1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/TableGen/Error.h"
17#include "llvm/TableGen/Record.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/Support/Debug.h"
21#include <set>
22#include <algorithm>
23using namespace llvm;
24
25//===----------------------------------------------------------------------===//
26//  EEVT::TypeSet Implementation
27//===----------------------------------------------------------------------===//
28
29static inline bool isInteger(MVT::SimpleValueType VT) {
30  return EVT(VT).isInteger();
31}
32static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
33  return EVT(VT).isFloatingPoint();
34}
35static inline bool isVector(MVT::SimpleValueType VT) {
36  return EVT(VT).isVector();
37}
38static inline bool isScalar(MVT::SimpleValueType VT) {
39  return !EVT(VT).isVector();
40}
41
42EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
43  if (VT == MVT::iAny)
44    EnforceInteger(TP);
45  else if (VT == MVT::fAny)
46    EnforceFloatingPoint(TP);
47  else if (VT == MVT::vAny)
48    EnforceVector(TP);
49  else {
50    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
51            VT == MVT::iPTRAny) && "Not a concrete type!");
52    TypeVec.push_back(VT);
53  }
54}
55
56
57EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
58  assert(!VTList.empty() && "empty list?");
59  TypeVec.append(VTList.begin(), VTList.end());
60
61  if (!VTList.empty())
62    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
63           VTList[0] != MVT::fAny);
64
65  // Verify no duplicates.
66  array_pod_sort(TypeVec.begin(), TypeVec.end());
67  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
68}
69
70/// FillWithPossibleTypes - Set to all legal types and return true, only valid
71/// on completely unknown type sets.
72bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
73                                          bool (*Pred)(MVT::SimpleValueType),
74                                          const char *PredicateName) {
75  assert(isCompletelyUnknown());
76  const std::vector<MVT::SimpleValueType> &LegalTypes =
77    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
78
79  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
80    if (Pred == 0 || Pred(LegalTypes[i]))
81      TypeVec.push_back(LegalTypes[i]);
82
83  // If we have nothing that matches the predicate, bail out.
84  if (TypeVec.empty())
85    TP.error("Type inference contradiction found, no " +
86             std::string(PredicateName) + " types found");
87  // No need to sort with one element.
88  if (TypeVec.size() == 1) return true;
89
90  // Remove duplicates.
91  array_pod_sort(TypeVec.begin(), TypeVec.end());
92  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
93
94  return true;
95}
96
97/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
98/// integer value type.
99bool EEVT::TypeSet::hasIntegerTypes() const {
100  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
101    if (isInteger(TypeVec[i]))
102      return true;
103  return false;
104}
105
106/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
107/// a floating point value type.
108bool EEVT::TypeSet::hasFloatingPointTypes() const {
109  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
110    if (isFloatingPoint(TypeVec[i]))
111      return true;
112  return false;
113}
114
115/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
116/// value type.
117bool EEVT::TypeSet::hasVectorTypes() const {
118  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
119    if (isVector(TypeVec[i]))
120      return true;
121  return false;
122}
123
124
125std::string EEVT::TypeSet::getName() const {
126  if (TypeVec.empty()) return "<empty>";
127
128  std::string Result;
129
130  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
131    std::string VTName = llvm::getEnumName(TypeVec[i]);
132    // Strip off MVT:: prefix if present.
133    if (VTName.substr(0,5) == "MVT::")
134      VTName = VTName.substr(5);
135    if (i) Result += ':';
136    Result += VTName;
137  }
138
139  if (TypeVec.size() == 1)
140    return Result;
141  return "{" + Result + "}";
142}
143
144/// MergeInTypeInfo - This merges in type information from the specified
145/// argument.  If 'this' changes, it returns true.  If the two types are
146/// contradictory (e.g. merge f32 into i32) then this throws an exception.
147bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
148  if (InVT.isCompletelyUnknown() || *this == InVT)
149    return false;
150
151  if (isCompletelyUnknown()) {
152    *this = InVT;
153    return true;
154  }
155
156  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
157
158  // Handle the abstract cases, seeing if we can resolve them better.
159  switch (TypeVec[0]) {
160  default: break;
161  case MVT::iPTR:
162  case MVT::iPTRAny:
163    if (InVT.hasIntegerTypes()) {
164      EEVT::TypeSet InCopy(InVT);
165      InCopy.EnforceInteger(TP);
166      InCopy.EnforceScalar(TP);
167
168      if (InCopy.isConcrete()) {
169        // If the RHS has one integer type, upgrade iPTR to i32.
170        TypeVec[0] = InVT.TypeVec[0];
171        return true;
172      }
173
174      // If the input has multiple scalar integers, this doesn't add any info.
175      if (!InCopy.isCompletelyUnknown())
176        return false;
177    }
178    break;
179  }
180
181  // If the input constraint is iAny/iPTR and this is an integer type list,
182  // remove non-integer types from the list.
183  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
184      hasIntegerTypes()) {
185    bool MadeChange = EnforceInteger(TP);
186
187    // If we're merging in iPTR/iPTRAny and the node currently has a list of
188    // multiple different integer types, replace them with a single iPTR.
189    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
190        TypeVec.size() != 1) {
191      TypeVec.resize(1);
192      TypeVec[0] = InVT.TypeVec[0];
193      MadeChange = true;
194    }
195
196    return MadeChange;
197  }
198
199  // If this is a type list and the RHS is a typelist as well, eliminate entries
200  // from this list that aren't in the other one.
201  bool MadeChange = false;
202  TypeSet InputSet(*this);
203
204  for (unsigned i = 0; i != TypeVec.size(); ++i) {
205    bool InInVT = false;
206    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
207      if (TypeVec[i] == InVT.TypeVec[j]) {
208        InInVT = true;
209        break;
210      }
211
212    if (InInVT) continue;
213    TypeVec.erase(TypeVec.begin()+i--);
214    MadeChange = true;
215  }
216
217  // If we removed all of our types, we have a type contradiction.
218  if (!TypeVec.empty())
219    return MadeChange;
220
221  // FIXME: Really want an SMLoc here!
222  TP.error("Type inference contradiction found, merging '" +
223           InVT.getName() + "' into '" + InputSet.getName() + "'");
224  return true; // unreachable
225}
226
227/// EnforceInteger - Remove all non-integer types from this set.
228bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
229  // If we know nothing, then get the full set.
230  if (TypeVec.empty())
231    return FillWithPossibleTypes(TP, isInteger, "integer");
232  if (!hasFloatingPointTypes())
233    return false;
234
235  TypeSet InputSet(*this);
236
237  // Filter out all the fp types.
238  for (unsigned i = 0; i != TypeVec.size(); ++i)
239    if (!isInteger(TypeVec[i]))
240      TypeVec.erase(TypeVec.begin()+i--);
241
242  if (TypeVec.empty())
243    TP.error("Type inference contradiction found, '" +
244             InputSet.getName() + "' needs to be integer");
245  return true;
246}
247
248/// EnforceFloatingPoint - Remove all integer types from this set.
249bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
250  // If we know nothing, then get the full set.
251  if (TypeVec.empty())
252    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
253
254  if (!hasIntegerTypes())
255    return false;
256
257  TypeSet InputSet(*this);
258
259  // Filter out all the fp types.
260  for (unsigned i = 0; i != TypeVec.size(); ++i)
261    if (!isFloatingPoint(TypeVec[i]))
262      TypeVec.erase(TypeVec.begin()+i--);
263
264  if (TypeVec.empty())
265    TP.error("Type inference contradiction found, '" +
266             InputSet.getName() + "' needs to be floating point");
267  return true;
268}
269
270/// EnforceScalar - Remove all vector types from this.
271bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
272  // If we know nothing, then get the full set.
273  if (TypeVec.empty())
274    return FillWithPossibleTypes(TP, isScalar, "scalar");
275
276  if (!hasVectorTypes())
277    return false;
278
279  TypeSet InputSet(*this);
280
281  // Filter out all the vector types.
282  for (unsigned i = 0; i != TypeVec.size(); ++i)
283    if (!isScalar(TypeVec[i]))
284      TypeVec.erase(TypeVec.begin()+i--);
285
286  if (TypeVec.empty())
287    TP.error("Type inference contradiction found, '" +
288             InputSet.getName() + "' needs to be scalar");
289  return true;
290}
291
292/// EnforceVector - Remove all vector types from this.
293bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
294  // If we know nothing, then get the full set.
295  if (TypeVec.empty())
296    return FillWithPossibleTypes(TP, isVector, "vector");
297
298  TypeSet InputSet(*this);
299  bool MadeChange = false;
300
301  // Filter out all the scalar types.
302  for (unsigned i = 0; i != TypeVec.size(); ++i)
303    if (!isVector(TypeVec[i])) {
304      TypeVec.erase(TypeVec.begin()+i--);
305      MadeChange = true;
306    }
307
308  if (TypeVec.empty())
309    TP.error("Type inference contradiction found, '" +
310             InputSet.getName() + "' needs to be a vector");
311  return MadeChange;
312}
313
314
315
316/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
317/// this an other based on this information.
318bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
319  // Both operands must be integer or FP, but we don't care which.
320  bool MadeChange = false;
321
322  if (isCompletelyUnknown())
323    MadeChange = FillWithPossibleTypes(TP);
324
325  if (Other.isCompletelyUnknown())
326    MadeChange = Other.FillWithPossibleTypes(TP);
327
328  // If one side is known to be integer or known to be FP but the other side has
329  // no information, get at least the type integrality info in there.
330  if (!hasFloatingPointTypes())
331    MadeChange |= Other.EnforceInteger(TP);
332  else if (!hasIntegerTypes())
333    MadeChange |= Other.EnforceFloatingPoint(TP);
334  if (!Other.hasFloatingPointTypes())
335    MadeChange |= EnforceInteger(TP);
336  else if (!Other.hasIntegerTypes())
337    MadeChange |= EnforceFloatingPoint(TP);
338
339  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
340         "Should have a type list now");
341
342  // If one contains vectors but the other doesn't pull vectors out.
343  if (!hasVectorTypes())
344    MadeChange |= Other.EnforceScalar(TP);
345  if (!hasVectorTypes())
346    MadeChange |= EnforceScalar(TP);
347
348  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
349    // If we are down to concrete types, this code does not currently
350    // handle nodes which have multiple types, where some types are
351    // integer, and some are fp.  Assert that this is not the case.
352    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
353           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
354           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
355
356    // Otherwise, if these are both vector types, either this vector
357    // must have a larger bitsize than the other, or this element type
358    // must be larger than the other.
359    EVT Type(TypeVec[0]);
360    EVT OtherType(Other.TypeVec[0]);
361
362    if (hasVectorTypes() && Other.hasVectorTypes()) {
363      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
364        if (Type.getVectorElementType().getSizeInBits()
365            >= OtherType.getVectorElementType().getSizeInBits())
366          TP.error("Type inference contradiction found, '" +
367                   getName() + "' element type not smaller than '" +
368                   Other.getName() +"'!");
369    }
370    else
371      // For scalar types, the bitsize of this type must be larger
372      // than that of the other.
373      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
374        TP.error("Type inference contradiction found, '" +
375                 getName() + "' is not smaller than '" +
376                 Other.getName() +"'!");
377
378  }
379
380
381  // Handle int and fp as disjoint sets.  This won't work for patterns
382  // that have mixed fp/int types but those are likely rare and would
383  // not have been accepted by this code previously.
384
385  // Okay, find the smallest type from the current set and remove it from the
386  // largest set.
387  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
388  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
389    if (isInteger(TypeVec[i])) {
390      SmallestInt = TypeVec[i];
391      break;
392    }
393  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
394    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
395      SmallestInt = TypeVec[i];
396
397  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
398  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
399    if (isFloatingPoint(TypeVec[i])) {
400      SmallestFP = TypeVec[i];
401      break;
402    }
403  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
404    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
405      SmallestFP = TypeVec[i];
406
407  int OtherIntSize = 0;
408  int OtherFPSize = 0;
409  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
410         Other.TypeVec.begin();
411       TVI != Other.TypeVec.end();
412       /* NULL */) {
413    if (isInteger(*TVI)) {
414      ++OtherIntSize;
415      if (*TVI == SmallestInt) {
416        TVI = Other.TypeVec.erase(TVI);
417        --OtherIntSize;
418        MadeChange = true;
419        continue;
420      }
421    }
422    else if (isFloatingPoint(*TVI)) {
423      ++OtherFPSize;
424      if (*TVI == SmallestFP) {
425        TVI = Other.TypeVec.erase(TVI);
426        --OtherFPSize;
427        MadeChange = true;
428        continue;
429      }
430    }
431    ++TVI;
432  }
433
434  // If this is the only type in the large set, the constraint can never be
435  // satisfied.
436  if ((Other.hasIntegerTypes() && OtherIntSize == 0)
437      || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
438    TP.error("Type inference contradiction found, '" +
439             Other.getName() + "' has nothing larger than '" + getName() +"'!");
440
441  // Okay, find the largest type in the Other set and remove it from the
442  // current set.
