1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5 *
6 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22FILE_LICENCE ( MIT );
23
24/*************************************\
25* EEPROM access functions and helpers *
26\*************************************/
27
28#include <unistd.h>
29#include <stdlib.h>
30
31#include "ath5k.h"
32#include "reg.h"
33#include "base.h"
34
35/*
36 * Read from eeprom
37 */
38static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
39{
40	u32 status, timeout;
41
42	/*
43	 * Initialize EEPROM access
44	 */
45	if (ah->ah_version == AR5K_AR5210) {
46		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
47		(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
48	} else {
49		ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
50		AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
51				AR5K_EEPROM_CMD_READ);
52	}
53
54	for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
55		status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
56		if (status & AR5K_EEPROM_STAT_RDDONE) {
57			if (status & AR5K_EEPROM_STAT_RDERR)
58				return -EIO;
59			*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
60					0xffff);
61			return 0;
62		}
63		udelay(15);
64	}
65
66	return -ETIMEDOUT;
67}
68
69/*
70 * Translate binary channel representation in EEPROM to frequency
71 */
72static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
73                                 unsigned int mode)
74{
75	u16 val;
76
77	if (bin == AR5K_EEPROM_CHANNEL_DIS)
78		return bin;
79
80	if (mode == AR5K_EEPROM_MODE_11A) {
81		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
82			val = (5 * bin) + 4800;
83		else
84			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
85				(bin * 10) + 5100;
86	} else {
87		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
88			val = bin + 2300;
89		else
90			val = bin + 2400;
91	}
92
93	return val;
94}
95
96/*
97 * Initialize eeprom & capabilities structs
98 */
99static int
100ath5k_eeprom_init_header(struct ath5k_hw *ah)
101{
102	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
103	int ret;
104	u16 val;
105
106	/*
107	 * Read values from EEPROM and store them in the capability structure
108	 */
109	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
114
115	/* Return if we have an old EEPROM */
116	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117		return 0;
118
119	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
120	    ee_ant_gain);
121
122	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
123		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
124		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
125
126		/* XXX: Don't know which versions include these two */
127		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
128
129		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
130			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
131
132		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
133			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
134			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
135			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
136		}
137	}
138
139	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
140		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
141		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
142		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
143
144		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
145		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
146		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
147	}
148
149	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
150
151	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
152		ee->ee_is_hb63 = 1;
153	else
154		ee->ee_is_hb63 = 0;
155
156	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
157	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
158	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
159
160	return 0;
161}
162
163
164/*
165 * Read antenna infos from eeprom
166 */
167static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
168		unsigned int mode)
169{
170	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
171	u32 o = *offset;
172	u16 val;
173	int ret, i = 0;
174
175	AR5K_EEPROM_READ(o++, val);
176	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
177	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
178	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
179
180	AR5K_EEPROM_READ(o++, val);
181	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
182	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
183	ee->ee_ant_control[mode][i++]	= val & 0x3f;
184
185	AR5K_EEPROM_READ(o++, val);
186	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
187	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
188	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
189
190	AR5K_EEPROM_READ(o++, val);
191	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
192	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
193	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
194	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
195
196	AR5K_EEPROM_READ(o++, val);
197	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
198	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
199	ee->ee_ant_control[mode][i++]	= val & 0x3f;
200
201	/* Get antenna modes */
202	ah->ah_antenna[mode][0] =
203	    (ee->ee_ant_control[mode][0] << 4);
204	ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
205	     ee->ee_ant_control[mode][1] 	|
206	    (ee->ee_ant_control[mode][2] << 6) 	|
207	    (ee->ee_ant_control[mode][3] << 12) |
208	    (ee->ee_ant_control[mode][4] << 18) |
209	    (ee->ee_ant_control[mode][5] << 24);
210	ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
211	     ee->ee_ant_control[mode][6] 	|
212	    (ee->ee_ant_control[mode][7] << 6) 	|
213	    (ee->ee_ant_control[mode][8] << 12) |
214	    (ee->ee_ant_control[mode][9] << 18) |
215	    (ee->ee_ant_control[mode][10] << 24);
216
217	/* return new offset */
218	*offset = o;
219
220	return 0;
221}
222
223/*
224 * Read supported modes and some mode-specific calibration data
225 * from eeprom
226 */
227static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
228		unsigned int mode)
229{
230	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
231	u32 o = *offset;
232	u16 val;
233	int ret;
234
235	ee->ee_n_piers[mode] = 0;
236	AR5K_EEPROM_READ(o++, val);
237	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
238	switch(mode) {
239	case AR5K_EEPROM_MODE_11A:
240		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
241		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
242		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
243
244		AR5K_EEPROM_READ(o++, val);
245		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
246		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
