1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
10 *
11 * Permission to use, copy, modify, and distribute this software for any
12 * purpose with or without fee is hereby granted, provided that the above
13 * copyright notice and this permission notice appear in all copies.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
16 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
17 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
18 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
19 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
20 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
21 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 *
23 */
24
25FILE_LICENCE ( MIT );
26
27#define _ATH5K_PHY
28
29#include <unistd.h>
30#include <stdlib.h>
31
32#include "ath5k.h"
33#include "reg.h"
34#include "base.h"
35#include "rfbuffer.h"
36#include "rfgain.h"
37
38static inline int min(int x, int y)
39{
40	return (x < y) ? x : y;
41}
42
43static inline int max(int x, int y)
44{
45	return (x > y) ? x : y;
46}
47
48/*
49 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
50 */
51static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
52					const struct ath5k_rf_reg *rf_regs,
53					u32 val, u8 reg_id, int set)
54{
55	const struct ath5k_rf_reg *rfreg = NULL;
56	u8 offset, bank, num_bits, col, position;
57	u16 entry;
58	u32 mask, data, last_bit, bits_shifted, first_bit;
59	u32 *rfb;
60	s32 bits_left;
61	unsigned i;
62
63	data = 0;
64	rfb = ah->ah_rf_banks;
65
66	for (i = 0; i < ah->ah_rf_regs_count; i++) {
67		if (rf_regs[i].index == reg_id) {
68			rfreg = &rf_regs[i];
69			break;
70		}
71	}
72
73	if (rfb == NULL || rfreg == NULL) {
74		DBG("ath5k: RF register not found!\n");
75		/* should not happen */
76		return 0;
77	}
78
79	bank = rfreg->bank;
80	num_bits = rfreg->field.len;
81	first_bit = rfreg->field.pos;
82	col = rfreg->field.col;
83
84	/* first_bit is an offset from bank's
85	 * start. Since we have all banks on
86	 * the same array, we use this offset
87	 * to mark each bank's start */
88	offset = ah->ah_offset[bank];
89
90	/* Boundary check */
91	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
92		DBG("ath5k: RF invalid values at offset %d\n", offset);
93		return 0;
94	}
95
96	entry = ((first_bit - 1) / 8) + offset;
97	position = (first_bit - 1) % 8;
98
99	if (set)
100		data = ath5k_hw_bitswap(val, num_bits);
101
102	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
103	position = 0, entry++) {
104
105		last_bit = (position + bits_left > 8) ? 8 :
106					position + bits_left;
107
108		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
109								(col * 8);
110
111		if (set) {
112			rfb[entry] &= ~mask;
113			rfb[entry] |= ((data << position) << (col * 8)) & mask;
114			data >>= (8 - position);
115		} else {
116			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
117				<< bits_shifted;
118			bits_shifted += last_bit - position;
119		}
120
121		bits_left -= 8 - position;
122	}
123
124	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
125
126	return data;
127}
128
129/**********************\
130* RF Gain optimization *
131\**********************/
132
133/*
134 * This code is used to optimize rf gain on different environments
135 * (temprature mostly) based on feedback from a power detector.
136 *
137 * It's only used on RF5111 and RF5112, later RF chips seem to have
138 * auto adjustment on hw -notice they have a much smaller BANK 7 and
139 * no gain optimization ladder-.
140 *
141 * For more infos check out this patent doc
142 * http://www.freepatentsonline.com/7400691.html
143 *
144 * This paper describes power drops as seen on the receiver due to
145 * probe packets
146 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
147 * %20of%20Power%20Control.pdf
148 *
149 * And this is the MadWiFi bug entry related to the above
150 * http://madwifi-project.org/ticket/1659
151 * with various measurements and diagrams
152 *
153 * TODO: Deal with power drops due to probes by setting an apropriate
154 * tx power on the probe packets ! Make this part of the calibration process.
155 */
156
157/* Initialize ah_gain durring attach */
158int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
159{
160	/* Initialize the gain optimization values */
161	switch (ah->ah_radio) {
162	case AR5K_RF5111:
163		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
164		ah->ah_gain.g_low = 20;
165		ah->ah_gain.g_high = 35;
166		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
167		break;
168	case AR5K_RF5112:
169		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
170		ah->ah_gain.g_low = 20;
171		ah->ah_gain.g_high = 85;
172		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
173		break;
174	default:
175		return -EINVAL;
176	}
177
178	return 0;
179}
180
181/* Schedule a gain probe check on the next transmited packet.
182 * That means our next packet is going to be sent with lower
183 * tx power and a Peak to Average Power Detector (PAPD) will try
184 * to measure the gain.
185 *
186 * TODO: Use propper tx power setting for the probe packet so
187 * that we don't observe a serious power drop on the receiver
188 *
189 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
190 * just after we enable the probe so that we don't mess with
191 * standard traffic ? Maybe it's time to use sw interrupts and
192 * a probe tasklet !!!
