1//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// It contains the tablegen backend that emits the decoder functions for
11// targets with fixed length instruction set.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "decoder-emitter"
16
17#include "FixedLenDecoderEmitter.h"
18#include "CodeGenTarget.h"
19#include "llvm/TableGen/Record.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23
24#include <vector>
25#include <map>
26#include <string>
27
28using namespace llvm;
29
30// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
31// for a bit value.
32//
33// BIT_UNFILTERED is used as the init value for a filter position.  It is used
34// only for filter processings.
35typedef enum {
36  BIT_TRUE,      // '1'
37  BIT_FALSE,     // '0'
38  BIT_UNSET,     // '?'
39  BIT_UNFILTERED // unfiltered
40} bit_value_t;
41
42static bool ValueSet(bit_value_t V) {
43  return (V == BIT_TRUE || V == BIT_FALSE);
44}
45static bool ValueNotSet(bit_value_t V) {
46  return (V == BIT_UNSET);
47}
48static int Value(bit_value_t V) {
49  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
50}
51static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
52  if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
53    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
54
55  // The bit is uninitialized.
56  return BIT_UNSET;
57}
58// Prints the bit value for each position.
59static void dumpBits(raw_ostream &o, BitsInit &bits) {
60  unsigned index;
61
62  for (index = bits.getNumBits(); index > 0; index--) {
63    switch (bitFromBits(bits, index - 1)) {
64    case BIT_TRUE:
65      o << "1";
66      break;
67    case BIT_FALSE:
68      o << "0";
69      break;
70    case BIT_UNSET:
71      o << "_";
72      break;
73    default:
74      assert(0 && "unexpected return value from bitFromBits");
75    }
76  }
77}
78
79static BitsInit &getBitsField(const Record &def, const char *str) {
80  BitsInit *bits = def.getValueAsBitsInit(str);
81  return *bits;
82}
83
84// Forward declaration.
85class FilterChooser;
86
87// Representation of the instruction to work on.
88typedef std::vector<bit_value_t> insn_t;
89
90/// Filter - Filter works with FilterChooser to produce the decoding tree for
91/// the ISA.
92///
93/// It is useful to think of a Filter as governing the switch stmts of the
94/// decoding tree in a certain level.  Each case stmt delegates to an inferior
95/// FilterChooser to decide what further decoding logic to employ, or in another
96/// words, what other remaining bits to look at.  The FilterChooser eventually
97/// chooses a best Filter to do its job.
98///
99/// This recursive scheme ends when the number of Opcodes assigned to the
100/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
101/// the Filter/FilterChooser combo does not know how to distinguish among the
102/// Opcodes assigned.
103///
104/// An example of a conflict is
105///
106/// Conflict:
107///                     111101000.00........00010000....
108///                     111101000.00........0001........
109///                     1111010...00........0001........
110///                     1111010...00....................
111///                     1111010.........................
112///                     1111............................
113///                     ................................
114///     VST4q8a         111101000_00________00010000____
115///     VST4q8b         111101000_00________00010000____
116///
117/// The Debug output shows the path that the decoding tree follows to reach the
118/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
119/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
120///
121/// The encoding info in the .td files does not specify this meta information,
122/// which could have been used by the decoder to resolve the conflict.  The
123/// decoder could try to decode the even/odd register numbering and assign to
124/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
125/// version and return the Opcode since the two have the same Asm format string.
126class Filter {
127protected:
128  FilterChooser *Owner; // points to the FilterChooser who owns this filter
129  unsigned StartBit; // the starting bit position
130  unsigned NumBits; // number of bits to filter
131  bool Mixed; // a mixed region contains both set and unset bits
132
133  // Map of well-known segment value to the set of uid's with that value.
134  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
135
136  // Set of uid's with non-constant segment values.
137  std::vector<unsigned> VariableInstructions;
138
139  // Map of well-known segment value to its delegate.
140  std::map<unsigned, FilterChooser*> FilterChooserMap;
141
142  // Number of instructions which fall under FilteredInstructions category.
143  unsigned NumFiltered;
144
145  // Keeps track of the last opcode in the filtered bucket.
146  unsigned LastOpcFiltered;
147
148  // Number of instructions which fall under VariableInstructions category.
149  unsigned NumVariable;
150
151public:
152  unsigned getNumFiltered() { return NumFiltered; }
153  unsigned getNumVariable() { return NumVariable; }
154  unsigned getSingletonOpc() {
155    assert(NumFiltered == 1);
156    return LastOpcFiltered;
157  }
158  // Return the filter chooser for the group of instructions without constant
159  // segment values.
160  FilterChooser &getVariableFC() {
161    assert(NumFiltered == 1);
162    assert(FilterChooserMap.size() == 1);
163    return *(FilterChooserMap.find((unsigned)-1)->second);
164  }
165
166  Filter(const Filter &f);
167  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
168
169  ~Filter();
170
171  // Divides the decoding task into sub tasks and delegates them to the
172  // inferior FilterChooser's.
173  //
174  // A special case arises when there's only one entry in the filtered
175  // instructions.  In order to unambiguously decode the singleton, we need to
176  // match the remaining undecoded encoding bits against the singleton.
177  void recurse();
178
179  // Emit code to decode instructions given a segment or segments of bits.
180  void emit(raw_ostream &o, unsigned &Indentation);
181
182  // Returns the number of fanout produced by the filter.  More fanout implies
183  // the filter distinguishes more categories of instructions.
184  unsigned usefulness() const;
185}; // End of class Filter
186
187// These are states of our finite state machines used in FilterChooser's
188// filterProcessor() which produces the filter candidates to use.
189typedef enum {
190  ATTR_NONE,
191  ATTR_FILTERED,
192  ATTR_ALL_SET,
193  ATTR_ALL_UNSET,
194  ATTR_MIXED
195} bitAttr_t;
196
197/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
198/// in order to perform the decoding of instructions at the current level.