247		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
248		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
249		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
250		ee->ee_db[mode][0]	= val & 0x7;
251		break;
252	case AR5K_EEPROM_MODE_11G:
253	case AR5K_EEPROM_MODE_11B:
254		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
255		ee->ee_db[mode][1]	= val & 0x7;
256		break;
257	}
258
259	AR5K_EEPROM_READ(o++, val);
260	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
261	ee->ee_thr_62[mode]		= val & 0xff;
262
263	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
264		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
265
266	AR5K_EEPROM_READ(o++, val);
267	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
268	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
269
270	AR5K_EEPROM_READ(o++, val);
271	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
272
273	if ((val & 0xff) & 0x80)
274		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
275	else
276		ee->ee_noise_floor_thr[mode] = val & 0xff;
277
278	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
279		ee->ee_noise_floor_thr[mode] =
280		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
281
282	AR5K_EEPROM_READ(o++, val);
283	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
284	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
285	ee->ee_xpd[mode]		= val & 0x1;
286
287	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
288		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
289
290	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
291		AR5K_EEPROM_READ(o++, val);
292		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
293
294		if (mode == AR5K_EEPROM_MODE_11A)
295			ee->ee_xr_power[mode] = val & 0x3f;
296		else {
297			ee->ee_ob[mode][0] = val & 0x7;
298			ee->ee_db[mode][0] = (val >> 3) & 0x7;
299		}
300	}
301
302	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
303		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
304		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
305	} else {
306		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
307
308		AR5K_EEPROM_READ(o++, val);
309		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
310
311		if (mode == AR5K_EEPROM_MODE_11G) {
312			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
313			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
314				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
315		}
316	}
317
318	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
319			mode == AR5K_EEPROM_MODE_11A) {
320		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
321		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
322	}
323
324	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
325		goto done;
326
327	/* Note: >= v5 have bg freq piers on another location
328	 * so these freq piers are ignored for >= v5 (should be 0xff
329	 * anyway) */
330	switch(mode) {
331	case AR5K_EEPROM_MODE_11A:
332		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
333			break;
334
335		AR5K_EEPROM_READ(o++, val);
336		ee->ee_margin_tx_rx[mode] = val & 0x3f;
337		break;
338	case AR5K_EEPROM_MODE_11B:
339		AR5K_EEPROM_READ(o++, val);
340
341		ee->ee_pwr_cal_b[0].freq =
342			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
343		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
344			ee->ee_n_piers[mode]++;
345
346		ee->ee_pwr_cal_b[1].freq =
347			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
348		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
349			ee->ee_n_piers[mode]++;
350
351		AR5K_EEPROM_READ(o++, val);
352		ee->ee_pwr_cal_b[2].freq =
353			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
354		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
355			ee->ee_n_piers[mode]++;
356
357		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
358			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
359		break;
360	case AR5K_EEPROM_MODE_11G:
361		AR5K_EEPROM_READ(o++, val);
362
363		ee->ee_pwr_cal_g[0].freq =
364			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366			ee->ee_n_piers[mode]++;
367
368		ee->ee_pwr_cal_g[1].freq =
369			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371			ee->ee_n_piers[mode]++;
372
373		AR5K_EEPROM_READ(o++, val);
374		ee->ee_turbo_max_power[mode] = val & 0x7f;
375		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
376
377		AR5K_EEPROM_READ(o++, val);
378		ee->ee_pwr_cal_g[2].freq =
379			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
380		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
381			ee->ee_n_piers[mode]++;
382
383		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
384			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
385
386		AR5K_EEPROM_READ(o++, val);
387		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
388		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
389
390		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
391			AR5K_EEPROM_READ(o++, val);
392			ee->ee_cck_ofdm_gain_delta = val & 0xff;
393		}
394		break;
395	}
396
397done:
398	/* return new offset */
399	*offset = o;
400
401	return 0;
402}
403
404/*
405 * Read turbo mode information on newer EEPROM versions
406 */
407static int
408ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
409			      u32 *offset, unsigned int mode)
410{
411	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
412	u32 o = *offset;
413	u16 val;
414	int ret;
415
416	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
417		return 0;
418
419	switch (mode){
420	case AR5K_EEPROM_MODE_11A:
421		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
422
423		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
424		AR5K_EEPROM_READ(o++, val);
425		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
426		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
427
428		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
429		AR5K_EEPROM_READ(o++, val);
430		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
431		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
432
433		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
434			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
435		break;
436	case AR5K_EEPROM_MODE_11G:
437		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
438
439		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
440		AR5K_EEPROM_READ(o++, val);
441		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
442		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
443
444		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
445		AR5K_EEPROM_READ(o++, val);
446		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
447		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
448		break;
449	}
450
451	/* return new offset */
452	*offset = o;
453
454	return 0;
455}
456
457/* Read mode-specific data (except power calibration data) */