443  MVT::SimpleValueType LargestInt = MVT::Other;
444  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
445    if (isInteger(Other.TypeVec[i])) {
446      LargestInt = Other.TypeVec[i];
447      break;
448    }
449  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
450    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
451      LargestInt = Other.TypeVec[i];
452
453  MVT::SimpleValueType LargestFP = MVT::Other;
454  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
455    if (isFloatingPoint(Other.TypeVec[i])) {
456      LargestFP = Other.TypeVec[i];
457      break;
458    }
459  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
460    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
461      LargestFP = Other.TypeVec[i];
462
463  int IntSize = 0;
464  int FPSize = 0;
465  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
466         TypeVec.begin();
467       TVI != TypeVec.end();
468       /* NULL */) {
469    if (isInteger(*TVI)) {
470      ++IntSize;
471      if (*TVI == LargestInt) {
472        TVI = TypeVec.erase(TVI);
473        --IntSize;
474        MadeChange = true;
475        continue;
476      }
477    }
478    else if (isFloatingPoint(*TVI)) {
479      ++FPSize;
480      if (*TVI == LargestFP) {
481        TVI = TypeVec.erase(TVI);
482        --FPSize;
483        MadeChange = true;
484        continue;
485      }
486    }
487    ++TVI;
488  }
489
490  // If this is the only type in the small set, the constraint can never be
491  // satisfied.
492  if ((hasIntegerTypes() && IntSize == 0)
493      || (hasFloatingPointTypes() && FPSize == 0))
494    TP.error("Type inference contradiction found, '" +
495             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
496
497  return MadeChange;
498}
499
500/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
501/// whose element is specified by VTOperand.
502bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
503                                           TreePattern &TP) {
504  // "This" must be a vector and "VTOperand" must be a scalar.
505  bool MadeChange = false;
506  MadeChange |= EnforceVector(TP);
507  MadeChange |= VTOperand.EnforceScalar(TP);
508
509  // If we know the vector type, it forces the scalar to agree.
510  if (isConcrete()) {
511    EVT IVT = getConcrete();
512    IVT = IVT.getVectorElementType();
513    return MadeChange |
514      VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
515  }
516
517  // If the scalar type is known, filter out vector types whose element types
518  // disagree.
519  if (!VTOperand.isConcrete())
520    return MadeChange;
521
522  MVT::SimpleValueType VT = VTOperand.getConcrete();
523
524  TypeSet InputSet(*this);
525
526  // Filter out all the types which don't have the right element type.
527  for (unsigned i = 0; i != TypeVec.size(); ++i) {
528    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
529    if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
530      TypeVec.erase(TypeVec.begin()+i--);
531      MadeChange = true;
532    }
533  }
534
535  if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
536    TP.error("Type inference contradiction found, forcing '" +
537             InputSet.getName() + "' to have a vector element");
538  return MadeChange;
539}
540
541/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
542/// vector type specified by VTOperand.
543bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
544                                                 TreePattern &TP) {
545  // "This" must be a vector and "VTOperand" must be a vector.
546  bool MadeChange = false;
547  MadeChange |= EnforceVector(TP);
548  MadeChange |= VTOperand.EnforceVector(TP);
549
550  // "This" must be larger than "VTOperand."
551  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
552
553  // If we know the vector type, it forces the scalar types to agree.
554  if (isConcrete()) {
555    EVT IVT = getConcrete();
556    IVT = IVT.getVectorElementType();
557
558    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
559    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
560  } else if (VTOperand.isConcrete()) {
561    EVT IVT = VTOperand.getConcrete();
562    IVT = IVT.getVectorElementType();
563
564    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
565    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
566  }
567
568  return MadeChange;
569}
570
571//===----------------------------------------------------------------------===//
572// Helpers for working with extended types.
573
574bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
575  return LHS->getID() < RHS->getID();
576}
577
578/// Dependent variable map for CodeGenDAGPattern variant generation
579typedef std::map<std::string, int> DepVarMap;
580
581/// Const iterator shorthand for DepVarMap
582typedef DepVarMap::const_iterator DepVarMap_citer;
583
584static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
585  if (N->isLeaf()) {
586    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
587      DepMap[N->getName()]++;
588  } else {
589    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
590      FindDepVarsOf(N->getChild(i), DepMap);
591  }
592}
593
594/// Find dependent variables within child patterns
595static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
596  DepVarMap depcounts;
597  FindDepVarsOf(N, depcounts);
598  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
599    if (i->second > 1)            // std::pair<std::string, int>
600      DepVars.insert(i->first);
601  }
602}
603
604#ifndef NDEBUG
605/// Dump the dependent variable set:
606static void DumpDepVars(MultipleUseVarSet &DepVars) {
607  if (DepVars.empty()) {
608    DEBUG(errs() << "<empty set>");
609  } else {
610    DEBUG(errs() << "[ ");
611    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
612         e = DepVars.end(); i != e; ++i) {
613      DEBUG(errs() << (*i) << " ");
614    }
615    DEBUG(errs() << "]");
616  }
617}
618#endif
619
620
621//===----------------------------------------------------------------------===//
622// TreePredicateFn Implementation
623//===----------------------------------------------------------------------===//
624
625/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
626TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
627  assert((getPredCode().empty() || getImmCode().empty()) &&
628        ".td file corrupt: can't have a node predicate *and* an imm predicate");
629}
630
631std::string TreePredicateFn::getPredCode() const {
632  return PatFragRec->getRecord()->getValueAsCode("PredicateCode");
633}
634
635std::string TreePredicateFn::getImmCode() const {
636  return PatFragRec->getRecord()->getValueAsCode("ImmediateCode");
637}
638
639
640/// isAlwaysTrue - Return true if this is a noop predicate.
641bool TreePredicateFn::isAlwaysTrue() const {
642  return getPredCode().empty() && getImmCode().empty();
643}
644
645/// Return the name to use in the generated code to reference this, this is
646/// "Predicate_foo" if from a pattern fragment "foo".
647std::string TreePredicateFn::getFnName() const {
648  return "Predicate_" + PatFragRec->getRecord()->getName();
649}
650
651/// getCodeToRunOnSDNode - Return the code for the function body that
652/// evaluates this predicate.  The argument is expected to be in "Node",
653/// not N.  This handles casting and conversion to a concrete node type as
654/// appropriate.
655std::string TreePredicateFn::getCodeToRunOnSDNode() const {
656  // Handle immediate predicates first.
657  std::string ImmCode = getImmCode();
658  if (!ImmCode.empty()) {
659    std::string Result =
660      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
661    return Result + ImmCode;
662  }
663
664  // Handle arbitrary node predicates.
665  assert(!getPredCode().empty() && "Don't have any predicate code!");
666  std::string ClassName;
667  if (PatFragRec->getOnlyTree()->isLeaf())
668    ClassName = "SDNode";
669  else {
670    Record *Op = PatFragRec->getOnlyTree()->getOperator();
671    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
672  }
673  std::string Result;
674  if (ClassName == "SDNode")
675    Result = "    SDNode *N = Node;\n";
676  else
677    Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
678
679  return Result + getPredCode();
680}
681
682//===----------------------------------------------------------------------===//
683// PatternToMatch implementation
684//
685
686
687/// getPatternSize - Return the 'size' of this pattern.  We want to match large
688/// patterns before small ones.  This is used to determine the size of a
689/// pattern.
690static unsigned getPatternSize(const TreePatternNode *P,
691                               const CodeGenDAGPatterns &CGP) {
692  unsigned Size = 3;  // The node itself.
693  // If the root node is a ConstantSDNode, increases its size.
694  // e.g. (set R32:$dst, 0).
695  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
696    Size += 2;
697
698  // FIXME: This is a hack to statically increase the priority of patterns
699  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
700  // Later we can allow complexity / cost for each pattern to be (optionally)
701  // specified. To get best possible pattern match we'll need to dynamically
702  // calculate the complexity of all patterns a dag can potentially map to.
703  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
704  if (AM)
705    Size += AM->getNumOperands() * 3;
706
707  // If this node has some predicate function that must match, it adds to the
708  // complexity of this node.
709  if (!P->getPredicateFns().empty())
710    ++Size;
711
712  // Count children in the count if they are also nodes.
713  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
714    TreePatternNode *Child = P->getChild(i);
715    if (!Child->isLeaf() && Child->getNumTypes() &&
716        Child->getType(0) != MVT::Other)
717      Size += getPatternSize(Child, CGP);
718    else if (Child->isLeaf()) {
719      if (dynamic_cast<IntInit*>(Child->getLeafValue()))
720        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
721      else if (Child->getComplexPatternInfo(CGP))
722        Size += getPatternSize(Child, CGP);
723      else if (!Child->getPredicateFns().empty())
724        ++Size;
725    }
726  }
727
728  return Size;
729}
730
731/// Compute the complexity metric for the input pattern.  This roughly
732/// corresponds to the number of nodes that are covered.
733unsigned PatternToMatch::
734getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
735  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
736}
737
738
739/// getPredicateCheck - Return a single string containing all of this
740/// pattern's predicates concatenated with "&&" operators.
741///
742std::string PatternToMatch::getPredicateCheck() const {
743  std::string PredicateCheck;
744  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
745    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
746      Record *Def = Pred->getDef();
747      if (!Def->isSubClassOf("Predicate")) {
748#ifndef NDEBUG
749        Def->dump();
750#endif
751        assert(0 && "Unknown predicate type!");
752      }
753      if (!PredicateCheck.empty())
754        PredicateCheck += " && ";
755      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
756    }
757  }
758
759  return PredicateCheck;
760}
761
762//===----------------------------------------------------------------------===//
763// SDTypeConstraint implementation
764//
765
766SDTypeConstraint::SDTypeConstraint(Record *R) {
767  OperandNo = R->getValueAsInt("OperandNum");
768
769  if (R->isSubClassOf("SDTCisVT")) {
770    ConstraintType = SDTCisVT;
771    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
772    if (x.SDTCisVT_Info.VT == MVT::isVoid)
773      throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
774
775  } else if (R->isSubClassOf("SDTCisPtrTy")) {
776    ConstraintType = SDTCisPtrTy;
777  } else if (R->isSubClassOf("SDTCisInt")) {
778    ConstraintType = SDTCisInt;
779  } else if (R->isSubClassOf("SDTCisFP")) {
780    ConstraintType = SDTCisFP;
781  } else if (R->isSubClassOf("SDTCisVec")) {
782    ConstraintType = SDTCisVec;
783  } else if (R->isSubClassOf("SDTCisSameAs")) {
784    ConstraintType = SDTCisSameAs;
785    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
786  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
787    ConstraintType = SDTCisVTSmallerThanOp;
788    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
789      R->getValueAsInt("OtherOperandNum");
790  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
791    ConstraintType = SDTCisOpSmallerThanOp;
792    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
793      R->getValueAsInt("BigOperandNum");
794  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
795    ConstraintType = SDTCisEltOfVec;
796    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
797  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
798    ConstraintType = SDTCisSubVecOfVec;
799    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
800      R->getValueAsInt("OtherOpNum");
801  } else {
802    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
803    exit(1);
804  }
805}
806
807/// getOperandNum - Return the node corresponding to operand #OpNo in tree
808/// N, and the result number in ResNo.
809static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
810                                      const SDNodeInfo &NodeInfo,
811                                      unsigned &ResNo) {
812  unsigned NumResults = NodeInfo.getNumResults();
813  if (OpNo < NumResults) {
814    ResNo = OpNo;
815    return N;
816  }
817
818  OpNo -= NumResults;
819
820  if (OpNo >= N->getNumChildren()) {
821    errs() << "Invalid operand number in type constraint "
822           << (OpNo+NumResults) << " ";
823    N->dump();
824    errs() << '\n';
825    exit(1);
826  }
827
828  return N->getChild(OpNo);
829}
830
831/// ApplyTypeConstraint - Given a node in a pattern, apply this type
832/// constraint to the nodes operands.  This returns true if it makes a
833/// change, false otherwise.  If a type contradiction is found, throw an
834/// exception.
835bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
836                                           const SDNodeInfo &NodeInfo,
837                                           TreePattern &TP) const {
838  unsigned ResNo = 0; // The result number being referenced.
839  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
840
841  switch (ConstraintType) {
842  default: assert(0 && "Unknown constraint type!");
843  case SDTCisVT:
844    // Operand must be a particular type.
845    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
846  case SDTCisPtrTy:
847    // Operand must be same as target pointer type.
848    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
849  case SDTCisInt:
850    // Require it to be one of the legal integer VTs.
851    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
852  case SDTCisFP:
853    // Require it to be one of the legal fp VTs.
854    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
855  case SDTCisVec:
856    // Require it to be one of the legal vector VTs.
