = SDTCisVTSmallerThanOp; 788 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 789 R->getValueAsInt("OtherOperandNum"); 790 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 791 ConstraintType = SDTCisOpSmallerThanOp; 792 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 793 R->getValueAsInt("BigOperandNum"); 794 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 795 ConstraintType = SDTCisEltOfVec; 796 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 797 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 798 ConstraintType = SDTCisSubVecOfVec; 799 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 800 R->getValueAsInt("OtherOpNum"); 801 } else { 802 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 803 exit(1); 804 } 805} 806 807/// getOperandNum - Return the node corresponding to operand #OpNo in tree 808/// N, and the result number in ResNo. 809static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 810 const SDNodeInfo &NodeInfo, 811 unsigned &ResNo) { 812 unsigned NumResults = NodeInfo.getNumResults(); 813 if (OpNo < NumResults) { 814 ResNo = OpNo; 815 return N; 816 } 817 818 OpNo -= NumResults; 819 820 if (OpNo >= N->getNumChildren()) { 821 errs() << "Invalid operand number in type constraint " 822 << (OpNo+NumResults) << " "; 823 N->dump(); 824 errs() << '\n'; 825 exit(1); 826 } 827 828 return N->getChild(OpNo); 829} 830 831/// ApplyTypeConstraint - Given a node in a pattern, apply this type 832/// constraint to the nodes operands. This returns true if it makes a 833/// change, false otherwise. If a type contradiction is found, throw an 834/// exception. 835bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 836 const SDNodeInfo &NodeInfo, 837 TreePattern &TP) const { 838 unsigned ResNo = 0; // The result number being referenced. 839 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 840 841 switch (ConstraintType) { 842 default: assert(0 && "Unknown constraint type!"); 843 case SDTCisVT: 844 // Operand must be a particular type. 845 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 846 case SDTCisPtrTy: 847 // Operand must be same as target pointer type. 848 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 849 case SDTCisInt: 850 // Require it to be one of the legal integer VTs. 851 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 852 case SDTCisFP: 853 // Require it to be one of the legal fp VTs. 854 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 855 case SDTCisVec: 856 // Require it to be one of the legal vector VTs. 857 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 858 case SDTCisSameAs: { 859 unsigned OResNo = 0; 860 TreePatternNode *OtherNode = 861 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 862 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 863 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 864 } 865 case SDTCisVTSmallerThanOp: { 866 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 867 // have an integer type that is smaller than the VT. 868 if (!NodeToApply->isLeaf() || 869 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 870 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 871 ->isSubClassOf("ValueType")) 872 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 873 MVT::SimpleValueType VT = 874 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 875 876 EEVT::TypeSet TypeListTmp(VT, TP); 877 878 unsigned OResNo = 0; 879 TreePatternNode *OtherNode = 880 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 881 OResNo); 882 883 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 884 } 885 case SDTCisOpSmallerThanOp: { 886 unsigned BResNo = 0; 887 TreePatternNode *BigOperand = 888 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 889 BResNo); 890 return NodeToApply->getExtType(ResNo). 891 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 892 } 893 case SDTCisEltOfVec: { 894 unsigned VResNo = 0; 895 TreePatternNode *VecOperand = 896 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 897 VResNo); 898 899 // Filter vector types out of VecOperand that don't have the right element 900 // type. 901 return VecOperand->getExtType(VResNo). 902 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 903 } 904 case SDTCisSubVecOfVec: { 905 unsigned VResNo = 0; 906 TreePatternNode *BigVecOperand = 907 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 908 VResNo); 909 910 // Filter vector types out of BigVecOperand that don't have the 911 // right subvector type. 912 return BigVecOperand->getExtType(VResNo). 913 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 914 } 915 } 916 return false; 917} 918 919//===----------------------------------------------------------------------===// 920// SDNodeInfo implementation 921// 922SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 923 EnumName = R->getValueAsString("Opcode"); 924 SDClassName = R->getValueAsString("SDClass"); 925 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 926 NumResults = TypeProfile->getValueAsInt("NumResults"); 927 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 928 929 // Parse the properties. 930 Properties = 0; 931 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 932 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 933 if (PropList[i]->getName() == "SDNPCommutative") { 934 Properties |= 1 << SDNPCommutative; 935 } else if (PropList[i]->getName() == "SDNPAssociative") { 936 Properties |= 1 << SDNPAssociative; 937 } else if (PropList[i]->getName() == "SDNPHasChain") { 938 Properties |= 1 << SDNPHasChain; 939 } else if (PropList[i]->getName() == "SDNPOutGlue") { 940 Properties |= 1 << SDNPOutGlue; 941 } else if (PropList[i]->getName() == "SDNPInGlue") { 942 Properties |= 1 << SDNPInGlue; 943 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 944 Properties |= 1 << SDNPOptInGlue; 945 } else if (PropList[i]->getName() == "SDNPMayStore") { 946 Properties |= 1 << SDNPMayStore; 947 } else if (PropList[i]->getName() == "SDNPMayLoad") { 948 Properties |= 1 << SDNPMayLoad; 949 } else if (PropList[i]->getName() == "SDNPSideEffect") { 950 Properties |= 1 << SDNPSideEffect; 951 } else if (PropList[i]->getName() == "SDNPMemOperand") { 952 Properties |= 1 << SDNPMemOperand; 953 } else if (PropList[i]->getName() == "SDNPVariadic") { 954 Properties |= 1 << SDNPVariadic; 955 } else { 956 errs() << "Unknown SD Node property '" << PropList[i]->getName() 957 << "' on node '" << R->getName() << "'!\n"; 958 exit(1); 959 } 960 } 961 962 963 // Parse the type constraints. 964 std::vector<Record*> ConstraintList = 965 TypeProfile->getValueAsListOfDefs("Constraints"); 966 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 967} 968 969/// getKnownType - If the type constraints on this node imply a fixed type 970/// (e.g. all stores return void, etc), then return it as an 971/// MVT::SimpleValueType. Otherwise, return EEVT::Other. 972MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 973 unsigned NumResults = getNumResults(); 974 assert(NumResults <= 1 && 975 "We only work with nodes with zero or one result so far!"); 976 assert(ResNo == 0 && "Only handles single result nodes so far"); 977 978 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 979 // Make sure that this applies to the correct node result. 980 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 981 continue; 982 983 switch (TypeConstraints[i].ConstraintType) { 984 default: break; 985 case SDTypeConstraint::SDTCisVT: 986 return TypeConstraints[i].x.SDTCisVT_Info.VT; 987 case SDTypeConstraint::SDTCisPtrTy: 988 return MVT::iPTR; 989 } 990 } 991 return MVT::Other; 992} 993 994//===----------------------------------------------------------------------===// 995// TreePatternNode implementation 996// 997 998TreePatternNode::~TreePatternNode() { 999#if 0 // FIXME: implement refcounted tree nodes! 1000 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1001 delete getChild(i); 1002#endif 1003} 1004 1005static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1006 if (Operator->getName() == "set" || 1007 Operator->getName() == "implicit") 1008 return 0; // All return nothing. 1009 1010 if (Operator->isSubClassOf("Intrinsic")) 1011 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1012 1013 if (Operator->isSubClassOf("SDNode")) 1014 return CDP.getSDNodeInfo(Operator).getNumResults(); 1015 1016 if (Operator->isSubClassOf("PatFrag")) { 1017 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1018 // the forward reference case where one pattern fragment references another 1019 // before it is processed. 1020 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1021 return PFRec->getOnlyTree()->getNumTypes(); 1022 1023 // Get the result tree. 1024 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1025 Record *Op = 0; 1026 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 1027 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 1028 assert(Op && "Invalid Fragment"); 1029 return GetNumNodeResults(Op, CDP); 1030 } 1031 1032 if (Operator->isSubClassOf("Instruction")) { 1033 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1034 1035 // FIXME: Should allow access to all the results here. 1036 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1037 1038 // Add on one implicit def if it has a resolvable type. 1039 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1040 ++NumDefsToAdd; 1041 return NumDefsToAdd; 1042 } 1043 1044 if (Operator->isSubClassOf("SDNodeXForm")) 1045 return 1; // FIXME: Generalize SDNodeXForm 1046 1047 Operator->dump(); 1048 errs() << "Unhandled node in GetNumNodeResults\n"; 1049 exit(1); 1050} 1051 1052void TreePatternNode::print(raw_ostream &OS) const { 1053 if (isLeaf()) 1054 OS << *getLeafValue(); 1055 else 1056 OS << '(' << getOperator()->getName(); 1057 1058 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1059 OS << ':' << getExtType(i).getName(); 1060 1061 if (!isLeaf()) { 1062 if (getNumChildren() != 0) { 1063 OS << " "; 1064 getChild(0)->print(OS); 1065 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1066 OS << ", "; 1067 getChild(i)->print(OS); 1068 } 1069 } 1070 OS << ")"; 1071 } 1072 1073 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1074 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1075 if (TransformFn) 1076 OS << "<<X:" << TransformFn->getName() << ">>"; 1077 if (!getName().empty()) 1078 OS << ":$" << getName(); 1079 1080} 1081void TreePatternNode::dump() const { 1082 print(errs()); 1083} 1084 1085/// isIsomorphicTo - Return true if this node is recursively 1086/// isomorphic to the specified node. For this comparison, the node's 1087/// entire state is considered. The assigned name is ignored, since 1088/// nodes with differing names are considered isomorphic. However, if 1089/// the assigned name is present in the dependent variable set, then 1090/// the assigned name is considered significant and the node is 1091/// isomorphic if the names match. 1092bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1093 const MultipleUseVarSet &DepVars) const { 1094 if (N == this) return true; 1095 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1096 getPredicateFns() != N->getPredicateFns() || 1097 getTransformFn() != N->getTransformFn()) 1098 return false; 1099 1100 if (isLeaf()) { 1101 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1102 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1103 return ((DI->getDef() == NDI->getDef()) 1104 && (DepVars.find(getName()) == DepVars.end() 1105 || getName() == N->getName())); 1106 } 1107 } 1108 return getLeafValue() == N->getLeafValue(); 1109 } 1110 1111 if (N->getOperator() != getOperator() || 1112 N->getNumChildren() != getNumChildren()) return false; 1113 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1114 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1115 return false; 1116 return true; 1117} 1118 1119/// clone - Make a copy of this tree and all of its children. 