193 */
194static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
195{
196
197	/* Skip if gain calibration is inactive or
198	 * we already handle a probe request */
199	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
200		return;
201
202	/* Send the packet with 2dB below max power as
203	 * patent doc suggest */
204	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
205			AR5K_PHY_PAPD_PROBE_TXPOWER) |
206			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
207
208	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
209
210}
211
212/* Calculate gain_F measurement correction
213 * based on the current step for RF5112 rev. 2 */
214static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
215{
216	u32 mix, step;
217	u32 *rf;
218	const struct ath5k_gain_opt *go;
219	const struct ath5k_gain_opt_step *g_step;
220	const struct ath5k_rf_reg *rf_regs;
221
222	/* Only RF5112 Rev. 2 supports it */
223	if ((ah->ah_radio != AR5K_RF5112) ||
224	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
225		return 0;
226
227	go = &rfgain_opt_5112;
228	rf_regs = rf_regs_5112a;
229	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
230
231	g_step = &go->go_step[ah->ah_gain.g_step_idx];
232
233	if (ah->ah_rf_banks == NULL)
234		return 0;
235
236	rf = ah->ah_rf_banks;
237	ah->ah_gain.g_f_corr = 0;
238
239	/* No VGA (Variable Gain Amplifier) override, skip */
240	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1)
241		return 0;
242
243	/* Mix gain stepping */
244	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0);
245
246	/* Mix gain override */
247	mix = g_step->gos_param[0];
248
249	switch (mix) {
250	case 3:
251		ah->ah_gain.g_f_corr = step * 2;
252		break;
253	case 2:
254		ah->ah_gain.g_f_corr = (step - 5) * 2;
255		break;
256	case 1:
257		ah->ah_gain.g_f_corr = step;
258		break;
259	default:
260		ah->ah_gain.g_f_corr = 0;
261		break;
262	}
263
264	return ah->ah_gain.g_f_corr;
265}
266
267/* Check if current gain_F measurement is in the range of our
268 * power detector windows. If we get a measurement outside range
269 * we know it's not accurate (detectors can't measure anything outside
270 * their detection window) so we must ignore it */
271static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
272{
273	const struct ath5k_rf_reg *rf_regs;
274	u32 step, mix_ovr, level[4];
275	u32 *rf;
276
277	if (ah->ah_rf_banks == NULL)
278		return 0;
279
280	rf = ah->ah_rf_banks;
281
282	if (ah->ah_radio == AR5K_RF5111) {
283
284		rf_regs = rf_regs_5111;
285		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
286
287		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
288			0);
289
290		level[0] = 0;
291		level[1] = (step == 63) ? 50 : step + 4;
292		level[2] = (step != 63) ? 64 : level[0];
293		level[3] = level[2] + 50 ;
294
295		ah->ah_gain.g_high = level[3] -
296			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
297		ah->ah_gain.g_low = level[0] +
298			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
299	} else {
300
301		rf_regs = rf_regs_5112;
302		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
303
304		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
305			0);
306
307		level[0] = level[2] = 0;
308
309		if (mix_ovr == 1) {
310			level[1] = level[3] = 83;
311		} else {
312			level[1] = level[3] = 107;
313			ah->ah_gain.g_high = 55;
314		}
315	}
316
317	return (ah->ah_gain.g_current >= level[0] &&
318			ah->ah_gain.g_current <= level[1]) ||
319		(ah->ah_gain.g_current >= level[2] &&
320			ah->ah_gain.g_current <= level[3]);
321}
322
323/* Perform gain_F adjustment by choosing the right set
324 * of parameters from rf gain optimization ladder */
325static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
326{
327	const struct ath5k_gain_opt *go;
328	const struct ath5k_gain_opt_step *g_step;
329	int ret = 0;
330
331	switch (ah->ah_radio) {
332	case AR5K_RF5111:
333		go = &rfgain_opt_5111;
334		break;
335	case AR5K_RF5112:
336		go = &rfgain_opt_5112;
337		break;
338	default:
339		return 0;
340	}
341
342	g_step = &go->go_step[ah->ah_gain.g_step_idx];
343
344	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
345
346		/* Reached maximum */
347		if (ah->ah_gain.g_step_idx == 0)
348			return -1;
349
350		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
352				ah->ah_gain.g_step_idx > 0;
353				g_step = &go->go_step[ah->ah_gain.g_step_idx])
354			ah->ah_gain.g_target -= 2 *
355			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
356			    g_step->gos_gain);
357
358		ret = 1;
359		goto done;
360	}
361
362	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
363
364		/* Reached minimum */
365		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
366			return -2;
367
368		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
369				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
370				ah->ah_gain.g_step_idx < go->go_steps_count-1;
371				g_step = &go->go_step[ah->ah_gain.g_step_idx])
372			ah->ah_gain.g_target -= 2 *
373			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
374			    g_step->gos_gain);
375
376		ret = 2;
377		goto done;
378	}
379
380done:
381	DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
382	     "target gain %d\n", ret, ah->ah_gain.g_step_idx,
383	     ah->ah_gain.g_current, ah->ah_gain.g_target);
384
385	return ret;
386}
387
388/* Main callback for thermal rf gain calibration engine
389 * Check for a new gain reading and schedule an adjustment
390 * if needed.
391 *
392 * TODO: Use sw interrupt to schedule reset if gain_F needs
393 * adjustment */
394enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
395{
396	u32 data, type;
397	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
398
399	if (ah->ah_rf_banks == NULL ||
400	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
401		return AR5K_RFGAIN_INACTIVE;
402
403	/* No check requested, either engine is inactive
404	 * or an adjustment is already requested */
405	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
406		goto done;
407
408	/* Read the PAPD (Peak to Average Power Detector)
409	 * register */
410	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
411
412	/* No probe is scheduled, read gain_F measurement */
413	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
414		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
415		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
416
417		/* If tx packet is CCK correct the gain_F measurement
418		 * by cck ofdm gain delta */
419		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
420			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
421				ah->ah_gain.g_current +=
422					ee->ee_cck_ofdm_gain_delta;
423			else
424				ah->ah_gain.g_current +=
425					AR5K_GAIN_CCK_PROBE_CORR;
426		}
427