857    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
858  case SDTCisSameAs: {
859    unsigned OResNo = 0;
860    TreePatternNode *OtherNode =
861      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
862    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
863           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
864  }
865  case SDTCisVTSmallerThanOp: {
866    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
867    // have an integer type that is smaller than the VT.
868    if (!NodeToApply->isLeaf() ||
869        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
870        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
871               ->isSubClassOf("ValueType"))
872      TP.error(N->getOperator()->getName() + " expects a VT operand!");
873    MVT::SimpleValueType VT =
874     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
875
876    EEVT::TypeSet TypeListTmp(VT, TP);
877
878    unsigned OResNo = 0;
879    TreePatternNode *OtherNode =
880      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
881                    OResNo);
882
883    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
884  }
885  case SDTCisOpSmallerThanOp: {
886    unsigned BResNo = 0;
887    TreePatternNode *BigOperand =
888      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
889                    BResNo);
890    return NodeToApply->getExtType(ResNo).
891                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
892  }
893  case SDTCisEltOfVec: {
894    unsigned VResNo = 0;
895    TreePatternNode *VecOperand =
896      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
897                    VResNo);
898
899    // Filter vector types out of VecOperand that don't have the right element
900    // type.
901    return VecOperand->getExtType(VResNo).
902      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
903  }
904  case SDTCisSubVecOfVec: {
905    unsigned VResNo = 0;
906    TreePatternNode *BigVecOperand =
907      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
908                    VResNo);
909
910    // Filter vector types out of BigVecOperand that don't have the
911    // right subvector type.
912    return BigVecOperand->getExtType(VResNo).
913      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
914  }
915  }
916  return false;
917}
918
919//===----------------------------------------------------------------------===//
920// SDNodeInfo implementation
921//
922SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
923  EnumName    = R->getValueAsString("Opcode");
924  SDClassName = R->getValueAsString("SDClass");
925  Record *TypeProfile = R->getValueAsDef("TypeProfile");
926  NumResults = TypeProfile->getValueAsInt("NumResults");
927  NumOperands = TypeProfile->getValueAsInt("NumOperands");
928
929  // Parse the properties.
930  Properties = 0;
931  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
932  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
933    if (PropList[i]->getName() == "SDNPCommutative") {
934      Properties |= 1 << SDNPCommutative;
935    } else if (PropList[i]->getName() == "SDNPAssociative") {
936      Properties |= 1 << SDNPAssociative;
937    } else if (PropList[i]->getName() == "SDNPHasChain") {
938      Properties |= 1 << SDNPHasChain;
939    } else if (PropList[i]->getName() == "SDNPOutGlue") {
940      Properties |= 1 << SDNPOutGlue;
941    } else if (PropList[i]->getName() == "SDNPInGlue") {
942      Properties |= 1 << SDNPInGlue;
943    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
944      Properties |= 1 << SDNPOptInGlue;
945    } else if (PropList[i]->getName() == "SDNPMayStore") {
946      Properties |= 1 << SDNPMayStore;
947    } else if (PropList[i]->getName() == "SDNPMayLoad") {
948      Properties |= 1 << SDNPMayLoad;
949    } else if (PropList[i]->getName() == "SDNPSideEffect") {
950      Properties |= 1 << SDNPSideEffect;
951    } else if (PropList[i]->getName() == "SDNPMemOperand") {
952      Properties |= 1 << SDNPMemOperand;
953    } else if (PropList[i]->getName() == "SDNPVariadic") {
954      Properties |= 1 << SDNPVariadic;
955    } else {
956      errs() << "Unknown SD Node property '" << PropList[i]->getName()
957             << "' on node '" << R->getName() << "'!\n";
958      exit(1);
959    }
960  }
961
962
963  // Parse the type constraints.
964  std::vector<Record*> ConstraintList =
965    TypeProfile->getValueAsListOfDefs("Constraints");
966  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
967}
968
969/// getKnownType - If the type constraints on this node imply a fixed type
970/// (e.g. all stores return void, etc), then return it as an
971/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
972MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
973  unsigned NumResults = getNumResults();
974  assert(NumResults <= 1 &&
975         "We only work with nodes with zero or one result so far!");
976  assert(ResNo == 0 && "Only handles single result nodes so far");
977
978  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
979    // Make sure that this applies to the correct node result.
980    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
981      continue;
982
983    switch (TypeConstraints[i].ConstraintType) {
984    default: break;
985    case SDTypeConstraint::SDTCisVT:
986      return TypeConstraints[i].x.SDTCisVT_Info.VT;
987    case SDTypeConstraint::SDTCisPtrTy:
988      return MVT::iPTR;
989    }
990  }
991  return MVT::Other;
992}
993
994//===----------------------------------------------------------------------===//
995// TreePatternNode implementation
996//
997
998TreePatternNode::~TreePatternNode() {
999#if 0 // FIXME: implement refcounted tree nodes!
1000  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1001    delete getChild(i);
1002#endif
1003}
1004
1005static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1006  if (Operator->getName() == "set" ||
1007      Operator->getName() == "implicit")
1008    return 0;  // All return nothing.
1009
1010  if (Operator->isSubClassOf("Intrinsic"))
1011    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1012
1013  if (Operator->isSubClassOf("SDNode"))
1014    return CDP.getSDNodeInfo(Operator).getNumResults();
1015
1016  if (Operator->isSubClassOf("PatFrag")) {
1017    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1018    // the forward reference case where one pattern fragment references another
1019    // before it is processed.
1020    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1021      return PFRec->getOnlyTree()->getNumTypes();
1022
1023    // Get the result tree.
1024    DagInit *Tree = Operator->getValueAsDag("Fragment");
1025    Record *Op = 0;
1026    if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
1027      Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
1028    assert(Op && "Invalid Fragment");
1029    return GetNumNodeResults(Op, CDP);
1030  }
1031
1032  if (Operator->isSubClassOf("Instruction")) {
1033    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1034
1035    // FIXME: Should allow access to all the results here.
1036    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1037
1038    // Add on one implicit def if it has a resolvable type.
1039    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1040      ++NumDefsToAdd;
1041    return NumDefsToAdd;
1042  }
1043
1044  if (Operator->isSubClassOf("SDNodeXForm"))
1045    return 1;  // FIXME: Generalize SDNodeXForm
1046
1047  Operator->dump();
1048  errs() << "Unhandled node in GetNumNodeResults\n";
1049  exit(1);
1050}
1051
1052void TreePatternNode::print(raw_ostream &OS) const {
1053  if (isLeaf())
1054    OS << *getLeafValue();
1055  else
1056    OS << '(' << getOperator()->getName();
1057
1058  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1059    OS << ':' << getExtType(i).getName();
1060
1061  if (!isLeaf()) {
1062    if (getNumChildren() != 0) {
1063      OS << " ";
1064      getChild(0)->print(OS);
1065      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1066        OS << ", ";
1067        getChild(i)->print(OS);
1068      }
1069    }
1070    OS << ")";
1071  }
1072
1073  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1074    OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1075  if (TransformFn)
1076    OS << "<<X:" << TransformFn->getName() << ">>";
1077  if (!getName().empty())
1078    OS << ":$" << getName();
1079
1080}
1081void TreePatternNode::dump() const {
1082  print(errs());
1083}
1084
1085/// isIsomorphicTo - Return true if this node is recursively
1086/// isomorphic to the specified node.  For this comparison, the node's
1087/// entire state is considered. The assigned name is ignored, since
1088/// nodes with differing names are considered isomorphic. However, if
1089/// the assigned name is present in the dependent variable set, then
1090/// the assigned name is considered significant and the node is
1091/// isomorphic if the names match.
1092bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1093                                     const MultipleUseVarSet &DepVars) const {
1094  if (N == this) return true;
1095  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1096      getPredicateFns() != N->getPredicateFns() ||
1097      getTransformFn() != N->getTransformFn())
1098    return false;
1099
1100  if (isLeaf()) {
1101    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1102      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1103        return ((DI->getDef() == NDI->getDef())
1104                && (DepVars.find(getName()) == DepVars.end()
1105                    || getName() == N->getName()));
1106      }
1107    }
1108    return getLeafValue() == N->getLeafValue();
1109  }
1110
1111  if (N->getOperator() != getOperator() ||
1112      N->getNumChildren() != getNumChildren()) return false;
1113  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1114    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1115      return false;
1116  return true;
1117}
1118
1119/// clone - Make a copy of this tree and all of its children.
1120///
1121TreePatternNode *TreePatternNode::clone() const {
1122  TreePatternNode *New;
1123  if (isLeaf()) {
1124    New = new TreePatternNode(getLeafValue(), getNumTypes());
1125  } else {
1126    std::vector<TreePatternNode*> CChildren;
1127    CChildren.reserve(Children.size());
1128    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1129      CChildren.push_back(getChild(i)->clone());
1130    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1131  }
1132  New->setName(getName());
1133  New->Types = Types;
1134  New->setPredicateFns(getPredicateFns());
1135  New->setTransformFn(getTransformFn());
1136  return New;
1137}
1138
1139/// RemoveAllTypes - Recursively strip all the types of this tree.
1140void TreePatternNode::RemoveAllTypes() {
1141  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1142    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1143  if (isLeaf()) return;
1144  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1145    getChild(i)->RemoveAllTypes();
1146}
1147
1148
1149/// SubstituteFormalArguments - Replace the formal arguments in this tree
1150/// with actual values specified by ArgMap.
1151void TreePatternNode::
1152SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1153  if (isLeaf()) return;
1154
1155  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1156    TreePatternNode *Child = getChild(i);
1157    if (Child->isLeaf()) {
1158      Init *Val = Child->getLeafValue();
1159      if (dynamic_cast<DefInit*>(Val) &&
1160          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
1161        // We found a use of a formal argument, replace it with its value.
1162        TreePatternNode *NewChild = ArgMap[Child->getName()];
1163        assert(NewChild && "Couldn't find formal argument!");
1164        assert((Child->getPredicateFns().empty() ||
1165                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1166               "Non-empty child predicate clobbered!");
1167        setChild(i, NewChild);
1168      }
1169    } else {
1170      getChild(i)->SubstituteFormalArguments(ArgMap);
1171    }
1172  }
1173}
1174
1175
1176/// InlinePatternFragments - If this pattern refers to any pattern
1177/// fragments, inline them into place, giving us a pattern without any
1178/// PatFrag references.
1179TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1180  if (isLeaf()) return this;  // nothing to do.
1181  Record *Op = getOperator();
1182
1183  if (!Op->isSubClassOf("PatFrag")) {
1184    // Just recursively inline children nodes.
1185    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1186      TreePatternNode *Child = getChild(i);
1187      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1188
1189      assert((Child->getPredicateFns().empty() ||
1190              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1191             "Non-empty child predicate clobbered!");
1192
1193      setChild(i, NewChild);
1194    }
1195    return this;
1196  }
1197
1198  // Otherwise, we found a reference to a fragment.  First, look up its
1199  // TreePattern record.
1200  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1201
1202  // Verify that we are passing the right number of operands.
1203  if (Frag->getNumArgs() != Children.size())
1204    TP.error("'" + Op->getName() + "' fragment requires " +
1205             utostr(Frag->getNumArgs()) + " operands!");
1206
1207  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1208
1209  TreePredicateFn PredFn(Frag);
1210  if (!PredFn.isAlwaysTrue())
1211    FragTree->addPredicateFn(PredFn);
1212
1213  // Resolve formal arguments to their actual value.
1214  if (Frag->getNumArgs()) {
1215    // Compute the map of formal to actual arguments.
1216    std::map<std::string, TreePatternNode*> ArgMap;
1217    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1218      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1219
1220    FragTree->SubstituteFormalArguments(ArgMap);
1221  }
1222
1223  FragTree->setName(getName());
1224  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1225    FragTree->UpdateNodeType(i, getExtType(i), TP);
1226
1227  // Transfer in the old predicates.
1228  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1229    FragTree->addPredicateFn(getPredicateFns()[i]);
1230
1231  // Get a new copy of this fragment to stitch into here.
1232  //delete this;    // FIXME: implement refcounting!
1233
1234  // The fragment we inlined could have recursive inlining that is needed.  See
1235  // if there are any pattern fragments in it and inline them as needed.
1236  return FragTree->InlinePatternFragments(TP);
1237}
1238
1239/// getImplicitType - Check to see if the specified record has an implicit
1240/// type which should be applied to it.  This will infer the type of register
1241/// references from the register file information, for example.
1242///
1243static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1244                                     bool NotRegisters, TreePattern &TP) {
1245  // Check to see if this is a register operand.
1246  if (R->isSubClassOf("RegisterOperand")) {
1247    assert(ResNo == 0 && "Regoperand ref only has one result!");
1248    if (NotRegisters)
1249      return EEVT::TypeSet(); // Unknown.
1250    Record *RegClass = R->getValueAsDef("RegClass");
1251    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1252    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1253  }
1254
1255  // Check to see if this is a register or a register class.