458static int
459ath5k_eeprom_init_modes(struct ath5k_hw *ah)
460{
461	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
462	u32 mode_offset[3];
463	unsigned int mode;
464	u32 offset;
465	int ret;
466
467	/*
468	 * Get values for all modes
469	 */
470	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
471	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
472	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
473
474	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
475		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
476
477	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
478		offset = mode_offset[mode];
479
480		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
481		if (ret)
482			return ret;
483
484		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
485		if (ret)
486			return ret;
487
488		ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
489		if (ret)
490			return ret;
491	}
492
493	/* override for older eeprom versions for better performance */
494	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
495		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
496		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
497		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
498	}
499
500	return 0;
501}
502
503/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
504 * frequency mask) */
505static inline int
506ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
507			struct ath5k_chan_pcal_info *pc, unsigned int mode)
508{
509	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510	int o = *offset;
511	int i = 0;
512	u8 freq1, freq2;
513	int ret;
514	u16 val;
515
516	ee->ee_n_piers[mode] = 0;
517	while(i < max) {
518		AR5K_EEPROM_READ(o++, val);
519
520		freq1 = val & 0xff;
521		if (!freq1)
522			break;
523
524		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
525				freq1, mode);
526		ee->ee_n_piers[mode]++;
527
528		freq2 = (val >> 8) & 0xff;
529		if (!freq2)
530			break;
531
532		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
533				freq2, mode);
534		ee->ee_n_piers[mode]++;
535	}
536
537	/* return new offset */
538	*offset = o;
539
540	return 0;
541}
542
543/* Read frequency piers for 802.11a */
544static int
545ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
546{
547	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
548	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
549	int i, ret;
550	u16 val;
551	u8 mask;
552
553	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
554		ath5k_eeprom_read_freq_list(ah, &offset,
555			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
556			AR5K_EEPROM_MODE_11A);
557	} else {
558		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
559
560		AR5K_EEPROM_READ(offset++, val);
561		pcal[0].freq  = (val >> 9) & mask;
562		pcal[1].freq  = (val >> 2) & mask;
563		pcal[2].freq  = (val << 5) & mask;
564
565		AR5K_EEPROM_READ(offset++, val);
566		pcal[2].freq |= (val >> 11) & 0x1f;
567		pcal[3].freq  = (val >> 4) & mask;
568		pcal[4].freq  = (val << 3) & mask;
569
570		AR5K_EEPROM_READ(offset++, val);
571		pcal[4].freq |= (val >> 13) & 0x7;
572		pcal[5].freq  = (val >> 6) & mask;
573		pcal[6].freq  = (val << 1) & mask;
574
575		AR5K_EEPROM_READ(offset++, val);
576		pcal[6].freq |= (val >> 15) & 0x1;
577		pcal[7].freq  = (val >> 8) & mask;
578		pcal[8].freq  = (val >> 1) & mask;
579		pcal[9].freq  = (val << 6) & mask;
580
581		AR5K_EEPROM_READ(offset++, val);
582		pcal[9].freq |= (val >> 10) & 0x3f;
583
584		/* Fixed number of piers */
585		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
586
587		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
588			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
589				pcal[i].freq, AR5K_EEPROM_MODE_11A);
590		}
591	}
592
593	return 0;
594}
595
596/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
597static inline int
598ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
599{
600	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
601	struct ath5k_chan_pcal_info *pcal;
602
603	switch(mode) {
604	case AR5K_EEPROM_MODE_11B:
605		pcal = ee->ee_pwr_cal_b;
606		break;
607	case AR5K_EEPROM_MODE_11G:
608		pcal = ee->ee_pwr_cal_g;
609		break;
610	default:
611		return -EINVAL;
612	}
613
614	ath5k_eeprom_read_freq_list(ah, &offset,
615		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
616		mode);
617
618	return 0;
619}
620
621/*
622 * Read power calibration for RF5111 chips
623 *
624 * For RF5111 we have an XPD -eXternal Power Detector- curve
625 * for each calibrated channel. Each curve has 0,5dB Power steps
626 * on x axis and PCDAC steps (offsets) on y axis and looks like an
627 * exponential function. To recreate the curve we read 11 points
628 * here and interpolate later.
629 */
630
631/* Used to match PCDAC steps with power values on RF5111 chips
632 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
633 * steps that match with the power values we read from eeprom. On
634 * older eeprom versions (< 3.2) these steps are equaly spaced at
635 * 10% of the pcdac curve -until the curve reaches it's maximum-
636 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
637 * these 11 steps are spaced in a different way. This function returns
638 * the pcdac steps based on eeprom version and curve min/max so that we
639 * can have pcdac/pwr points.
640 */
641static inline void
642ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
643{
644	static const u16 intercepts3[] =
645		{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
646	static const u16 intercepts3_2[] =
647		{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
648	const u16 *ip;
649	unsigned i;
650
651	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
652		ip = intercepts3_2;
653	else
654		ip = intercepts3;
655
656	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
657		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
658}
659
660/* Convert RF5111 specific data to generic raw data
661 * used by interpolation code */
662static int
663ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
664				struct ath5k_chan_pcal_info *chinfo)
665{
666	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
667	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
668	struct ath5k_pdgain_info *pd;
669	u8 pier, point, idx;
670	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
671
672	/* Fill raw data for each calibration pier */
673	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
674
675		pcinfo = &chinfo[pier].rf5111_info;
676
677		/* Allocate pd_curves for this cal pier */
678		chinfo[pier].pd_curves =
679			calloc(AR5K_EEPROM_N_PD_CURVES,
680			       sizeof(struct ath5k_pdgain_info));
681
682		if (!chinfo[pier].pd_curves)
683			return -ENOMEM;
684
685		/* Only one curve for RF5111
686		 * find out which one and place
687		 * in in pd_curves.