428		/* Further correct gain_F measurement for
429		 * RF5112A radios */
430		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
431			ath5k_hw_rf_gainf_corr(ah);
432			ah->ah_gain.g_current =
433				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
434				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
435				0;
436		}
437
438		/* Check if measurement is ok and if we need
439		 * to adjust gain, schedule a gain adjustment,
440		 * else switch back to the acive state */
441		if (ath5k_hw_rf_check_gainf_readback(ah) &&
442		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
443		ath5k_hw_rf_gainf_adjust(ah)) {
444			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
445		} else {
446			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
447		}
448	}
449
450done:
451	return ah->ah_gain.g_state;
452}
453
454/* Write initial rf gain table to set the RF sensitivity
455 * this one works on all RF chips and has nothing to do
456 * with gain_F calibration */
457int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
458{
459	const struct ath5k_ini_rfgain *ath5k_rfg;
460	unsigned int i, size;
461
462	switch (ah->ah_radio) {
463	case AR5K_RF5111:
464		ath5k_rfg = rfgain_5111;
465		size = ARRAY_SIZE(rfgain_5111);
466		break;
467	case AR5K_RF5112:
468		ath5k_rfg = rfgain_5112;
469		size = ARRAY_SIZE(rfgain_5112);
470		break;
471	case AR5K_RF2413:
472		ath5k_rfg = rfgain_2413;
473		size = ARRAY_SIZE(rfgain_2413);
474		break;
475	case AR5K_RF2316:
476		ath5k_rfg = rfgain_2316;
477		size = ARRAY_SIZE(rfgain_2316);
478		break;
479	case AR5K_RF5413:
480		ath5k_rfg = rfgain_5413;
481		size = ARRAY_SIZE(rfgain_5413);
482		break;
483	case AR5K_RF2317:
484	case AR5K_RF2425:
485		ath5k_rfg = rfgain_2425;
486		size = ARRAY_SIZE(rfgain_2425);
487		break;
488	default:
489		return -EINVAL;
490	}
491
492	switch (freq) {
493	case AR5K_INI_RFGAIN_2GHZ:
494	case AR5K_INI_RFGAIN_5GHZ:
495		break;
496	default:
497		return -EINVAL;
498	}
499
500	for (i = 0; i < size; i++) {
501		AR5K_REG_WAIT(i);
502		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
503			(u32)ath5k_rfg[i].rfg_register);
504	}
505
506	return 0;
507}
508
509
510
511/********************\
512* RF Registers setup *
513\********************/
514
515
516/*
517 * Setup RF registers by writing rf buffer on hw
518 */
519int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel,
520		unsigned int mode)
521{
522	const struct ath5k_rf_reg *rf_regs;
523	const struct ath5k_ini_rfbuffer *ini_rfb;
524	const struct ath5k_gain_opt *go = NULL;
525	const struct ath5k_gain_opt_step *g_step;
526	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
527	u8 ee_mode = 0;
528	u32 *rfb;
529	int obdb = -1, bank = -1;
530	unsigned i;
531
532	switch (ah->ah_radio) {
533	case AR5K_RF5111:
534		rf_regs = rf_regs_5111;
535		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
536		ini_rfb = rfb_5111;
537		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
538		go = &rfgain_opt_5111;
539		break;
540	case AR5K_RF5112:
541		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
542			rf_regs = rf_regs_5112a;
543			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
544			ini_rfb = rfb_5112a;
545			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
546		} else {
547			rf_regs = rf_regs_5112;
548			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
549			ini_rfb = rfb_5112;
550			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
551		}
552		go = &rfgain_opt_5112;
553		break;
554	case AR5K_RF2413:
555		rf_regs = rf_regs_2413;
556		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
557		ini_rfb = rfb_2413;
558		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
559		break;
560	case AR5K_RF2316:
561		rf_regs = rf_regs_2316;
562		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
563		ini_rfb = rfb_2316;
564		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
565		break;
566	case AR5K_RF5413:
567		rf_regs = rf_regs_5413;
568		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
569		ini_rfb = rfb_5413;
570		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
571		break;
572	case AR5K_RF2317:
573		rf_regs = rf_regs_2425;
574		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
575		ini_rfb = rfb_2317;
576		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
577		break;
578	case AR5K_RF2425:
579		rf_regs = rf_regs_2425;
580		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
581		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
582			ini_rfb = rfb_2425;
583			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
584		} else {
585			ini_rfb = rfb_2417;
586			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
587		}
588		break;
589	default:
590		return -EINVAL;
591	}
592
593	/* If it's the first time we set rf buffer, allocate
594	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
595	 * we set above */
596	if (ah->ah_rf_banks == NULL) {
597		ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size);
598		if (ah->ah_rf_banks == NULL) {
599			return -ENOMEM;
600		}
601	}
602
603	/* Copy values to modify them */
604	rfb = ah->ah_rf_banks;
605
606	for (i = 0; i < ah->ah_rf_banks_size; i++) {
607		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
608			DBG("ath5k: invalid RF register bank\n");
609			return -EINVAL;
610		}
611
612		/* Bank changed, write down the offset */
613		if (bank != ini_rfb[i].rfb_bank) {
614			bank = ini_rfb[i].rfb_bank;
615			ah->ah_offset[bank] = i;
616		}
617
618		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
619	}
620
621	/* Set Output and Driver bias current (OB/DB) */
622	if (channel->hw_value & CHANNEL_2GHZ) {
623
624		if (channel->hw_value & CHANNEL_CCK)
625			ee_mode = AR5K_EEPROM_MODE_11B;
626		else
627			ee_mode = AR5K_EEPROM_MODE_11G;
628
629		/* For RF511X/RF211X combination we
630		 * use b_OB and b_DB parameters stored
631		 * in eeprom on ee->ee_ob[ee_mode][0]
632		 *
633		 * For all other chips we use OB/DB for 2Ghz
634		 * stored in the b/g modal section just like
635		 * 802.11a on ee->ee_ob[ee_mode][1] */
636		if ((ah->ah_radio == AR5K_RF5111) ||
637		(ah->ah_radio == AR5K_RF5112))
638			obdb = 0;
639		else
640			obdb = 1;
641
642		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
643						AR5K_RF_OB_2GHZ, 1);
644
645		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
646						AR5K_RF_DB_2GHZ, 1);
647
648	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
649	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
650			(ah->ah_radio == AR5K_RF5111)) {
651
652		/* For 11a, Turbo and XR we need to choose
653		 * OB/DB based on frequency range */
654		ee_mode = AR5K_EEPROM_MODE_11A;
655		obdb =	 channel->center_freq >= 5725 ? 3 :
656			(channel->center_freq >= 5500 ? 2 :
657			(channel->center_freq >= 5260 ? 1 :