199///
200/// Decoding proceeds from the top down.  Based on the well-known encoding bits
201/// of instructions available, FilterChooser builds up the possible Filters that
202/// can further the task of decoding by distinguishing among the remaining
203/// candidate instructions.
204///
205/// Once a filter has been chosen, it is called upon to divide the decoding task
206/// into sub-tasks and delegates them to its inferior FilterChoosers for further
207/// processings.
208///
209/// It is useful to think of a Filter as governing the switch stmts of the
210/// decoding tree.  And each case is delegated to an inferior FilterChooser to
211/// decide what further remaining bits to look at.
212class FilterChooser {
213protected:
214  friend class Filter;
215
216  // Vector of codegen instructions to choose our filter.
217  const std::vector<const CodeGenInstruction*> &AllInstructions;
218
219  // Vector of uid's for this filter chooser to work on.
220  const std::vector<unsigned> Opcodes;
221
222  // Lookup table for the operand decoding of instructions.
223  std::map<unsigned, std::vector<OperandInfo> > &Operands;
224
225  // Vector of candidate filters.
226  std::vector<Filter> Filters;
227
228  // Array of bit values passed down from our parent.
229  // Set to all BIT_UNFILTERED's for Parent == NULL.
230  std::vector<bit_value_t> FilterBitValues;
231
232  // Links to the FilterChooser above us in the decoding tree.
233  FilterChooser *Parent;
234
235  // Index of the best filter from Filters.
236  int BestIndex;
237
238  // Width of instructions
239  unsigned BitWidth;
240
241  // Parent emitter
242  const FixedLenDecoderEmitter *Emitter;
243
244public:
245  FilterChooser(const FilterChooser &FC) :
246    AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
247      Operands(FC.Operands), Filters(FC.Filters),
248      FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
249    BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
250    Emitter(FC.Emitter) { }
251
252  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
253                const std::vector<unsigned> &IDs,
254    std::map<unsigned, std::vector<OperandInfo> > &Ops,
255                unsigned BW,
256                const FixedLenDecoderEmitter *E) :
257      AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
258      Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
259    for (unsigned i = 0; i < BitWidth; ++i)
260      FilterBitValues.push_back(BIT_UNFILTERED);
261
262    doFilter();
263  }
264
265  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
266                const std::vector<unsigned> &IDs,
267        std::map<unsigned, std::vector<OperandInfo> > &Ops,
268                std::vector<bit_value_t> &ParentFilterBitValues,
269                FilterChooser &parent) :
270      AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
271      Filters(), FilterBitValues(ParentFilterBitValues),
272      Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
273      Emitter(parent.Emitter) {
274    doFilter();
275  }
276
277  // The top level filter chooser has NULL as its parent.
278  bool isTopLevel() { return Parent == NULL; }
279
280  // Emit the top level typedef and decodeInstruction() function.
281  void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
282
283protected:
284  // Populates the insn given the uid.
285  void insnWithID(insn_t &Insn, unsigned Opcode) const {
286    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
287
288    for (unsigned i = 0; i < BitWidth; ++i)
289      Insn.push_back(bitFromBits(Bits, i));
290  }
291
292  // Returns the record name.
293  const std::string &nameWithID(unsigned Opcode) const {
294    return AllInstructions[Opcode]->TheDef->getName();
295  }
296
297  // Populates the field of the insn given the start position and the number of
298  // consecutive bits to scan for.
299  //
300  // Returns false if there exists any uninitialized bit value in the range.
301  // Returns true, otherwise.
302  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
303      unsigned NumBits) const;
304
305  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
306  /// filter array as a series of chars.
307  void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
308
309  /// dumpStack - dumpStack traverses the filter chooser chain and calls
310  /// dumpFilterArray on each filter chooser up to the top level one.
311  void dumpStack(raw_ostream &o, const char *prefix);
312
313  Filter &bestFilter() {
314    assert(BestIndex != -1 && "BestIndex not set");
315    return Filters[BestIndex];
316  }
317
318  // Called from Filter::recurse() when singleton exists.  For debug purpose.
319  void SingletonExists(unsigned Opc);
320
321  bool PositionFiltered(unsigned i) {
322    return ValueSet(FilterBitValues[i]);
323  }
324
325  // Calculates the island(s) needed to decode the instruction.
326  // This returns a lit of undecoded bits of an instructions, for example,
327  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
328  // decoded bits in order to verify that the instruction matches the Opcode.
329  unsigned getIslands(std::vector<unsigned> &StartBits,
330      std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
331      insn_t &Insn);
332
333  // Emits code to check the Predicates member of an instruction are true.
334  // Returns true if predicate matches were emitted, false otherwise.
335  bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc);
336
337  // Emits code to decode the singleton.  Return true if we have matched all the
338  // well-known bits.
339  bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
340
341  // Emits code to decode the singleton, and then to decode the rest.
342  void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
343
344  void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
345                        OperandInfo &OpInfo);
346
347  // Assign a single filter and run with it.
348  void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
349      bool mixed);
350
351  // reportRegion is a helper function for filterProcessor to mark a region as
352  // eligible for use as a filter region.
353  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
354      bool AllowMixed);
355
356  // FilterProcessor scans the well-known encoding bits of the instructions and
357  // builds up a list of candidate filters.  It chooses the best filter and
358  // recursively descends down the decoding tree.
359  bool filterProcessor(bool AllowMixed, bool Greedy = true);
360
361  // Decides on the best configuration of filter(s) to use in order to decode
362  // the instructions.  A conflict of instructions may occur, in which case we
363  // dump the conflict set to the standard error.
364  void doFilter();
365
366  // Emits code to decode our share of instructions.  Returns true if the
367  // emitted code causes a return, which occurs if we know how to decode
368  // the instruction at this level or the instruction is not decodeable.