1120/// 1121TreePatternNode *TreePatternNode::clone() const { 1122 TreePatternNode *New; 1123 if (isLeaf()) { 1124 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1125 } else { 1126 std::vector<TreePatternNode*> CChildren; 1127 CChildren.reserve(Children.size()); 1128 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1129 CChildren.push_back(getChild(i)->clone()); 1130 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1131 } 1132 New->setName(getName()); 1133 New->Types = Types; 1134 New->setPredicateFns(getPredicateFns()); 1135 New->setTransformFn(getTransformFn()); 1136 return New; 1137} 1138 1139/// RemoveAllTypes - Recursively strip all the types of this tree. 1140void TreePatternNode::RemoveAllTypes() { 1141 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1142 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1143 if (isLeaf()) return; 1144 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1145 getChild(i)->RemoveAllTypes(); 1146} 1147 1148 1149/// SubstituteFormalArguments - Replace the formal arguments in this tree 1150/// with actual values specified by ArgMap. 1151void TreePatternNode:: 1152SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1153 if (isLeaf()) return; 1154 1155 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1156 TreePatternNode *Child = getChild(i); 1157 if (Child->isLeaf()) { 1158 Init *Val = Child->getLeafValue(); 1159 if (dynamic_cast<DefInit*>(Val) && 1160 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 1161 // We found a use of a formal argument, replace it with its value. 1162 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1163 assert(NewChild && "Couldn't find formal argument!"); 1164 assert((Child->getPredicateFns().empty() || 1165 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1166 "Non-empty child predicate clobbered!"); 1167 setChild(i, NewChild); 1168 } 1169 } else { 1170 getChild(i)->SubstituteFormalArguments(ArgMap); 1171 } 1172 } 1173} 1174 1175 1176/// InlinePatternFragments - If this pattern refers to any pattern 1177/// fragments, inline them into place, giving us a pattern without any 1178/// PatFrag references. 1179TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1180 if (isLeaf()) return this; // nothing to do. 1181 Record *Op = getOperator(); 1182 1183 if (!Op->isSubClassOf("PatFrag")) { 1184 // Just recursively inline children nodes. 1185 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1186 TreePatternNode *Child = getChild(i); 1187 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1188 1189 assert((Child->getPredicateFns().empty() || 1190 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1191 "Non-empty child predicate clobbered!"); 1192 1193 setChild(i, NewChild); 1194 } 1195 return this; 1196 } 1197 1198 // Otherwise, we found a reference to a fragment. First, look up its 1199 // TreePattern record. 1200 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1201 1202 // Verify that we are passing the right number of operands. 1203 if (Frag->getNumArgs() != Children.size()) 1204 TP.error("'" + Op->getName() + "' fragment requires " + 1205 utostr(Frag->getNumArgs()) + " operands!"); 1206 1207 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1208 1209 TreePredicateFn PredFn(Frag); 1210 if (!PredFn.isAlwaysTrue()) 1211 FragTree->addPredicateFn(PredFn); 1212 1213 // Resolve formal arguments to their actual value. 1214 if (Frag->getNumArgs()) { 1215 // Compute the map of formal to actual arguments. 1216 std::map<std::string, TreePatternNode*> ArgMap; 1217 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1218 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1219 1220 FragTree->SubstituteFormalArguments(ArgMap); 1221 } 1222 1223 FragTree->setName(getName()); 1224 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1225 FragTree->UpdateNodeType(i, getExtType(i), TP); 1226 1227 // Transfer in the old predicates. 1228 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1229 FragTree->addPredicateFn(getPredicateFns()[i]); 1230 1231 // Get a new copy of this fragment to stitch into here. 1232 //delete this; // FIXME: implement refcounting! 1233 1234 // The fragment we inlined could have recursive inlining that is needed. See 1235 // if there are any pattern fragments in it and inline them as needed. 1236 return FragTree->InlinePatternFragments(TP); 1237} 1238 1239/// getImplicitType - Check to see if the specified record has an implicit 1240/// type which should be applied to it. This will infer the type of register 1241/// references from the register file information, for example. 1242/// 1243static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1244 bool NotRegisters, TreePattern &TP) { 1245 // Check to see if this is a register operand. 1246 if (R->isSubClassOf("RegisterOperand")) { 1247 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1248 if (NotRegisters) 1249 return EEVT::TypeSet(); // Unknown. 1250 Record *RegClass = R->getValueAsDef("RegClass"); 1251 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1252 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1253 } 1254 1255 // Check to see if this is a register or a register class. 1256 if (R->isSubClassOf("RegisterClass")) { 1257 assert(ResNo == 0 && "Regclass ref only has one result!"); 1258 if (NotRegisters) 1259 return EEVT::TypeSet(); // Unknown. 1260 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1261 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1262 } 1263 1264 if (R->isSubClassOf("PatFrag")) { 1265 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1266 // Pattern fragment types will be resolved when they are inlined. 1267 return EEVT::TypeSet(); // Unknown. 1268 } 1269 1270 if (R->isSubClassOf("Register")) { 1271 assert(ResNo == 0 && "Registers only produce one result!"); 1272 if (NotRegisters) 1273 return EEVT::TypeSet(); // Unknown. 1274 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1275 return EEVT::TypeSet(T.getRegisterVTs(R)); 1276 } 1277 1278 if (R->isSubClassOf("SubRegIndex")) { 1279 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1280 return EEVT::TypeSet(); 1281 } 1282 1283 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1284 assert(ResNo == 0 && "This node only has one result!"); 1285 // Using a VTSDNode or CondCodeSDNode. 1286 return EEVT::TypeSet(MVT::Other, TP); 1287 } 1288 1289 if (R->isSubClassOf("ComplexPattern")) { 1290 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1291 if (NotRegisters) 1292 return EEVT::TypeSet(); // Unknown. 1293 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1294 TP); 1295 } 1296 if (R->isSubClassOf("PointerLikeRegClass")) { 1297 assert(ResNo == 0 && "Regclass can only have one result!"); 1298 return EEVT::TypeSet(MVT::iPTR, TP); 1299 } 1300 1301 if (R->getName() == "node" || R->getName() == "srcvalue" || 1302 R->getName() == "zero_reg") { 1303 // Placeholder. 1304 return EEVT::TypeSet(); // Unknown. 1305 } 1306 1307 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1308 return EEVT::TypeSet(MVT::Other, TP); 1309} 1310 1311 1312/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1313/// CodeGenIntrinsic information for it, otherwise return a null pointer. 1314const CodeGenIntrinsic *TreePatternNode:: 1315getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1316 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1317 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1318 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1319 return 0; 1320 1321 unsigned IID = 1322 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1323 return &CDP.getIntrinsicInfo(IID); 1324} 1325 1326/// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1327/// return the ComplexPattern information, otherwise return null. 1328const ComplexPattern * 1329TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1330 if (!isLeaf()) return 0; 1331 1332 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1333 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1334 return &CGP.getComplexPattern(DI->getDef()); 1335 return 0; 1336} 1337 1338/// NodeHasProperty - Return true if this node has the specified property. 1339bool TreePatternNode::NodeHasProperty(SDNP Property, 1340 const CodeGenDAGPatterns &CGP) const { 1341 if (isLeaf()) { 1342 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1343 return CP->hasProperty(Property); 1344 return false; 1345 } 1346 1347 Record *Operator = getOperator(); 1348 if (!Operator->isSubClassOf("SDNode")) return false; 1349 1350 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1351} 1352 1353 1354 1355 1356/// TreeHasProperty - Return true if any node in this tree has the specified 1357/// property. 1358bool TreePatternNode::TreeHasProperty(SDNP Property, 1359 const CodeGenDAGPatterns &CGP) const { 1360 if (NodeHasProperty(Property, CGP)) 1361 return true; 1362 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1363 if (getChild(i)->TreeHasProperty(Property, CGP)) 1364 return true; 1365 return false; 1366} 1367 1368/// isCommutativeIntrinsic - Return true if the node corresponds to a 1369/// commutative intrinsic. 1370bool 1371TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1372 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1373 return Int->isCommutative; 1374 return false; 1375} 1376 1377 1378/// ApplyTypeConstraints - Apply all of the type constraints relevant to 1379/// this node and its children in the tree. This returns true if it makes a 1380/// change, false otherwise. If a type contradiction is found, throw an 1381/// exception. 1382bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1383 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1384 if (isLeaf()) { 1385 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1386 // If it's a regclass or something else known, include the type. 1387 bool MadeChange = false; 1388 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1389 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1390 NotRegisters, TP), TP); 1391 return MadeChange; 1392 } 1393 1394 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1395 assert(Types.size() == 1 && "Invalid IntInit"); 1396 1397 // Int inits are always integers. :) 1398 bool MadeChange = Types[0].EnforceInteger(TP); 1399 1400 if (!Types[0].isConcrete()) 1401 return MadeChange; 1402 1403 MVT::SimpleValueType VT = getType(0); 1404 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1405 return MadeChange; 1406 1407 unsigned Size = EVT(VT).getSizeInBits(); 1408 // Make sure that the value is representable for this type. 1409 if (Size >= 32) return MadeChange; 1410 1411 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1412 if (Val == II->getValue()) return MadeChange; 1413 1414 // If sign-extended doesn't fit, does it fit as unsigned? 1415 unsigned ValueMask; 1416 unsigned UnsignedVal; 1417 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1418 UnsignedVal = unsigned(II->getValue()); 1419 1420 if ((ValueMask & UnsignedVal) == UnsignedVal) 1421 return MadeChange; 1422 1423 TP.error("Integer value '" + itostr(II->getValue())+ 1424 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1425 return MadeChange; 1426 } 1427 return false; 1428 } 1429 1430 // special handling for set, which isn't really an SDNode. 