1256  if (R->isSubClassOf("RegisterClass")) {
1257    assert(ResNo == 0 && "Regclass ref only has one result!");
1258    if (NotRegisters)
1259      return EEVT::TypeSet(); // Unknown.
1260    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1261    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1262  }
1263
1264  if (R->isSubClassOf("PatFrag")) {
1265    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1266    // Pattern fragment types will be resolved when they are inlined.
1267    return EEVT::TypeSet(); // Unknown.
1268  }
1269
1270  if (R->isSubClassOf("Register")) {
1271    assert(ResNo == 0 && "Registers only produce one result!");
1272    if (NotRegisters)
1273      return EEVT::TypeSet(); // Unknown.
1274    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1275    return EEVT::TypeSet(T.getRegisterVTs(R));
1276  }
1277
1278  if (R->isSubClassOf("SubRegIndex")) {
1279    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1280    return EEVT::TypeSet();
1281  }
1282
1283  if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1284    assert(ResNo == 0 && "This node only has one result!");
1285    // Using a VTSDNode or CondCodeSDNode.
1286    return EEVT::TypeSet(MVT::Other, TP);
1287  }
1288
1289  if (R->isSubClassOf("ComplexPattern")) {
1290    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1291    if (NotRegisters)
1292      return EEVT::TypeSet(); // Unknown.
1293   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1294                         TP);
1295  }
1296  if (R->isSubClassOf("PointerLikeRegClass")) {
1297    assert(ResNo == 0 && "Regclass can only have one result!");
1298    return EEVT::TypeSet(MVT::iPTR, TP);
1299  }
1300
1301  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1302      R->getName() == "zero_reg") {
1303    // Placeholder.
1304    return EEVT::TypeSet(); // Unknown.
1305  }
1306
1307  TP.error("Unknown node flavor used in pattern: " + R->getName());
1308  return EEVT::TypeSet(MVT::Other, TP);
1309}
1310
1311
1312/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1313/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1314const CodeGenIntrinsic *TreePatternNode::
1315getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1316  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1317      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1318      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1319    return 0;
1320
1321  unsigned IID =
1322    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
1323  return &CDP.getIntrinsicInfo(IID);
1324}
1325
1326/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1327/// return the ComplexPattern information, otherwise return null.
1328const ComplexPattern *
1329TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1330  if (!isLeaf()) return 0;
1331
1332  DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
1333  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1334    return &CGP.getComplexPattern(DI->getDef());
1335  return 0;
1336}
1337
1338/// NodeHasProperty - Return true if this node has the specified property.
1339bool TreePatternNode::NodeHasProperty(SDNP Property,
1340                                      const CodeGenDAGPatterns &CGP) const {
1341  if (isLeaf()) {
1342    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1343      return CP->hasProperty(Property);
1344    return false;
1345  }
1346
1347  Record *Operator = getOperator();
1348  if (!Operator->isSubClassOf("SDNode")) return false;
1349
1350  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1351}
1352
1353
1354
1355
1356/// TreeHasProperty - Return true if any node in this tree has the specified
1357/// property.
1358bool TreePatternNode::TreeHasProperty(SDNP Property,
1359                                      const CodeGenDAGPatterns &CGP) const {
1360  if (NodeHasProperty(Property, CGP))
1361    return true;
1362  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1363    if (getChild(i)->TreeHasProperty(Property, CGP))
1364      return true;
1365  return false;
1366}
1367
1368/// isCommutativeIntrinsic - Return true if the node corresponds to a
1369/// commutative intrinsic.
1370bool
1371TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1372  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1373    return Int->isCommutative;
1374  return false;
1375}
1376
1377
1378/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1379/// this node and its children in the tree.  This returns true if it makes a
1380/// change, false otherwise.  If a type contradiction is found, throw an
1381/// exception.
1382bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1383  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1384  if (isLeaf()) {
1385    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1386      // If it's a regclass or something else known, include the type.
1387      bool MadeChange = false;
1388      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1389        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1390                                                        NotRegisters, TP), TP);
1391      return MadeChange;
1392    }
1393
1394    if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
1395      assert(Types.size() == 1 && "Invalid IntInit");
1396
1397      // Int inits are always integers. :)
1398      bool MadeChange = Types[0].EnforceInteger(TP);
1399
1400      if (!Types[0].isConcrete())
1401        return MadeChange;
1402
1403      MVT::SimpleValueType VT = getType(0);
1404      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1405        return MadeChange;
1406
1407      unsigned Size = EVT(VT).getSizeInBits();
1408      // Make sure that the value is representable for this type.
1409      if (Size >= 32) return MadeChange;
1410
1411      int Val = (II->getValue() << (32-Size)) >> (32-Size);
1412      if (Val == II->getValue()) return MadeChange;
1413
1414      // If sign-extended doesn't fit, does it fit as unsigned?
1415      unsigned ValueMask;
1416      unsigned UnsignedVal;
1417      ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
1418      UnsignedVal = unsigned(II->getValue());
1419
1420      if ((ValueMask & UnsignedVal) == UnsignedVal)
1421        return MadeChange;
1422
1423      TP.error("Integer value '" + itostr(II->getValue())+
1424               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1425      return MadeChange;
1426    }
1427    return false;
1428  }
1429
1430  // special handling for set, which isn't really an SDNode.
1431  if (getOperator()->getName() == "set") {
1432    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1433    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1434    unsigned NC = getNumChildren();
1435
1436    TreePatternNode *SetVal = getChild(NC-1);
1437    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1438
1439    for (unsigned i = 0; i < NC-1; ++i) {
1440      TreePatternNode *Child = getChild(i);
1441      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1442
1443      // Types of operands must match.
1444      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1445      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1446    }
1447    return MadeChange;
1448  }
1449
1450  if (getOperator()->getName() == "implicit") {
1451    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1452
1453    bool MadeChange = false;
1454    for (unsigned i = 0; i < getNumChildren(); ++i)
1455      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1456    return MadeChange;
1457  }
1458
1459  if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1460    bool MadeChange = false;
1461    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1462    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1463
1464    assert(getChild(0)->getNumTypes() == 1 &&
1465           getChild(1)->getNumTypes() == 1 && "Unhandled case");
1466
1467    // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
1468    // what type it gets, so if it didn't get a concrete type just give it the
1469    // first viable type from the reg class.
1470    if (!getChild(1)->hasTypeSet(0) &&
1471        !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1472      MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1473      MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1474    }
1475    return MadeChange;
1476  }
1477
1478  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1479    bool MadeChange = false;
1480
1481    // Apply the result type to the node.
1482    unsigned NumRetVTs = Int->IS.RetVTs.size();
1483    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1484
1485    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1486      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1487
1488    if (getNumChildren() != NumParamVTs + 1)
1489      TP.error("Intrinsic '" + Int->Name + "' expects " +
1490               utostr(NumParamVTs) + " operands, not " +
1491               utostr(getNumChildren() - 1) + " operands!");
1492
1493    // Apply type info to the intrinsic ID.
1494    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1495
1496    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1497      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1498
1499      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1500      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1501      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1502    }
1503    return MadeChange;
1504  }
1505
1506  if (getOperator()->isSubClassOf("SDNode")) {
1507    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1508
1509    // Check that the number of operands is sane.  Negative operands -> varargs.
1510    if (NI.getNumOperands() >= 0 &&
1511        getNumChildren() != (unsigned)NI.getNumOperands())
1512      TP.error(getOperator()->getName() + " node requires exactly " +
1513               itostr(NI.getNumOperands()) + " operands!");
1514
1515    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1516    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1517      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1518    return MadeChange;
1519  }
1520
1521  if (getOperator()->isSubClassOf("Instruction")) {
1522    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1523    CodeGenInstruction &InstInfo =
1524      CDP.getTargetInfo().getInstruction(getOperator());
1525
1526    bool MadeChange = false;
1527
1528    // Apply the result types to the node, these come from the things in the
1529    // (outs) list of the instruction.
1530    // FIXME: Cap at one result so far.
1531    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1532    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
1533      Record *ResultNode = Inst.getResult(ResNo);
1534
1535      if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
1536        MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
1537      } else if (ResultNode->isSubClassOf("RegisterOperand")) {
1538        Record *RegClass = ResultNode->getValueAsDef("RegClass");
1539        const CodeGenRegisterClass &RC =
1540          CDP.getTargetInfo().getRegisterClass(RegClass);
1541        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1542      } else if (ResultNode->getName() == "unknown") {
1543        // Nothing to do.
1544      } else {
1545        assert(ResultNode->isSubClassOf("RegisterClass") &&
1546               "Operands should be register classes!");
1547        const CodeGenRegisterClass &RC =
1548          CDP.getTargetInfo().getRegisterClass(ResultNode);
1549        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1550      }
1551    }
1552
1553    // If the instruction has implicit defs, we apply the first one as a result.
1554    // FIXME: This sucks, it should apply all implicit defs.
1555    if (!InstInfo.ImplicitDefs.empty()) {
1556      unsigned ResNo = NumResultsToAdd;
1557
1558      // FIXME: Generalize to multiple possible types and multiple possible
1559      // ImplicitDefs.
1560      MVT::SimpleValueType VT =
1561        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1562
1563      if (VT != MVT::Other)
1564        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1565    }
1566
1567    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1568    // be the same.
1569    if (getOperator()->getName() == "INSERT_SUBREG") {
1570      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1571      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1572      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1573    }
1574
1575    unsigned ChildNo = 0;
1576    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1577      Record *OperandNode = Inst.getOperand(i);
1578
1579      // If the instruction expects a predicate or optional def operand, we
1580      // codegen this by setting the operand to it's default value if it has a
1581      // non-empty DefaultOps field.
1582      if ((OperandNode->isSubClassOf("PredicateOperand") ||
1583           OperandNode->isSubClassOf("OptionalDefOperand")) &&
1584          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1585        continue;
1586
1587      // Verify that we didn't run out of provided operands.
1588      if (ChildNo >= getNumChildren())
1589        TP.error("Instruction '" + getOperator()->getName() +
1590                 "' expects more operands than were provided.");
1591
1592      MVT::SimpleValueType VT;
1593      TreePatternNode *Child = getChild(ChildNo++);
1594      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1595
1596      if (OperandNode->isSubClassOf("RegisterClass")) {
1597        const CodeGenRegisterClass &RC =
1598          CDP.getTargetInfo().getRegisterClass(OperandNode);
1599        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1600      } else if (OperandNode->isSubClassOf("RegisterOperand")) {
1601        Record *RegClass = OperandNode->getValueAsDef("RegClass");
1602        const CodeGenRegisterClass &RC =
1603          CDP.getTargetInfo().getRegisterClass(RegClass);
1604        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1605      } else if (OperandNode->isSubClassOf("Operand")) {
1606        VT = getValueType(OperandNode->getValueAsDef("Type"));
1607        MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
1608      } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
1609        MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
1610      } else if (OperandNode->getName() == "unknown") {
1611        // Nothing to do.
1612      } else {
1613        assert(0 && "Unknown operand type!");
1614        abort();
1615      }
1616      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1617    }
1618
1619    if (ChildNo != getNumChildren())
1620      TP.error("Instruction '" + getOperator()->getName() +
1621               "' was provided too many operands!");
1622
1623    return MadeChange;
1624  }
1625
1626  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1627
1628  // Node transforms always take one operand.
1629  if (getNumChildren() != 1)
1630    TP.error("Node transform '" + getOperator()->getName() +
1631             "' requires one operand!");
1632
1633  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1634
1635
1636  // If either the output or input of the xform does not have exact
1637  // type info. We assume they must be the same. Otherwise, it is perfectly
1638  // legal to transform from one type to a completely different type.
1639#if 0
1640  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1641    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1642    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1643    return MadeChange;
1644  }
1645#endif
1646  return MadeChange;
1647}
1648
1649/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1650/// RHS of a commutative operation, not the on LHS.
1651static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1652  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1653    return true;
1654  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1655    return true;
1656  return false;
1657}
1658
1659
1660/// canPatternMatch - If it is impossible for this pattern to match on this
1661/// target, fill in Reason and return false.  Otherwise, return true.  This is
1662/// used as a sanity check for .td files (to prevent people from writing stuff
1663/// that can never possibly work), and to prevent the pattern permuter from
1664/// generating stuff that is useless.
1665bool TreePatternNode::canPatternMatch(std::string &Reason,
1666                                      const CodeGenDAGPatterns &CDP) {
1667  if (isLeaf()) return true;
1668
1669  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1670    if (!getChild(i)->canPatternMatch(Reason, CDP))
1671      return false;
1672
1673  // If this is an intrinsic, handle cases that would make it not match.  For
1674  // example, if an operand is required to be an immediate.
1675  if (getOperator()->isSubClassOf("Intrinsic")) {
1676    // TODO:
1677    return true;
1678  }
1679
1680  // If this node is a commutative operator, check that the LHS isn't an
1681  // immediate.
1682  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1683  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1684  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1685    // Scan all of the operands of the node and make sure that only the last one
1686    // is a constant node, unless the RHS also is.