369  bool emit(raw_ostream &o, unsigned &Indentation);
370};
371
372///////////////////////////
373//                       //
374// Filter Implmenetation //
375//                       //
376///////////////////////////
377
378Filter::Filter(const Filter &f) :
379  Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
380  FilteredInstructions(f.FilteredInstructions),
381  VariableInstructions(f.VariableInstructions),
382  FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
383  LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
384}
385
386Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
387    bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
388                  Mixed(mixed) {
389  assert(StartBit + NumBits - 1 < Owner->BitWidth);
390
391  NumFiltered = 0;
392  LastOpcFiltered = 0;
393  NumVariable = 0;
394
395  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
396    insn_t Insn;
397
398    // Populates the insn given the uid.
399    Owner->insnWithID(Insn, Owner->Opcodes[i]);
400
401    uint64_t Field;
402    // Scans the segment for possibly well-specified encoding bits.
403    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
404
405    if (ok) {
406      // The encoding bits are well-known.  Lets add the uid of the
407      // instruction into the bucket keyed off the constant field value.
408      LastOpcFiltered = Owner->Opcodes[i];
409      FilteredInstructions[Field].push_back(LastOpcFiltered);
410      ++NumFiltered;
411    } else {
412      // Some of the encoding bit(s) are unspecfied.  This contributes to
413      // one additional member of "Variable" instructions.
414      VariableInstructions.push_back(Owner->Opcodes[i]);
415      ++NumVariable;
416    }
417  }
418
419  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
420         && "Filter returns no instruction categories");
421}
422
423Filter::~Filter() {
424  std::map<unsigned, FilterChooser*>::iterator filterIterator;
425  for (filterIterator = FilterChooserMap.begin();
426       filterIterator != FilterChooserMap.end();
427       filterIterator++) {
428    delete filterIterator->second;
429  }
430}
431
432// Divides the decoding task into sub tasks and delegates them to the
433// inferior FilterChooser's.
434//
435// A special case arises when there's only one entry in the filtered
436// instructions.  In order to unambiguously decode the singleton, we need to
437// match the remaining undecoded encoding bits against the singleton.
438void Filter::recurse() {
439  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
440
441  // Starts by inheriting our parent filter chooser's filter bit values.
442  std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
443
444  unsigned bitIndex;
445
446  if (VariableInstructions.size()) {
447    // Conservatively marks each segment position as BIT_UNSET.
448    for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
449      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
450
451    // Delegates to an inferior filter chooser for further processing on this
452    // group of instructions whose segment values are variable.
453    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
454                              (unsigned)-1,
455                              new FilterChooser(Owner->AllInstructions,
456                                                VariableInstructions,
457                                                Owner->Operands,
458                                                BitValueArray,
459                                                *Owner)
460                              ));
461  }
462
463  // No need to recurse for a singleton filtered instruction.
464  // See also Filter::emit().
465  if (getNumFiltered() == 1) {
466    //Owner->SingletonExists(LastOpcFiltered);
467    assert(FilterChooserMap.size() == 1);
468    return;
469  }
470
471  // Otherwise, create sub choosers.
472  for (mapIterator = FilteredInstructions.begin();
473       mapIterator != FilteredInstructions.end();
474       mapIterator++) {
475
476    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
477    for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
478      if (mapIterator->first & (1ULL << bitIndex))
479        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
480      else
481        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
482    }
483
484    // Delegates to an inferior filter chooser for further processing on this
485    // category of instructions.
486    FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
487                              mapIterator->first,
488                              new FilterChooser(Owner->AllInstructions,
489                                                mapIterator->second,
490                                                Owner->Operands,
491                                                BitValueArray,
492                                                *Owner)
493                              ));
494  }
495}
496
497// Emit code to decode instructions given a segment or segments of bits.
498void Filter::emit(raw_ostream &o, unsigned &Indentation) {
499  o.indent(Indentation) << "// Check Inst{";
500
501  if (NumBits > 1)
502    o << (StartBit + NumBits - 1) << '-';
503
504  o << StartBit << "} ...\n";
505
506  o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
507                        << "(insn, " << StartBit << ", "
508                        << NumBits << ")) {\n";
509
510  std::map<unsigned, FilterChooser*>::iterator filterIterator;
511
512  bool DefaultCase = false;
513  for (filterIterator = FilterChooserMap.begin();
514       filterIterator != FilterChooserMap.end();
515       filterIterator++) {
516
517    // Field value -1 implies a non-empty set of variable instructions.
518    // See also recurse().
519    if (filterIterator->first == (unsigned)-1) {
520      DefaultCase = true;
521
522      o.indent(Indentation) << "default:\n";
523      o.indent(Indentation) << "  break; // fallthrough\n";
524
525      // Closing curly brace for the switch statement.
526      // This is unconventional because we want the default processing to be
527      // performed for the fallthrough cases as well, i.e., when the "cases"
528      // did not prove a decoded instruction.
529      o.indent(Indentation) << "}\n";
530
531    } else
532      o.indent(Indentation) << "case " << filterIterator->first << ":\n";
533
534    // We arrive at a category of instructions with the same segment value.
535    // Now delegate to the sub filter chooser for further decodings.
536    // The case may fallthrough, which happens if the remaining well-known
537    // encoding bits do not match exactly.
538    if (!DefaultCase) { ++Indentation; ++Indentation; }
539
540    bool finished = filterIterator->second->emit(o, Indentation);
541    // For top level default case, there's no need for a break statement.
542    if (Owner->isTopLevel() && DefaultCase)
543      break;
544    if (!finished)
545      o.indent(Indentation) << "break;\n";
546
547    if (!DefaultCase) { --Indentation; --Indentation; }
548  }
549
550  // If there is no default case, we still need to supply a closing brace.
551  if (!DefaultCase) {
552    // Closing curly brace for the switch statement.
553    o.indent(Indentation) << "}\n";
554  }
555}
556
557// Returns the number of fanout produced by the filter.  More fanout implies
558// the filter distinguishes more categories of instructions.
