1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31//
32// The Google C++ Testing Framework (Google Test)
33//
34// This header file declares functions and macros used internally by
35// Google Test.  They are subject to change without notice.
36
37#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40#include "gtest/internal/gtest-port.h"
41
42#if GTEST_OS_LINUX
43# include <stdlib.h>
44# include <sys/types.h>
45# include <sys/wait.h>
46# include <unistd.h>
47#endif  // GTEST_OS_LINUX
48
49#include <ctype.h>
50#include <string.h>
51#include <iomanip>
52#include <limits>
53#include <set>
54
55#include "gtest/internal/gtest-string.h"
56#include "gtest/internal/gtest-filepath.h"
57#include "gtest/internal/gtest-type-util.h"
58
59#include "llvm/Support/raw_os_ostream.h"
60
61// Due to C++ preprocessor weirdness, we need double indirection to
62// concatenate two tokens when one of them is __LINE__.  Writing
63//
64//   foo ## __LINE__
65//
66// will result in the token foo__LINE__, instead of foo followed by
67// the current line number.  For more details, see
68// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
69#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
70#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
71
72// Google Test defines the testing::Message class to allow construction of
73// test messages via the << operator.  The idea is that anything
74// streamable to std::ostream can be streamed to a testing::Message.
75// This allows a user to use his own types in Google Test assertions by
76// overloading the << operator.
77//
78// util/gtl/stl_logging-inl.h overloads << for STL containers.  These
79// overloads cannot be defined in the std namespace, as that will be
80// undefined behavior.  Therefore, they are defined in the global
81// namespace instead.
82//
83// C++'s symbol lookup rule (i.e. Koenig lookup) says that these
84// overloads are visible in either the std namespace or the global
85// namespace, but not other namespaces, including the testing
86// namespace which Google Test's Message class is in.
87//
88// To allow STL containers (and other types that has a << operator
89// defined in the global namespace) to be used in Google Test assertions,
90// testing::Message must access the custom << operator from the global
91// namespace.  Hence this helper function.
92//
93// Note: Jeffrey Yasskin suggested an alternative fix by "using
94// ::operator<<;" in the definition of Message's operator<<.  That fix
95// doesn't require a helper function, but unfortunately doesn't
96// compile with MSVC.
97
98// LLVM INTERNAL CHANGE: To allow operator<< to work with both
99// std::ostreams and LLVM's raw_ostreams, we define a special
100// std::ostream with an implicit conversion to raw_ostream& and stream
101// to that.  This causes the compiler to prefer std::ostream overloads
102// but still find raw_ostream& overloads.
103namespace llvm {
104class convertible_fwd_ostream : public std::ostream {
105  std::ostream& os_;
106  raw_os_ostream ros_;
107
108public:
109  convertible_fwd_ostream(std::ostream& os)
110    : std::ostream(os.rdbuf()), os_(os), ros_(*this) {}
111  operator raw_ostream&() { return ros_; }
112};
113}
114template <typename T>
115inline void GTestStreamToHelper(std::ostream* os, const T& val) {
116  llvm::convertible_fwd_ostream cos(*os);
117  cos << val;
118}
119
120class ProtocolMessage;
121namespace proto2 { class Message; }
122
123namespace testing {
124
125// Forward declarations.
126
127class AssertionResult;                 // Result of an assertion.
128class Message;                         // Represents a failure message.
129class Test;                            // Represents a test.
130class TestInfo;                        // Information about a test.
131class TestPartResult;                  // Result of a test part.
132class UnitTest;                        // A collection of test cases.
133
134template <typename T>
135::std::string PrintToString(const T& value);
136
137namespace internal {
138
139struct TraceInfo;                      // Information about a trace point.
140class ScopedTrace;                     // Implements scoped trace.
141class TestInfoImpl;                    // Opaque implementation of TestInfo
142class UnitTestImpl;                    // Opaque implementation of UnitTest
143
144// How many times InitGoogleTest() has been called.
145extern int g_init_gtest_count;
146
147// The text used in failure messages to indicate the start of the
148// stack trace.
149GTEST_API_ extern const char kStackTraceMarker[];
150
151// A secret type that Google Test users don't know about.  It has no
152// definition on purpose.  Therefore it's impossible to create a
153// Secret object, which is what we want.
154class Secret;
155
156// Two overloaded helpers for checking at compile time whether an
157// expression is a null pointer literal (i.e. NULL or any 0-valued
158// compile-time integral constant).  Their return values have
159// different sizes, so we can use sizeof() to test which version is
160// picked by the compiler.  These helpers have no implementations, as
161// we only need their signatures.
162//
163// Given IsNullLiteralHelper(x), the compiler will pick the first
164// version if x can be implicitly converted to Secret*, and pick the
165// second version otherwise.  Since Secret is a secret and incomplete
166// type, the only expression a user can write that has type Secret* is
167// a null pointer literal.  Therefore, we know that x is a null
168// pointer literal if and only if the first version is picked by the
169// compiler.