1687    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1688      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1689      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1690        if (OnlyOnRHSOfCommutative(getChild(i))) {
1691          Reason="Immediate value must be on the RHS of commutative operators!";
1692          return false;
1693        }
1694    }
1695  }
1696
1697  return true;
1698}
1699
1700//===----------------------------------------------------------------------===//
1701// TreePattern implementation
1702//
1703
1704TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1705                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1706  isInputPattern = isInput;
1707  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1708    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1709}
1710
1711TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1712                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1713  isInputPattern = isInput;
1714  Trees.push_back(ParseTreePattern(Pat, ""));
1715}
1716
1717TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1718                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1719  isInputPattern = isInput;
1720  Trees.push_back(Pat);
1721}
1722
1723void TreePattern::error(const std::string &Msg) const {
1724  dump();
1725  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1726}
1727
1728void TreePattern::ComputeNamedNodes() {
1729  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1730    ComputeNamedNodes(Trees[i]);
1731}
1732
1733void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1734  if (!N->getName().empty())
1735    NamedNodes[N->getName()].push_back(N);
1736
1737  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1738    ComputeNamedNodes(N->getChild(i));
1739}
1740
1741
1742TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1743  if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
1744    Record *R = DI->getDef();
1745
1746    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1747    // TreePatternNode of its own.  For example:
1748    ///   (foo GPR, imm) -> (foo GPR, (imm))
1749    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1750      return ParseTreePattern(
1751        DagInit::get(DI, "",
1752                     std::vector<std::pair<Init*, std::string> >()),
1753        OpName);
1754
1755    // Input argument?
1756    TreePatternNode *Res = new TreePatternNode(DI, 1);
1757    if (R->getName() == "node" && !OpName.empty()) {
1758      if (OpName.empty())
1759        error("'node' argument requires a name to match with operand list");
1760      Args.push_back(OpName);
1761    }
1762
1763    Res->setName(OpName);
1764    return Res;
1765  }
1766
1767  if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
1768    if (!OpName.empty())
1769      error("Constant int argument should not have a name!");
1770    return new TreePatternNode(II, 1);
1771  }
1772
1773  if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
1774    // Turn this into an IntInit.
1775    Init *II = BI->convertInitializerTo(IntRecTy::get());
1776    if (II == 0 || !dynamic_cast<IntInit*>(II))
1777      error("Bits value must be constants!");
1778    return ParseTreePattern(II, OpName);
1779  }
1780
1781  DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
1782  if (!Dag) {
1783    TheInit->dump();
1784    error("Pattern has unexpected init kind!");
1785  }
1786  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1787  if (!OpDef) error("Pattern has unexpected operator type!");
1788  Record *Operator = OpDef->getDef();
1789
1790  if (Operator->isSubClassOf("ValueType")) {
1791    // If the operator is a ValueType, then this must be "type cast" of a leaf
1792    // node.
1793    if (Dag->getNumArgs() != 1)
1794      error("Type cast only takes one operand!");
1795
1796    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1797
1798    // Apply the type cast.
1799    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1800    New->UpdateNodeType(0, getValueType(Operator), *this);
1801
1802    if (!OpName.empty())
1803      error("ValueType cast should not have a name!");
1804    return New;
1805  }
1806
1807  // Verify that this is something that makes sense for an operator.
1808  if (!Operator->isSubClassOf("PatFrag") &&
1809      !Operator->isSubClassOf("SDNode") &&
1810      !Operator->isSubClassOf("Instruction") &&
1811      !Operator->isSubClassOf("SDNodeXForm") &&
1812      !Operator->isSubClassOf("Intrinsic") &&
1813      Operator->getName() != "set" &&
1814      Operator->getName() != "implicit")
1815    error("Unrecognized node '" + Operator->getName() + "'!");
1816
1817  //  Check to see if this is something that is illegal in an input pattern.
1818  if (isInputPattern) {
1819    if (Operator->isSubClassOf("Instruction") ||
1820        Operator->isSubClassOf("SDNodeXForm"))
1821      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1822  } else {
1823    if (Operator->isSubClassOf("Intrinsic"))
1824      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1825
1826    if (Operator->isSubClassOf("SDNode") &&
1827        Operator->getName() != "imm" &&
1828        Operator->getName() != "fpimm" &&
1829        Operator->getName() != "tglobaltlsaddr" &&
1830        Operator->getName() != "tconstpool" &&
1831        Operator->getName() != "tjumptable" &&
1832        Operator->getName() != "tframeindex" &&
1833        Operator->getName() != "texternalsym" &&
1834        Operator->getName() != "tblockaddress" &&
1835        Operator->getName() != "tglobaladdr" &&
1836        Operator->getName() != "bb" &&
1837        Operator->getName() != "vt")
1838      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1839  }
1840
1841  std::vector<TreePatternNode*> Children;
1842
1843  // Parse all the operands.
1844  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1845    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1846
1847  // If the operator is an intrinsic, then this is just syntactic sugar for for
1848  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1849  // convert the intrinsic name to a number.
1850  if (Operator->isSubClassOf("Intrinsic")) {
1851    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1852    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1853
1854    // If this intrinsic returns void, it must have side-effects and thus a
1855    // chain.
1856    if (Int.IS.RetVTs.empty())
1857      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1858    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1859      // Has side-effects, requires chain.
1860      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1861    else // Otherwise, no chain.
1862      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1863
1864    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1865    Children.insert(Children.begin(), IIDNode);
1866  }
1867
1868  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1869  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1870  Result->setName(OpName);
1871
1872  if (!Dag->getName().empty()) {
1873    assert(Result->getName().empty());
1874    Result->setName(Dag->getName());
1875  }
1876  return Result;
1877}
1878
1879/// SimplifyTree - See if we can simplify this tree to eliminate something that
1880/// will never match in favor of something obvious that will.  This is here
1881/// strictly as a convenience to target authors because it allows them to write
1882/// more type generic things and have useless type casts fold away.
1883///
1884/// This returns true if any change is made.
1885static bool SimplifyTree(TreePatternNode *&N) {
1886  if (N->isLeaf())
1887    return false;
1888
1889  // If we have a bitconvert with a resolved type and if the source and
1890  // destination types are the same, then the bitconvert is useless, remove it.
1891  if (N->getOperator()->getName() == "bitconvert" &&
1892      N->getExtType(0).isConcrete() &&
1893      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1894      N->getName().empty()) {
1895    N = N->getChild(0);
1896    SimplifyTree(N);
1897    return true;
1898  }
1899
1900  // Walk all children.
1901  bool MadeChange = false;
1902  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1903    TreePatternNode *Child = N->getChild(i);
1904    MadeChange |= SimplifyTree(Child);
1905    N->setChild(i, Child);
1906  }
1907  return MadeChange;
1908}
1909
1910
1911
1912/// InferAllTypes - Infer/propagate as many types throughout the expression
1913/// patterns as possible.  Return true if all types are inferred, false
1914/// otherwise.  Throw an exception if a type contradiction is found.
1915bool TreePattern::
1916InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1917  if (NamedNodes.empty())
1918    ComputeNamedNodes();
1919
1920  bool MadeChange = true;
1921  while (MadeChange) {
1922    MadeChange = false;
1923    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1924      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1925      MadeChange |= SimplifyTree(Trees[i]);
1926    }
1927
1928    // If there are constraints on our named nodes, apply them.
1929    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1930         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1931      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1932
1933      // If we have input named node types, propagate their types to the named
1934      // values here.
1935      if (InNamedTypes) {
1936        // FIXME: Should be error?
1937        assert(InNamedTypes->count(I->getKey()) &&
1938               "Named node in output pattern but not input pattern?");
1939
1940        const SmallVectorImpl<TreePatternNode*> &InNodes =
1941          InNamedTypes->find(I->getKey())->second;
1942
1943        // The input types should be fully resolved by now.
1944        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1945          // If this node is a register class, and it is the root of the pattern
1946          // then we're mapping something onto an input register.  We allow
1947          // changing the type of the input register in this case.  This allows
1948          // us to match things like:
1949          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1950          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
1951            DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
1952            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
1953                       DI->getDef()->isSubClassOf("RegisterOperand")))
1954              continue;
1955          }
1956
1957          assert(Nodes[i]->getNumTypes() == 1 &&
1958                 InNodes[0]->getNumTypes() == 1 &&
1959                 "FIXME: cannot name multiple result nodes yet");
1960          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
1961                                                 *this);
1962        }
1963      }
1964
1965      // If there are multiple nodes with the same name, they must all have the
1966      // same type.
1967      if (I->second.size() > 1) {
1968        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
1969          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
1970          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
1971                 "FIXME: cannot name multiple result nodes yet");
1972
1973          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
1974          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
1975        }
1976      }
1977    }
1978  }
1979
1980  bool HasUnresolvedTypes = false;
1981  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1982    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1983  return !HasUnresolvedTypes;
1984}
1985
1986void TreePattern::print(raw_ostream &OS) const {
1987  OS << getRecord()->getName();
1988  if (!Args.empty()) {
1989    OS << "(" << Args[0];
1990    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1991      OS << ", " << Args[i];
1992    OS << ")";
1993  }
1994  OS << ": ";
1995
1996  if (Trees.size() > 1)
1997    OS << "[\n";
1998  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1999    OS << "\t";
2000    Trees[i]->print(OS);
2001    OS << "\n";
2002  }
2003
2004  if (Trees.size() > 1)
2005    OS << "]\n";
2006}
2007
2008void TreePattern::dump() const { print(errs()); }
2009
2010//===----------------------------------------------------------------------===//
2011// CodeGenDAGPatterns implementation
2012//
2013
2014CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2015  Records(R), Target(R) {
2016
2017  Intrinsics = LoadIntrinsics(Records, false);
2018  TgtIntrinsics = LoadIntrinsics(Records, true);
2019  ParseNodeInfo();
2020  ParseNodeTransforms();
2021  ParseComplexPatterns();
2022  ParsePatternFragments();
2023  ParseDefaultOperands();
2024  ParseInstructions();
2025  ParsePatterns();
2026
2027  // Generate variants.  For example, commutative patterns can match
2028  // multiple ways.  Add them to PatternsToMatch as well.
2029  GenerateVariants();
2030
2031  // Infer instruction flags.  For example, we can detect loads,
2032  // stores, and side effects in many cases by examining an
2033  // instruction's pattern.
2034  InferInstructionFlags();
2035}
2036
2037CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2038  for (pf_iterator I = PatternFragments.begin(),
2039       E = PatternFragments.end(); I != E; ++I)
2040    delete I->second;
2041}
2042
2043
2044Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2045  Record *N = Records.getDef(Name);
2046  if (!N || !N->isSubClassOf("SDNode")) {
2047    errs() << "Error getting SDNode '" << Name << "'!\n";
2048    exit(1);
2049  }
2050  return N;
2051}
2052
2053// Parse all of the SDNode definitions for the target, populating SDNodes.
2054void CodeGenDAGPatterns::ParseNodeInfo() {
2055  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2056  while (!Nodes.empty()) {
2057    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2058    Nodes.pop_back();
2059  }
2060
2061  // Get the builtin intrinsic nodes.
2062  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2063  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2064  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2065}
2066
2067/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2068/// map, and emit them to the file as functions.
2069void CodeGenDAGPatterns::ParseNodeTransforms() {
2070  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2071  while (!Xforms.empty()) {
2072    Record *XFormNode = Xforms.back();
2073    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2074    std::string Code = XFormNode->getValueAsCode("XFormFunction");
2075    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2076
2077    Xforms.pop_back();
2078  }
2079}
2080
2081void CodeGenDAGPatterns::ParseComplexPatterns() {
2082  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2083  while (!AMs.empty()) {
2084    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2085    AMs.pop_back();
2086  }
2087}
2088
2089
2090/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2091/// file, building up the PatternFragments map.  After we've collected them all,
2092/// inline fragments together as necessary, so that there are no references left
2093/// inside a pattern fragment to a pattern fragment.
2094///
2095void CodeGenDAGPatterns::ParsePatternFragments() {
2096  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2097
2098  // First step, parse all of the fragments.
2099  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2100    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2101    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2102    PatternFragments[Fragments[i]] = P;
2103
2104    // Validate the argument list, converting it to set, to discard duplicates.
2105    std::vector<std::string> &Args = P->getArgList();
2106    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2107
2108    if (OperandsSet.count(""))
2109      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2110
2111    // Parse the operands list.
2112    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2113    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
2114    // Special cases: ops == outs == ins. Different names are used to
2115    // improve readability.
2116    if (!OpsOp ||
2117        (OpsOp->getDef()->getName() != "ops" &&
2118         OpsOp->getDef()->getName() != "outs" &&
2119         OpsOp->getDef()->getName() != "ins"))
2120      P->error("Operands list should start with '(ops ... '!");
2121
2122    // Copy over the arguments.