559unsigned Filter::usefulness() const {
560  if (VariableInstructions.size())
561    return FilteredInstructions.size();
562  else
563    return FilteredInstructions.size() + 1;
564}
565
566//////////////////////////////////
567//                              //
568// Filterchooser Implementation //
569//                              //
570//////////////////////////////////
571
572// Emit the top level typedef and decodeInstruction() function.
573void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
574                            std::string Namespace) {
575  o.indent(Indentation) <<
576    "static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth
577    << "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, "
578    << "const void *Decoder, const MCSubtargetInfo &STI) {\n";
579  o.indent(Indentation) << "  unsigned tmp = 0;\n  (void)tmp;\n" << Emitter->Locals << "\n";
580  o.indent(Indentation) << "  uint64_t Bits = STI.getFeatureBits();\n";
581
582  ++Indentation; ++Indentation;
583  // Emits code to decode the instructions.
584  emit(o, Indentation);
585
586  o << '\n';
587  o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
588  --Indentation; --Indentation;
589
590  o.indent(Indentation) << "}\n";
591
592  o << '\n';
593}
594
595// Populates the field of the insn given the start position and the number of
596// consecutive bits to scan for.
597//
598// Returns false if and on the first uninitialized bit value encountered.
599// Returns true, otherwise.
600bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
601    unsigned StartBit, unsigned NumBits) const {
602  Field = 0;
603
604  for (unsigned i = 0; i < NumBits; ++i) {
605    if (Insn[StartBit + i] == BIT_UNSET)
606      return false;
607
608    if (Insn[StartBit + i] == BIT_TRUE)
609      Field = Field | (1ULL << i);
610  }
611
612  return true;
613}
614
615/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
616/// filter array as a series of chars.
617void FilterChooser::dumpFilterArray(raw_ostream &o,
618                                    std::vector<bit_value_t> &filter) {
619  unsigned bitIndex;
620
621  for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
622    switch (filter[bitIndex - 1]) {
623    case BIT_UNFILTERED:
624      o << ".";
625      break;
626    case BIT_UNSET:
627      o << "_";
628      break;
629    case BIT_TRUE:
630      o << "1";
631      break;
632    case BIT_FALSE:
633      o << "0";
634      break;
635    }
636  }
637}
638
639/// dumpStack - dumpStack traverses the filter chooser chain and calls
640/// dumpFilterArray on each filter chooser up to the top level one.
641void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
642  FilterChooser *current = this;
643
644  while (current) {
645    o << prefix;
646    dumpFilterArray(o, current->FilterBitValues);
647    o << '\n';
648    current = current->Parent;
649  }
650}
651
652// Called from Filter::recurse() when singleton exists.  For debug purpose.
653void FilterChooser::SingletonExists(unsigned Opc) {
654  insn_t Insn0;
655  insnWithID(Insn0, Opc);
656
657  errs() << "Singleton exists: " << nameWithID(Opc)
658         << " with its decoding dominating ";
659  for (unsigned i = 0; i < Opcodes.size(); ++i) {
660    if (Opcodes[i] == Opc) continue;
661    errs() << nameWithID(Opcodes[i]) << ' ';
662  }
663  errs() << '\n';
664
665  dumpStack(errs(), "\t\t");
666  for (unsigned i = 0; i < Opcodes.size(); i++) {
667    const std::string &Name = nameWithID(Opcodes[i]);
668
669    errs() << '\t' << Name << " ";
670    dumpBits(errs(),
671             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
672    errs() << '\n';
673  }
674}
675
676// Calculates the island(s) needed to decode the instruction.
677// This returns a list of undecoded bits of an instructions, for example,
678// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
679// decoded bits in order to verify that the instruction matches the Opcode.
680unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
681    std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
682    insn_t &Insn) {
683  unsigned Num, BitNo;
684  Num = BitNo = 0;
685
686  uint64_t FieldVal = 0;
687
688  // 0: Init
689  // 1: Water (the bit value does not affect decoding)
690  // 2: Island (well-known bit value needed for decoding)
691  int State = 0;
692  int Val = -1;
693
694  for (unsigned i = 0; i < BitWidth; ++i) {
695    Val = Value(Insn[i]);
696    bool Filtered = PositionFiltered(i);
697    switch (State) {
698    default:
699      assert(0 && "Unreachable code!");
700      break;
701    case 0:
702    case 1:
703      if (Filtered || Val == -1)
704        State = 1; // Still in Water
705      else {
706        State = 2; // Into the Island
707        BitNo = 0;
708        StartBits.push_back(i);
709        FieldVal = Val;
710      }
711      break;
712    case 2:
713      if (Filtered || Val == -1) {
714        State = 1; // Into the Water
715        EndBits.push_back(i - 1);
716        FieldVals.push_back(FieldVal);
717        ++Num;
718      } else {
719        State = 2; // Still in Island
720        ++BitNo;
721        FieldVal = FieldVal | Val << BitNo;
722      }
723      break;
724    }
725  }
726  // If we are still in Island after the loop, do some housekeeping.
727  if (State == 2) {
728    EndBits.push_back(BitWidth - 1);
729    FieldVals.push_back(FieldVal);
730    ++Num;
731  }
732
733  assert(StartBits.size() == Num && EndBits.size() == Num &&
734         FieldVals.size() == Num);
735  return Num;
736}
737
738void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
739                         OperandInfo &OpInfo) {
740  std::string &Decoder = OpInfo.Decoder;
741
742  if (OpInfo.numFields() == 1) {
743    OperandInfo::iterator OI = OpInfo.begin();
744    o.indent(Indentation) << "  tmp = fieldFromInstruction" << BitWidth
745                            << "(insn, " << OI->Base << ", " << OI->Width
746                            << ");\n";
747  } else {
748    o.indent(Indentation) << "  tmp = 0;\n";
749    for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
750         OI != OE; ++OI) {
751      o.indent(Indentation) << "  tmp |= (fieldFromInstruction" << BitWidth
752                            << "(insn, " << OI->Base << ", " << OI->Width
753                            << ") << " << OI->Offset << ");\n";
754    }
755  }
756
757  if (Decoder != "")
758    o.indent(Indentation) << "  " << Emitter->GuardPrefix << Decoder
759                          << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n";
760  else
761    o.indent(Indentation) << "  MI.addOperand(MCOperand::CreateImm(tmp));\n";
762
763}
764
765static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
766                                     std::string PredicateNamespace) {
767  if (str[0] == '!')