688		 * Note: ee_x_gain is reversed here */
689		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692				pdgain_idx[0] = idx;
693				break;
694			}
695		}
696
697		ee->ee_pd_gains[mode] = 1;
698
699		pd = &chinfo[pier].pd_curves[idx];
700
701		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703		/* Allocate pd points for this curve */
704		pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
705		if (!pd->pd_step)
706			return -ENOMEM;
707
708		pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
709		if (!pd->pd_pwr)
710			return -ENOMEM;
711
712		/* Fill raw dataset
713		 * (convert power to 0.25dB units
714		 * for RF5112 combatibility) */
715		for (point = 0; point < pd->pd_points; point++) {
716
717			/* Absolute values */
718			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
719
720			/* Already sorted */
721			pd->pd_step[point] = pcinfo->pcdac[point];
722		}
723
724		/* Set min/max pwr */
725		chinfo[pier].min_pwr = pd->pd_pwr[0];
726		chinfo[pier].max_pwr = pd->pd_pwr[10];
727
728	}
729
730	return 0;
731}
732
733/* Parse EEPROM data */
734static int
735ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
736{
737	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
738	struct ath5k_chan_pcal_info *pcal;
739	int offset, ret;
740	int i;
741	u16 val;
742
743	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
744	switch(mode) {
745	case AR5K_EEPROM_MODE_11A:
746		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
747			return 0;
748
749		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
750			offset + AR5K_EEPROM_GROUP1_OFFSET);
751		if (ret < 0)
752			return ret;
753
754		offset += AR5K_EEPROM_GROUP2_OFFSET;
755		pcal = ee->ee_pwr_cal_a;
756		break;
757	case AR5K_EEPROM_MODE_11B:
758		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
759		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
760			return 0;
761
762		pcal = ee->ee_pwr_cal_b;
763		offset += AR5K_EEPROM_GROUP3_OFFSET;
764
765		/* fixed piers */
766		pcal[0].freq = 2412;
767		pcal[1].freq = 2447;
768		pcal[2].freq = 2484;
769		ee->ee_n_piers[mode] = 3;
770		break;
771	case AR5K_EEPROM_MODE_11G:
772		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
773			return 0;
774
775		pcal = ee->ee_pwr_cal_g;
776		offset += AR5K_EEPROM_GROUP4_OFFSET;
777
778		/* fixed piers */
779		pcal[0].freq = 2312;
780		pcal[1].freq = 2412;
781		pcal[2].freq = 2484;
782		ee->ee_n_piers[mode] = 3;
783		break;
784	default:
785		return -EINVAL;
786	}
787
788	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
789		struct ath5k_chan_pcal_info_rf5111 *cdata =
790			&pcal[i].rf5111_info;
791
792		AR5K_EEPROM_READ(offset++, val);
793		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
794		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
795		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
796
797		AR5K_EEPROM_READ(offset++, val);
798		cdata->pwr[0] |= ((val >> 14) & 0x3);
799		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
800		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
801		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
802
803		AR5K_EEPROM_READ(offset++, val);
804		cdata->pwr[3] |= ((val >> 12) & 0xf);
805		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
806		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
807
808		AR5K_EEPROM_READ(offset++, val);
809		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
810		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
811		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
812
813		AR5K_EEPROM_READ(offset++, val);
814		cdata->pwr[8] |= ((val >> 14) & 0x3);
815		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
816		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
817
818		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
819			cdata->pcdac_max, cdata->pcdac);
820	}
821
822	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
823}
824
825
826/*
827 * Read power calibration for RF5112 chips
828 *
829 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
830 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
831 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
832 * power steps on x axis and PCDAC steps on y axis and looks like a
833 * linear function. To recreate the curve and pass the power values
834 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
835 * and 3 points for xpd 3 (higher gain -> lower power) here and
836 * interpolate later.
837 *
838 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
839 */
840
841/* Convert RF5112 specific data to generic raw data
842 * used by interpolation code */
843static int
844ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
845				struct ath5k_chan_pcal_info *chinfo)
846{
847	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
848	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
849	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
850	unsigned int pier, pdg, point;
851
852	/* Fill raw data for each calibration pier */
853	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
854
855		pcinfo = &chinfo[pier].rf5112_info;
856
857		/* Allocate pd_curves for this cal pier */
858		chinfo[pier].pd_curves =
859				calloc(AR5K_EEPROM_N_PD_CURVES,
860				       sizeof(struct ath5k_pdgain_info));
861
862		if (!chinfo[pier].pd_curves)
863			return -ENOMEM;
864
865		/* Fill pd_curves */
866		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
867
868			u8 idx = pdgain_idx[pdg];
869			struct ath5k_pdgain_info *pd =
870					&chinfo[pier].pd_curves[idx];
871
872			/* Lowest gain curve (max power) */
873			if (pdg == 0) {
874				/* One more point for better accuracy */
875				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
876
877				/* Allocate pd points for this curve */
878				pd->pd_step = calloc(pd->pd_points, sizeof(u8));
879
880				if (!pd->pd_step)
881					return -ENOMEM;
882
883				pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
884
885				if (!pd->pd_pwr)
886					return -ENOMEM;
887
888
889				/* Fill raw dataset
890				 * (all power levels are in 0.25dB units) */
891				pd->pd_step[0] = pcinfo->pcdac_x0[0];
892				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
893
894				for (point = 1; point < pd->pd_points;
895				point++) {
896					/* Absolute values */
897					pd->pd_pwr[point] =
898						pcinfo->pwr_x0[point];
899
900					/* Deltas */
901					pd->pd_step[point] =
902						pd->pd_step[point - 1] +
903						pcinfo->pcdac_x0[point];
904				}
905
906				/* Set min power for this frequency */
907				chinfo[pier].min_pwr = pd->pd_pwr[0];
908
909			/* Highest gain curve (min power) */
910			} else if (pdg == 1) {
911
912				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
913
914				/* Allocate pd points for this curve */
915				pd->pd_step = calloc(pd->pd_points, sizeof(u8));
916
917				if (!pd->pd_step)
918					return -ENOMEM;
919
920				pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
921
922				if (!pd->pd_pwr)
923					return -ENOMEM;
924
925				/* Fill raw dataset
926				 * (all power levels are in 0.25dB units) */
927				for (point = 0; point < pd->pd_points;
928				point++) {
929					/* Absolute values */
930					pd->pd_pwr[point] =
931						pcinfo->pwr_x3[point];
932
933					/* Fixed points */
934					pd->pd_step[point] =
935						pcinfo->pcdac_x3[point];
936				}
937
938				/* Since we have a higher gain curve
939				 * override min power */
940				chinfo[pier].min_pwr = pd->pd_pwr[0];
941			}
942		}
943	}
944
945	return 0;
946}
947
948/* Parse EEPROM data */
949static int
950ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
951{
952	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
953	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
954	struct ath5k_chan_pcal_info *gen_chan_info;
955	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
956	u32 offset;
957	u8 i, c;
958	u16 val;
959	int ret;
960	u8 pd_gains = 0;
961
962	/* Count how many curves we have and
963	 * identify them (which one of the 4
964	 * available curves we have on each count).