2123    Args.clear();
2124    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2125      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
2126          static_cast<DefInit*>(OpsList->getArg(j))->
2127          getDef()->getName() != "node")
2128        P->error("Operands list should all be 'node' values.");
2129      if (OpsList->getArgName(j).empty())
2130        P->error("Operands list should have names for each operand!");
2131      if (!OperandsSet.count(OpsList->getArgName(j)))
2132        P->error("'" + OpsList->getArgName(j) +
2133                 "' does not occur in pattern or was multiply specified!");
2134      OperandsSet.erase(OpsList->getArgName(j));
2135      Args.push_back(OpsList->getArgName(j));
2136    }
2137
2138    if (!OperandsSet.empty())
2139      P->error("Operands list does not contain an entry for operand '" +
2140               *OperandsSet.begin() + "'!");
2141
2142    // If there is a code init for this fragment, keep track of the fact that
2143    // this fragment uses it.
2144    TreePredicateFn PredFn(P);
2145    if (!PredFn.isAlwaysTrue())
2146      P->getOnlyTree()->addPredicateFn(PredFn);
2147
2148    // If there is a node transformation corresponding to this, keep track of
2149    // it.
2150    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2151    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2152      P->getOnlyTree()->setTransformFn(Transform);
2153  }
2154
2155  // Now that we've parsed all of the tree fragments, do a closure on them so
2156  // that there are not references to PatFrags left inside of them.
2157  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2158    TreePattern *ThePat = PatternFragments[Fragments[i]];
2159    ThePat->InlinePatternFragments();
2160
2161    // Infer as many types as possible.  Don't worry about it if we don't infer
2162    // all of them, some may depend on the inputs of the pattern.
2163    try {
2164      ThePat->InferAllTypes();
2165    } catch (...) {
2166      // If this pattern fragment is not supported by this target (no types can
2167      // satisfy its constraints), just ignore it.  If the bogus pattern is
2168      // actually used by instructions, the type consistency error will be
2169      // reported there.
2170    }
2171
2172    // If debugging, print out the pattern fragment result.
2173    DEBUG(ThePat->dump());
2174  }
2175}
2176
2177void CodeGenDAGPatterns::ParseDefaultOperands() {
2178  std::vector<Record*> DefaultOps[2];
2179  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
2180  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
2181
2182  // Find some SDNode.
2183  assert(!SDNodes.empty() && "No SDNodes parsed?");
2184  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2185
2186  for (unsigned iter = 0; iter != 2; ++iter) {
2187    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
2188      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
2189
2190      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2191      // SomeSDnode so that we can parse this.
2192      std::vector<std::pair<Init*, std::string> > Ops;
2193      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2194        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2195                                     DefaultInfo->getArgName(op)));
2196      DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2197
2198      // Create a TreePattern to parse this.
2199      TreePattern P(DefaultOps[iter][i], DI, false, *this);
2200      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2201
2202      // Copy the operands over into a DAGDefaultOperand.
2203      DAGDefaultOperand DefaultOpInfo;
2204
2205      TreePatternNode *T = P.getTree(0);
2206      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2207        TreePatternNode *TPN = T->getChild(op);
2208        while (TPN->ApplyTypeConstraints(P, false))
2209          /* Resolve all types */;
2210
2211        if (TPN->ContainsUnresolvedType()) {
2212          if (iter == 0)
2213            throw "Value #" + utostr(i) + " of PredicateOperand '" +
2214              DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
2215          else
2216            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
2217              DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
2218        }
2219        DefaultOpInfo.DefaultOps.push_back(TPN);
2220      }
2221
2222      // Insert it into the DefaultOperands map so we can find it later.
2223      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
2224    }
2225  }
2226}
2227
2228/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2229/// instruction input.  Return true if this is a real use.
2230static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2231                      std::map<std::string, TreePatternNode*> &InstInputs) {
2232  // No name -> not interesting.
2233  if (Pat->getName().empty()) {
2234    if (Pat->isLeaf()) {
2235      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2236      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2237                 DI->getDef()->isSubClassOf("RegisterOperand")))
2238        I->error("Input " + DI->getDef()->getName() + " must be named!");
2239    }
2240    return false;
2241  }
2242
2243  Record *Rec;
2244  if (Pat->isLeaf()) {
2245    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2246    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2247    Rec = DI->getDef();
2248  } else {
2249    Rec = Pat->getOperator();
2250  }
2251
2252  // SRCVALUE nodes are ignored.
2253  if (Rec->getName() == "srcvalue")
2254    return false;
2255
2256  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2257  if (!Slot) {
2258    Slot = Pat;
2259    return true;
2260  }
2261  Record *SlotRec;
2262  if (Slot->isLeaf()) {
2263    SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
2264  } else {
2265    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2266    SlotRec = Slot->getOperator();
2267  }
2268
2269  // Ensure that the inputs agree if we've already seen this input.
2270  if (Rec != SlotRec)
2271    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2272  if (Slot->getExtTypes() != Pat->getExtTypes())
2273    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2274  return true;
2275}
2276
2277/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2278/// part of "I", the instruction), computing the set of inputs and outputs of
2279/// the pattern.  Report errors if we see anything naughty.
2280void CodeGenDAGPatterns::
2281FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2282                            std::map<std::string, TreePatternNode*> &InstInputs,
2283                            std::map<std::string, TreePatternNode*>&InstResults,
2284                            std::vector<Record*> &InstImpResults) {
2285  if (Pat->isLeaf()) {
2286    bool isUse = HandleUse(I, Pat, InstInputs);
2287    if (!isUse && Pat->getTransformFn())
2288      I->error("Cannot specify a transform function for a non-input value!");
2289    return;
2290  }
2291
2292  if (Pat->getOperator()->getName() == "implicit") {
2293    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2294      TreePatternNode *Dest = Pat->getChild(i);
2295      if (!Dest->isLeaf())
2296        I->error("implicitly defined value should be a register!");
2297
2298      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2299      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2300        I->error("implicitly defined value should be a register!");
2301      InstImpResults.push_back(Val->getDef());
2302    }
2303    return;
2304  }
2305
2306  if (Pat->getOperator()->getName() != "set") {
2307    // If this is not a set, verify that the children nodes are not void typed,
2308    // and recurse.
2309    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2310      if (Pat->getChild(i)->getNumTypes() == 0)
2311        I->error("Cannot have void nodes inside of patterns!");
2312      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2313                                  InstImpResults);
2314    }
2315
2316    // If this is a non-leaf node with no children, treat it basically as if
2317    // it were a leaf.  This handles nodes like (imm).
2318    bool isUse = HandleUse(I, Pat, InstInputs);
2319
2320    if (!isUse && Pat->getTransformFn())
2321      I->error("Cannot specify a transform function for a non-input value!");
2322    return;
2323  }
2324
2325  // Otherwise, this is a set, validate and collect instruction results.
2326  if (Pat->getNumChildren() == 0)
2327    I->error("set requires operands!");
2328
2329  if (Pat->getTransformFn())
2330    I->error("Cannot specify a transform function on a set node!");
2331
2332  // Check the set destinations.
2333  unsigned NumDests = Pat->getNumChildren()-1;
2334  for (unsigned i = 0; i != NumDests; ++i) {
2335    TreePatternNode *Dest = Pat->getChild(i);
2336    if (!Dest->isLeaf())
2337      I->error("set destination should be a register!");
2338
2339    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2340    if (!Val)
2341      I->error("set destination should be a register!");
2342
2343    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2344        Val->getDef()->isSubClassOf("RegisterOperand") ||
2345        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2346      if (Dest->getName().empty())
2347        I->error("set destination must have a name!");
2348      if (InstResults.count(Dest->getName()))
2349        I->error("cannot set '" + Dest->getName() +"' multiple times");
2350      InstResults[Dest->getName()] = Dest;
2351    } else if (Val->getDef()->isSubClassOf("Register")) {
2352      InstImpResults.push_back(Val->getDef());
2353    } else {
2354      I->error("set destination should be a register!");
2355    }
2356  }
2357
2358  // Verify and collect info from the computation.
2359  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2360                              InstInputs, InstResults, InstImpResults);
2361}
2362
2363//===----------------------------------------------------------------------===//
2364// Instruction Analysis
2365//===----------------------------------------------------------------------===//
2366
2367class InstAnalyzer {
2368  const CodeGenDAGPatterns &CDP;
2369  bool &mayStore;
2370  bool &mayLoad;
2371  bool &IsBitcast;
2372  bool &HasSideEffects;
2373  bool &IsVariadic;
2374public:
2375  InstAnalyzer(const CodeGenDAGPatterns &cdp,
2376               bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv)
2377    : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc),
2378      HasSideEffects(hse), IsVariadic(isv) {
2379  }
2380
2381  /// Analyze - Analyze the specified instruction, returning true if the
2382  /// instruction had a pattern.
2383  bool Analyze(Record *InstRecord) {
2384    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
2385    if (Pattern == 0) {
2386      HasSideEffects = 1;
2387      return false;  // No pattern.
2388    }
2389
2390    // FIXME: Assume only the first tree is the pattern. The others are clobber
2391    // nodes.
2392    AnalyzeNode(Pattern->getTree(0));
2393    return true;
2394  }
2395
2396private:
2397  bool IsNodeBitcast(const TreePatternNode *N) const {
2398    if (HasSideEffects || mayLoad || mayStore || IsVariadic)
2399      return false;
2400
2401    if (N->getNumChildren() != 2)
2402      return false;
2403
2404    const TreePatternNode *N0 = N->getChild(0);
2405    if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
2406      return false;
2407
2408    const TreePatternNode *N1 = N->getChild(1);
2409    if (N1->isLeaf())
2410      return false;
2411    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2412      return false;
2413
2414    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2415    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2416      return false;
2417    return OpInfo.getEnumName() == "ISD::BITCAST";
2418  }
2419
2420  void AnalyzeNode(const TreePatternNode *N) {
2421    if (N->isLeaf()) {
2422      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2423        Record *LeafRec = DI->getDef();
2424        // Handle ComplexPattern leaves.
2425        if (LeafRec->isSubClassOf("ComplexPattern")) {
2426          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2427          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2428          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2429          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
2430        }
2431      }
2432      return;
2433    }
2434
2435    // Analyze children.
2436    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2437      AnalyzeNode(N->getChild(i));
2438
2439    // Ignore set nodes, which are not SDNodes.
2440    if (N->getOperator()->getName() == "set") {
2441      IsBitcast = IsNodeBitcast(N);
2442      return;
2443    }
2444
2445    // Get information about the SDNode for the operator.
2446    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2447
2448    // Notice properties of the node.
2449    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2450    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2451    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
2452    if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
2453
2454    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2455      // If this is an intrinsic, analyze it.
2456      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2457        mayLoad = true;// These may load memory.
2458
2459      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2460        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2461
2462      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2463        // WriteMem intrinsics can have other strange effects.
2464        HasSideEffects = true;
2465    }
2466  }
2467
2468};
2469
2470static void InferFromPattern(const CodeGenInstruction &Inst,
2471                             bool &MayStore, bool &MayLoad,
2472                             bool &IsBitcast,
2473                             bool &HasSideEffects, bool &IsVariadic,
2474                             const CodeGenDAGPatterns &CDP) {
2475  MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false;
2476
2477  bool HadPattern =
2478    InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic)
2479    .Analyze(Inst.TheDef);
2480
2481  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
2482  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
2483    // If we decided that this is a store from the pattern, then the .td file
2484    // entry is redundant.
2485    if (MayStore)
2486      fprintf(stderr,
2487              "Warning: mayStore flag explicitly set on instruction '%s'"
2488              " but flag already inferred from pattern.\n",
2489              Inst.TheDef->getName().c_str());
2490    MayStore = true;
2491  }
2492
2493  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
2494    // If we decided that this is a load from the pattern, then the .td file
2495    // entry is redundant.
2496    if (MayLoad)
2497      fprintf(stderr,
2498              "Warning: mayLoad flag explicitly set on instruction '%s'"
2499              " but flag already inferred from pattern.\n",
2500              Inst.TheDef->getName().c_str());
2501    MayLoad = true;
2502  }
2503
2504  if (Inst.neverHasSideEffects) {
2505    if (HadPattern)
2506      fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
2507              "which already has a pattern\n", Inst.TheDef->getName().c_str());
2508    HasSideEffects = false;
2509  }
2510
2511  if (Inst.hasSideEffects) {
2512    if (HasSideEffects)
2513      fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
2514              "which already inferred this.\n", Inst.TheDef->getName().c_str());
2515    HasSideEffects = true;
2516  }
2517
2518  if (Inst.Operands.isVariadic)
2519    IsVariadic = true;  // Can warn if we want.
2520}
2521
2522/// ParseInstructions - Parse all of the instructions, inlining and resolving
2523/// any fragments involved.  This populates the Instructions list with fully
2524/// resolved instructions.