658			 (channel->center_freq > 4000 ? 0 : -1)));
659
660		if (obdb < 0)
661			return -EINVAL;
662
663		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
664						AR5K_RF_OB_5GHZ, 1);
665
666		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
667						AR5K_RF_DB_5GHZ, 1);
668	}
669
670	g_step = &go->go_step[ah->ah_gain.g_step_idx];
671
672	/* Bank Modifications (chip-specific) */
673	if (ah->ah_radio == AR5K_RF5111) {
674
675		/* Set gain_F settings according to current step */
676		if (channel->hw_value & CHANNEL_OFDM) {
677
678			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
679					AR5K_PHY_FRAME_CTL_TX_CLIP,
680					g_step->gos_param[0]);
681
682			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
683							AR5K_RF_PWD_90, 1);
684
685			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
686							AR5K_RF_PWD_84, 1);
687
688			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
689						AR5K_RF_RFGAIN_SEL, 1);
690
691			/* We programmed gain_F parameters, switch back
692			 * to active state */
693			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
694
695		}
696
697		/* Bank 6/7 setup */
698
699		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
700						AR5K_RF_PWD_XPD, 1);
701
702		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
703						AR5K_RF_XPD_GAIN, 1);
704
705		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
706						AR5K_RF_GAIN_I, 1);
707
708		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
709						AR5K_RF_PLO_SEL, 1);
710
711		/* TODO: Half/quarter channel support */
712	}
713
714	if (ah->ah_radio == AR5K_RF5112) {
715
716		/* Set gain_F settings according to current step */
717		if (channel->hw_value & CHANNEL_OFDM) {
718
719			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
720						AR5K_RF_MIXGAIN_OVR, 1);
721
722			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
723						AR5K_RF_PWD_138, 1);
724
725			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
726						AR5K_RF_PWD_137, 1);
727
728			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
729						AR5K_RF_PWD_136, 1);
730
731			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
732						AR5K_RF_PWD_132, 1);
733
734			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
735						AR5K_RF_PWD_131, 1);
736
737			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
738						AR5K_RF_PWD_130, 1);
739
740			/* We programmed gain_F parameters, switch back
741			 * to active state */
742			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
743		}
744
745		/* Bank 6/7 setup */
746
747		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
748						AR5K_RF_XPD_SEL, 1);
749
750		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
751			/* Rev. 1 supports only one xpd */
752			ath5k_hw_rfb_op(ah, rf_regs,
753						ee->ee_x_gain[ee_mode],
754						AR5K_RF_XPD_GAIN, 1);
755
756		} else {
757			/* TODO: Set high and low gain bits */
758			ath5k_hw_rfb_op(ah, rf_regs,
759						ee->ee_x_gain[ee_mode],
760						AR5K_RF_PD_GAIN_LO, 1);
761			ath5k_hw_rfb_op(ah, rf_regs,
762						ee->ee_x_gain[ee_mode],
763						AR5K_RF_PD_GAIN_HI, 1);
764
765			/* Lower synth voltage on Rev 2 */
766			ath5k_hw_rfb_op(ah, rf_regs, 2,
767					AR5K_RF_HIGH_VC_CP, 1);
768
769			ath5k_hw_rfb_op(ah, rf_regs, 2,
770					AR5K_RF_MID_VC_CP, 1);
771
772			ath5k_hw_rfb_op(ah, rf_regs, 2,
773					AR5K_RF_LOW_VC_CP, 1);
774
775			ath5k_hw_rfb_op(ah, rf_regs, 2,
776					AR5K_RF_PUSH_UP, 1);
777
778			/* Decrease power consumption on 5213+ BaseBand */
779			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
780				ath5k_hw_rfb_op(ah, rf_regs, 1,
781						AR5K_RF_PAD2GND, 1);
782
783				ath5k_hw_rfb_op(ah, rf_regs, 1,
784						AR5K_RF_XB2_LVL, 1);
785
786				ath5k_hw_rfb_op(ah, rf_regs, 1,
787						AR5K_RF_XB5_LVL, 1);
788
789				ath5k_hw_rfb_op(ah, rf_regs, 1,
790						AR5K_RF_PWD_167, 1);
791
792				ath5k_hw_rfb_op(ah, rf_regs, 1,
793						AR5K_RF_PWD_166, 1);
794			}
795		}
796
797		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
798						AR5K_RF_GAIN_I, 1);
799
800		/* TODO: Half/quarter channel support */
801
802	}
803
804	if (ah->ah_radio == AR5K_RF5413 &&
805	channel->hw_value & CHANNEL_2GHZ) {
806
807		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
808									1);
809
810		/* Set optimum value for early revisions (on pci-e chips) */
811		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
812		ah->ah_mac_srev < AR5K_SREV_AR5413)
813			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
814						AR5K_RF_PWD_ICLOBUF_2G, 1);
815
816	}
817
818	/* Write RF banks on hw */
819	for (i = 0; i < ah->ah_rf_banks_size; i++) {
820		AR5K_REG_WAIT(i);
821		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
822	}
823
824	return 0;
825}
826
827
828/**************************\
829  PHY/RF channel functions
830\**************************/
831
832/*
833 * Check if a channel is supported
834 */
835int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
836{
837	/* Check if the channel is in our supported range */
838	if (flags & CHANNEL_2GHZ) {
839		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
840		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
841			return 1;
842	} else if (flags & CHANNEL_5GHZ)
843		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
844		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
845			return 1;
846
847	return 0;
848}
849
850/*
851 * Convertion needed for RF5110
852 */
853static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel)
854{
855	u32 athchan;
856
857	/*
858	 * Convert IEEE channel/MHz to an internal channel value used
859	 * by the AR5210 chipset. This has not been verified with
860	 * newer chipsets like the AR5212A who have a completely
861	 * different RF/PHY part.
862	 */
863	athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq)
864				     - 24) / 2, 5) << 1)
865		| (1 << 6) | 0x1;
866	return athchan;
867}
868
869/*
870 * Set channel on RF5110
871 */
872static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
873		struct net80211_channel *channel)
874{
875	u32 data;
876
877	/*
878	 * Set the channel and wait
879	 */
880	data = ath5k_hw_rf5110_chan2athchan(channel);
881	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
882	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
883	mdelay(1);
884
885	return 0;
886}
887
888/*
889 * Convertion needed for 5111
890 */
891static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
892		struct ath5k_athchan_2ghz *athchan)
893{
894	int channel;
895
896	/* Cast this value to catch negative channel numbers (>= -19) */
897	channel = (int)ieee;
898
899	/*
900	 * Map 2GHz IEEE channel to 5GHz Atheros channel
901	 */
902	if (channel <= 13) {
903		athchan->a2_athchan = 115 + channel;
904		athchan->a2_flags = 0x46;