965	 * Curves are stored from lower (x0) to
966	 * higher (x3) gain */
967	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
968		/* ee_x_gain[mode] is x gain mask */
969		if ((ee->ee_x_gain[mode] >> i) & 0x1)
970			pdgain_idx[pd_gains++] = i;
971	}
972	ee->ee_pd_gains[mode] = pd_gains;
973
974	if (pd_gains == 0 || pd_gains > 2)
975		return -EINVAL;
976
977	switch (mode) {
978	case AR5K_EEPROM_MODE_11A:
979		/*
980		 * Read 5GHz EEPROM channels
981		 */
982		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
983		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
984
985		offset += AR5K_EEPROM_GROUP2_OFFSET;
986		gen_chan_info = ee->ee_pwr_cal_a;
987		break;
988	case AR5K_EEPROM_MODE_11B:
989		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
990		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
991			offset += AR5K_EEPROM_GROUP3_OFFSET;
992
993		/* NB: frequency piers parsed during mode init */
994		gen_chan_info = ee->ee_pwr_cal_b;
995		break;
996	case AR5K_EEPROM_MODE_11G:
997		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
998		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
999			offset += AR5K_EEPROM_GROUP4_OFFSET;
1000		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1001			offset += AR5K_EEPROM_GROUP2_OFFSET;
1002
1003		/* NB: frequency piers parsed during mode init */
1004		gen_chan_info = ee->ee_pwr_cal_g;
1005		break;
1006	default:
1007		return -EINVAL;
1008	}
1009
1010	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1011		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1012
1013		/* Power values in quarter dB
1014		 * for the lower xpd gain curve
1015		 * (0 dBm -> higher output power) */
1016		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1017			AR5K_EEPROM_READ(offset++, val);
1018			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1019			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1020		}
1021
1022		/* PCDAC steps
1023		 * corresponding to the above power
1024		 * measurements */
1025		AR5K_EEPROM_READ(offset++, val);
1026		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1027		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1028		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1029
1030		/* Power values in quarter dB
1031		 * for the higher xpd gain curve
1032		 * (18 dBm -> lower output power) */
1033		AR5K_EEPROM_READ(offset++, val);
1034		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1035		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1036
1037		AR5K_EEPROM_READ(offset++, val);
1038		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1039
1040		/* PCDAC steps
1041		 * corresponding to the above power
1042		 * measurements (fixed) */
1043		chan_pcal_info->pcdac_x3[0] = 20;
1044		chan_pcal_info->pcdac_x3[1] = 35;
1045		chan_pcal_info->pcdac_x3[2] = 63;
1046
1047		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1048			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1049
1050			/* Last xpd0 power level is also channel maximum */
1051			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1052		} else {
1053			chan_pcal_info->pcdac_x0[0] = 1;
1054			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1055		}
1056
1057	}
1058
1059	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1060}
1061
1062
1063/*
1064 * Read power calibration for RF2413 chips
1065 *
1066 * For RF2413 we have a Power to PDDAC table (Power Detector)
1067 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1068 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1069 * axis and looks like an exponential function like the RF5111 curve.
1070 *
1071 * To recreate the curves we read here the points and interpolate
1072 * later. Note that in most cases only 2 (higher and lower) curves are
1073 * used (like RF5112) but vendors have the oportunity to include all
1074 * 4 curves on eeprom. The final curve (higher power) has an extra
1075 * point for better accuracy like RF5112.
1076 */
1077
1078/* For RF2413 power calibration data doesn't start on a fixed location and
1079 * if a mode is not supported, it's section is missing -not zeroed-.
1080 * So we need to calculate the starting offset for each section by using
1081 * these two functions */
1082
1083/* Return the size of each section based on the mode and the number of pd
1084 * gains available (maximum 4). */
1085static inline unsigned int
1086ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1087{
1088	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1089	unsigned int sz;
1090
1091	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1092	sz *= ee->ee_n_piers[mode];
1093
1094	return sz;
1095}
1096
1097/* Return the starting offset for a section based on the modes supported
1098 * and each section's size. */
1099static unsigned int
1100ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1101{
1102	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1103
1104	switch(mode) {
1105	case AR5K_EEPROM_MODE_11G:
1106		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1107			offset += ath5k_pdgains_size_2413(ee,
1108					AR5K_EEPROM_MODE_11B) +
1109					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1110		/* fall through */
1111	case AR5K_EEPROM_MODE_11B:
1112		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1113			offset += ath5k_pdgains_size_2413(ee,
1114					AR5K_EEPROM_MODE_11A) +
1115					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1116		/* fall through */
1117	case AR5K_EEPROM_MODE_11A:
1118		break;
1119	default:
1120		break;
1121	}
1122
1123	return offset;
1124}
1125
1126/* Convert RF2413 specific data to generic raw data
1127 * used by interpolation code */
1128static int
1129ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1130				struct ath5k_chan_pcal_info *chinfo)
1131{
1132	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1133	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1134	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1135	unsigned int pier, point;
1136	int pdg;
1137
1138	/* Fill raw data for each calibration pier */