1431 if (getOperator()->getName() == "set") { 1432 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1433 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1434 unsigned NC = getNumChildren(); 1435 1436 TreePatternNode *SetVal = getChild(NC-1); 1437 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1438 1439 for (unsigned i = 0; i < NC-1; ++i) { 1440 TreePatternNode *Child = getChild(i); 1441 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1442 1443 // Types of operands must match. 1444 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1445 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1446 } 1447 return MadeChange; 1448 } 1449 1450 if (getOperator()->getName() == "implicit") { 1451 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1452 1453 bool MadeChange = false; 1454 for (unsigned i = 0; i < getNumChildren(); ++i) 1455 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1456 return MadeChange; 1457 } 1458 1459 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1460 bool MadeChange = false; 1461 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1462 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1463 1464 assert(getChild(0)->getNumTypes() == 1 && 1465 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1466 1467 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1468 // what type it gets, so if it didn't get a concrete type just give it the 1469 // first viable type from the reg class. 1470 if (!getChild(1)->hasTypeSet(0) && 1471 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1472 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1473 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1474 } 1475 return MadeChange; 1476 } 1477 1478 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1479 bool MadeChange = false; 1480 1481 // Apply the result type to the node. 1482 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1483 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1484 1485 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1486 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1487 1488 if (getNumChildren() != NumParamVTs + 1) 1489 TP.error("Intrinsic '" + Int->Name + "' expects " + 1490 utostr(NumParamVTs) + " operands, not " + 1491 utostr(getNumChildren() - 1) + " operands!"); 1492 1493 // Apply type info to the intrinsic ID. 1494 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1495 1496 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1497 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1498 1499 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1500 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1501 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1502 } 1503 return MadeChange; 1504 } 1505 1506 if (getOperator()->isSubClassOf("SDNode")) { 1507 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1508 1509 // Check that the number of operands is sane. Negative operands -> varargs. 1510 if (NI.getNumOperands() >= 0 && 1511 getNumChildren() != (unsigned)NI.getNumOperands()) 1512 TP.error(getOperator()->getName() + " node requires exactly " + 1513 itostr(NI.getNumOperands()) + " operands!"); 1514 1515 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1516 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1517 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1518 return MadeChange; 1519 } 1520 1521 if (getOperator()->isSubClassOf("Instruction")) { 1522 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1523 CodeGenInstruction &InstInfo = 1524 CDP.getTargetInfo().getInstruction(getOperator()); 1525 1526 bool MadeChange = false; 1527 1528 // Apply the result types to the node, these come from the things in the 1529 // (outs) list of the instruction. 1530 // FIXME: Cap at one result so far. 1531 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1532 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1533 Record *ResultNode = Inst.getResult(ResNo); 1534 1535 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1536 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1537 } else if (ResultNode->isSubClassOf("RegisterOperand")) { 1538 Record *RegClass = ResultNode->getValueAsDef("RegClass"); 1539 const CodeGenRegisterClass &RC = 1540 CDP.getTargetInfo().getRegisterClass(RegClass); 1541 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1542 } else if (ResultNode->getName() == "unknown") { 1543 // Nothing to do. 1544 } else { 1545 assert(ResultNode->isSubClassOf("RegisterClass") && 1546 "Operands should be register classes!"); 1547 const CodeGenRegisterClass &RC = 1548 CDP.getTargetInfo().getRegisterClass(ResultNode); 1549 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1550 } 1551 } 1552 1553 // If the instruction has implicit defs, we apply the first one as a result. 1554 // FIXME: This sucks, it should apply all implicit defs. 1555 if (!InstInfo.ImplicitDefs.empty()) { 1556 unsigned ResNo = NumResultsToAdd; 1557 1558 // FIXME: Generalize to multiple possible types and multiple possible 1559 // ImplicitDefs. 1560 MVT::SimpleValueType VT = 1561 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1562 1563 if (VT != MVT::Other) 1564 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1565 } 1566 1567 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1568 // be the same. 1569 if (getOperator()->getName() == "INSERT_SUBREG") { 1570 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1571 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1572 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1573 } 1574 1575 unsigned ChildNo = 0; 1576 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1577 Record *OperandNode = Inst.getOperand(i); 1578 1579 // If the instruction expects a predicate or optional def operand, we 1580 // codegen this by setting the operand to it's default value if it has a 1581 // non-empty DefaultOps field. 1582 if ((OperandNode->isSubClassOf("PredicateOperand") || 1583 OperandNode->isSubClassOf("OptionalDefOperand")) && 1584 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1585 continue; 1586 1587 // Verify that we didn't run out of provided operands. 1588 if (ChildNo >= getNumChildren()) 1589 TP.error("Instruction '" + getOperator()->getName() + 1590 "' expects more operands than were provided."); 1591 1592 MVT::SimpleValueType VT; 1593 TreePatternNode *Child = getChild(ChildNo++); 1594 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1595 1596 if (OperandNode->isSubClassOf("RegisterClass")) { 1597 const CodeGenRegisterClass &RC = 1598 CDP.getTargetInfo().getRegisterClass(OperandNode); 1599 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1600 } else if (OperandNode->isSubClassOf("RegisterOperand")) { 1601 Record *RegClass = OperandNode->getValueAsDef("RegClass"); 1602 const CodeGenRegisterClass &RC = 1603 CDP.getTargetInfo().getRegisterClass(RegClass); 1604 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1605 } else if (OperandNode->isSubClassOf("Operand")) { 1606 VT = getValueType(OperandNode->getValueAsDef("Type")); 1607 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1608 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1609 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1610 } else if (OperandNode->getName() == "unknown") { 1611 // Nothing to do. 1612 } else { 1613 assert(0 && "Unknown operand type!"); 1614 abort(); 1615 } 1616 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1617 } 1618 1619 if (ChildNo != getNumChildren()) 1620 TP.error("Instruction '" + getOperator()->getName() + 1621 "' was provided too many operands!"); 1622 1623 return MadeChange; 1624 } 1625 1626 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1627 1628 // Node transforms always take one operand. 1629 if (getNumChildren() != 1) 1630 TP.error("Node transform '" + getOperator()->getName() + 1631 "' requires one operand!"); 1632 1633 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1634 1635 1636 // If either the output or input of the xform does not have exact 1637 // type info. We assume they must be the same. Otherwise, it is perfectly 1638 // legal to transform from one type to a completely different type. 1639#if 0 1640 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1641 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1642 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1643 return MadeChange; 1644 } 1645#endif 1646 return MadeChange; 1647} 1648 1649/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1650/// RHS of a commutative operation, not the on LHS. 1651static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1652 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1653 return true; 1654 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1655 return true; 1656 return false; 1657} 1658 1659 1660/// canPatternMatch - If it is impossible for this pattern to match on this 1661/// target, fill in Reason and return false. Otherwise, return true. This is 1662/// used as a sanity check for .td files (to prevent people from writing stuff 1663/// that can never possibly work), and to prevent the pattern permuter from 1664/// generating stuff that is useless. 1665bool TreePatternNode::canPatternMatch(std::string &Reason, 1666 const CodeGenDAGPatterns &CDP) { 1667 if (isLeaf()) return true; 1668 1669 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1670 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1671 return false; 1672 1673 // If this is an intrinsic, handle cases that would make it not match. For 1674 // example, if an operand is required to be an immediate. 1675 if (getOperator()->isSubClassOf("Intrinsic")) { 1676 // TODO: 1677 return true; 1678 } 1679 1680 // If this node is a commutative operator, check that the LHS isn't an 1681 // immediate. 1682 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1683 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1684 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1685 // Scan all of the operands of the node and make sure that only the last one 1686 // is a constant node, unless the RHS also is. 1687 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1688 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1689 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1690 if (OnlyOnRHSOfCommutative(getChild(i))) { 1691 Reason="Immediate value must be on the RHS of commutative operators!"; 1692 return false; 1693 } 1694 } 1695 } 1696 1697 return true; 1698} 1699 1700//===----------------------------------------------------------------------===// 1701// TreePattern implementation 1702// 1703 1704TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1705 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1706 isInputPattern = isInput; 1707 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1708 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1709} 1710 1711TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1712 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1713 isInputPattern = isInput; 1714 Trees.push_back(ParseTreePattern(Pat, "")); 1715} 1716 1717TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1718 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1719 isInputPattern = isInput; 1720 Trees.push_back(Pat); 1721} 1722 1723void TreePattern::error(const std::string &Msg) const { 1724 dump(); 1725 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1726} 1727 1728void TreePattern::ComputeNamedNodes() { 1729 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1730 ComputeNamedNodes(Trees[i]); 1731} 1732 1733void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1734 if (!N->getName().empty()) 1735 NamedNodes[N->getName()].push_back(N); 1736 1737 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1738 ComputeNamedNodes(N->getChild(i)); 1739} 1740 1741 1742TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1743 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1744 Record *R = DI->getDef(); 1745 1746 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1747 // TreePatternNode of its own. For example: 1748 /// (foo GPR, imm) -> (foo GPR, (imm)) 1749 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1750 return ParseTreePattern( 1751 DagInit::get(DI, "", 1752 std::vector<std::pair<Init*, std::string> >()), 1753 OpName); 1754 1755 // Input argument? 