905	} else if (channel == 14) {
906		athchan->a2_athchan = 124;
907		athchan->a2_flags = 0x44;
908	} else if (channel >= 15 && channel <= 26) {
909		athchan->a2_athchan = ((channel - 14) * 4) + 132;
910		athchan->a2_flags = 0x46;
911	} else
912		return -EINVAL;
913
914	return 0;
915}
916
917/*
918 * Set channel on 5111
919 */
920static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
921		struct net80211_channel *channel)
922{
923	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
924	unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq);
925	u32 data0, data1, clock;
926	int ret;
927
928	/*
929	 * Set the channel on the RF5111 radio
930	 */
931	data0 = data1 = 0;
932
933	if (channel->hw_value & CHANNEL_2GHZ) {
934		/* Map 2GHz channel to 5GHz Atheros channel ID */
935		ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel,
936						   &ath5k_channel_2ghz);
937		if (ret)
938			return ret;
939
940		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
941		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
942		    << 5) | (1 << 4);
943	}
944
945	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
946		clock = 1;
947		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
948			(clock << 1) | (1 << 10) | 1;
949	} else {
950		clock = 0;
951		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
952			<< 2) | (clock << 1) | (1 << 10) | 1;
953	}
954
955	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
956			AR5K_RF_BUFFER);
957	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
958			AR5K_RF_BUFFER_CONTROL_3);
959
960	return 0;
961}
962
963/*
964 * Set channel on 5112 and newer
965 */
966static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
967		struct net80211_channel *channel)
968{
969	u32 data, data0, data1, data2;
970	u16 c;
971
972	data = data0 = data1 = data2 = 0;
973	c = channel->center_freq;
974
975	if (c < 4800) {
976		if (!((c - 2224) % 5)) {
977			data0 = ((2 * (c - 704)) - 3040) / 10;
978			data1 = 1;
979		} else if (!((c - 2192) % 5)) {
980			data0 = ((2 * (c - 672)) - 3040) / 10;
981			data1 = 0;
982		} else
983			return -EINVAL;
984
985		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
986	} else if ((c - (c % 5)) != 2 || c > 5435) {
987		if (!(c % 20) && c >= 5120) {
988			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
989			data2 = ath5k_hw_bitswap(3, 2);
990		} else if (!(c % 10)) {
991			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
992			data2 = ath5k_hw_bitswap(2, 2);
993		} else if (!(c % 5)) {
994			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
995			data2 = ath5k_hw_bitswap(1, 2);
996		} else
997			return -EINVAL;
998	} else {
999		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1000		data2 = ath5k_hw_bitswap(0, 2);
1001	}
1002
1003	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1004
1005	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1006	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1007
1008	return 0;
1009}
1010
1011/*
1012 * Set the channel on the RF2425
1013 */
1014static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1015		struct net80211_channel *channel)
1016{
1017	u32 data, data0, data2;
1018	u16 c;
1019
1020	data = data0 = data2 = 0;
1021	c = channel->center_freq;
1022
1023	if (c < 4800) {
1024		data0 = ath5k_hw_bitswap((c - 2272), 8);
1025		data2 = 0;
1026	/* ? 5GHz ? */
1027	} else if ((c - (c % 5)) != 2 || c > 5435) {
1028		if (!(c % 20) && c < 5120)
1029			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1030		else if (!(c % 10))
1031			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1032		else if (!(c % 5))
1033			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1034		else
1035			return -EINVAL;
1036		data2 = ath5k_hw_bitswap(1, 2);
1037	} else {
1038		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1039		data2 = ath5k_hw_bitswap(0, 2);
1040	}
1041
1042	data = (data0 << 4) | data2 << 2 | 0x1001;
1043
1044	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1045	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1046
1047	return 0;
1048}
1049
1050/*
1051 * Set a channel on the radio chip
1052 */
1053int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
1054{
1055	int ret;
1056	/*
1057	 * Check bounds supported by the PHY (we don't care about regultory
1058	 * restrictions at this point). Note: hw_value already has the band
1059	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1060	 * of the band by that */
1061	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1062		DBG("ath5k: channel frequency (%d MHz) out of supported "
1063		    "range\n", channel->center_freq);
1064		return -EINVAL;
1065	}
1066
1067	/*
1068	 * Set the channel and wait
1069	 */
1070	switch (ah->ah_radio) {
1071	case AR5K_RF5110:
1072		ret = ath5k_hw_rf5110_channel(ah, channel);
1073		break;
1074	case AR5K_RF5111:
1075		ret = ath5k_hw_rf5111_channel(ah, channel);
1076		break;
1077	case AR5K_RF2425:
1078		ret = ath5k_hw_rf2425_channel(ah, channel);
1079		break;
1080	default:
1081		ret = ath5k_hw_rf5112_channel(ah, channel);
1082		break;
1083	}
1084
1085	if (ret) {
1086		DBG("ath5k: setting channel failed: %s\n", strerror(ret));
1087		return ret;
1088	}
1089
1090	/* Set JAPAN setting for channel 14 */
1091	if (channel->center_freq == 2484) {
1092		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1093				AR5K_PHY_CCKTXCTL_JAPAN);
1094	} else {
1095		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1096				AR5K_PHY_CCKTXCTL_WORLD);
1097	}
1098
1099	ah->ah_current_channel = channel;
1100	ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0);
1101
1102	return 0;
1103}
1104
1105/*****************\
1106  PHY calibration
1107\*****************/
1108
1109/**
1110 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1111 *
1112 * @ah: struct ath5k_hw pointer we are operating on
1113 * @freq: the channel frequency, just used for error logging
1114 *
1115 * This function performs a noise floor calibration of the PHY and waits for
1116 * it to complete. Then the noise floor value is compared to some maximum
1117 * noise floor we consider valid.
1118 *
1119 * Note that this is different from what the madwifi HAL does: it reads the
1120 * noise floor and afterwards initiates the calibration. Since the noise floor
1121 * calibration can take some time to finish, depending on the current channel
1122 * use, that avoids the occasional timeout warnings we are seeing now.
1123 *
1124 * See the following link for an Atheros patent on noise floor calibration:
1125 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1126 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1127 *
1128 * XXX: Since during noise floor calibration antennas are detached according to
1129 * the patent, we should stop tx queues here.