768    o << "!(Bits & " << PredicateNamespace << "::"
769      << str.slice(1,str.size()) << ")";
770  else
771    o << "(Bits & " << PredicateNamespace << "::" << str << ")";
772}
773
774bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
775                                           unsigned Opc) {
776  ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
777  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
778    Record *Pred = Predicates->getElementAsRecord(i);
779    if (!Pred->getValue("AssemblerMatcherPredicate"))
780      continue;
781
782    std::string P = Pred->getValueAsString("AssemblerCondString");
783
784    if (!P.length())
785      continue;
786
787    if (i != 0)
788      o << " && ";
789
790    StringRef SR(P);
791    std::pair<StringRef, StringRef> pairs = SR.split(',');
792    while (pairs.second.size()) {
793      emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
794      o << " && ";
795      pairs = pairs.second.split(',');
796    }
797    emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
798  }
799  return Predicates->getSize() > 0;
800}
801
802// Emits code to decode the singleton.  Return true if we have matched all the
803// well-known bits.
804bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
805                                         unsigned Opc) {
806  std::vector<unsigned> StartBits;
807  std::vector<unsigned> EndBits;
808  std::vector<uint64_t> FieldVals;
809  insn_t Insn;
810  insnWithID(Insn, Opc);
811
812  // Look for islands of undecoded bits of the singleton.
813  getIslands(StartBits, EndBits, FieldVals, Insn);
814
815  unsigned Size = StartBits.size();
816  unsigned I, NumBits;
817
818  // If we have matched all the well-known bits, just issue a return.
819  if (Size == 0) {
820    o.indent(Indentation) << "if (";
821    if (!emitPredicateMatch(o, Indentation, Opc))
822      o << "1";
823    o << ") {\n";
824    o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
825    std::vector<OperandInfo>& InsnOperands = Operands[Opc];
826    for (std::vector<OperandInfo>::iterator
827         I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
828      // If a custom instruction decoder was specified, use that.
829      if (I->numFields() == 0 && I->Decoder.size()) {
830        o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder
831                              << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
832        break;
833      }
834
835      emitBinaryParser(o, Indentation, *I);
836    }
837
838    o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
839                          << '\n';
840    o.indent(Indentation) << "}\n"; // Closing predicate block.
841    return true;
842  }
843
844  // Otherwise, there are more decodings to be done!
845
846  // Emit code to match the island(s) for the singleton.
847  o.indent(Indentation) << "// Check ";
848
849  for (I = Size; I != 0; --I) {
850    o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
851    if (I > 1)
852      o << " && ";
853    else
854      o << "for singleton decoding...\n";
855  }
856
857  o.indent(Indentation) << "if (";
858  if (emitPredicateMatch(o, Indentation, Opc)) {
859    o << " &&\n";
860    o.indent(Indentation+4);
861  }
862
863  for (I = Size; I != 0; --I) {
864    NumBits = EndBits[I-1] - StartBits[I-1] + 1;
865    o << "fieldFromInstruction" << BitWidth << "(insn, "
866      << StartBits[I-1] << ", " << NumBits
867      << ") == " << FieldVals[I-1];
868    if (I > 1)
869      o << " && ";
870    else
871      o << ") {\n";
872  }
873  o.indent(Indentation) << "  MI.setOpcode(" << Opc << ");\n";
874  std::vector<OperandInfo>& InsnOperands = Operands[Opc];
875  for (std::vector<OperandInfo>::iterator
876       I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
877    // If a custom instruction decoder was specified, use that.
878    if (I->numFields() == 0 && I->Decoder.size()) {
879      o.indent(Indentation) << "  " << Emitter->GuardPrefix << I->Decoder
880                            << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
881      break;
882    }
883
884    emitBinaryParser(o, Indentation, *I);
885  }
886  o.indent(Indentation) << "  return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
887                        << '\n';
888  o.indent(Indentation) << "}\n";
889
890  return false;
891}
892
893// Emits code to decode the singleton, and then to decode the rest.
894void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
895    Filter &Best) {
896
897  unsigned Opc = Best.getSingletonOpc();
898
899  emitSingletonDecoder(o, Indentation, Opc);
900
901  // Emit code for the rest.
902  o.indent(Indentation) << "else\n";
903
904  Indentation += 2;
905  Best.getVariableFC().emit(o, Indentation);
906  Indentation -= 2;
907}
908
909// Assign a single filter and run with it.  Top level API client can initialize
910// with a single filter to start the filtering process.
911void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
912    unsigned numBit, bool mixed) {
913  Filters.clear();
914  Filter F(*this, startBit, numBit, true);
915  Filters.push_back(F);
916  BestIndex = 0; // Sole Filter instance to choose from.
917  bestFilter().recurse();
918}
919
920// reportRegion is a helper function for filterProcessor to mark a region as
921// eligible for use as a filter region.
922void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
923    unsigned BitIndex, bool AllowMixed) {
924  if (RA == ATTR_MIXED && AllowMixed)
925    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
926  else if (RA == ATTR_ALL_SET && !AllowMixed)
927    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
928}
929
930// FilterProcessor scans the well-known encoding bits of the instructions and
931// builds up a list of candidate filters.  It chooses the best filter and
932// recursively descends down the decoding tree.
933bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
934  Filters.clear();
935  BestIndex = -1;
936  unsigned numInstructions = Opcodes.size();
937
938  assert(numInstructions && "Filter created with no instructions");
939
940  // No further filtering is necessary.
941  if (numInstructions == 1)
942    return true;
943
944  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
945  // instructions is 3.