2525void CodeGenDAGPatterns::ParseInstructions() {
2526  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2527
2528  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2529    ListInit *LI = 0;
2530
2531    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
2532      LI = Instrs[i]->getValueAsListInit("Pattern");
2533
2534    // If there is no pattern, only collect minimal information about the
2535    // instruction for its operand list.  We have to assume that there is one
2536    // result, as we have no detailed info.
2537    if (!LI || LI->getSize() == 0) {
2538      std::vector<Record*> Results;
2539      std::vector<Record*> Operands;
2540
2541      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2542
2543      if (InstInfo.Operands.size() != 0) {
2544        if (InstInfo.Operands.NumDefs == 0) {
2545          // These produce no results
2546          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2547            Operands.push_back(InstInfo.Operands[j].Rec);
2548        } else {
2549          // Assume the first operand is the result.
2550          Results.push_back(InstInfo.Operands[0].Rec);
2551
2552          // The rest are inputs.
2553          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2554            Operands.push_back(InstInfo.Operands[j].Rec);
2555        }
2556      }
2557
2558      // Create and insert the instruction.
2559      std::vector<Record*> ImpResults;
2560      Instructions.insert(std::make_pair(Instrs[i],
2561                          DAGInstruction(0, Results, Operands, ImpResults)));
2562      continue;  // no pattern.
2563    }
2564
2565    // Parse the instruction.
2566    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2567    // Inline pattern fragments into it.
2568    I->InlinePatternFragments();
2569
2570    // Infer as many types as possible.  If we cannot infer all of them, we can
2571    // never do anything with this instruction pattern: report it to the user.
2572    if (!I->InferAllTypes())
2573      I->error("Could not infer all types in pattern!");
2574
2575    // InstInputs - Keep track of all of the inputs of the instruction, along
2576    // with the record they are declared as.
2577    std::map<std::string, TreePatternNode*> InstInputs;
2578
2579    // InstResults - Keep track of all the virtual registers that are 'set'
2580    // in the instruction, including what reg class they are.
2581    std::map<std::string, TreePatternNode*> InstResults;
2582
2583    std::vector<Record*> InstImpResults;
2584
2585    // Verify that the top-level forms in the instruction are of void type, and
2586    // fill in the InstResults map.
2587    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2588      TreePatternNode *Pat = I->getTree(j);
2589      if (Pat->getNumTypes() != 0)
2590        I->error("Top-level forms in instruction pattern should have"
2591                 " void types");
2592
2593      // Find inputs and outputs, and verify the structure of the uses/defs.
2594      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2595                                  InstImpResults);
2596    }
2597
2598    // Now that we have inputs and outputs of the pattern, inspect the operands
2599    // list for the instruction.  This determines the order that operands are
2600    // added to the machine instruction the node corresponds to.
2601    unsigned NumResults = InstResults.size();
2602
2603    // Parse the operands list from the (ops) list, validating it.
2604    assert(I->getArgList().empty() && "Args list should still be empty here!");
2605    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2606
2607    // Check that all of the results occur first in the list.
2608    std::vector<Record*> Results;
2609    TreePatternNode *Res0Node = 0;
2610    for (unsigned i = 0; i != NumResults; ++i) {
2611      if (i == CGI.Operands.size())
2612        I->error("'" + InstResults.begin()->first +
2613                 "' set but does not appear in operand list!");
2614      const std::string &OpName = CGI.Operands[i].Name;
2615
2616      // Check that it exists in InstResults.
2617      TreePatternNode *RNode = InstResults[OpName];
2618      if (RNode == 0)
2619        I->error("Operand $" + OpName + " does not exist in operand list!");
2620
2621      if (i == 0)
2622        Res0Node = RNode;
2623      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
2624      if (R == 0)
2625        I->error("Operand $" + OpName + " should be a set destination: all "
2626                 "outputs must occur before inputs in operand list!");
2627
2628      if (CGI.Operands[i].Rec != R)
2629        I->error("Operand $" + OpName + " class mismatch!");
2630
2631      // Remember the return type.
2632      Results.push_back(CGI.Operands[i].Rec);
2633
2634      // Okay, this one checks out.
2635      InstResults.erase(OpName);
2636    }
2637
2638    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2639    // the copy while we're checking the inputs.
2640    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2641
2642    std::vector<TreePatternNode*> ResultNodeOperands;
2643    std::vector<Record*> Operands;
2644    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2645      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2646      const std::string &OpName = Op.Name;
2647      if (OpName.empty())
2648        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2649
2650      if (!InstInputsCheck.count(OpName)) {
2651        // If this is an predicate operand or optional def operand with an
2652        // DefaultOps set filled in, we can ignore this.  When we codegen it,
2653        // we will do so as always executed.
2654        if (Op.Rec->isSubClassOf("PredicateOperand") ||
2655            Op.Rec->isSubClassOf("OptionalDefOperand")) {
2656          // Does it have a non-empty DefaultOps field?  If so, ignore this
2657          // operand.
2658          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2659            continue;
2660        }
2661        I->error("Operand $" + OpName +
2662                 " does not appear in the instruction pattern");
2663      }
2664      TreePatternNode *InVal = InstInputsCheck[OpName];
2665      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2666
2667      if (InVal->isLeaf() &&
2668          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
2669        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2670        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2671          I->error("Operand $" + OpName + "'s register class disagrees"
2672                   " between the operand and pattern");
2673      }
2674      Operands.push_back(Op.Rec);
2675
2676      // Construct the result for the dest-pattern operand list.
2677      TreePatternNode *OpNode = InVal->clone();
2678
2679      // No predicate is useful on the result.
2680      OpNode->clearPredicateFns();
2681
2682      // Promote the xform function to be an explicit node if set.
2683      if (Record *Xform = OpNode->getTransformFn()) {
2684        OpNode->setTransformFn(0);
2685        std::vector<TreePatternNode*> Children;
2686        Children.push_back(OpNode);
2687        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2688      }
2689
2690      ResultNodeOperands.push_back(OpNode);
2691    }
2692
2693    if (!InstInputsCheck.empty())
2694      I->error("Input operand $" + InstInputsCheck.begin()->first +
2695               " occurs in pattern but not in operands list!");
2696
2697    TreePatternNode *ResultPattern =
2698      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2699                          GetNumNodeResults(I->getRecord(), *this));
2700    // Copy fully inferred output node type to instruction result pattern.
2701    for (unsigned i = 0; i != NumResults; ++i)
2702      ResultPattern->setType(i, Res0Node->getExtType(i));
2703
2704    // Create and insert the instruction.
2705    // FIXME: InstImpResults should not be part of DAGInstruction.
2706    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2707    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2708
2709    // Use a temporary tree pattern to infer all types and make sure that the
2710    // constructed result is correct.  This depends on the instruction already
2711    // being inserted into the Instructions map.
2712    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2713    Temp.InferAllTypes(&I->getNamedNodesMap());
2714
2715    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2716    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2717
2718    DEBUG(I->dump());
2719  }
2720
2721  // If we can, convert the instructions to be patterns that are matched!
2722  for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
2723        Instructions.begin(),
2724       E = Instructions.end(); II != E; ++II) {
2725    DAGInstruction &TheInst = II->second;
2726    const TreePattern *I = TheInst.getPattern();
2727    if (I == 0) continue;  // No pattern.
2728
2729    // FIXME: Assume only the first tree is the pattern. The others are clobber
2730    // nodes.
2731    TreePatternNode *Pattern = I->getTree(0);
2732    TreePatternNode *SrcPattern;
2733    if (Pattern->getOperator()->getName() == "set") {
2734      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2735    } else{
2736      // Not a set (store or something?)
2737      SrcPattern = Pattern;
2738    }
2739
2740    Record *Instr = II->first;
2741    AddPatternToMatch(I,
2742                      PatternToMatch(Instr,
2743                                     Instr->getValueAsListInit("Predicates"),
2744                                     SrcPattern,
2745                                     TheInst.getResultPattern(),
2746                                     TheInst.getImpResults(),
2747                                     Instr->getValueAsInt("AddedComplexity"),
2748                                     Instr->getID()));
2749  }
2750}
2751
2752
2753typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2754
2755static void FindNames(const TreePatternNode *P,
2756                      std::map<std::string, NameRecord> &Names,
2757                      const TreePattern *PatternTop) {
2758  if (!P->getName().empty()) {
2759    NameRecord &Rec = Names[P->getName()];
2760    // If this is the first instance of the name, remember the node.
2761    if (Rec.second++ == 0)
2762      Rec.first = P;
2763    else if (Rec.first->getExtTypes() != P->getExtTypes())
2764      PatternTop->error("repetition of value: $" + P->getName() +
2765                        " where different uses have different types!");
2766  }
2767
2768  if (!P->isLeaf()) {
2769    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2770      FindNames(P->getChild(i), Names, PatternTop);
2771  }
2772}
2773
2774void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
2775                                           const PatternToMatch &PTM) {
2776  // Do some sanity checking on the pattern we're about to match.
2777  std::string Reason;
2778  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
2779    Pattern->error("Pattern can never match: " + Reason);
2780
2781  // If the source pattern's root is a complex pattern, that complex pattern
2782  // must specify the nodes it can potentially match.
2783  if (const ComplexPattern *CP =
2784        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2785    if (CP->getRootNodes().empty())
2786      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2787                     " could match");
2788
2789
2790  // Find all of the named values in the input and output, ensure they have the
2791  // same type.
2792  std::map<std::string, NameRecord> SrcNames, DstNames;
2793  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2794  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2795
2796  // Scan all of the named values in the destination pattern, rejecting them if
2797  // they don't exist in the input pattern.
2798  for (std::map<std::string, NameRecord>::iterator
2799       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2800    if (SrcNames[I->first].first == 0)
2801      Pattern->error("Pattern has input without matching name in output: $" +
2802                     I->first);
2803  }
2804
2805  // Scan all of the named values in the source pattern, rejecting them if the
2806  // name isn't used in the dest, and isn't used to tie two values together.
2807  for (std::map<std::string, NameRecord>::iterator
2808       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2809    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2810      Pattern->error("Pattern has dead named input: $" + I->first);
2811
2812  PatternsToMatch.push_back(PTM);
2813}
2814
2815
2816
2817void CodeGenDAGPatterns::InferInstructionFlags() {
2818  const std::vector<const CodeGenInstruction*> &Instructions =
2819    Target.getInstructionsByEnumValue();
2820  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2821    CodeGenInstruction &InstInfo =
2822      const_cast<CodeGenInstruction &>(*Instructions[i]);
2823    // Determine properties of the instruction from its pattern.
2824    bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic;
2825    InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast,
2826                     HasSideEffects, IsVariadic, *this);
2827    InstInfo.mayStore = MayStore;
2828    InstInfo.mayLoad = MayLoad;
2829    InstInfo.isBitcast = IsBitcast;
2830    InstInfo.hasSideEffects = HasSideEffects;
2831    InstInfo.Operands.isVariadic = IsVariadic;
2832
2833    // Sanity checks.
2834    if (InstInfo.isReMaterializable && InstInfo.hasSideEffects)
2835      throw TGError(InstInfo.TheDef->getLoc(), "The instruction " +
2836                    InstInfo.TheDef->getName() +
2837                    " is rematerializable AND has unmodeled side effects?");
2838  }
2839}
2840
2841/// Given a pattern result with an unresolved type, see if we can find one
2842/// instruction with an unresolved result type.  Force this result type to an
2843/// arbitrary element if it's possible types to converge results.
2844static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
2845  if (N->isLeaf())
2846    return false;
2847
2848  // Analyze children.
2849  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2850    if (ForceArbitraryInstResultType(N->getChild(i), TP))
2851      return true;
2852
2853  if (!N->getOperator()->isSubClassOf("Instruction"))
2854    return false;
2855
2856  // If this type is already concrete or completely unknown we can't do
2857  // anything.
2858  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
2859    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
2860      continue;
2861
2862    // Otherwise, force its type to the first possibility (an arbitrary choice).
2863    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
2864      return true;
2865  }
2866
2867  return false;
2868}
2869
2870void CodeGenDAGPatterns::ParsePatterns() {
2871  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
2872
2873  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
2874    Record *CurPattern = Patterns[i];
2875    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
2876    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
2877
2878    // Inline pattern fragments into it.
2879    Pattern->InlinePatternFragments();
2880
2881    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
2882    if (LI->getSize() == 0) continue;  // no pattern.
2883
2884    // Parse the instruction.
2885    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
2886
2887    // Inline pattern fragments into it.
2888    Result->InlinePatternFragments();
2889
2890    if (Result->getNumTrees() != 1)
2891      Result->error("Cannot handle instructions producing instructions "
2892                    "with temporaries yet!");
2893
2894    bool IterateInference;
2895    bool InferredAllPatternTypes, InferredAllResultTypes;
2896    do {
2897      // Infer as many types as possible.  If we cannot infer all of them, we
2898      // can never do anything with this pattern: report it to the user.