170char IsNullLiteralHelper(Secret* p);
171char (&IsNullLiteralHelper(...))[2];  // NOLINT
172
173// A compile-time bool constant that is true if and only if x is a
174// null pointer literal (i.e. NULL or any 0-valued compile-time
175// integral constant).
176#ifdef GTEST_ELLIPSIS_NEEDS_POD_
177// We lose support for NULL detection where the compiler doesn't like
178// passing non-POD classes through ellipsis (...).
179# define GTEST_IS_NULL_LITERAL_(x) false
180#else
181# define GTEST_IS_NULL_LITERAL_(x) \
182    (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
183#endif  // GTEST_ELLIPSIS_NEEDS_POD_
184
185// Appends the user-supplied message to the Google-Test-generated message.
186GTEST_API_ String AppendUserMessage(const String& gtest_msg,
187                                    const Message& user_msg);
188
189// A helper class for creating scoped traces in user programs.
190class GTEST_API_ ScopedTrace {
191 public:
192  // The c'tor pushes the given source file location and message onto
193  // a trace stack maintained by Google Test.
194  ScopedTrace(const char* file, int line, const Message& message);
195
196  // The d'tor pops the info pushed by the c'tor.
197  //
198  // Note that the d'tor is not virtual in order to be efficient.
199  // Don't inherit from ScopedTrace!
200  ~ScopedTrace();
201
202 private:
203  GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
204} GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
205                            // c'tor and d'tor.  Therefore it doesn't
206                            // need to be used otherwise.
207
208// Converts a streamable value to a String.  A NULL pointer is
209// converted to "(null)".  When the input value is a ::string,
210// ::std::string, ::wstring, or ::std::wstring object, each NUL
211// character in it is replaced with "\\0".
212// Declared here but defined in gtest.h, so that it has access
213// to the definition of the Message class, required by the ARM
214// compiler.
215template <typename T>
216String StreamableToString(const T& streamable);
217
218// The Symbian compiler has a bug that prevents it from selecting the
219// correct overload of FormatForComparisonFailureMessage (see below)
220// unless we pass the first argument by reference.  If we do that,
221// however, Visual Age C++ 10.1 generates a compiler error.  Therefore
222// we only apply the work-around for Symbian.
223#if defined(__SYMBIAN32__)
224# define GTEST_CREF_WORKAROUND_ const&
225#else
226# define GTEST_CREF_WORKAROUND_
227#endif
228
229// When this operand is a const char* or char*, if the other operand
230// is a ::std::string or ::string, we print this operand as a C string
231// rather than a pointer (we do the same for wide strings); otherwise
232// we print it as a pointer to be safe.
233
234// This internal macro is used to avoid duplicated code.
235#define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
236inline String FormatForComparisonFailureMessage(\
237    operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
238    const operand2_type& /*operand2*/) {\
239  return operand1_printer(str);\
240}\
241inline String FormatForComparisonFailureMessage(\
242    const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
243    const operand2_type& /*operand2*/) {\
244  return operand1_printer(str);\
245}
246
247GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
248#if GTEST_HAS_STD_WSTRING
249GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
250#endif  // GTEST_HAS_STD_WSTRING
251
252#if GTEST_HAS_GLOBAL_STRING
253GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
254#endif  // GTEST_HAS_GLOBAL_STRING
255#if GTEST_HAS_GLOBAL_WSTRING
256GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
257#endif  // GTEST_HAS_GLOBAL_WSTRING
258
259#undef GTEST_FORMAT_IMPL_
260
261// The next four overloads handle the case where the operand being
262// printed is a char/wchar_t pointer and the other operand is not a
263// string/wstring object.  In such cases, we just print the operand as
264// a pointer to be safe.
265#define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
266  template <typename T>                                             \
267  String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
268                                           const T&) { \
269    return PrintToString(static_cast<const void*>(p));              \
270  }
271
272GTEST_FORMAT_CHAR_PTR_IMPL_(char)
273GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
274GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
275GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
276
277#undef GTEST_FORMAT_CHAR_PTR_IMPL_
278
279// Constructs and returns the message for an equality assertion
280// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
281//
282// The first four parameters are the expressions used in the assertion
283// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
284// where foo is 5 and bar is 6, we have:
285//
286//   expected_expression: "foo"
287//   actual_expression:   "bar"
288//   expected_value:      "5"
289//   actual_value:        "6"
290//
291// The ignoring_case parameter is true iff the assertion is a
292// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
293// be inserted into the message.
294GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
295                                     const char* actual_expression,
296                                     const String& expected_value,
297                                     const String& actual_value,
298                                     bool ignoring_case);
299
300// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
301GTEST_API_ String GetBoolAssertionFailureMessage(
302    const AssertionResult& assertion_result,
303    const char* expression_text,
304    const char* actual_predicate_value,
305    const char* expected_predicate_value);
306
307// This template class represents an IEEE floating-point number
308// (either single-precision or double-precision, depending on the
309// template parameters).
310//
311// The purpose of this class is to do more sophisticated number
312// comparison.  (Due to round-off error, etc, it's very unlikely that
313// two floating-points will be equal exactly.  Hence a naive
314// comparison by the == operation often doesn't work.)