946  if (AllowMixed && !Greedy) {
947    assert(numInstructions == 3);
948
949    for (unsigned i = 0; i < Opcodes.size(); ++i) {
950      std::vector<unsigned> StartBits;
951      std::vector<unsigned> EndBits;
952      std::vector<uint64_t> FieldVals;
953      insn_t Insn;
954
955      insnWithID(Insn, Opcodes[i]);
956
957      // Look for islands of undecoded bits of any instruction.
958      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
959        // Found an instruction with island(s).  Now just assign a filter.
960        runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
961                        true);
962        return true;
963      }
964    }
965  }
966
967  unsigned BitIndex, InsnIndex;
968
969  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
970  // The automaton consumes the corresponding bit from each
971  // instruction.
972  //
973  //   Input symbols: 0, 1, and _ (unset).
974  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
975  //   Initial state: NONE.
976  //
977  // (NONE) ------- [01] -> (ALL_SET)
978  // (NONE) ------- _ ----> (ALL_UNSET)
979  // (ALL_SET) ---- [01] -> (ALL_SET)
980  // (ALL_SET) ---- _ ----> (MIXED)
981  // (ALL_UNSET) -- [01] -> (MIXED)
982  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
983  // (MIXED) ------ . ----> (MIXED)
984  // (FILTERED)---- . ----> (FILTERED)
985
986  std::vector<bitAttr_t> bitAttrs;
987
988  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
989  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
990  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
991    if (FilterBitValues[BitIndex] == BIT_TRUE ||
992        FilterBitValues[BitIndex] == BIT_FALSE)
993      bitAttrs.push_back(ATTR_FILTERED);
994    else
995      bitAttrs.push_back(ATTR_NONE);
996
997  for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
998    insn_t insn;
999
1000    insnWithID(insn, Opcodes[InsnIndex]);
1001
1002    for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1003      switch (bitAttrs[BitIndex]) {
1004      case ATTR_NONE:
1005        if (insn[BitIndex] == BIT_UNSET)
1006          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1007        else
1008          bitAttrs[BitIndex] = ATTR_ALL_SET;
1009        break;
1010      case ATTR_ALL_SET:
1011        if (insn[BitIndex] == BIT_UNSET)
1012          bitAttrs[BitIndex] = ATTR_MIXED;
1013        break;
1014      case ATTR_ALL_UNSET:
1015        if (insn[BitIndex] != BIT_UNSET)
1016          bitAttrs[BitIndex] = ATTR_MIXED;
1017        break;
1018      case ATTR_MIXED:
1019      case ATTR_FILTERED:
1020        break;
1021      }
1022    }
1023  }
1024
1025  // The regionAttr automaton consumes the bitAttrs automatons' state,
1026  // lowest-to-highest.
1027  //
1028  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1029  //   States:        NONE, ALL_SET, MIXED
1030  //   Initial state: NONE
1031  //
1032  // (NONE) ----- F --> (NONE)
1033  // (NONE) ----- S --> (ALL_SET)     ; and set region start
1034  // (NONE) ----- U --> (NONE)
1035  // (NONE) ----- M --> (MIXED)       ; and set region start
1036  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1037  // (ALL_SET) -- S --> (ALL_SET)
1038  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1039  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1040  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1041  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1042  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1043  // (MIXED) ---- M --> (MIXED)
1044
1045  bitAttr_t RA = ATTR_NONE;
1046  unsigned StartBit = 0;
1047
1048  for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
1049    bitAttr_t bitAttr = bitAttrs[BitIndex];
1050
1051    assert(bitAttr != ATTR_NONE && "Bit without attributes");
1052
1053    switch (RA) {
1054    case ATTR_NONE:
1055      switch (bitAttr) {
1056      case ATTR_FILTERED:
1057        break;
1058      case ATTR_ALL_SET:
1059        StartBit = BitIndex;
1060        RA = ATTR_ALL_SET;
1061        break;
1062      case ATTR_ALL_UNSET:
1063        break;
1064      case ATTR_MIXED:
1065        StartBit = BitIndex;
1066        RA = ATTR_MIXED;
1067        break;
1068      default:
1069        assert(0 && "Unexpected bitAttr!");
1070      }
1071      break;
1072    case ATTR_ALL_SET:
1073      switch (bitAttr) {
1074      case ATTR_FILTERED:
1075        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1076        RA = ATTR_NONE;
1077        break;
1078      case ATTR_ALL_SET:
1079        break;
1080      case ATTR_ALL_UNSET:
1081        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1082        RA = ATTR_NONE;
1083        break;
1084      case ATTR_MIXED:
1085        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1086        StartBit = BitIndex;
1087        RA = ATTR_MIXED;
1088        break;
1089      default:
1090        assert(0 && "Unexpected bitAttr!");
1091      }
1092      break;
1093    case ATTR_MIXED:
1094      switch (bitAttr) {
1095      case ATTR_FILTERED:
1096        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1097        StartBit = BitIndex;
1098        RA = ATTR_NONE;
1099        break;
1100      case ATTR_ALL_SET:
1101        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1102        StartBit = BitIndex;
1103        RA = ATTR_ALL_SET;
1104        break;
1105      case ATTR_ALL_UNSET:
1106        reportRegion(RA, StartBit, BitIndex, AllowMixed);
1107        RA = ATTR_NONE;
1108        break;
1109      case ATTR_MIXED:
1110        break;
1111      default:
1112        assert(0 && "Unexpected bitAttr!");
1113      }
1114      break;
1115    case ATTR_ALL_UNSET:
1116      assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1117    case ATTR_FILTERED:
1118      assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1119    }
1120  }
1121
1122  // At the end, if we're still in ALL_SET or MIXED states, report a region
1123  switch (RA) {
1124  case ATTR_NONE:
1125    break;
1126  case ATTR_FILTERED:
1127    break;
1128  case ATTR_ALL_SET:
1129    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1130    break;
1131  case ATTR_ALL_UNSET:
1132    break;
1133  case ATTR_MIXED:
1134    reportRegion(RA, StartBit, BitIndex, AllowMixed);
1135    break;
1136  }
1137
1138  // We have finished with the filter processings.  Now it's time to choose
1139  // the best performing filter.