1130 */
1131int
1132ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1133{
1134	int ret;
1135	unsigned int i;
1136	s32 noise_floor;
1137
1138	/*
1139	 * Enable noise floor calibration
1140	 */
1141	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1142				AR5K_PHY_AGCCTL_NF);
1143
1144	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1145			AR5K_PHY_AGCCTL_NF, 0, 0);
1146
1147	if (ret) {
1148		DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq);
1149		return -EAGAIN;
1150	}
1151
1152	/* Wait until the noise floor is calibrated and read the value */
1153	for (i = 20; i > 0; i--) {
1154		mdelay(1);
1155		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1156		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1157		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1158			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1159
1160			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1161				break;
1162		}
1163	}
1164
1165	DBG2("ath5k: noise floor %d\n", noise_floor);
1166
1167	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1168		DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq);
1169		return -EAGAIN;
1170	}
1171
1172	ah->ah_noise_floor = noise_floor;
1173
1174	return 0;
1175}
1176
1177/*
1178 * Perform a PHY calibration on RF5110
1179 * -Fix BPSK/QAM Constellation (I/Q correction)
1180 * -Calculate Noise Floor
1181 */
1182static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1183		struct net80211_channel *channel)
1184{
1185	u32 phy_sig, phy_agc, phy_sat, beacon;
1186	int ret;
1187
1188	/*
1189	 * Disable beacons and RX/TX queues, wait
1190	 */
1191	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1192		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1193	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1194	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1195
1196	mdelay(2);
1197
1198	/*
1199	 * Set the channel (with AGC turned off)
1200	 */
1201	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1202	udelay(10);
1203	ret = ath5k_hw_channel(ah, channel);
1204
1205	/*
1206	 * Activate PHY and wait
1207	 */
1208	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1209	mdelay(1);
1210
1211	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1212
1213	if (ret)
1214		return ret;
1215
1216	/*
1217	 * Calibrate the radio chip
1218	 */
1219
1220	/* Remember normal state */
1221	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1222	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1223	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1224
1225	/* Update radio registers */
1226	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1227		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1228
1229	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1230			AR5K_PHY_AGCCOARSE_LO)) |
1231		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1232		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1233
1234	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1235			AR5K_PHY_ADCSAT_THR)) |
1236		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1237		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1238
1239	udelay(20);
1240
1241	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1242	udelay(10);
1243	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1244	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1245
1246	mdelay(1);
1247
1248	/*
1249	 * Enable calibration and wait until completion
1250	 */
1251	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1252
1253	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1254			AR5K_PHY_AGCCTL_CAL, 0, 0);
1255
1256	/* Reset to normal state */
1257	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1258	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1259	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1260
1261	if (ret) {
1262		DBG("ath5k: calibration timeout (%d MHz)\n",
1263		    channel->center_freq);
1264		return ret;
1265	}
1266
1267	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1268
1269	/*
1270	 * Re-enable RX/TX and beacons
1271	 */
1272	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1273		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1274	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1275
1276	return 0;
1277}
1278
1279/*
1280 * Perform a PHY calibration on RF5111/5112 and newer chips
1281 */
1282static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1283		struct net80211_channel *channel)
1284{
1285	u32 i_pwr, q_pwr;
1286	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1287	int i;
1288
1289	if (!ah->ah_calibration ||
1290		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1291		goto done;
1292
1293	/* Calibration has finished, get the results and re-run */
1294	for (i = 0; i <= 10; i++) {
1295		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1296		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1297		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1298	}
1299
1300	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1301	q_coffd = q_pwr >> 7;
1302
1303	/* No correction */
1304	if (i_coffd == 0 || q_coffd == 0)
1305		goto done;
1306
1307	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1308
1309	/* Boundary check */
1310	if (i_coff > 31)
1311		i_coff = 31;
1312	if (i_coff < -32)
1313		i_coff = -32;
1314
1315	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1316
1317	/* Boundary check */
1318	if (q_coff > 15)
1319		q_coff = 15;
1320	if (q_coff < -16)
1321		q_coff = -16;
1322
1323	/* Commit new I/Q value */
1324	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1325		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1326
1327	/* Re-enable calibration -if we don't we'll commit
1328	 * the same values again and again */
1329	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1330			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1331	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1332
1333done:
1334
1335	/* TODO: Separate noise floor calibration from I/Q calibration
1336	 * since noise floor calibration interrupts rx path while I/Q
1337	 * calibration doesn't. We don't need to run noise floor calibration
1338	 * as often as I/Q calibration.*/
1339	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1340
1341	/* Initiate a gain_F calibration */
1342	ath5k_hw_request_rfgain_probe(ah);
1343
1344	return 0;
1345}
1346
1347/*
1348 * Perform a PHY calibration
1349 */
1350int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1351		struct net80211_channel *channel)
1352{
1353	int ret;
1354
1355	if (ah->ah_radio == AR5K_RF5110)
1356		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1357	else
1358		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1359
1360	return ret;
1361}
1362
1363int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1364{
1365	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1366
1367	return 0;
1368}
1369
1370/********************\
1371  Misc PHY functions
1372\********************/
1373
1374/*
1375 * Get the PHY Chip revision
1376 */
1377u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1378{
1379	unsigned int i;
1380	u32 srev;
1381	u16 ret;
1382
1383	/*
1384	 * Set the radio chip access register
1385	 */
1386	switch (chan) {
1387	case CHANNEL_2GHZ:
1388		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1389		break;
1390	case CHANNEL_5GHZ:
1391		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1392		break;
1393	default:
1394		return 0;
1395	}
1396
1397	mdelay(2);
1398
1399	/* ...wait until PHY is ready and read the selected radio revision */
1400	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1401
1402	for (i = 0; i < 8; i++)
1403		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1404
1405	if (ah->ah_version == AR5K_AR5210) {
1406		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1407		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1408	} else {
1409		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1410		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1411				((srev & 0x0f) << 4), 8);
1412	}
1413
1414	/* Reset to the 5GHz mode */
1415	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1416
1417	return ret;
1418}
1419
1420void /*TODO:Boundary check*/
1421ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1422{
1423	if (ah->ah_version != AR5K_AR5210)
1424		ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
1425}
1426
1427unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1428{
1429	if (ah->ah_version != AR5K_AR5210)
1430		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
1431
1432	return 0; /*XXX: What do we return for 5210 ?*/
1433}
1434
1435
1436/****************\
1437* TX power setup *
1438\****************/
1439
1440/*
1441 * Helper functions
1442 */
1443
1444/*
1445 * Do linear interpolation between two given (x, y) points
1446 */
1447static s16
1448ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1449					s16 y_left, s16 y_right)
1450{
1451	s16 ratio, result;
1452
1453	/* Avoid divide by zero and skip interpolation
1454	 * if we have the same point */
1455	if ((x_left == x_right) || (y_left == y_right))
1456		return y_left;
1457
1458	/*
1459	 * Since we use ints and not fps, we need to scale up in
1460	 * order to get a sane ratio value (or else we 'll eg. get
1461	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1462	 * to have some accuracy both for 0.5 and 0.25 steps.
1463	 */
1464	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1465
1466	/* Now scale down to be in range */
1467	result = y_left + (ratio * (target - x_left) / 100);
1468
1469	return result;
1470}
1471
1472/*
1473 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1474 *
1475 * Since we have the top of the curve and we draw the line below
1476 * until we reach 1 (1 pcdac step) we need to know which point
1477 * (x value) that is so that we don't go below y axis and have negative
1478 * pcdac values when creating the curve, or fill the table with zeroes.