315//
316// Format of IEEE floating-point:
317//
318//   The most-significant bit being the leftmost, an IEEE
319//   floating-point looks like
320//
321//     sign_bit exponent_bits fraction_bits
322//
323//   Here, sign_bit is a single bit that designates the sign of the
324//   number.
325//
326//   For float, there are 8 exponent bits and 23 fraction bits.
327//
328//   For double, there are 11 exponent bits and 52 fraction bits.
329//
330//   More details can be found at
331//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
332//
333// Template parameter:
334//
335//   RawType: the raw floating-point type (either float or double)
336template <typename RawType>
337class FloatingPoint {
338 public:
339  // Defines the unsigned integer type that has the same size as the
340  // floating point number.
341  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
342
343  // Constants.
344
345  // # of bits in a number.
346  static const size_t kBitCount = 8*sizeof(RawType);
347
348  // # of fraction bits in a number.
349  static const size_t kFractionBitCount =
350    std::numeric_limits<RawType>::digits - 1;
351
352  // # of exponent bits in a number.
353  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
354
355  // The mask for the sign bit.
356  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
357
358  // The mask for the fraction bits.
359  static const Bits kFractionBitMask =
360    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
361
362  // The mask for the exponent bits.
363  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
364
365  // How many ULP's (Units in the Last Place) we want to tolerate when
366  // comparing two numbers.  The larger the value, the more error we
367  // allow.  A 0 value means that two numbers must be exactly the same
368  // to be considered equal.
369  //
370  // The maximum error of a single floating-point operation is 0.5
371  // units in the last place.  On Intel CPU's, all floating-point
372  // calculations are done with 80-bit precision, while double has 64
373  // bits.  Therefore, 4 should be enough for ordinary use.
374  //
375  // See the following article for more details on ULP:
376  // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
377  static const size_t kMaxUlps = 4;
378
379  // Constructs a FloatingPoint from a raw floating-point number.
380  //
381  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
382  // around may change its bits, although the new value is guaranteed
383  // to be also a NAN.  Therefore, don't expect this constructor to
384  // preserve the bits in x when x is a NAN.
385  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
386
387  // Static methods
388
389  // Reinterprets a bit pattern as a floating-point number.
390  //
391  // This function is needed to test the AlmostEquals() method.
392  static RawType ReinterpretBits(const Bits bits) {
393    FloatingPoint fp(0);
394    fp.u_.bits_ = bits;
395    return fp.u_.value_;
396  }
397
398  // Returns the floating-point number that represent positive infinity.
399  static RawType Infinity() {
400    return ReinterpretBits(kExponentBitMask);
401  }
402
403  // Non-static methods
404
405  // Returns the bits that represents this number.
406  const Bits &bits() const { return u_.bits_; }
407
408  // Returns the exponent bits of this number.
409  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
410
411  // Returns the fraction bits of this number.
412  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
413
414  // Returns the sign bit of this number.
415  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
416
417  // Returns true iff this is NAN (not a number).
418  bool is_nan() const {
419    // It's a NAN if the exponent bits are all ones and the fraction
420    // bits are not entirely zeros.
421    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
422  }
423
424  // Returns true iff this number is at most kMaxUlps ULP's away from
425  // rhs.  In particular, this function:
426  //
427  //   - returns false if either number is (or both are) NAN.
428  //   - treats really large numbers as almost equal to infinity.
429  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
430  bool AlmostEquals(const FloatingPoint& rhs) const {
431    // The IEEE standard says that any comparison operation involving
432    // a NAN must return false.
433    if (is_nan() || rhs.is_nan()) return false;
434
435    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
436        <= kMaxUlps;
437  }
438
439 private:
440  // The data type used to store the actual floating-point number.
441  union FloatingPointUnion {
442    RawType value_;  // The raw floating-point number.
443    Bits bits_;      // The bits that represent the number.
444  };
445
446  // Converts an integer from the sign-and-magnitude representation to
447  // the biased representation.  More precisely, let N be 2 to the
448  // power of (kBitCount - 1), an integer x is represented by the
449  // unsigned number x + N.
450  //
451  // For instance,
452  //
453  //   -N + 1 (the most negative number representable using
454  //          sign-and-magnitude) is represented by 1;
455  //   0      is represented by N; and
456  //   N - 1  (the biggest number representable using
457  //          sign-and-magnitude) is represented by 2N - 1.
458  //
459  // Read http://en.wikipedia.org/wiki/Signed_number_representations
460  // for more details on signed number representations.
461  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
462    if (kSignBitMask & sam) {
463      // sam represents a negative number.
464      return ~sam + 1;
465    } else {
466      // sam represents a positive number.
467      return kSignBitMask | sam;
468    }
469  }
470
471  // Given two numbers in the sign-and-magnitude representation,
472  // returns the distance between them as an unsigned number.
473  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
474                                                     const Bits &sam2) {
475    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
476    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
477    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
478  }
479
480  FloatingPointUnion u_;
481};
482
483// Typedefs the instances of the FloatingPoint template class that we
484// care to use.