1756 TreePatternNode *Res = new TreePatternNode(DI, 1); 1757 if (R->getName() == "node" && !OpName.empty()) { 1758 if (OpName.empty()) 1759 error("'node' argument requires a name to match with operand list"); 1760 Args.push_back(OpName); 1761 } 1762 1763 Res->setName(OpName); 1764 return Res; 1765 } 1766 1767 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1768 if (!OpName.empty()) 1769 error("Constant int argument should not have a name!"); 1770 return new TreePatternNode(II, 1); 1771 } 1772 1773 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1774 // Turn this into an IntInit. 1775 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1776 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1777 error("Bits value must be constants!"); 1778 return ParseTreePattern(II, OpName); 1779 } 1780 1781 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1782 if (!Dag) { 1783 TheInit->dump(); 1784 error("Pattern has unexpected init kind!"); 1785 } 1786 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1787 if (!OpDef) error("Pattern has unexpected operator type!"); 1788 Record *Operator = OpDef->getDef(); 1789 1790 if (Operator->isSubClassOf("ValueType")) { 1791 // If the operator is a ValueType, then this must be "type cast" of a leaf 1792 // node. 1793 if (Dag->getNumArgs() != 1) 1794 error("Type cast only takes one operand!"); 1795 1796 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1797 1798 // Apply the type cast. 1799 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1800 New->UpdateNodeType(0, getValueType(Operator), *this); 1801 1802 if (!OpName.empty()) 1803 error("ValueType cast should not have a name!"); 1804 return New; 1805 } 1806 1807 // Verify that this is something that makes sense for an operator. 1808 if (!Operator->isSubClassOf("PatFrag") && 1809 !Operator->isSubClassOf("SDNode") && 1810 !Operator->isSubClassOf("Instruction") && 1811 !Operator->isSubClassOf("SDNodeXForm") && 1812 !Operator->isSubClassOf("Intrinsic") && 1813 Operator->getName() != "set" && 1814 Operator->getName() != "implicit") 1815 error("Unrecognized node '" + Operator->getName() + "'!"); 1816 1817 // Check to see if this is something that is illegal in an input pattern. 1818 if (isInputPattern) { 1819 if (Operator->isSubClassOf("Instruction") || 1820 Operator->isSubClassOf("SDNodeXForm")) 1821 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1822 } else { 1823 if (Operator->isSubClassOf("Intrinsic")) 1824 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1825 1826 if (Operator->isSubClassOf("SDNode") && 1827 Operator->getName() != "imm" && 1828 Operator->getName() != "fpimm" && 1829 Operator->getName() != "tglobaltlsaddr" && 1830 Operator->getName() != "tconstpool" && 1831 Operator->getName() != "tjumptable" && 1832 Operator->getName() != "tframeindex" && 1833 Operator->getName() != "texternalsym" && 1834 Operator->getName() != "tblockaddress" && 1835 Operator->getName() != "tglobaladdr" && 1836 Operator->getName() != "bb" && 1837 Operator->getName() != "vt") 1838 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1839 } 1840 1841 std::vector<TreePatternNode*> Children; 1842 1843 // Parse all the operands. 1844 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1845 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1846 1847 // If the operator is an intrinsic, then this is just syntactic sugar for for 1848 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1849 // convert the intrinsic name to a number. 1850 if (Operator->isSubClassOf("Intrinsic")) { 1851 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1852 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1853 1854 // If this intrinsic returns void, it must have side-effects and thus a 1855 // chain. 1856 if (Int.IS.RetVTs.empty()) 1857 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1858 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1859 // Has side-effects, requires chain. 1860 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1861 else // Otherwise, no chain. 1862 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1863 1864 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 1865 Children.insert(Children.begin(), IIDNode); 1866 } 1867 1868 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1869 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1870 Result->setName(OpName); 1871 1872 if (!Dag->getName().empty()) { 1873 assert(Result->getName().empty()); 1874 Result->setName(Dag->getName()); 1875 } 1876 return Result; 1877} 1878 1879/// SimplifyTree - See if we can simplify this tree to eliminate something that 1880/// will never match in favor of something obvious that will. This is here 1881/// strictly as a convenience to target authors because it allows them to write 1882/// more type generic things and have useless type casts fold away. 1883/// 1884/// This returns true if any change is made. 1885static bool SimplifyTree(TreePatternNode *&N) { 1886 if (N->isLeaf()) 1887 return false; 1888 1889 // If we have a bitconvert with a resolved type and if the source and 1890 // destination types are the same, then the bitconvert is useless, remove it. 1891 if (N->getOperator()->getName() == "bitconvert" && 1892 N->getExtType(0).isConcrete() && 1893 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1894 N->getName().empty()) { 1895 N = N->getChild(0); 1896 SimplifyTree(N); 1897 return true; 1898 } 1899 1900 // Walk all children. 1901 bool MadeChange = false; 1902 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1903 TreePatternNode *Child = N->getChild(i); 1904 MadeChange |= SimplifyTree(Child); 1905 N->setChild(i, Child); 1906 } 1907 return MadeChange; 1908} 1909 1910 1911 1912/// InferAllTypes - Infer/propagate as many types throughout the expression 1913/// patterns as possible. Return true if all types are inferred, false 1914/// otherwise. Throw an exception if a type contradiction is found. 1915bool TreePattern:: 1916InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1917 if (NamedNodes.empty()) 1918 ComputeNamedNodes(); 1919 1920 bool MadeChange = true; 1921 while (MadeChange) { 1922 MadeChange = false; 1923 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1924 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1925 MadeChange |= SimplifyTree(Trees[i]); 1926 } 1927 1928 // If there are constraints on our named nodes, apply them. 1929 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1930 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1931 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1932 1933 // If we have input named node types, propagate their types to the named 1934 // values here. 1935 if (InNamedTypes) { 1936 // FIXME: Should be error? 1937 assert(InNamedTypes->count(I->getKey()) && 1938 "Named node in output pattern but not input pattern?"); 1939 1940 const SmallVectorImpl<TreePatternNode*> &InNodes = 1941 InNamedTypes->find(I->getKey())->second; 1942 1943 // The input types should be fully resolved by now. 1944 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1945 // If this node is a register class, and it is the root of the pattern 1946 // then we're mapping something onto an input register. We allow 1947 // changing the type of the input register in this case. This allows 1948 // us to match things like: 1949 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1950 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1951 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1952 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 1953 DI->getDef()->isSubClassOf("RegisterOperand"))) 1954 continue; 1955 } 1956 1957 assert(Nodes[i]->getNumTypes() == 1 && 1958 InNodes[0]->getNumTypes() == 1 && 1959 "FIXME: cannot name multiple result nodes yet"); 1960 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1961 *this); 1962 } 1963 } 1964 1965 // If there are multiple nodes with the same name, they must all have the 1966 // same type. 1967 if (I->second.size() > 1) { 1968 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1969 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1970 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1971 "FIXME: cannot name multiple result nodes yet"); 1972 1973 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1974 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1975 } 1976 } 1977 } 1978 } 1979 1980 bool HasUnresolvedTypes = false; 1981 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1982 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1983 return !HasUnresolvedTypes; 1984} 1985 1986void TreePattern::print(raw_ostream &OS) const { 1987 OS << getRecord()->getName(); 1988 if (!Args.empty()) { 1989 OS << "(" << Args[0]; 1990 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1991 OS << ", " << Args[i]; 1992 OS << ")"; 1993 } 1994 OS << ": "; 1995 1996 if (Trees.size() > 1) 1997 OS << "[\n"; 1998 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1999 OS << "\t"; 2000 Trees[i]->print(OS); 2001 OS << "\n"; 2002 } 2003 2004 if (Trees.size() > 1) 2005 OS << "]\n"; 2006} 2007 2008void TreePattern::dump() const { print(errs()); } 2009 2010//===----------------------------------------------------------------------===// 2011// CodeGenDAGPatterns implementation 2012// 2013 2014CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2015 Records(R), Target(R) { 2016 2017 Intrinsics = LoadIntrinsics(Records, false); 2018 TgtIntrinsics = LoadIntrinsics(Records, true); 2019 ParseNodeInfo(); 2020 ParseNodeTransforms(); 2021 ParseComplexPatterns(); 2022 ParsePatternFragments(); 2023 ParseDefaultOperands(); 2024 ParseInstructions(); 2025 ParsePatterns(); 2026 2027 // Generate variants. For example, commutative patterns can match 2028 // multiple ways. Add them to PatternsToMatch as well. 2029 GenerateVariants(); 2030 2031 // Infer instruction flags. For example, we can detect loads, 2032 // stores, and side effects in many cases by examining an 2033 // instruction's pattern. 2034 InferInstructionFlags(); 2035} 2036 2037CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2038 for (pf_iterator I = PatternFragments.begin(), 2039 E = PatternFragments.end(); I != E; ++I) 2040 delete I->second; 2041} 2042 2043 2044Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2045 Record *N = Records.getDef(Name); 2046 if (!N || !N->isSubClassOf("SDNode")) { 2047 errs() << "Error getting SDNode '" << Name << "'!\n"; 2048 exit(1); 2049 } 2050 return N; 2051} 2052 2053// Parse all of the SDNode definitions for the target, populating SDNodes. 2054void CodeGenDAGPatterns::ParseNodeInfo() { 2055 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2056 while (!Nodes.empty()) { 2057 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2058 Nodes.pop_back(); 2059 } 2060 2061 // Get the builtin intrinsic nodes. 2062 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2063 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2064 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2065} 2066 2067/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2068/// map, and emit them to the file as functions. 