1479 */
1480static s16
1481ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1482				const s16 *pwrL, const s16 *pwrR)
1483{
1484	s8 tmp;
1485	s16 min_pwrL, min_pwrR;
1486	s16 pwr_i;
1487
1488	if (pwrL[0] == pwrL[1])
1489		min_pwrL = pwrL[0];
1490	else {
1491		pwr_i = pwrL[0];
1492		do {
1493			pwr_i--;
1494			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1495							pwrL[0], pwrL[1],
1496							stepL[0], stepL[1]);
1497		} while (tmp > 1);
1498
1499		min_pwrL = pwr_i;
1500	}
1501
1502	if (pwrR[0] == pwrR[1])
1503		min_pwrR = pwrR[0];
1504	else {
1505		pwr_i = pwrR[0];
1506		do {
1507			pwr_i--;
1508			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1509							pwrR[0], pwrR[1],
1510							stepR[0], stepR[1]);
1511		} while (tmp > 1);
1512
1513		min_pwrR = pwr_i;
1514	}
1515
1516	/* Keep the right boundary so that it works for both curves */
1517	return max(min_pwrL, min_pwrR);
1518}
1519
1520/*
1521 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1522 * Power to PCDAC curve.
1523 *
1524 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1525 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1526 * PCDAC/PDADC step for each curve is 64 but we can write more than
1527 * one curves on hw so we can go up to 128 (which is the max step we
1528 * can write on the final table).
1529 *
1530 * We write y values (PCDAC/PDADC steps) on hw.
1531 */
1532static void
1533ath5k_create_power_curve(s16 pmin, s16 pmax,
1534			const s16 *pwr, const u8 *vpd,
1535			u8 num_points,
1536			u8 *vpd_table, u8 type)
1537{
1538	u8 idx[2] = { 0, 1 };
1539	s16 pwr_i = 2*pmin;
1540	int i;
1541
1542	if (num_points < 2)
1543		return;
1544
1545	/* We want the whole line, so adjust boundaries
1546	 * to cover the entire power range. Note that
1547	 * power values are already 0.25dB so no need
1548	 * to multiply pwr_i by 2 */
1549	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1550		pwr_i = pmin;
1551		pmin = 0;
1552		pmax = 63;
1553	}
1554
1555	/* Find surrounding turning points (TPs)
1556	 * and interpolate between them */
1557	for (i = 0; (i <= (u16) (pmax - pmin)) &&
1558	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1559
1560		/* We passed the right TP, move to the next set of TPs
1561		 * if we pass the last TP, extrapolate above using the last
1562		 * two TPs for ratio */
1563		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1564			idx[0]++;
1565			idx[1]++;
1566		}
1567
1568		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1569						pwr[idx[0]], pwr[idx[1]],
1570						vpd[idx[0]], vpd[idx[1]]);
1571
1572		/* Increase by 0.5dB
1573		 * (0.25 dB units) */
1574		pwr_i += 2;
1575	}
1576}
1577
1578/*
1579 * Get the surrounding per-channel power calibration piers
1580 * for a given frequency so that we can interpolate between
1581 * them and come up with an apropriate dataset for our current
1582 * channel.
1583 */
1584static void
1585ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1586			struct net80211_channel *channel,
1587			struct ath5k_chan_pcal_info **pcinfo_l,
1588			struct ath5k_chan_pcal_info **pcinfo_r)
1589{
1590	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1591	struct ath5k_chan_pcal_info *pcinfo;
1592	u8 idx_l, idx_r;
1593	u8 mode, max, i;
1594	u32 target = channel->center_freq;
1595
1596	idx_l = 0;
1597	idx_r = 0;
1598
1599	if (!(channel->hw_value & CHANNEL_OFDM)) {
1600		pcinfo = ee->ee_pwr_cal_b;
1601		mode = AR5K_EEPROM_MODE_11B;
1602	} else if (channel->hw_value & CHANNEL_2GHZ) {
1603		pcinfo = ee->ee_pwr_cal_g;
1604		mode = AR5K_EEPROM_MODE_11G;
1605	} else {
1606		pcinfo = ee->ee_pwr_cal_a;
1607		mode = AR5K_EEPROM_MODE_11A;
1608	}
1609	max = ee->ee_n_piers[mode] - 1;
1610
1611	/* Frequency is below our calibrated
1612	 * range. Use the lowest power curve
1613	 * we have */
1614	if (target < pcinfo[0].freq) {
1615		idx_l = idx_r = 0;
1616		goto done;
1617	}
1618
1619	/* Frequency is above our calibrated
1620	 * range. Use the highest power curve
1621	 * we have */
1622	if (target > pcinfo[max].freq) {
1623		idx_l = idx_r = max;
1624		goto done;
1625	}
1626
1627	/* Frequency is inside our calibrated
1628	 * channel range. Pick the surrounding
1629	 * calibration piers so that we can
1630	 * interpolate */
1631	for (i = 0; i <= max; i++) {
1632
1633		/* Frequency matches one of our calibration
1634		 * piers, no need to interpolate, just use
1635		 * that calibration pier */
1636		if (pcinfo[i].freq == target) {
1637			idx_l = idx_r = i;
1638			goto done;
1639		}
1640
1641		/* We found a calibration pier that's above
1642		 * frequency, use this pier and the previous
1643		 * one to interpolate */
1644		if (target < pcinfo[i].freq) {
1645			idx_r = i;
1646			idx_l = idx_r - 1;
1647			goto done;
1648		}
1649	}
1650
1651done:
1652	*pcinfo_l = &pcinfo[idx_l];
1653	*pcinfo_r = &pcinfo[idx_r];
1654
1655	return;
1656}
1657
1658/*
1659 * Get the surrounding per-rate power calibration data
1660 * for a given frequency and interpolate between power
1661 * values to set max target power supported by hw for
1662 * each rate.