485typedef FloatingPoint<float> Float;
486typedef FloatingPoint<double> Double;
487
488// In order to catch the mistake of putting tests that use different
489// test fixture classes in the same test case, we need to assign
490// unique IDs to fixture classes and compare them.  The TypeId type is
491// used to hold such IDs.  The user should treat TypeId as an opaque
492// type: the only operation allowed on TypeId values is to compare
493// them for equality using the == operator.
494typedef const void* TypeId;
495
496template <typename T>
497class TypeIdHelper {
498 public:
499  // dummy_ must not have a const type.  Otherwise an overly eager
500  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
501  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
502  static bool dummy_;
503};
504
505template <typename T>
506bool TypeIdHelper<T>::dummy_ = false;
507
508// GetTypeId<T>() returns the ID of type T.  Different values will be
509// returned for different types.  Calling the function twice with the
510// same type argument is guaranteed to return the same ID.
511template <typename T>
512TypeId GetTypeId() {
513  // The compiler is required to allocate a different
514  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
515  // the template.  Therefore, the address of dummy_ is guaranteed to
516  // be unique.
517  return &(TypeIdHelper<T>::dummy_);
518}
519
520// Returns the type ID of ::testing::Test.  Always call this instead
521// of GetTypeId< ::testing::Test>() to get the type ID of
522// ::testing::Test, as the latter may give the wrong result due to a
523// suspected linker bug when compiling Google Test as a Mac OS X
524// framework.
525GTEST_API_ TypeId GetTestTypeId();
526
527// Defines the abstract factory interface that creates instances
528// of a Test object.
529class TestFactoryBase {
530 public:
531  virtual ~TestFactoryBase() {}
532
533  // Creates a test instance to run. The instance is both created and destroyed
534  // within TestInfoImpl::Run()
535  virtual Test* CreateTest() = 0;
536
537 protected:
538  TestFactoryBase() {}
539
540 private:
541  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
542};
543
544// This class provides implementation of TeastFactoryBase interface.
545// It is used in TEST and TEST_F macros.
546template <class TestClass>
547class TestFactoryImpl : public TestFactoryBase {
548 public:
549  virtual Test* CreateTest() { return new TestClass; }
550};
551
552#if GTEST_OS_WINDOWS
553
554// Predicate-formatters for implementing the HRESULT checking macros
555// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
556// We pass a long instead of HRESULT to avoid causing an
557// include dependency for the HRESULT type.
558GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
559                                            long hr);  // NOLINT
560GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
561                                            long hr);  // NOLINT
562
563#endif  // GTEST_OS_WINDOWS
564
565// Types of SetUpTestCase() and TearDownTestCase() functions.
566typedef void (*SetUpTestCaseFunc)();
567typedef void (*TearDownTestCaseFunc)();
568
569// Creates a new TestInfo object and registers it with Google Test;
570// returns the created object.
571//
572// Arguments:
573//
574//   test_case_name:   name of the test case
575//   name:             name of the test
576//   type_param        the name of the test's type parameter, or NULL if
577//                     this is not  a typed or a type-parameterized test.
578//   value_param       text representation of the test's value parameter,
579//                     or NULL if this is not a type-parameterized test.
580//   fixture_class_id: ID of the test fixture class
581//   set_up_tc:        pointer to the function that sets up the test case
582//   tear_down_tc:     pointer to the function that tears down the test case
583//   factory:          pointer to the factory that creates a test object.
584//                     The newly created TestInfo instance will assume
585//                     ownership of the factory object.
586GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
587    const char* test_case_name, const char* name,
588    const char* type_param,
589    const char* value_param,
590    TypeId fixture_class_id,
591    SetUpTestCaseFunc set_up_tc,
592    TearDownTestCaseFunc tear_down_tc,
593    TestFactoryBase* factory);
594
595// If *pstr starts with the given prefix, modifies *pstr to be right
596// past the prefix and returns true; otherwise leaves *pstr unchanged
597// and returns false.  None of pstr, *pstr, and prefix can be NULL.
598GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
599
600#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
601
602// State of the definition of a type-parameterized test case.
603class GTEST_API_ TypedTestCasePState {
604 public:
605  TypedTestCasePState() : registered_(false) {}
606
607  // Adds the given test name to defined_test_names_ and return true
608  // if the test case hasn't been registered; otherwise aborts the
609  // program.
610  bool AddTestName(const char* file, int line, const char* case_name,
611                   const char* test_name) {
612    if (registered_) {
613      fprintf(stderr, "%s Test %s must be defined before "
614              "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
615              FormatFileLocation(file, line).c_str(), test_name, case_name);
616      fflush(stderr);
617      posix::Abort();
618    }
619    defined_test_names_.insert(test_name);
620    return true;
621  }
622
623  // Verifies that registered_tests match the test names in
624  // defined_test_names_; returns registered_tests if successful, or
625  // aborts the program otherwise.
626  const char* VerifyRegisteredTestNames(
627      const char* file, int line, const char* registered_tests);
628
629 private:
630  bool registered_;
631  ::std::set<const char*> defined_test_names_;
632};
633
634// Skips to the first non-space char after the first comma in 'str';
635// returns NULL if no comma is found in 'str'.