2069void CodeGenDAGPatterns::ParseNodeTransforms() { 2070 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2071 while (!Xforms.empty()) { 2072 Record *XFormNode = Xforms.back(); 2073 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2074 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 2075 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2076 2077 Xforms.pop_back(); 2078 } 2079} 2080 2081void CodeGenDAGPatterns::ParseComplexPatterns() { 2082 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2083 while (!AMs.empty()) { 2084 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2085 AMs.pop_back(); 2086 } 2087} 2088 2089 2090/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2091/// file, building up the PatternFragments map. After we've collected them all, 2092/// inline fragments together as necessary, so that there are no references left 2093/// inside a pattern fragment to a pattern fragment. 2094/// 2095void CodeGenDAGPatterns::ParsePatternFragments() { 2096 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2097 2098 // First step, parse all of the fragments. 2099 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2100 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2101 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2102 PatternFragments[Fragments[i]] = P; 2103 2104 // Validate the argument list, converting it to set, to discard duplicates. 2105 std::vector<std::string> &Args = P->getArgList(); 2106 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2107 2108 if (OperandsSet.count("")) 2109 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2110 2111 // Parse the operands list. 2112 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2113 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 2114 // Special cases: ops == outs == ins. Different names are used to 2115 // improve readability. 2116 if (!OpsOp || 2117 (OpsOp->getDef()->getName() != "ops" && 2118 OpsOp->getDef()->getName() != "outs" && 2119 OpsOp->getDef()->getName() != "ins")) 2120 P->error("Operands list should start with '(ops ... '!"); 2121 2122 // Copy over the arguments. 2123 Args.clear(); 2124 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2125 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 2126 static_cast<DefInit*>(OpsList->getArg(j))-> 2127 getDef()->getName() != "node") 2128 P->error("Operands list should all be 'node' values."); 2129 if (OpsList->getArgName(j).empty()) 2130 P->error("Operands list should have names for each operand!"); 2131 if (!OperandsSet.count(OpsList->getArgName(j))) 2132 P->error("'" + OpsList->getArgName(j) + 2133 "' does not occur in pattern or was multiply specified!"); 2134 OperandsSet.erase(OpsList->getArgName(j)); 2135 Args.push_back(OpsList->getArgName(j)); 2136 } 2137 2138 if (!OperandsSet.empty()) 2139 P->error("Operands list does not contain an entry for operand '" + 2140 *OperandsSet.begin() + "'!"); 2141 2142 // If there is a code init for this fragment, keep track of the fact that 2143 // this fragment uses it. 2144 TreePredicateFn PredFn(P); 2145 if (!PredFn.isAlwaysTrue()) 2146 P->getOnlyTree()->addPredicateFn(PredFn); 2147 2148 // If there is a node transformation corresponding to this, keep track of 2149 // it. 2150 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2151 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2152 P->getOnlyTree()->setTransformFn(Transform); 2153 } 2154 2155 // Now that we've parsed all of the tree fragments, do a closure on them so 2156 // that there are not references to PatFrags left inside of them. 2157 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2158 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2159 ThePat->InlinePatternFragments(); 2160 2161 // Infer as many types as possible. Don't worry about it if we don't infer 2162 // all of them, some may depend on the inputs of the pattern. 2163 try { 2164 ThePat->InferAllTypes(); 2165 } catch (...) { 2166 // If this pattern fragment is not supported by this target (no types can 2167 // satisfy its constraints), just ignore it. If the bogus pattern is 2168 // actually used by instructions, the type consistency error will be 2169 // reported there. 2170 } 2171 2172 // If debugging, print out the pattern fragment result. 2173 DEBUG(ThePat->dump()); 2174 } 2175} 2176 2177void CodeGenDAGPatterns::ParseDefaultOperands() { 2178 std::vector<Record*> DefaultOps[2]; 2179 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 2180 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 2181 2182 // Find some SDNode. 2183 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2184 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2185 2186 for (unsigned iter = 0; iter != 2; ++iter) { 2187 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 2188 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 2189 2190 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2191 // SomeSDnode so that we can parse this. 2192 std::vector<std::pair<Init*, std::string> > Ops; 2193 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2194 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2195 DefaultInfo->getArgName(op))); 2196 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2197 2198 // Create a TreePattern to parse this. 2199 TreePattern P(DefaultOps[iter][i], DI, false, *this); 2200 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2201 2202 // Copy the operands over into a DAGDefaultOperand. 2203 DAGDefaultOperand DefaultOpInfo; 2204 2205 TreePatternNode *T = P.getTree(0); 2206 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2207 TreePatternNode *TPN = T->getChild(op); 2208 while (TPN->ApplyTypeConstraints(P, false)) 2209 /* Resolve all types */; 2210 2211 if (TPN->ContainsUnresolvedType()) { 2212 if (iter == 0) 2213 throw "Value #" + utostr(i) + " of PredicateOperand '" + 2214 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2215 else 2216 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 2217 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2218 } 2219 DefaultOpInfo.DefaultOps.push_back(TPN); 2220 } 2221 2222 // Insert it into the DefaultOperands map so we can find it later. 2223 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 2224 } 2225 } 2226} 2227 2228/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2229/// instruction input. Return true if this is a real use. 2230static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2231 std::map<std::string, TreePatternNode*> &InstInputs) { 2232 // No name -> not interesting. 2233 if (Pat->getName().empty()) { 2234 if (Pat->isLeaf()) { 2235 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2236 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2237 DI->getDef()->isSubClassOf("RegisterOperand"))) 2238 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2239 } 2240 return false; 2241 } 2242 2243 Record *Rec; 2244 if (Pat->isLeaf()) { 2245 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2246 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2247 Rec = DI->getDef(); 2248 } else { 2249 Rec = Pat->getOperator(); 2250 } 2251 2252 // SRCVALUE nodes are ignored. 2253 if (Rec->getName() == "srcvalue") 2254 return false; 2255 2256 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2257 if (!Slot) { 2258 Slot = Pat; 2259 return true; 2260 } 2261 Record *SlotRec; 2262 if (Slot->isLeaf()) { 2263 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2264 } else { 2265 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2266 SlotRec = Slot->getOperator(); 2267 } 2268 2269 // Ensure that the inputs agree if we've already seen this input. 2270 if (Rec != SlotRec) 2271 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2272 if (Slot->getExtTypes() != Pat->getExtTypes()) 2273 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2274 return true; 2275} 2276 2277/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2278/// part of "I", the instruction), computing the set of inputs and outputs of 2279/// the pattern. Report errors if we see anything naughty. 2280void CodeGenDAGPatterns:: 2281FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2282 std::map<std::string, TreePatternNode*> &InstInputs, 2283 std::map<std::string, TreePatternNode*>&InstResults, 2284 std::vector<Record*> &InstImpResults) { 2285 if (Pat->isLeaf()) { 2286 bool isUse = HandleUse(I, Pat, InstInputs); 2287 if (!isUse && Pat->getTransformFn()) 2288 I->error("Cannot specify a transform function for a non-input value!"); 2289 return; 2290 } 2291 2292 if (Pat->getOperator()->getName() == "implicit") { 2293 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2294 TreePatternNode *Dest = Pat->getChild(i); 2295 if (!Dest->isLeaf()) 2296 I->error("implicitly defined value should be a register!"); 2297 2298 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2299 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2300 I->error("implicitly defined value should be a register!"); 2301 InstImpResults.push_back(Val->getDef()); 2302 } 2303 return; 2304 } 2305 2306 if (Pat->getOperator()->getName() != "set") { 2307 // If this is not a set, verify that the children nodes are not void typed, 2308 // and recurse. 2309 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2310 if (Pat->getChild(i)->getNumTypes() == 0) 2311 I->error("Cannot have void nodes inside of patterns!"); 2312 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2313 InstImpResults); 2314 } 2315 2316 // If this is a non-leaf node with no children, treat it basically as if 2317 // it were a leaf. This handles nodes like (imm). 2318 bool isUse = HandleUse(I, Pat, InstInputs); 2319 2320 if (!isUse && Pat->getTransformFn()) 2321 I->error("Cannot specify a transform function for a non-input value!"); 2322 return; 2323 } 2324 2325 // Otherwise, this is a set, validate and collect instruction results. 2326 if (Pat->getNumChildren() == 0) 2327 I->error("set requires operands!"); 2328 2329 if (Pat->getTransformFn()) 2330 I->error("Cannot specify a transform function on a set node!"); 2331 2332 // Check the set destinations. 2333 unsigned NumDests = Pat->getNumChildren()-1; 2334 for (unsigned i = 0; i != NumDests; ++i) { 2335 TreePatternNode *Dest = Pat->getChild(i); 2336 if (!Dest->isLeaf()) 2337 I->error("set destination should be a register!"); 2338 2339 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2340 if (!Val) 2341 I->error("set destination should be a register!"); 2342 2343 if (Val->getDef()->isSubClassOf("RegisterClass") || 2344 Val->getDef()->isSubClassOf("RegisterOperand") || 2345 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2346 if (Dest->getName().empty()) 2347 I->error("set destination must have a name!"); 2348 if (InstResults.count(Dest->getName())) 2349 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2350 InstResults[Dest->getName()] = Dest; 2351 } else if (Val->getDef()->isSubClassOf("Register")) { 2352 InstImpResults.push_back(Val->getDef()); 2353 } else { 2354 I->error("set destination should be a register!"); 2355 } 2356 } 2357 2358 // Verify and collect info from the computation. 2359 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2360 InstInputs, InstResults, InstImpResults); 2361} 2362 2363//===----------------------------------------------------------------------===// 2364// Instruction Analysis 2365//===----------------------------------------------------------------------===// 2366 2367class InstAnalyzer { 2368 const CodeGenDAGPatterns &CDP; 2369 bool &mayStore; 2370 bool &mayLoad; 2371 bool &IsBitcast; 2372 bool &HasSideEffects; 2373 bool &IsVariadic; 2374public: 2375 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2376 bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv) 2377 : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc), 2378 HasSideEffects(hse), IsVariadic(isv) { 2379 } 2380 2381 /// Analyze - Analyze the specified instruction, returning true if the 2382 /// instruction had a pattern. 