2899      InferredAllPatternTypes =
2900        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
2901
2902      // Infer as many types as possible.  If we cannot infer all of them, we
2903      // can never do anything with this pattern: report it to the user.
2904      InferredAllResultTypes =
2905        Result->InferAllTypes(&Pattern->getNamedNodesMap());
2906
2907      IterateInference = false;
2908
2909      // Apply the type of the result to the source pattern.  This helps us
2910      // resolve cases where the input type is known to be a pointer type (which
2911      // is considered resolved), but the result knows it needs to be 32- or
2912      // 64-bits.  Infer the other way for good measure.
2913      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
2914                                        Pattern->getTree(0)->getNumTypes());
2915           i != e; ++i) {
2916        IterateInference = Pattern->getTree(0)->
2917          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
2918        IterateInference |= Result->getTree(0)->
2919          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
2920      }
2921
2922      // If our iteration has converged and the input pattern's types are fully
2923      // resolved but the result pattern is not fully resolved, we may have a
2924      // situation where we have two instructions in the result pattern and
2925      // the instructions require a common register class, but don't care about
2926      // what actual MVT is used.  This is actually a bug in our modelling:
2927      // output patterns should have register classes, not MVTs.
2928      //
2929      // In any case, to handle this, we just go through and disambiguate some
2930      // arbitrary types to the result pattern's nodes.
2931      if (!IterateInference && InferredAllPatternTypes &&
2932          !InferredAllResultTypes)
2933        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
2934                                                        *Result);
2935    } while (IterateInference);
2936
2937    // Verify that we inferred enough types that we can do something with the
2938    // pattern and result.  If these fire the user has to add type casts.
2939    if (!InferredAllPatternTypes)
2940      Pattern->error("Could not infer all types in pattern!");
2941    if (!InferredAllResultTypes) {
2942      Pattern->dump();
2943      Result->error("Could not infer all types in pattern result!");
2944    }
2945
2946    // Validate that the input pattern is correct.
2947    std::map<std::string, TreePatternNode*> InstInputs;
2948    std::map<std::string, TreePatternNode*> InstResults;
2949    std::vector<Record*> InstImpResults;
2950    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
2951      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
2952                                  InstInputs, InstResults,
2953                                  InstImpResults);
2954
2955    // Promote the xform function to be an explicit node if set.
2956    TreePatternNode *DstPattern = Result->getOnlyTree();
2957    std::vector<TreePatternNode*> ResultNodeOperands;
2958    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
2959      TreePatternNode *OpNode = DstPattern->getChild(ii);
2960      if (Record *Xform = OpNode->getTransformFn()) {
2961        OpNode->setTransformFn(0);
2962        std::vector<TreePatternNode*> Children;
2963        Children.push_back(OpNode);
2964        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2965      }
2966      ResultNodeOperands.push_back(OpNode);
2967    }
2968    DstPattern = Result->getOnlyTree();
2969    if (!DstPattern->isLeaf())
2970      DstPattern = new TreePatternNode(DstPattern->getOperator(),
2971                                       ResultNodeOperands,
2972                                       DstPattern->getNumTypes());
2973
2974    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
2975      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
2976
2977    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
2978    Temp.InferAllTypes();
2979
2980
2981    AddPatternToMatch(Pattern,
2982                    PatternToMatch(CurPattern,
2983                                   CurPattern->getValueAsListInit("Predicates"),
2984                                   Pattern->getTree(0),
2985                                   Temp.getOnlyTree(), InstImpResults,
2986                                   CurPattern->getValueAsInt("AddedComplexity"),
2987                                   CurPattern->getID()));
2988  }
2989}
2990
2991/// CombineChildVariants - Given a bunch of permutations of each child of the
2992/// 'operator' node, put them together in all possible ways.
2993static void CombineChildVariants(TreePatternNode *Orig,
2994               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
2995                                 std::vector<TreePatternNode*> &OutVariants,
2996                                 CodeGenDAGPatterns &CDP,
2997                                 const MultipleUseVarSet &DepVars) {
2998  // Make sure that each operand has at least one variant to choose from.
2999  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3000    if (ChildVariants[i].empty())
3001      return;
3002
3003  // The end result is an all-pairs construction of the resultant pattern.
3004  std::vector<unsigned> Idxs;
3005  Idxs.resize(ChildVariants.size());
3006  bool NotDone;
3007  do {
3008#ifndef NDEBUG
3009    DEBUG(if (!Idxs.empty()) {
3010            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3011              for (unsigned i = 0; i < Idxs.size(); ++i) {
3012                errs() << Idxs[i] << " ";
3013            }
3014            errs() << "]\n";
3015          });
3016#endif
3017    // Create the variant and add it to the output list.
3018    std::vector<TreePatternNode*> NewChildren;
3019    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3020      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3021    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3022                                             Orig->getNumTypes());
3023
3024    // Copy over properties.
3025    R->setName(Orig->getName());
3026    R->setPredicateFns(Orig->getPredicateFns());
3027    R->setTransformFn(Orig->getTransformFn());
3028    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3029      R->setType(i, Orig->getExtType(i));
3030
3031    // If this pattern cannot match, do not include it as a variant.
3032    std::string ErrString;
3033    if (!R->canPatternMatch(ErrString, CDP)) {
3034      delete R;
3035    } else {
3036      bool AlreadyExists = false;
3037
3038      // Scan to see if this pattern has already been emitted.  We can get
3039      // duplication due to things like commuting:
3040      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3041      // which are the same pattern.  Ignore the dups.
3042      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3043        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3044          AlreadyExists = true;
3045          break;
3046        }
3047
3048      if (AlreadyExists)
3049        delete R;
3050      else
3051        OutVariants.push_back(R);
3052    }
3053
3054    // Increment indices to the next permutation by incrementing the
3055    // indicies from last index backward, e.g., generate the sequence
3056    // [0, 0], [0, 1], [1, 0], [1, 1].
3057    int IdxsIdx;
3058    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3059      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3060        Idxs[IdxsIdx] = 0;
3061      else
3062        break;
3063    }
3064    NotDone = (IdxsIdx >= 0);
3065  } while (NotDone);
3066}
3067
3068/// CombineChildVariants - A helper function for binary operators.
3069///
3070static void CombineChildVariants(TreePatternNode *Orig,
3071                                 const std::vector<TreePatternNode*> &LHS,
3072                                 const std::vector<TreePatternNode*> &RHS,
3073                                 std::vector<TreePatternNode*> &OutVariants,
3074                                 CodeGenDAGPatterns &CDP,
3075                                 const MultipleUseVarSet &DepVars) {
3076  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3077  ChildVariants.push_back(LHS);
3078  ChildVariants.push_back(RHS);
3079  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3080}
3081
3082
3083static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3084                                     std::vector<TreePatternNode *> &Children) {
3085  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3086  Record *Operator = N->getOperator();
3087
3088  // Only permit raw nodes.
3089  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3090      N->getTransformFn()) {
3091    Children.push_back(N);
3092    return;
3093  }
3094
3095  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3096    Children.push_back(N->getChild(0));
3097  else
3098    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3099
3100  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3101    Children.push_back(N->getChild(1));
3102  else
3103    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3104}
3105
3106/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3107/// the (potentially recursive) pattern by using algebraic laws.
3108///
3109static void GenerateVariantsOf(TreePatternNode *N,
3110                               std::vector<TreePatternNode*> &OutVariants,
3111                               CodeGenDAGPatterns &CDP,
3112                               const MultipleUseVarSet &DepVars) {
3113  // We cannot permute leaves.
3114  if (N->isLeaf()) {
3115    OutVariants.push_back(N);
3116    return;
3117  }
3118
3119  // Look up interesting info about the node.
3120  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3121
3122  // If this node is associative, re-associate.
3123  if (NodeInfo.hasProperty(SDNPAssociative)) {
3124    // Re-associate by pulling together all of the linked operators
3125    std::vector<TreePatternNode*> MaximalChildren;
3126    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3127
3128    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3129    // permutations.
3130    if (MaximalChildren.size() == 3) {
3131      // Find the variants of all of our maximal children.
3132      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3133      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3134      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3135      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3136
3137      // There are only two ways we can permute the tree:
3138      //   (A op B) op C    and    A op (B op C)
3139      // Within these forms, we can also permute A/B/C.
3140
3141      // Generate legal pair permutations of A/B/C.
3142      std::vector<TreePatternNode*> ABVariants;
3143      std::vector<TreePatternNode*> BAVariants;
3144      std::vector<TreePatternNode*> ACVariants;
3145      std::vector<TreePatternNode*> CAVariants;
3146      std::vector<TreePatternNode*> BCVariants;
3147      std::vector<TreePatternNode*> CBVariants;
3148      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3149      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3150      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3151      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3152      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3153      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3154
3155      // Combine those into the result: (x op x) op x
3156      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3157      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3158      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3159      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3160      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3161      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3162
3163      // Combine those into the result: x op (x op x)
3164      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3165      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3166      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3167      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3168      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3169      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3170      return;
3171    }
3172  }
3173
3174  // Compute permutations of all children.
3175  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3176  ChildVariants.resize(N->getNumChildren());
3177  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3178    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3179
3180  // Build all permutations based on how the children were formed.
3181  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3182
3183  // If this node is commutative, consider the commuted order.
3184  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3185  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3186    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3187           "Commutative but doesn't have 2 children!");
3188    // Don't count children which are actually register references.
3189    unsigned NC = 0;
3190    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3191      TreePatternNode *Child = N->getChild(i);
3192      if (Child->isLeaf())
3193        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3194          Record *RR = DI->getDef();
3195          if (RR->isSubClassOf("Register"))
3196            continue;
3197        }
3198      NC++;
3199    }
3200    // Consider the commuted order.
3201    if (isCommIntrinsic) {
3202      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3203      // operands are the commutative operands, and there might be more operands
3204      // after those.
3205      assert(NC >= 3 &&
3206             "Commutative intrinsic should have at least 3 childrean!");
3207      std::vector<std::vector<TreePatternNode*> > Variants;
3208      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3209      Variants.push_back(ChildVariants[2]);
3210      Variants.push_back(ChildVariants[1]);
3211      for (unsigned i = 3; i != NC; ++i)
3212        Variants.push_back(ChildVariants[i]);
3213      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3214    } else if (NC == 2)
3215      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3216                           OutVariants, CDP, DepVars);
3217  }
3218}
3219
3220
3221// GenerateVariants - Generate variants.  For example, commutative patterns can
3222// match multiple ways.  Add them to PatternsToMatch as well.
3223void CodeGenDAGPatterns::GenerateVariants() {
3224  DEBUG(errs() << "Generating instruction variants.\n");
3225
3226  // Loop over all of the patterns we've collected, checking to see if we can
3227  // generate variants of the instruction, through the exploitation of
3228  // identities.  This permits the target to provide aggressive matching without
3229  // the .td file having to contain tons of variants of instructions.
3230  //
3231  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3232  // intentionally do not reconsider these.  Any variants of added patterns have
3233  // already been added.
3234  //
3235  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3236    MultipleUseVarSet             DepVars;
3237    std::vector<TreePatternNode*> Variants;
3238    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3239    DEBUG(errs() << "Dependent/multiply used variables: ");
3240    DEBUG(DumpDepVars(DepVars));
3241    DEBUG(errs() << "\n");
3242    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3243                       DepVars);
3244
3245    assert(!Variants.empty() && "Must create at least original variant!");
3246    Variants.erase(Variants.begin());  // Remove the original pattern.
3247
3248    if (Variants.empty())  // No variants for this pattern.
3249      continue;
3250
3251    DEBUG(errs() << "FOUND VARIANTS OF: ";
3252          PatternsToMatch[i].getSrcPattern()->dump();
3253          errs() << "\n");
3254
3255    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3256      TreePatternNode *Variant = Variants[v];
3257
3258      DEBUG(errs() << "  VAR#" << v <<  ": ";
3259            Variant->dump();
3260            errs() << "\n");
3261
3262      // Scan to see if an instruction or explicit pattern already matches this.
3263      bool AlreadyExists = false;
3264      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3265        // Skip if the top level predicates do not match.
3266        if (PatternsToMatch[i].getPredicates() !=
3267            PatternsToMatch[p].getPredicates())
3268          continue;
3269        // Check to see if this variant already exists.
3270        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3271                                    DepVars)) {
3272          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3273          AlreadyExists = true;
3274          break;
3275        }
3276      }
3277      // If we already have it, ignore the variant.
3278      if (AlreadyExists) continue;
3279
3280      // Otherwise, add it to the list of patterns we have.
3281      PatternsToMatch.
3282        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3283                                 PatternsToMatch[i].getPredicates(),
3284                                 Variant, PatternsToMatch[i].getDstPattern(),
3285                                 PatternsToMatch[i].getDstRegs(),
3286                                 PatternsToMatch[i].getAddedComplexity(),
3287                                 Record::getNewUID()));
3288    }
3289
3290    DEBUG(errs() << "\n");
3291  }
3292}
3293
3294