636inline const char* SkipComma(const char* str) {
637  const char* comma = strchr(str, ',');
638  if (comma == NULL) {
639    return NULL;
640  }
641  while (IsSpace(*(++comma))) {}
642  return comma;
643}
644
645// Returns the prefix of 'str' before the first comma in it; returns
646// the entire string if it contains no comma.
647inline String GetPrefixUntilComma(const char* str) {
648  const char* comma = strchr(str, ',');
649  return comma == NULL ? String(str) : String(str, comma - str);
650}
651
652// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
653// registers a list of type-parameterized tests with Google Test.  The
654// return value is insignificant - we just need to return something
655// such that we can call this function in a namespace scope.
656//
657// Implementation note: The GTEST_TEMPLATE_ macro declares a template
658// template parameter.  It's defined in gtest-type-util.h.
659template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
660class TypeParameterizedTest {
661 public:
662  // 'index' is the index of the test in the type list 'Types'
663  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
664  // Types).  Valid values for 'index' are [0, N - 1] where N is the
665  // length of Types.
666  static bool Register(const char* prefix, const char* case_name,
667                       const char* test_names, int index) {
668    typedef typename Types::Head Type;
669    typedef Fixture<Type> FixtureClass;
670    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
671
672    // First, registers the first type-parameterized test in the type
673    // list.
674    MakeAndRegisterTestInfo(
675        String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
676                       case_name, index).c_str(),
677        GetPrefixUntilComma(test_names).c_str(),
678        GetTypeName<Type>().c_str(),
679        NULL,  // No value parameter.
680        GetTypeId<FixtureClass>(),
681        TestClass::SetUpTestCase,
682        TestClass::TearDownTestCase,
683        new TestFactoryImpl<TestClass>);
684
685    // Next, recurses (at compile time) with the tail of the type list.
686    return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
687        ::Register(prefix, case_name, test_names, index + 1);
688  }
689};
690
691// The base case for the compile time recursion.
692template <GTEST_TEMPLATE_ Fixture, class TestSel>
693class TypeParameterizedTest<Fixture, TestSel, Types0> {
694 public:
695  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
696                       const char* /*test_names*/, int /*index*/) {
697    return true;
698  }
699};
700
701// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
702// registers *all combinations* of 'Tests' and 'Types' with Google
703// Test.  The return value is insignificant - we just need to return
704// something such that we can call this function in a namespace scope.
705template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
706class TypeParameterizedTestCase {
707 public:
708  static bool Register(const char* prefix, const char* case_name,
709                       const char* test_names) {
710    typedef typename Tests::Head Head;
711
712    // First, register the first test in 'Test' for each type in 'Types'.
713    TypeParameterizedTest<Fixture, Head, Types>::Register(
714        prefix, case_name, test_names, 0);
715
716    // Next, recurses (at compile time) with the tail of the test list.
717    return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
718        ::Register(prefix, case_name, SkipComma(test_names));
719  }
720};
721
722// The base case for the compile time recursion.
723template <GTEST_TEMPLATE_ Fixture, typename Types>
724class TypeParameterizedTestCase<Fixture, Templates0, Types> {
725 public:
726  static bool Register(const char* /*prefix*/, const char* /*case_name*/,
727                       const char* /*test_names*/) {
728    return true;
729  }
730};
731
732#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
733
734// Returns the current OS stack trace as a String.
735//
736// The maximum number of stack frames to be included is specified by
737// the gtest_stack_trace_depth flag.  The skip_count parameter
738// specifies the number of top frames to be skipped, which doesn't
739// count against the number of frames to be included.
740//
741// For example, if Foo() calls Bar(), which in turn calls
742// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
743// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
744GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
745                                                  int skip_count);
746
747// Helpers for suppressing warnings on unreachable code or constant
748// condition.
749
750// Always returns true.
751GTEST_API_ bool AlwaysTrue();
752
753// Always returns false.
754inline bool AlwaysFalse() { return !AlwaysTrue(); }
755
756// Helper for suppressing false warning from Clang on a const char*
757// variable declared in a conditional expression always being NULL in
758// the else branch.
759struct GTEST_API_ ConstCharPtr {
760  ConstCharPtr(const char* str) : value(str) {}
761  operator bool() const { return true; }
762  const char* value;
763};
764
765// A simple Linear Congruential Generator for generating random
766// numbers with a uniform distribution.  Unlike rand() and srand(), it
767// doesn't use global state (and therefore can't interfere with user
768// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
769// but it's good enough for our purposes.
770class GTEST_API_ Random {
771 public:
772  static const UInt32 kMaxRange = 1u << 31;
773
774  explicit Random(UInt32 seed) : state_(seed) {}
775
776  void Reseed(UInt32 seed) { state_ = seed; }
777
778  // Generates a random number from [0, range).  Crashes if 'range' is
779  // 0 or greater than kMaxRange.
780  UInt32 Generate(UInt32 range);
781
782 private:
783  UInt32 state_;
784  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
785};
786
787// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
788// compiler error iff T1 and T2 are different types.