2383 bool Analyze(Record *InstRecord) { 2384 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2385 if (Pattern == 0) { 2386 HasSideEffects = 1; 2387 return false; // No pattern. 2388 } 2389 2390 // FIXME: Assume only the first tree is the pattern. The others are clobber 2391 // nodes. 2392 AnalyzeNode(Pattern->getTree(0)); 2393 return true; 2394 } 2395 2396private: 2397 bool IsNodeBitcast(const TreePatternNode *N) const { 2398 if (HasSideEffects || mayLoad || mayStore || IsVariadic) 2399 return false; 2400 2401 if (N->getNumChildren() != 2) 2402 return false; 2403 2404 const TreePatternNode *N0 = N->getChild(0); 2405 if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) 2406 return false; 2407 2408 const TreePatternNode *N1 = N->getChild(1); 2409 if (N1->isLeaf()) 2410 return false; 2411 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2412 return false; 2413 2414 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2415 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2416 return false; 2417 return OpInfo.getEnumName() == "ISD::BITCAST"; 2418 } 2419 2420 void AnalyzeNode(const TreePatternNode *N) { 2421 if (N->isLeaf()) { 2422 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2423 Record *LeafRec = DI->getDef(); 2424 // Handle ComplexPattern leaves. 2425 if (LeafRec->isSubClassOf("ComplexPattern")) { 2426 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2427 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2428 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2429 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2430 } 2431 } 2432 return; 2433 } 2434 2435 // Analyze children. 2436 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2437 AnalyzeNode(N->getChild(i)); 2438 2439 // Ignore set nodes, which are not SDNodes. 2440 if (N->getOperator()->getName() == "set") { 2441 IsBitcast = IsNodeBitcast(N); 2442 return; 2443 } 2444 2445 // Get information about the SDNode for the operator. 2446 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2447 2448 // Notice properties of the node. 2449 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2450 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2451 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2452 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2453 2454 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2455 // If this is an intrinsic, analyze it. 2456 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2457 mayLoad = true;// These may load memory. 2458 2459 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2460 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2461 2462 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2463 // WriteMem intrinsics can have other strange effects. 2464 HasSideEffects = true; 2465 } 2466 } 2467 2468}; 2469 2470static void InferFromPattern(const CodeGenInstruction &Inst, 2471 bool &MayStore, bool &MayLoad, 2472 bool &IsBitcast, 2473 bool &HasSideEffects, bool &IsVariadic, 2474 const CodeGenDAGPatterns &CDP) { 2475 MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false; 2476 2477 bool HadPattern = 2478 InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic) 2479 .Analyze(Inst.TheDef); 2480 2481 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2482 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2483 // If we decided that this is a store from the pattern, then the .td file 2484 // entry is redundant. 2485 if (MayStore) 2486 fprintf(stderr, 2487 "Warning: mayStore flag explicitly set on instruction '%s'" 2488 " but flag already inferred from pattern.\n", 2489 Inst.TheDef->getName().c_str()); 2490 MayStore = true; 2491 } 2492 2493 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2494 // If we decided that this is a load from the pattern, then the .td file 2495 // entry is redundant. 2496 if (MayLoad) 2497 fprintf(stderr, 2498 "Warning: mayLoad flag explicitly set on instruction '%s'" 2499 " but flag already inferred from pattern.\n", 2500 Inst.TheDef->getName().c_str()); 2501 MayLoad = true; 2502 } 2503 2504 if (Inst.neverHasSideEffects) { 2505 if (HadPattern) 2506 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2507 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2508 HasSideEffects = false; 2509 } 2510 2511 if (Inst.hasSideEffects) { 2512 if (HasSideEffects) 2513 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2514 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2515 HasSideEffects = true; 2516 } 2517 2518 if (Inst.Operands.isVariadic) 2519 IsVariadic = true; // Can warn if we want. 2520} 2521 2522/// ParseInstructions - Parse all of the instructions, inlining and resolving 2523/// any fragments involved. This populates the Instructions list with fully 2524/// resolved instructions. 2525void CodeGenDAGPatterns::ParseInstructions() { 2526 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2527 2528 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2529 ListInit *LI = 0; 2530 2531 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2532 LI = Instrs[i]->getValueAsListInit("Pattern"); 2533 2534 // If there is no pattern, only collect minimal information about the 2535 // instruction for its operand list. We have to assume that there is one 2536 // result, as we have no detailed info. 2537 if (!LI || LI->getSize() == 0) { 2538 std::vector<Record*> Results; 2539 std::vector<Record*> Operands; 2540 2541 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2542 2543 if (InstInfo.Operands.size() != 0) { 2544 if (InstInfo.Operands.NumDefs == 0) { 2545 // These produce no results 2546 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2547 Operands.push_back(InstInfo.Operands[j].Rec); 2548 } else { 2549 // Assume the first operand is the result. 2550 Results.push_back(InstInfo.Operands[0].Rec); 2551 2552 // The rest are inputs. 2553 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2554 Operands.push_back(InstInfo.Operands[j].Rec); 2555 } 2556 } 2557 2558 // Create and insert the instruction. 2559 std::vector<Record*> ImpResults; 2560 Instructions.insert(std::make_pair(Instrs[i], 2561 DAGInstruction(0, Results, Operands, ImpResults))); 2562 continue; // no pattern. 2563 } 2564 2565 // Parse the instruction. 2566 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2567 // Inline pattern fragments into it. 2568 I->InlinePatternFragments(); 2569 2570 // Infer as many types as possible. If we cannot infer all of them, we can 2571 // never do anything with this instruction pattern: report it to the user. 2572 if (!I->InferAllTypes()) 2573 I->error("Could not infer all types in pattern!"); 2574 2575 // InstInputs - Keep track of all of the inputs of the instruction, along 2576 // with the record they are declared as. 2577 std::map<std::string, TreePatternNode*> InstInputs; 2578 2579 // InstResults - Keep track of all the virtual registers that are 'set' 2580 // in the instruction, including what reg class they are. 2581 std::map<std::string, TreePatternNode*> InstResults; 2582 2583 std::vector<Record*> InstImpResults; 2584 2585 // Verify that the top-level forms in the instruction are of void type, and 2586 // fill in the InstResults map. 2587 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2588 TreePatternNode *Pat = I->getTree(j); 2589 if (Pat->getNumTypes() != 0) 2590 I->error("Top-level forms in instruction pattern should have" 2591 " void types"); 2592 2593 // Find inputs and outputs, and verify the structure of the uses/defs. 2594 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2595 InstImpResults); 2596 } 2597 2598 // Now that we have inputs and outputs of the pattern, inspect the operands 2599 // list for the instruction. This determines the order that operands are 2600 // added to the machine instruction the node corresponds to. 2601 unsigned NumResults = InstResults.size(); 2602 2603 // Parse the operands list from the (ops) list, validating it. 2604 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2605 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2606 2607 // Check that all of the results occur first in the list. 2608 std::vector<Record*> Results; 2609 TreePatternNode *Res0Node = 0; 2610 for (unsigned i = 0; i != NumResults; ++i) { 2611 if (i == CGI.Operands.size()) 2612 I->error("'" + InstResults.begin()->first + 2613 "' set but does not appear in operand list!"); 2614 const std::string &OpName = CGI.Operands[i].Name; 2615 2616 // Check that it exists in InstResults. 2617 TreePatternNode *RNode = InstResults[OpName]; 2618 if (RNode == 0) 2619 I->error("Operand $" + OpName + " does not exist in operand list!"); 2620 2621 if (i == 0) 2622 Res0Node = RNode; 2623 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2624 if (R == 0) 2625 I->error("Operand $" + OpName + " should be a set destination: all " 2626 "outputs must occur before inputs in operand list!"); 2627 2628 if (CGI.Operands[i].Rec != R) 2629 I->error("Operand $" + OpName + " class mismatch!"); 2630 2631 // Remember the return type. 2632 Results.push_back(CGI.Operands[i].Rec); 2633 2634 // Okay, this one checks out. 2635 InstResults.erase(OpName); 2636 } 2637 2638 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2639 // the copy while we're checking the inputs. 2640 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2641 2642 std::vector<TreePatternNode*> ResultNodeOperands; 2643 std::vector<Record*> Operands; 2644 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2645 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2646 const std::string &OpName = Op.Name; 2647 if (OpName.empty()) 2648 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2649 2650 if (!InstInputsCheck.count(OpName)) { 2651 // If this is an predicate operand or optional def operand with an 2652 // DefaultOps set filled in, we can ignore this. When we codegen it, 2653 // we will do so as always executed. 2654 if (Op.Rec->isSubClassOf("PredicateOperand") || 2655 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2656 // Does it have a non-empty DefaultOps field? If so, ignore this 2657 // operand. 2658 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2659 continue; 2660 } 2661 I->error("Operand $" + OpName + 2662 " does not appear in the instruction pattern"); 2663 } 2664 TreePatternNode *InVal = InstInputsCheck[OpName]; 2665 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2666 2667 if (InVal->isLeaf() && 2668 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2669 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2670 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2671 I->error("Operand $" + OpName + "'s register class disagrees" 2672 " between the operand and pattern"); 2673 } 2674 Operands.push_back(Op.Rec); 2675 2676 // Construct the result for the dest-pattern operand list. 2677 TreePatternNode *OpNode = InVal->clone(); 2678 2679 // No predicate is useful on the result. 2680 OpNode->clearPredicateFns(); 2681 2682 // Promote the xform function to be an explicit node if set. 2683 if (Record *Xform = OpNode->getTransformFn()) { 2684 OpNode->setTransformFn(0); 2685 std::vector<TreePatternNode*> Children; 2686 Children.push_back(OpNode); 2687 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2688 } 2689 2690 ResultNodeOperands.push_back(OpNode); 2691 } 2692 2693 if (!InstInputsCheck.empty()) 2694 I->error("Input operand $" + InstInputsCheck.begin()->first + 2695 " occurs in pattern but not in operands list!"); 2696 2697 TreePatternNode *ResultPattern = 2698 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2699 GetNumNodeResults(I->getRecord(), *this)); 2700 // Copy fully inferred output node type to instruction result pattern. 