1139	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1140
1141		pcinfo = &chinfo[pier].rf2413_info;
1142
1143		/* Allocate pd_curves for this cal pier */
1144		chinfo[pier].pd_curves =
1145				calloc(AR5K_EEPROM_N_PD_CURVES,
1146				       sizeof(struct ath5k_pdgain_info));
1147
1148		if (!chinfo[pier].pd_curves)
1149			return -ENOMEM;
1150
1151		/* Fill pd_curves */
1152		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1153
1154			u8 idx = pdgain_idx[pdg];
1155			struct ath5k_pdgain_info *pd =
1156					&chinfo[pier].pd_curves[idx];
1157
1158			/* One more point for the highest power
1159			 * curve (lowest gain) */
1160			if (pdg == ee->ee_pd_gains[mode] - 1)
1161				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1162			else
1163				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1164
1165			/* Allocate pd points for this curve */
1166			pd->pd_step = calloc(pd->pd_points, sizeof(u8));
1167
1168			if (!pd->pd_step)
1169				return -ENOMEM;
1170
1171			pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
1172
1173			if (!pd->pd_pwr)
1174				return -ENOMEM;
1175
1176			/* Fill raw dataset
1177			 * convert all pwr levels to
1178			 * quarter dB for RF5112 combatibility */
1179			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1180			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1181
1182			for (point = 1; point < pd->pd_points; point++) {
1183
1184				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1185					2 * pcinfo->pwr[pdg][point - 1];
1186
1187				pd->pd_step[point] = pd->pd_step[point - 1] +
1188						pcinfo->pddac[pdg][point - 1];
1189
1190			}
1191
1192			/* Highest gain curve -> min power */
1193			if (pdg == 0)
1194				chinfo[pier].min_pwr = pd->pd_pwr[0];
1195
1196			/* Lowest gain curve -> max power */
1197			if (pdg == ee->ee_pd_gains[mode] - 1)
1198				chinfo[pier].max_pwr =
1199					pd->pd_pwr[pd->pd_points - 1];
1200		}
1201	}
1202
1203	return 0;
1204}
1205
1206/* Parse EEPROM data */
1207static int
1208ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1209{
1210	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1211	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1212	struct ath5k_chan_pcal_info *chinfo;
1213	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1214	u32 offset;
1215	int idx, i, ret;
1216	u16 val;
1217	u8 pd_gains = 0;
1218
1219	/* Count how many curves we have and
1220	 * identify them (which one of the 4
1221	 * available curves we have on each count).
1222	 * Curves are stored from higher to
1223	 * lower gain so we go backwards */
1224	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1225		/* ee_x_gain[mode] is x gain mask */
1226		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1227			pdgain_idx[pd_gains++] = idx;
1228
1229	}
1230	ee->ee_pd_gains[mode] = pd_gains;
1231
1232	if (pd_gains == 0)
1233		return -EINVAL;
1234
1235	offset = ath5k_cal_data_offset_2413(ee, mode);
1236	switch (mode) {
1237	case AR5K_EEPROM_MODE_11A:
1238		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1239			return 0;
1240
1241		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1242		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1243		chinfo = ee->ee_pwr_cal_a;
1244		break;
1245	case AR5K_EEPROM_MODE_11B:
1246		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1247			return 0;
1248
1249		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1250		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1251		chinfo = ee->ee_pwr_cal_b;
1252		break;
1253	case AR5K_EEPROM_MODE_11G:
1254		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1255			return 0;
1256
1257		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1258		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1259		chinfo = ee->ee_pwr_cal_g;
1260		break;
1261	default:
1262		return -EINVAL;
1263	}
1264
1265	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1266		pcinfo = &chinfo[i].rf2413_info;
1267
1268		/*
1269		 * Read pwr_i, pddac_i and the first
1270		 * 2 pd points (pwr, pddac)
1271		 */
1272		AR5K_EEPROM_READ(offset++, val);
1273		pcinfo->pwr_i[0] = val & 0x1f;
1274		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1275		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1276
1277		AR5K_EEPROM_READ(offset++, val);
1278		pcinfo->pddac[0][0] = val & 0x3f;
1279		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1280		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1281
1282		AR5K_EEPROM_READ(offset++, val);
1283		pcinfo->pwr[0][2] = val & 0xf;
1284		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1285
1286		pcinfo->pwr[0][3] = 0;
1287		pcinfo->pddac[0][3] = 0;
1288
1289		if (pd_gains > 1) {
1290			/*
1291			 * Pd gain 0 is not the last pd gain
1292			 * so it only has 2 pd points.
1293			 * Continue wih pd gain 1.
1294			 */
1295			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1296
1297			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1298			AR5K_EEPROM_READ(offset++, val);
1299			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1300
1301			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1302			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1303
1304			AR5K_EEPROM_READ(offset++, val);
1305			pcinfo->pwr[1][1] = val & 0xf;
1306			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1307			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1308
1309			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1310			AR5K_EEPROM_READ(offset++, val);
1311			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1312
1313			pcinfo->pwr[1][3] = 0;
1314			pcinfo->pddac[1][3] = 0;
1315		} else if (pd_gains == 1) {
1316			/*
1317			 * Pd gain 0 is the last one so
1318			 * read the extra point.
1319			 */
1320			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1321
1322			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1323			AR5K_EEPROM_READ(offset++, val);
1324			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1325		}
1326
1327		/*
1328		 * Proceed with the other pd_gains
1329		 * as above.