789template <typename T1, typename T2>
790struct CompileAssertTypesEqual;
791
792template <typename T>
793struct CompileAssertTypesEqual<T, T> {
794};
795
796// Removes the reference from a type if it is a reference type,
797// otherwise leaves it unchanged.  This is the same as
798// tr1::remove_reference, which is not widely available yet.
799template <typename T>
800struct RemoveReference { typedef T type; };  // NOLINT
801template <typename T>
802struct RemoveReference<T&> { typedef T type; };  // NOLINT
803
804// A handy wrapper around RemoveReference that works when the argument
805// T depends on template parameters.
806#define GTEST_REMOVE_REFERENCE_(T) \
807    typename ::testing::internal::RemoveReference<T>::type
808
809// Removes const from a type if it is a const type, otherwise leaves
810// it unchanged.  This is the same as tr1::remove_const, which is not
811// widely available yet.
812template <typename T>
813struct RemoveConst { typedef T type; };  // NOLINT
814template <typename T>
815struct RemoveConst<const T> { typedef T type; };  // NOLINT
816
817// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
818// definition to fail to remove the const in 'const int[3]' and 'const
819// char[3][4]'.  The following specialization works around the bug.
820// However, it causes trouble with GCC and thus needs to be
821// conditionally compiled.
822#if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
823template <typename T, size_t N>
824struct RemoveConst<const T[N]> {
825  typedef typename RemoveConst<T>::type type[N];
826};
827#endif
828
829// A handy wrapper around RemoveConst that works when the argument
830// T depends on template parameters.
831#define GTEST_REMOVE_CONST_(T) \
832    typename ::testing::internal::RemoveConst<T>::type
833
834// Turns const U&, U&, const U, and U all into U.
835#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
836    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
837
838// Adds reference to a type if it is not a reference type,
839// otherwise leaves it unchanged.  This is the same as
840// tr1::add_reference, which is not widely available yet.
841template <typename T>
842struct AddReference { typedef T& type; };  // NOLINT
843template <typename T>
844struct AddReference<T&> { typedef T& type; };  // NOLINT
845
846// A handy wrapper around AddReference that works when the argument T
847// depends on template parameters.
848#define GTEST_ADD_REFERENCE_(T) \
849    typename ::testing::internal::AddReference<T>::type
850
851// Adds a reference to const on top of T as necessary.  For example,
852// it transforms
853//
854//   char         ==> const char&
855//   const char   ==> const char&
856//   char&        ==> const char&
857//   const char&  ==> const char&
858//
859// The argument T must depend on some template parameters.
860#define GTEST_REFERENCE_TO_CONST_(T) \
861    GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
862
863// ImplicitlyConvertible<From, To>::value is a compile-time bool
864// constant that's true iff type From can be implicitly converted to
865// type To.
866template <typename From, typename To>
867class ImplicitlyConvertible {
868 private:
869  // We need the following helper functions only for their types.
870  // They have no implementations.
871
872  // MakeFrom() is an expression whose type is From.  We cannot simply
873  // use From(), as the type From may not have a public default
874  // constructor.
875  static From MakeFrom();
876
877  // These two functions are overloaded.  Given an expression
878  // Helper(x), the compiler will pick the first version if x can be
879  // implicitly converted to type To; otherwise it will pick the
880  // second version.
881  //
882  // The first version returns a value of size 1, and the second
883  // version returns a value of size 2.  Therefore, by checking the
884  // size of Helper(x), which can be done at compile time, we can tell
885  // which version of Helper() is used, and hence whether x can be
886  // implicitly converted to type To.
887  static char Helper(To);
888  static char (&Helper(...))[2];  // NOLINT
889
890  // We have to put the 'public' section after the 'private' section,
891  // or MSVC refuses to compile the code.
892 public:
893  // MSVC warns about implicitly converting from double to int for
894  // possible loss of data, so we need to temporarily disable the
895  // warning.
896#ifdef _MSC_VER
897# pragma warning(push)          // Saves the current warning state.
898# pragma warning(disable:4244)  // Temporarily disables warning 4244.
899
900  static const bool value =
901      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
902# pragma warning(pop)           // Restores the warning state.
903#elif defined(__BORLANDC__)
904  // C++Builder cannot use member overload resolution during template
905  // instantiation.  The simplest workaround is to use its C++0x type traits
906  // functions (C++Builder 2009 and above only).
907  static const bool value = __is_convertible(From, To);
908#else
909  static const bool value =
910      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
911#endif  // _MSV_VER
912};
913template <typename From, typename To>
914const bool ImplicitlyConvertible<From, To>::value;
915
916// IsAProtocolMessage<T>::value is a compile-time bool constant that's
917// true iff T is type ProtocolMessage, proto2::Message, or a subclass
918// of those.
919template <typename T>
920struct IsAProtocolMessage
921    : public bool_constant<
922  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
923  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
924};
925
926// When the compiler sees expression IsContainerTest<C>(0), if C is an
927// STL-style container class, the first overload of IsContainerTest
928// will be viable (since both C::iterator* and C::const_iterator* are
929// valid types and NULL can be implicitly converted to them).  It will
930// be picked over the second overload as 'int' is a perfect match for
931// the type of argument 0.  If C::iterator or C::const_iterator is not
932// a valid type, the first overload is not viable, and the second
933// overload will be picked.  Therefore, we can determine whether C is
934// a container class by checking the type of IsContainerTest<C>(0).