2701 for (unsigned i = 0; i != NumResults; ++i) 2702 ResultPattern->setType(i, Res0Node->getExtType(i)); 2703 2704 // Create and insert the instruction. 2705 // FIXME: InstImpResults should not be part of DAGInstruction. 2706 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2707 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2708 2709 // Use a temporary tree pattern to infer all types and make sure that the 2710 // constructed result is correct. This depends on the instruction already 2711 // being inserted into the Instructions map. 2712 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2713 Temp.InferAllTypes(&I->getNamedNodesMap()); 2714 2715 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2716 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2717 2718 DEBUG(I->dump()); 2719 } 2720 2721 // If we can, convert the instructions to be patterns that are matched! 2722 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2723 Instructions.begin(), 2724 E = Instructions.end(); II != E; ++II) { 2725 DAGInstruction &TheInst = II->second; 2726 const TreePattern *I = TheInst.getPattern(); 2727 if (I == 0) continue; // No pattern. 2728 2729 // FIXME: Assume only the first tree is the pattern. The others are clobber 2730 // nodes. 2731 TreePatternNode *Pattern = I->getTree(0); 2732 TreePatternNode *SrcPattern; 2733 if (Pattern->getOperator()->getName() == "set") { 2734 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2735 } else{ 2736 // Not a set (store or something?) 2737 SrcPattern = Pattern; 2738 } 2739 2740 Record *Instr = II->first; 2741 AddPatternToMatch(I, 2742 PatternToMatch(Instr, 2743 Instr->getValueAsListInit("Predicates"), 2744 SrcPattern, 2745 TheInst.getResultPattern(), 2746 TheInst.getImpResults(), 2747 Instr->getValueAsInt("AddedComplexity"), 2748 Instr->getID())); 2749 } 2750} 2751 2752 2753typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2754 2755static void FindNames(const TreePatternNode *P, 2756 std::map<std::string, NameRecord> &Names, 2757 const TreePattern *PatternTop) { 2758 if (!P->getName().empty()) { 2759 NameRecord &Rec = Names[P->getName()]; 2760 // If this is the first instance of the name, remember the node. 2761 if (Rec.second++ == 0) 2762 Rec.first = P; 2763 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2764 PatternTop->error("repetition of value: $" + P->getName() + 2765 " where different uses have different types!"); 2766 } 2767 2768 if (!P->isLeaf()) { 2769 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2770 FindNames(P->getChild(i), Names, PatternTop); 2771 } 2772} 2773 2774void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2775 const PatternToMatch &PTM) { 2776 // Do some sanity checking on the pattern we're about to match. 2777 std::string Reason; 2778 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2779 Pattern->error("Pattern can never match: " + Reason); 2780 2781 // If the source pattern's root is a complex pattern, that complex pattern 2782 // must specify the nodes it can potentially match. 2783 if (const ComplexPattern *CP = 2784 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2785 if (CP->getRootNodes().empty()) 2786 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2787 " could match"); 2788 2789 2790 // Find all of the named values in the input and output, ensure they have the 2791 // same type. 2792 std::map<std::string, NameRecord> SrcNames, DstNames; 2793 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2794 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2795 2796 // Scan all of the named values in the destination pattern, rejecting them if 2797 // they don't exist in the input pattern. 2798 for (std::map<std::string, NameRecord>::iterator 2799 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2800 if (SrcNames[I->first].first == 0) 2801 Pattern->error("Pattern has input without matching name in output: $" + 2802 I->first); 2803 } 2804 2805 // Scan all of the named values in the source pattern, rejecting them if the 2806 // name isn't used in the dest, and isn't used to tie two values together. 2807 for (std::map<std::string, NameRecord>::iterator 2808 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2809 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2810 Pattern->error("Pattern has dead named input: $" + I->first); 2811 2812 PatternsToMatch.push_back(PTM); 2813} 2814 2815 2816 2817void CodeGenDAGPatterns::InferInstructionFlags() { 2818 const std::vector<const CodeGenInstruction*> &Instructions = 2819 Target.getInstructionsByEnumValue(); 2820 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2821 CodeGenInstruction &InstInfo = 2822 const_cast<CodeGenInstruction &>(*Instructions[i]); 2823 // Determine properties of the instruction from its pattern. 2824 bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic; 2825 InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast, 2826 HasSideEffects, IsVariadic, *this); 2827 InstInfo.mayStore = MayStore; 2828 InstInfo.mayLoad = MayLoad; 2829 InstInfo.isBitcast = IsBitcast; 2830 InstInfo.hasSideEffects = HasSideEffects; 2831 InstInfo.Operands.isVariadic = IsVariadic; 2832 2833 // Sanity checks. 2834 if (InstInfo.isReMaterializable && InstInfo.hasSideEffects) 2835 throw TGError(InstInfo.TheDef->getLoc(), "The instruction " + 2836 InstInfo.TheDef->getName() + 2837 " is rematerializable AND has unmodeled side effects?"); 2838 } 2839} 2840 2841/// Given a pattern result with an unresolved type, see if we can find one 2842/// instruction with an unresolved result type. Force this result type to an 2843/// arbitrary element if it's possible types to converge results. 2844static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2845 if (N->isLeaf()) 2846 return false; 2847 2848 // Analyze children. 2849 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2850 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2851 return true; 2852 2853 if (!N->getOperator()->isSubClassOf("Instruction")) 2854 return false; 2855 2856 // If this type is already concrete or completely unknown we can't do 2857 // anything. 2858 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2859 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2860 continue; 2861 2862 // Otherwise, force its type to the first possibility (an arbitrary choice). 2863 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2864 return true; 2865 } 2866 2867 return false; 2868} 2869 2870void CodeGenDAGPatterns::ParsePatterns() { 2871 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2872 2873 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2874 Record *CurPattern = Patterns[i]; 2875 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2876 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2877 2878 // Inline pattern fragments into it. 2879 Pattern->InlinePatternFragments(); 2880 2881 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2882 if (LI->getSize() == 0) continue; // no pattern. 2883 2884 // Parse the instruction. 2885 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2886 2887 // Inline pattern fragments into it. 2888 Result->InlinePatternFragments(); 2889 2890 if (Result->getNumTrees() != 1) 2891 Result->error("Cannot handle instructions producing instructions " 2892 "with temporaries yet!"); 2893 2894 bool IterateInference; 2895 bool InferredAllPatternTypes, InferredAllResultTypes; 2896 do { 2897 // Infer as many types as possible. If we cannot infer all of them, we 2898 // can never do anything with this pattern: report it to the user. 2899 InferredAllPatternTypes = 2900 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2901 2902 // Infer as many types as possible. If we cannot infer all of them, we 2903 // can never do anything with this pattern: report it to the user. 2904 InferredAllResultTypes = 2905 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2906 2907 IterateInference = false; 2908 2909 // Apply the type of the result to the source pattern. This helps us 2910 // resolve cases where the input type is known to be a pointer type (which 2911 // is considered resolved), but the result knows it needs to be 32- or 2912 // 64-bits. Infer the other way for good measure. 2913 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2914 Pattern->getTree(0)->getNumTypes()); 2915 i != e; ++i) { 2916 IterateInference = Pattern->getTree(0)-> 2917 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2918 IterateInference |= Result->getTree(0)-> 2919 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2920 } 2921 2922 // If our iteration has converged and the input pattern's types are fully 2923 // resolved but the result pattern is not fully resolved, we may have a 2924 // situation where we have two instructions in the result pattern and 2925 // the instructions require a common register class, but don't care about 2926 // what actual MVT is used. This is actually a bug in our modelling: 2927 // output patterns should have register classes, not MVTs. 2928 // 2929 // In any case, to handle this, we just go through and disambiguate some 2930 // arbitrary types to the result pattern's nodes. 2931 if (!IterateInference && InferredAllPatternTypes && 2932 !InferredAllResultTypes) 2933 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2934 *Result); 2935 } while (IterateInference); 2936 2937 // Verify that we inferred enough types that we can do something with the 2938 // pattern and result. If these fire the user has to add type casts. 2939 if (!InferredAllPatternTypes) 2940 Pattern->error("Could not infer all types in pattern!"); 2941 if (!InferredAllResultTypes) { 2942 Pattern->dump(); 2943 Result->error("Could not infer all types in pattern result!"); 2944 } 2945 2946 // Validate that the input pattern is correct. 2947 std::map<std::string, TreePatternNode*> InstInputs; 2948 std::map<std::string, TreePatternNode*> InstResults; 2949 std::vector<Record*> InstImpResults; 2950 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2951 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2952 InstInputs, InstResults, 2953 InstImpResults); 2954 2955 // Promote the xform function to be an explicit node if set. 2956 TreePatternNode *DstPattern = Result->getOnlyTree(); 2957 std::vector<TreePatternNode*> ResultNodeOperands; 2958 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2959 TreePatternNode *OpNode = DstPattern->getChild(ii); 2960 if (Record *Xform = OpNode->getTransformFn()) { 2961 OpNode->setTransformFn(0); 2962 std::vector<TreePatternNode*> Children; 2963 Children.push_back(OpNode); 2964 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2965 } 2966 ResultNodeOperands.push_back(OpNode); 2967 } 2968 DstPattern = Result->getOnlyTree(); 2969 if (!DstPattern->isLeaf()) 2970 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2971 ResultNodeOperands, 2972 DstPattern->getNumTypes()); 2973 2974 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2975 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2976 2977 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2978 Temp.InferAllTypes(); 2979 2980 2981 AddPatternToMatch(Pattern, 2982 PatternToMatch(CurPattern, 2983 CurPattern->getValueAsListInit("Predicates"), 2984 Pattern->getTree(0), 2985 Temp.getOnlyTree(), InstImpResults, 2986 CurPattern->getValueAsInt("AddedComplexity"), 2987 CurPattern->getID())); 2988 } 2989} 2990 2991/// CombineChildVariants - Given a bunch of permutations of each child of the 2992/// 'operator' node, put them together in all possible ways. 2993static void CombineChildVariants(TreePatternNode *Orig, 2994 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2995 std::vector<TreePatternNode*> &OutVariants, 2996 CodeGenDAGPatterns &CDP, 2997 const MultipleUseVarSet &DepVars) { 2998 // Make sure that each operand has at least one variant to choose from. 2999 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3000 if (ChildVariants[i].empty()) 3001 return; 3002 3003 // The end result is an all-pairs construction of the resultant pattern. 