1330		 */
1331		if (pd_gains > 2) {
1332			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1333			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1334
1335			AR5K_EEPROM_READ(offset++, val);
1336			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1337			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1338			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1339
1340			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1341			AR5K_EEPROM_READ(offset++, val);
1342			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1343
1344			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1345			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1346
1347			pcinfo->pwr[2][3] = 0;
1348			pcinfo->pddac[2][3] = 0;
1349		} else if (pd_gains == 2) {
1350			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1351			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1352		}
1353
1354		if (pd_gains > 3) {
1355			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1356			AR5K_EEPROM_READ(offset++, val);
1357			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1358
1359			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1360			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1361			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1362
1363			AR5K_EEPROM_READ(offset++, val);
1364			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1365			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1366			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1367
1368			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1369			AR5K_EEPROM_READ(offset++, val);
1370			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1371
1372			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1373			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1374
1375			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1376			AR5K_EEPROM_READ(offset++, val);
1377			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1378		} else if (pd_gains == 3) {
1379			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1380			AR5K_EEPROM_READ(offset++, val);
1381			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1382
1383			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1384		}
1385	}
1386
1387	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1388}
1389
1390
1391/*
1392 * Read per rate target power (this is the maximum tx power
1393 * supported by the card). This info is used when setting
1394 * tx power, no matter the channel.
1395 *
1396 * This also works for v5 EEPROMs.
1397 */
1398static int
1399ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1400{
1401	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1402	struct ath5k_rate_pcal_info *rate_pcal_info;
1403	u8 *rate_target_pwr_num;
1404	u32 offset;
1405	u16 val;
1406	int ret, i;
1407
1408	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1409	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1410	switch (mode) {
1411	case AR5K_EEPROM_MODE_11A:
1412		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1413		rate_pcal_info = ee->ee_rate_tpwr_a;
1414		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1415		break;
1416	case AR5K_EEPROM_MODE_11B:
1417		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1418		rate_pcal_info = ee->ee_rate_tpwr_b;
1419		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1420		break;
1421	case AR5K_EEPROM_MODE_11G:
1422		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1423		rate_pcal_info = ee->ee_rate_tpwr_g;
1424		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1425		break;
1426	default:
1427		return -EINVAL;
1428	}
1429
1430	/* Different freq mask for older eeproms (<= v3.2) */
1431	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1432		for (i = 0; i < (*rate_target_pwr_num); i++) {
1433			AR5K_EEPROM_READ(offset++, val);
1434			rate_pcal_info[i].freq =
1435			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1436
1437			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1438			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1439
1440			AR5K_EEPROM_READ(offset++, val);
1441
1442			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1443			    val == 0) {
1444				(*rate_target_pwr_num) = i;
1445				break;
1446			}
1447
1448			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1449			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1450			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1451		}
1452	} else {
1453		for (i = 0; i < (*rate_target_pwr_num); i++) {
1454			AR5K_EEPROM_READ(offset++, val);
1455			rate_pcal_info[i].freq =
1456			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1457
1458			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1459			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1460
1461			AR5K_EEPROM_READ(offset++, val);
1462
1463			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1464			    val == 0) {
1465				(*rate_target_pwr_num) = i;
1466				break;
1467			}
1468
1469			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1470			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1471			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1472		}
1473	}
1474
1475	return 0;
1476}
1477
1478/*
1479 * Read per channel calibration info from EEPROM
1480 *
1481 * This info is used to calibrate the baseband power table. Imagine
1482 * that for each channel there is a power curve that's hw specific
1483 * (depends on amplifier etc) and we try to "correct" this curve using
1484 * offests we pass on to phy chip (baseband -> before amplifier) so that
1485 * it can use accurate power values when setting tx power (takes amplifier's
1486 * performance on each channel into account).
1487 *
1488 * EEPROM provides us with the offsets for some pre-calibrated channels
1489 * and we have to interpolate to create the full table for these channels and
1490 * also the table for any channel.
1491 */
1492static int
1493ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1494{
1495	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1496	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1497	int mode;
1498	int err;
1499
1500	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1501			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1502		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1503	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1504			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1505		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1506	else
1507		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1508
1509