935// The value of the expression is insignificant.
936//
937// Note that we look for both C::iterator and C::const_iterator.  The
938// reason is that C++ injects the name of a class as a member of the
939// class itself (e.g. you can refer to class iterator as either
940// 'iterator' or 'iterator::iterator').  If we look for C::iterator
941// only, for example, we would mistakenly think that a class named
942// iterator is an STL container.
943//
944// Also note that the simpler approach of overloading
945// IsContainerTest(typename C::const_iterator*) and
946// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
947typedef int IsContainer;
948template <class C>
949IsContainer IsContainerTest(int /* dummy */,
950                            typename C::iterator* /* it */ = NULL,
951                            typename C::const_iterator* /* const_it */ = NULL) {
952  return 0;
953}
954
955typedef char IsNotContainer;
956template <class C>
957IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
958
959// EnableIf<condition>::type is void when 'Cond' is true, and
960// undefined when 'Cond' is false.  To use SFINAE to make a function
961// overload only apply when a particular expression is true, add
962// "typename EnableIf<expression>::type* = 0" as the last parameter.
963template<bool> struct EnableIf;
964template<> struct EnableIf<true> { typedef void type; };  // NOLINT
965
966// Utilities for native arrays.
967
968// ArrayEq() compares two k-dimensional native arrays using the
969// elements' operator==, where k can be any integer >= 0.  When k is
970// 0, ArrayEq() degenerates into comparing a single pair of values.
971
972template <typename T, typename U>
973bool ArrayEq(const T* lhs, size_t size, const U* rhs);
974
975// This generic version is used when k is 0.
976template <typename T, typename U>
977inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
978
979// This overload is used when k >= 1.
980template <typename T, typename U, size_t N>
981inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
982  return internal::ArrayEq(lhs, N, rhs);
983}
984
985// This helper reduces code bloat.  If we instead put its logic inside
986// the previous ArrayEq() function, arrays with different sizes would
987// lead to different copies of the template code.
988template <typename T, typename U>
989bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
990  for (size_t i = 0; i != size; i++) {
991    if (!internal::ArrayEq(lhs[i], rhs[i]))
992      return false;
993  }
994  return true;
995}
996
997// Finds the first element in the iterator range [begin, end) that
998// equals elem.  Element may be a native array type itself.
999template <typename Iter, typename Element>
1000Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1001  for (Iter it = begin; it != end; ++it) {
1002    if (internal::ArrayEq(*it, elem))
1003      return it;
1004  }
1005  return end;
1006}
1007
1008// CopyArray() copies a k-dimensional native array using the elements'
1009// operator=, where k can be any integer >= 0.  When k is 0,
1010// CopyArray() degenerates into copying a single value.
1011
1012template <typename T, typename U>
1013void CopyArray(const T* from, size_t size, U* to);
1014
1015// This generic version is used when k is 0.
1016template <typename T, typename U>
1017inline void CopyArray(const T& from, U* to) { *to = from; }
1018
1019// This overload is used when k >= 1.
1020template <typename T, typename U, size_t N>
1021inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1022  internal::CopyArray(from, N, *to);
1023}
1024
1025// This helper reduces code bloat.  If we instead put its logic inside
1026// the previous CopyArray() function, arrays with different sizes
1027// would lead to different copies of the template code.
1028template <typename T, typename U>
1029void CopyArray(const T* from, size_t size, U* to) {
1030  for (size_t i = 0; i != size; i++) {
1031    internal::CopyArray(from[i], to + i);
1032  }
1033}
1034
1035// The relation between an NativeArray object (see below) and the
1036// native array it represents.
1037enum RelationToSource {
1038  kReference,  // The NativeArray references the native array.
1039  kCopy        // The NativeArray makes a copy of the native array and
1040               // owns the copy.
1041};
1042
1043// Adapts a native array to a read-only STL-style container.  Instead
1044// of the complete STL container concept, this adaptor only implements
1045// members useful for Google Mock's container matchers.  New members
1046// should be added as needed.  To simplify the implementation, we only
1047// support Element being a raw type (i.e. having no top-level const or
1048// reference modifier).  It's the client's responsibility to satisfy
1049// this requirement.  Element can be an array type itself (hence
1050// multi-dimensional arrays are supported).
1051template <typename Element>
1052class NativeArray {
1053 public:
1054  // STL-style container typedefs.
1055  typedef Element value_type;
1056  typedef Element* iterator;
1057  typedef const Element* const_iterator;
1058
1059  // Constructs from a native array.
1060  NativeArray(const Element* array, size_t count, RelationToSource relation) {
1061    Init(array, count, relation);
1062  }
1063
1064  // Copy constructor.
1065  NativeArray(const NativeArray& rhs) {
1066    Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1067  }
1068
1069  ~NativeArray() {
1070    // Ensures that the user doesn't instantiate NativeArray with a
1071    // const or reference type.