1140  BestIndex = 0;
1141  bool AllUseless = true;
1142  unsigned BestScore = 0;
1143
1144  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1145    unsigned Usefulness = Filters[i].usefulness();
1146
1147    if (Usefulness)
1148      AllUseless = false;
1149
1150    if (Usefulness > BestScore) {
1151      BestIndex = i;
1152      BestScore = Usefulness;
1153    }
1154  }
1155
1156  if (!AllUseless)
1157    bestFilter().recurse();
1158
1159  return !AllUseless;
1160} // end of FilterChooser::filterProcessor(bool)
1161
1162// Decides on the best configuration of filter(s) to use in order to decode
1163// the instructions.  A conflict of instructions may occur, in which case we
1164// dump the conflict set to the standard error.
1165void FilterChooser::doFilter() {
1166  unsigned Num = Opcodes.size();
1167  assert(Num && "FilterChooser created with no instructions");
1168
1169  // Try regions of consecutive known bit values first.
1170  if (filterProcessor(false))
1171    return;
1172
1173  // Then regions of mixed bits (both known and unitialized bit values allowed).
1174  if (filterProcessor(true))
1175    return;
1176
1177  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1178  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1179  // well-known encoding pattern.  In such case, we backtrack and scan for the
1180  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1181  if (Num == 3 && filterProcessor(true, false))
1182    return;
1183
1184  // If we come to here, the instruction decoding has failed.
1185  // Set the BestIndex to -1 to indicate so.
1186  BestIndex = -1;
1187}
1188
1189// Emits code to decode our share of instructions.  Returns true if the
1190// emitted code causes a return, which occurs if we know how to decode
1191// the instruction at this level or the instruction is not decodeable.
1192bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1193  if (Opcodes.size() == 1)
1194    // There is only one instruction in the set, which is great!
1195    // Call emitSingletonDecoder() to see whether there are any remaining
1196    // encodings bits.
1197    return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1198
1199  // Choose the best filter to do the decodings!
1200  if (BestIndex != -1) {
1201    Filter &Best = bestFilter();
1202    if (Best.getNumFiltered() == 1)
1203      emitSingletonDecoder(o, Indentation, Best);
1204    else
1205      bestFilter().emit(o, Indentation);
1206    return false;
1207  }
1208
1209  // We don't know how to decode these instructions!  Return 0 and dump the
1210  // conflict set!
1211  o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1212  for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1213    o << nameWithID(Opcodes[i]);
1214    if (i < (N - 1))
1215      o << ", ";
1216    else
1217      o << '\n';
1218  }
1219
1220  // Print out useful conflict information for postmortem analysis.
1221  errs() << "Decoding Conflict:\n";
1222
1223  dumpStack(errs(), "\t\t");
1224
1225  for (unsigned i = 0; i < Opcodes.size(); i++) {
1226    const std::string &Name = nameWithID(Opcodes[i]);
1227
1228    errs() << '\t' << Name << " ";
1229    dumpBits(errs(),
1230             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1231    errs() << '\n';
1232  }
1233
1234  return true;
1235}
1236
1237static bool populateInstruction(const CodeGenInstruction &CGI,
1238                                unsigned Opc,
1239                      std::map<unsigned, std::vector<OperandInfo> >& Operands){
1240  const Record &Def = *CGI.TheDef;
1241  // If all the bit positions are not specified; do not decode this instruction.
1242  // We are bound to fail!  For proper disassembly, the well-known encoding bits
1243  // of the instruction must be fully specified.
1244  //
1245  // This also removes pseudo instructions from considerations of disassembly,
1246  // which is a better design and less fragile than the name matchings.
1247  // Ignore "asm parser only" instructions.
1248  if (Def.getValueAsBit("isAsmParserOnly") ||
1249      Def.getValueAsBit("isCodeGenOnly"))
1250    return false;
1251
1252  BitsInit &Bits = getBitsField(Def, "Inst");
1253  if (Bits.allInComplete()) return false;
1254
1255  std::vector<OperandInfo> InsnOperands;
1256
1257  // If the instruction has specified a custom decoding hook, use that instead
1258  // of trying to auto-generate the decoder.
1259  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1260  if (InstDecoder != "") {
1261    InsnOperands.push_back(OperandInfo(InstDecoder));
1262    Operands[Opc] = InsnOperands;
1263    return true;
1264  }
1265
1266  // Generate a description of the operand of the instruction that we know
1267  // how to decode automatically.
1268  // FIXME: We'll need to have a way to manually override this as needed.
1269
1270  // Gather the outputs/inputs of the instruction, so we can find their
1271  // positions in the encoding.  This assumes for now that they appear in the
1272  // MCInst in the order that they're listed.
1273  std::vector<std::pair<Init*, std::string> > InOutOperands;
1274  DagInit *Out  = Def.getValueAsDag("OutOperandList");
1275  DagInit *In  = Def.getValueAsDag("InOperandList");
1276  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1277    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1278  for (unsigned i = 0; i < In->getNumArgs(); ++i)
1279    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1280
1281  // Search for tied operands, so that we can correctly instantiate
1282  // operands that are not explicitly represented in the encoding.
1283  std::map<std::string, std::string> TiedNames;
1284  for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1285    int tiedTo = CGI.Operands[i].getTiedRegister();
1286    if (tiedTo != -1) {
1287      TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
1288      TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
1289    }
1290  }
1291
1292  // For each operand, see if we can figure out where it is encoded.
1293  for (std::vector<std::pair<Init*, std::string> >::iterator
1294       NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1295    std::string Decoder = "";
1296
1297    // At this point, we can locate the field, but we need to know how to
1298    // interpret it.  As a first step, require the target to provide callbacks
1299    // for decoding register classes.