3004 std::vector<unsigned> Idxs; 3005 Idxs.resize(ChildVariants.size()); 3006 bool NotDone; 3007 do { 3008#ifndef NDEBUG 3009 DEBUG(if (!Idxs.empty()) { 3010 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3011 for (unsigned i = 0; i < Idxs.size(); ++i) { 3012 errs() << Idxs[i] << " "; 3013 } 3014 errs() << "]\n"; 3015 }); 3016#endif 3017 // Create the variant and add it to the output list. 3018 std::vector<TreePatternNode*> NewChildren; 3019 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3020 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3021 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3022 Orig->getNumTypes()); 3023 3024 // Copy over properties. 3025 R->setName(Orig->getName()); 3026 R->setPredicateFns(Orig->getPredicateFns()); 3027 R->setTransformFn(Orig->getTransformFn()); 3028 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3029 R->setType(i, Orig->getExtType(i)); 3030 3031 // If this pattern cannot match, do not include it as a variant. 3032 std::string ErrString; 3033 if (!R->canPatternMatch(ErrString, CDP)) { 3034 delete R; 3035 } else { 3036 bool AlreadyExists = false; 3037 3038 // Scan to see if this pattern has already been emitted. We can get 3039 // duplication due to things like commuting: 3040 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3041 // which are the same pattern. Ignore the dups. 3042 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3043 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3044 AlreadyExists = true; 3045 break; 3046 } 3047 3048 if (AlreadyExists) 3049 delete R; 3050 else 3051 OutVariants.push_back(R); 3052 } 3053 3054 // Increment indices to the next permutation by incrementing the 3055 // indicies from last index backward, e.g., generate the sequence 3056 // [0, 0], [0, 1], [1, 0], [1, 1]. 3057 int IdxsIdx; 3058 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3059 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3060 Idxs[IdxsIdx] = 0; 3061 else 3062 break; 3063 } 3064 NotDone = (IdxsIdx >= 0); 3065 } while (NotDone); 3066} 3067 3068/// CombineChildVariants - A helper function for binary operators. 3069/// 3070static void CombineChildVariants(TreePatternNode *Orig, 3071 const std::vector<TreePatternNode*> &LHS, 3072 const std::vector<TreePatternNode*> &RHS, 3073 std::vector<TreePatternNode*> &OutVariants, 3074 CodeGenDAGPatterns &CDP, 3075 const MultipleUseVarSet &DepVars) { 3076 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3077 ChildVariants.push_back(LHS); 3078 ChildVariants.push_back(RHS); 3079 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3080} 3081 3082 3083static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3084 std::vector<TreePatternNode *> &Children) { 3085 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3086 Record *Operator = N->getOperator(); 3087 3088 // Only permit raw nodes. 3089 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3090 N->getTransformFn()) { 3091 Children.push_back(N); 3092 return; 3093 } 3094 3095 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3096 Children.push_back(N->getChild(0)); 3097 else 3098 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3099 3100 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3101 Children.push_back(N->getChild(1)); 3102 else 3103 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3104} 3105 3106/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3107/// the (potentially recursive) pattern by using algebraic laws. 3108/// 3109static void GenerateVariantsOf(TreePatternNode *N, 3110 std::vector<TreePatternNode*> &OutVariants, 3111 CodeGenDAGPatterns &CDP, 3112 const MultipleUseVarSet &DepVars) { 3113 // We cannot permute leaves. 3114 if (N->isLeaf()) { 3115 OutVariants.push_back(N); 3116 return; 3117 } 3118 3119 // Look up interesting info about the node. 3120 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3121 3122 // If this node is associative, re-associate. 3123 if (NodeInfo.hasProperty(SDNPAssociative)) { 3124 // Re-associate by pulling together all of the linked operators 3125 std::vector<TreePatternNode*> MaximalChildren; 3126 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3127 3128 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3129 // permutations. 3130 if (MaximalChildren.size() == 3) { 3131 // Find the variants of all of our maximal children. 3132 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3133 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3134 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3135 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3136 3137 // There are only two ways we can permute the tree: 3138 // (A op B) op C and A op (B op C) 3139 // Within these forms, we can also permute A/B/C. 3140 3141 // Generate legal pair permutations of A/B/C. 3142 std::vector<TreePatternNode*> ABVariants; 3143 std::vector<TreePatternNode*> BAVariants; 3144 std::vector<TreePatternNode*> ACVariants; 3145 std::vector<TreePatternNode*> CAVariants; 3146 std::vector<TreePatternNode*> BCVariants; 3147 std::vector<TreePatternNode*> CBVariants; 3148 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3149 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3150 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3151 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3152 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3153 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3154 3155 // Combine those into the result: (x op x) op x 3156 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3157 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3158 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3159 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3160 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3161 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3162 3163 // Combine those into the result: x op (x op x) 3164 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3165 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3166 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3167 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3168 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3169 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3170 return; 3171 } 3172 } 3173 3174 // Compute permutations of all children. 3175 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3176 ChildVariants.resize(N->getNumChildren()); 3177 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3178 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3179 3180 // Build all permutations based on how the children were formed. 3181 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3182 3183 // If this node is commutative, consider the commuted order. 3184 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3185 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3186 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3187 "Commutative but doesn't have 2 children!"); 3188 // Don't count children which are actually register references. 3189 unsigned NC = 0; 3190 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3191 TreePatternNode *Child = N->getChild(i); 3192 if (Child->isLeaf()) 3193 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 3194 Record *RR = DI->getDef(); 3195 if (RR->isSubClassOf("Register")) 3196 continue; 3197 } 3198 NC++; 3199 } 3200 // Consider the commuted order. 3201 if (isCommIntrinsic) { 3202 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3203 // operands are the commutative operands, and there might be more operands 3204 // after those. 3205 assert(NC >= 3 && 3206 "Commutative intrinsic should have at least 3 childrean!"); 3207 std::vector<std::vector<TreePatternNode*> > Variants; 3208 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3209 Variants.push_back(ChildVariants[2]); 3210 Variants.push_back(ChildVariants[1]); 3211 for (unsigned i = 3; i != NC; ++i) 3212 Variants.push_back(ChildVariants[i]); 3213 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3214 } else if (NC == 2) 3215 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3216 OutVariants, CDP, DepVars); 3217 } 3218} 3219 3220 3221// GenerateVariants - Generate variants. For example, commutative patterns can 3222// match multiple ways. Add them to PatternsToMatch as well. 3223void CodeGenDAGPatterns::GenerateVariants() { 3224 DEBUG(errs() << "Generating instruction variants.\n"); 3225 3226 // Loop over all of the patterns we've collected, checking to see if we can 3227 // generate variants of the instruction, through the exploitation of 3228 // identities. This permits the target to provide aggressive matching without 3229 // the .td file having to contain tons of variants of instructions. 3230 // 3231 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3232 // intentionally do not reconsider these. Any variants of added patterns have 3233 // already been added. 3234 // 3235 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3236 MultipleUseVarSet DepVars; 3237 std::vector<TreePatternNode*> Variants; 3238 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3239 DEBUG(errs() << "Dependent/multiply used variables: "); 3240 DEBUG(DumpDepVars(DepVars)); 3241 DEBUG(errs() << "\n"); 3242 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3243 DepVars); 3244 3245 assert(!Variants.empty() && "Must create at least original variant!"); 3246 Variants.erase(Variants.begin()); // Remove the original pattern. 3247 3248 if (Variants.empty()) // No variants for this pattern. 3249 continue; 3250 3251 DEBUG(errs() << "FOUND VARIANTS OF: "; 3252 PatternsToMatch[i].getSrcPattern()->dump(); 3253 errs() << "\n"); 3254 3255 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3256 TreePatternNode *Variant = Variants[v]; 3257 3258 DEBUG(errs() << " VAR#" << v << ": "; 3259 Variant->dump(); 3260 errs() << "\n"); 3261 3262 // Scan to see if an instruction or explicit pattern already matches this. 3263 bool AlreadyExists = false; 3264 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3265 // Skip if the top level predicates do not match. 3266 if (PatternsToMatch[i].getPredicates() != 3267 PatternsToMatch[p].getPredicates()) 3268 continue; 3269 // Check to see if this variant already exists. 3270 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3271 DepVars)) { 3272 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3273 AlreadyExists = true; 3274 break; 3275 } 3276 } 3277 // If we already have it, ignore the variant. 3278 if (AlreadyExists) continue; 3279 3280 // Otherwise, add it to the list of patterns we have. 3281 PatternsToMatch. 3282 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3283 PatternsToMatch[i].getPredicates(), 3284 Variant, PatternsToMatch[i].getDstPattern(), 3285 PatternsToMatch[i].getDstRegs(), 3286 PatternsToMatch[i].getAddedComplexity(), 3287 Record::getNewUID())); 3288 } 3289 3290 DEBUG(errs() << "\n"); 3291 } 3292} 3293 3294