1072    static_cast<void>(StaticAssertTypeEqHelper<Element,
1073        GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1074    if (relation_to_source_ == kCopy)
1075      delete[] array_;
1076  }
1077
1078  // STL-style container methods.
1079  size_t size() const { return size_; }
1080  const_iterator begin() const { return array_; }
1081  const_iterator end() const { return array_ + size_; }
1082  bool operator==(const NativeArray& rhs) const {
1083    return size() == rhs.size() &&
1084        ArrayEq(begin(), size(), rhs.begin());
1085  }
1086
1087 private:
1088  // Initializes this object; makes a copy of the input array if
1089  // 'relation' is kCopy.
1090  void Init(const Element* array, size_t a_size, RelationToSource relation) {
1091    if (relation == kReference) {
1092      array_ = array;
1093    } else {
1094      Element* const copy = new Element[a_size];
1095      CopyArray(array, a_size, copy);
1096      array_ = copy;
1097    }
1098    size_ = a_size;
1099    relation_to_source_ = relation;
1100  }
1101
1102  const Element* array_;
1103  size_t size_;
1104  RelationToSource relation_to_source_;
1105
1106  GTEST_DISALLOW_ASSIGN_(NativeArray);
1107};
1108
1109}  // namespace internal
1110}  // namespace testing
1111
1112#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1113  ::testing::internal::AssertHelper(result_type, file, line, message) \
1114    = ::testing::Message()
1115
1116#define GTEST_MESSAGE_(message, result_type) \
1117  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1118
1119#define GTEST_FATAL_FAILURE_(message) \
1120  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1121
1122#define GTEST_NONFATAL_FAILURE_(message) \
1123  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1124
1125#define GTEST_SUCCESS_(message) \
1126  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1127
1128// Suppresses MSVC warnings 4072 (unreachable code) for the code following
1129// statement if it returns or throws (or doesn't return or throw in some
1130// situations).
1131#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1132  if (::testing::internal::AlwaysTrue()) { statement; }
1133
1134#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1135  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1136  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1137    bool gtest_caught_expected = false; \
1138    try { \
1139      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1140    } \
1141    catch (expected_exception const&) { \
1142      gtest_caught_expected = true; \
1143    } \
1144    catch (...) { \
1145      gtest_msg.value = \
1146          "Expected: " #statement " throws an exception of type " \
1147          #expected_exception ".\n  Actual: it throws a different type."; \
1148      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1149    } \
1150    if (!gtest_caught_expected) { \
1151      gtest_msg.value = \
1152          "Expected: " #statement " throws an exception of type " \
1153          #expected_exception ".\n  Actual: it throws nothing."; \
1154      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1155    } \
1156  } else \
1157    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1158      fail(gtest_msg.value)
1159
1160#define GTEST_TEST_NO_THROW_(statement, fail) \
1161  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1162  if (::testing::internal::AlwaysTrue()) { \
1163    try { \
1164      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1165    } \
1166    catch (...) { \
1167      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1168    } \
1169  } else \
1170    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1171      fail("Expected: " #statement " doesn't throw an exception.\n" \
1172           "  Actual: it throws.")
1173
1174#define GTEST_TEST_ANY_THROW_(statement, fail) \
1175  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1176  if (::testing::internal::AlwaysTrue()) { \
1177    bool gtest_caught_any = false; \
1178    try { \
1179      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1180    } \
1181    catch (...) { \
1182      gtest_caught_any = true; \
1183    } \
1184    if (!gtest_caught_any) { \
1185      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1186    } \
1187  } else \
1188    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1189      fail("Expected: " #statement " throws an exception.\n" \
1190           "  Actual: it doesn't.")
1191
1192
1193// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1194// either a boolean expression or an AssertionResult. text is a textual
1195// represenation of expression as it was passed into the EXPECT_TRUE.
1196#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1197  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1198  if (const ::testing::AssertionResult gtest_ar_ = \
1199      ::testing::AssertionResult(expression)) \
1200    ; \
1201  else \
1202    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1203        gtest_ar_, text, #actual, #expected).c_str())
1204
1205#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1206  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1207  if (::testing::internal::AlwaysTrue()) { \
1208    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1209    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1210    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1211      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1212    } \
1213  } else \
1214    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1215      fail("Expected: " #statement " doesn't generate new fatal " \
1216           "failures in the current thread.\n" \
1217           "  Actual: it does.")
1218
1219// Expands to the name of the class that implements the given test.
1220#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1221  test_case_name##_##test_name##_Test
1222
1223// Helper macro for defining tests.
1224#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1225class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1226 public:\
1227  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1228 private:\
1229  virtual void TestBody();\
1230  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1231  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1232      GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1233};\
1234\
1235::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1236  ::test_info_ =\
1237    ::testing::internal::MakeAndRegisterTestInfo(\
1238        #test_case_name, #test_name, NULL, NULL, \
1239        (parent_id), \
1240        parent_class::SetUpTestCase, \
1241        parent_class::TearDownTestCase, \
1242        new ::testing::internal::TestFactoryImpl<\
1243            GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1244void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1245
1246#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1247