1300    // FIXME: This need to be extended to handle instructions with custom
1301    // decoder methods, and operands with (simple) MIOperandInfo's.
1302    TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
1303    RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1304    Record *TypeRecord = Type->getRecord();
1305    bool isReg = false;
1306    if (TypeRecord->isSubClassOf("RegisterOperand"))
1307      TypeRecord = TypeRecord->getValueAsDef("RegClass");
1308    if (TypeRecord->isSubClassOf("RegisterClass")) {
1309      Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
1310      isReg = true;
1311    }
1312
1313    RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1314    StringInit *String = DecoderString ?
1315      dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
1316    if (!isReg && String && String->getValue() != "")
1317      Decoder = String->getValue();
1318
1319    OperandInfo OpInfo(Decoder);
1320    unsigned Base = ~0U;
1321    unsigned Width = 0;
1322    unsigned Offset = 0;
1323
1324    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1325      VarInit *Var = 0;
1326      VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
1327      if (BI)
1328        Var = dynamic_cast<VarInit*>(BI->getVariable());
1329      else
1330        Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
1331
1332      if (!Var) {
1333        if (Base != ~0U) {
1334          OpInfo.addField(Base, Width, Offset);
1335          Base = ~0U;
1336          Width = 0;
1337          Offset = 0;
1338        }
1339        continue;
1340      }
1341
1342      if (Var->getName() != NI->second &&
1343          Var->getName() != TiedNames[NI->second]) {
1344        if (Base != ~0U) {
1345          OpInfo.addField(Base, Width, Offset);
1346          Base = ~0U;
1347          Width = 0;
1348          Offset = 0;
1349        }
1350        continue;
1351      }
1352
1353      if (Base == ~0U) {
1354        Base = bi;
1355        Width = 1;
1356        Offset = BI ? BI->getBitNum() : 0;
1357      } else if (BI && BI->getBitNum() != Offset + Width) {
1358        OpInfo.addField(Base, Width, Offset);
1359        Base = bi;
1360        Width = 1;
1361        Offset = BI->getBitNum();
1362      } else {
1363        ++Width;
1364      }
1365    }
1366
1367    if (Base != ~0U)
1368      OpInfo.addField(Base, Width, Offset);
1369
1370    if (OpInfo.numFields() > 0)
1371      InsnOperands.push_back(OpInfo);
1372  }
1373
1374  Operands[Opc] = InsnOperands;
1375
1376
1377#if 0
1378  DEBUG({
1379      // Dumps the instruction encoding bits.
1380      dumpBits(errs(), Bits);
1381
1382      errs() << '\n';
1383
1384      // Dumps the list of operand info.
1385      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1386        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1387        const std::string &OperandName = Info.Name;
1388        const Record &OperandDef = *Info.Rec;
1389
1390        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1391      }
1392    });
1393#endif
1394
1395  return true;
1396}
1397
1398static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
1399  unsigned Indentation = 0;
1400  std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
1401
1402  o << '\n';
1403
1404  o.indent(Indentation) << "static " << WidthStr <<
1405    " fieldFromInstruction" << BitWidth <<
1406    "(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
1407
1408  o.indent(Indentation) << "{\n";
1409
1410  ++Indentation; ++Indentation;
1411  o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
1412                        << " && \"Instruction field out of bounds!\");\n";
1413  o << '\n';
1414  o.indent(Indentation) << WidthStr << " fieldMask;\n";
1415  o << '\n';
1416  o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
1417
1418  ++Indentation; ++Indentation;
1419  o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
1420  --Indentation; --Indentation;
1421
1422  o.indent(Indentation) << "else\n";
1423
1424  ++Indentation; ++Indentation;
1425  o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
1426  --Indentation; --Indentation;
1427
1428  o << '\n';
1429  o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
1430  --Indentation; --Indentation;
1431
1432  o.indent(Indentation) << "}\n";
1433
1434  o << '\n';
1435}
1436
1437// Emits disassembler code for instruction decoding.
1438void FixedLenDecoderEmitter::run(raw_ostream &o)
1439{
1440  o << "#include \"llvm/MC/MCInst.h\"\n";
1441  o << "#include \"llvm/Support/DataTypes.h\"\n";
1442  o << "#include <assert.h>\n";
1443  o << '\n';
1444  o << "namespace llvm {\n\n";
1445
1446  // Parameterize the decoders based on namespace and instruction width.
1447  NumberedInstructions = Target.getInstructionsByEnumValue();
1448  std::map<std::pair<std::string, unsigned>,
1449           std::vector<unsigned> > OpcMap;
1450  std::map<unsigned, std::vector<OperandInfo> > Operands;
1451
1452  for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
1453    const CodeGenInstruction *Inst = NumberedInstructions[i];
1454    Record *Def = Inst->TheDef;
1455    unsigned Size = Def->getValueAsInt("Size");
1456    if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
1457        Def->getValueAsBit("isPseudo") ||
1458        Def->getValueAsBit("isAsmParserOnly") ||
1459        Def->getValueAsBit("isCodeGenOnly"))
1460      continue;
1461
1462    std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
1463
1464    if (Size) {
1465      if (populateInstruction(*Inst, i, Operands)) {
1466        OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
1467      }
1468    }
1469  }
1470
1471  std::set<unsigned> Sizes;
1472  for (std::map<std::pair<std::string, unsigned>,
1473                std::vector<unsigned> >::iterator
1474       I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
1475    // If we haven't visited this instruction width before, emit the
1476    // helper method to extract fields.
1477    if (!Sizes.count(I->first.second)) {
1478      emitHelper(o, 8*I->first.second);
1479      Sizes.insert(I->first.second);
1480    }
1481
1482    // Emit the decoder for this namespace+width combination.
1483    FilterChooser FC(NumberedInstructions, I->second, Operands,
1484                     8*I->first.second, this);
1485    FC.emitTop(o, 0, I->first.first);
1486  }
1487
1488  o << "\n} // End llvm namespace \n";
1489}
1490