1510	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1511	mode++) {
1512		err = read_pcal(ah, mode);
1513		if (err)
1514			return err;
1515
1516		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1517		if (err < 0)
1518			return err;
1519	}
1520
1521	return 0;
1522}
1523
1524static int
1525ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1526{
1527	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1528	struct ath5k_chan_pcal_info *chinfo;
1529	u8 pier, pdg;
1530
1531	switch (mode) {
1532	case AR5K_EEPROM_MODE_11A:
1533		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1534			return 0;
1535		chinfo = ee->ee_pwr_cal_a;
1536		break;
1537	case AR5K_EEPROM_MODE_11B:
1538		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1539			return 0;
1540		chinfo = ee->ee_pwr_cal_b;
1541		break;
1542	case AR5K_EEPROM_MODE_11G:
1543		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1544			return 0;
1545		chinfo = ee->ee_pwr_cal_g;
1546		break;
1547	default:
1548		return -EINVAL;
1549	}
1550
1551	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1552		if (!chinfo[pier].pd_curves)
1553			continue;
1554
1555		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1556			struct ath5k_pdgain_info *pd =
1557					&chinfo[pier].pd_curves[pdg];
1558
1559			if (pd != NULL) {
1560				free(pd->pd_step);
1561				free(pd->pd_pwr);
1562			}
1563		}
1564
1565		free(chinfo[pier].pd_curves);
1566	}
1567
1568	return 0;
1569}
1570
1571void
1572ath5k_eeprom_detach(struct ath5k_hw *ah)
1573{
1574	u8 mode;
1575
1576	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1577		ath5k_eeprom_free_pcal_info(ah, mode);
1578}
1579
1580/* Read conformance test limits used for regulatory control */
1581static int
1582ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1583{
1584	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1585	struct ath5k_edge_power *rep;
1586	unsigned int fmask, pmask;
1587	unsigned int ctl_mode;
1588	int ret, i, j;
1589	u32 offset;
1590	u16 val;
1591
1592	pmask = AR5K_EEPROM_POWER_M;
1593	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1594	offset = AR5K_EEPROM_CTL(ee->ee_version);
1595	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1596	for (i = 0; i < ee->ee_ctls; i += 2) {
1597		AR5K_EEPROM_READ(offset++, val);
1598		ee->ee_ctl[i] = (val >> 8) & 0xff;
1599		ee->ee_ctl[i + 1] = val & 0xff;
1600	}
1601
1602	offset = AR5K_EEPROM_GROUP8_OFFSET;
1603	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1604		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1605			AR5K_EEPROM_GROUP5_OFFSET;
1606	else
1607		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1608
1609	rep = ee->ee_ctl_pwr;
1610	for(i = 0; i < ee->ee_ctls; i++) {
1611		switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1612		case AR5K_CTL_11A:
1613		case AR5K_CTL_TURBO:
1614			ctl_mode = AR5K_EEPROM_MODE_11A;
1615			break;
1616		default:
1617			ctl_mode = AR5K_EEPROM_MODE_11G;
1618			break;
1619		}
1620		if (ee->ee_ctl[i] == 0) {
1621			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1622				offset += 8;
1623			else
1624				offset += 7;
1625			rep += AR5K_EEPROM_N_EDGES;
1626			continue;
1627		}
1628		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1629			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1630				AR5K_EEPROM_READ(offset++, val);
1631				rep[j].freq = (val >> 8) & fmask;
1632				rep[j + 1].freq = val & fmask;
1633			}
1634			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1635				AR5K_EEPROM_READ(offset++, val);
1636				rep[j].edge = (val >> 8) & pmask;
1637				rep[j].flag = (val >> 14) & 1;
1638				rep[j + 1].edge = val & pmask;
1639				rep[j + 1].flag = (val >> 6) & 1;
1640			}
1641		} else {
1642			AR5K_EEPROM_READ(offset++, val);
1643			rep[0].freq = (val >> 9) & fmask;
1644			rep[1].freq = (val >> 2) & fmask;
1645			rep[2].freq = (val << 5) & fmask;
1646
1647			AR5K_EEPROM_READ(offset++, val);
1648			rep[2].freq |= (val >> 11) & 0x1f;
1649			rep[3].freq = (val >> 4) & fmask;
1650			rep[4].freq = (val << 3) & fmask;
1651
1652			AR5K_EEPROM_READ(offset++, val);
1653			rep[4].freq |= (val >> 13) & 0x7;
1654			rep[5].freq = (val >> 6) & fmask;
1655			rep[6].freq = (val << 1) & fmask;
1656
1657			AR5K_EEPROM_READ(offset++, val);
1658			rep[6].freq |= (val >> 15) & 0x1;
1659			rep[7].freq = (val >> 8) & fmask;
1660
1661			rep[0].edge = (val >> 2) & pmask;
1662			rep[1].edge = (val << 4) & pmask;
1663
1664			AR5K_EEPROM_READ(offset++, val);
1665			rep[1].edge |= (val >> 12) & 0xf;
1666			rep[2].edge = (val >> 6) & pmask;
1667			rep[3].edge = val & pmask;
1668
1669			AR5K_EEPROM_READ(offset++, val);
1670			rep[4].edge = (val >> 10) & pmask;
1671			rep[5].edge = (val >> 4) & pmask;
1672			rep[6].edge = (val << 2) & pmask;
1673
1674			AR5K_EEPROM_READ(offset++, val);
1675			rep[6].edge |= (val >> 14) & 0x3;
1676			rep[7].edge = (val >> 8) & pmask;
1677		}
1678		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1679			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1680				rep[j].freq, ctl_mode);
1681		}
1682		rep += AR5K_EEPROM_N_EDGES;
1683	}
1684
1685	return 0;
1686}
1687
1688
1689/*
1690 * Initialize eeprom power tables
1691 */
1692int
1693ath5k_eeprom_init(struct ath5k_hw *ah)
1694{
1695	int err;
1696
1697	err = ath5k_eeprom_init_header(ah);
1698	if (err < 0)
1699		return err;
1700
1701	err = ath5k_eeprom_init_modes(ah);
1702	if (err < 0)
1703		return err;
1704
1705	err = ath5k_eeprom_read_pcal_info(ah);
1706	if (err < 0)
1707		return err;
1708
1709	err = ath5k_eeprom_read_ctl_info(ah);
1710	if (err < 0)
1711		return err;
1712
1713	return 0;
1714}
1715
1716/*
1717 * Read the MAC address from eeprom
1718 */
1719int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1720{
1721	u8 mac_d[ETH_ALEN] = {};
1722	u32 total, offset;
1723	u16 data;
1724	int octet, ret;
1725
1726	ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1727	if (ret)
1728		return ret;
1729
1730	for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1731		ret = ath5k_hw_eeprom_read(ah, offset, &data);
1732		if (ret)
1733			return ret;
1734
1735		total += data;
1736		mac_d[octet + 1] = data & 0xff;
1737		mac_d[octet] = data >> 8;
1738		octet += 2;
1739	}
1740
1741	if (!total || total == 3 * 0xffff)
1742		return -EINVAL;
1743
1744	memcpy(mac, mac_d, ETH_ALEN);
1745
1746	return 0;
1747}
1748
1749int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1750{
1751	u16 data;
1752
1753	ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1754
1755	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1756		return 1;
1757	else
1758		return 0;
1759}
1760
1761