1663 */
1664static void
1665ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
1666			struct net80211_channel *channel,
1667			struct ath5k_rate_pcal_info *rates)
1668{
1669	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1670	struct ath5k_rate_pcal_info *rpinfo;
1671	u8 idx_l, idx_r;
1672	u8 mode, max, i;
1673	u32 target = channel->center_freq;
1674
1675	idx_l = 0;
1676	idx_r = 0;
1677
1678	if (!(channel->hw_value & CHANNEL_OFDM)) {
1679		rpinfo = ee->ee_rate_tpwr_b;
1680		mode = AR5K_EEPROM_MODE_11B;
1681	} else if (channel->hw_value & CHANNEL_2GHZ) {
1682		rpinfo = ee->ee_rate_tpwr_g;
1683		mode = AR5K_EEPROM_MODE_11G;
1684	} else {
1685		rpinfo = ee->ee_rate_tpwr_a;
1686		mode = AR5K_EEPROM_MODE_11A;
1687	}
1688	max = ee->ee_rate_target_pwr_num[mode] - 1;
1689
1690	/* Get the surrounding calibration
1691	 * piers - same as above */
1692	if (target < rpinfo[0].freq) {
1693		idx_l = idx_r = 0;
1694		goto done;
1695	}
1696
1697	if (target > rpinfo[max].freq) {
1698		idx_l = idx_r = max;
1699		goto done;
1700	}
1701
1702	for (i = 0; i <= max; i++) {
1703
1704		if (rpinfo[i].freq == target) {
1705			idx_l = idx_r = i;
1706			goto done;
1707		}
1708
1709		if (target < rpinfo[i].freq) {
1710			idx_r = i;
1711			idx_l = idx_r - 1;
1712			goto done;
1713		}
1714	}
1715
1716done:
1717	/* Now interpolate power value, based on the frequency */
1718	rates->freq = target;
1719
1720	rates->target_power_6to24 =
1721		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1722					rpinfo[idx_r].freq,
1723					rpinfo[idx_l].target_power_6to24,
1724					rpinfo[idx_r].target_power_6to24);
1725
1726	rates->target_power_36 =
1727		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1728					rpinfo[idx_r].freq,
1729					rpinfo[idx_l].target_power_36,
1730					rpinfo[idx_r].target_power_36);
1731
1732	rates->target_power_48 =
1733		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1734					rpinfo[idx_r].freq,
1735					rpinfo[idx_l].target_power_48,
1736					rpinfo[idx_r].target_power_48);
1737
1738	rates->target_power_54 =
1739		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1740					rpinfo[idx_r].freq,
1741					rpinfo[idx_l].target_power_54,
1742					rpinfo[idx_r].target_power_54);
1743}
1744
1745/*
1746 * Get the max edge power for this channel if
1747 * we have such data from EEPROM's Conformance Test
1748 * Limits (CTL), and limit max power if needed.
1749 *
1750 * FIXME: Only works for world regulatory domains
1751 */
1752static void
1753ath5k_get_max_ctl_power(struct ath5k_hw *ah,
1754			struct net80211_channel *channel)
1755{
1756	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1757	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1758	u8 *ctl_val = ee->ee_ctl;
1759	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1760	s16 edge_pwr = 0;
1761	u8 rep_idx;
1762	u8 i, ctl_mode;
1763	u8 ctl_idx = 0xFF;
1764	u32 target = channel->center_freq;
1765
1766	/* Find out a CTL for our mode that's not mapped
1767	 * on a specific reg domain.
1768	 *
1769	 * TODO: Map our current reg domain to one of the 3 available
1770	 * reg domain ids so that we can support more CTLs. */
1771	switch (channel->hw_value & CHANNEL_MODES) {
1772	case CHANNEL_A:
1773		ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1774		break;
1775	case CHANNEL_G:
1776		ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1777		break;
1778	case CHANNEL_B:
1779		ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1780		break;
1781	case CHANNEL_T:
1782		ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
1783		break;
1784	case CHANNEL_TG:
1785		ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
1786		break;
1787	case CHANNEL_XR:
1788		/* Fall through */
1789	default:
1790		return;
1791	}
1792
1793	for (i = 0; i < ee->ee_ctls; i++) {
1794		if (ctl_val[i] == ctl_mode) {
1795			ctl_idx = i;
1796			break;
1797		}
1798	}
1799
1800	/* If we have a CTL dataset available grab it and find the
1801	 * edge power for our frequency */
1802	if (ctl_idx == 0xFF)
1803		return;
1804
1805	/* Edge powers are sorted by frequency from lower
1806	 * to higher. Each CTL corresponds to 8 edge power
1807	 * measurements. */
1808	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1809
1810	/* Don't do boundaries check because we
1811	 * might have more that one bands defined
1812	 * for this mode */
1813
1814	/* Get the edge power that's closer to our
1815	 * frequency */
1816	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1817		rep_idx += i;
1818		if (target <= rep[rep_idx].freq)
1819			edge_pwr = (s16) rep[rep_idx].edge;
1820	}
1821
1822	if (edge_pwr) {
1823		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1824	}
1825}
1826
1827
1828/*
1829 * Power to PCDAC table functions
1830 */
1831
1832/*
1833 * Fill Power to PCDAC table on RF5111
1834 *
1835 * No further processing is needed for RF5111, the only thing we have to
1836 * do is fill the values below and above calibration range since eeprom data
1837 * may not cover the entire PCDAC table.
1838 */
1839static void
1840ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
1841							s16 *table_max)
1842{
1843	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1844	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
1845	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1846	s16	min_pwr, max_pwr;
1847
1848	/* Get table boundaries */
1849	min_pwr = table_min[0];
1850	pcdac_0 = pcdac_tmp[0];
1851
1852	max_pwr = table_max[0];
1853	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1854
1855	/* Extrapolate below minimum using pcdac_0 */
1856	pcdac_i = 0;
1857	for (i = 0; i < min_pwr; i++)
1858		pcdac_out[pcdac_i++] = pcdac_0;
1859
1860	/* Copy values from pcdac_tmp */
1861	pwr_idx = min_pwr;
1862	for (i = 0 ; pwr_idx <= max_pwr &&
1863	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1864		pcdac_out[pcdac_i++] = pcdac_tmp[i];
1865		pwr_idx++;
1866	}
1867
1868	/* Extrapolate above maximum */
1869	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1870		pcdac_out[pcdac_i++] = pcdac_n;
1871
1872}
1873
1874/*
1875 * Combine available XPD Curves and fill Linear Power to PCDAC table
1876 * on RF5112
1877 *
1878 * RFX112 can have up to 2 curves (one for low txpower range and one for
1879 * higher txpower range). We need to put them both on pcdac_out and place
1880 * them in the correct location. In case we only have one curve available
1881 * just fit it on pcdac_out (it's supposed to cover the entire range of
1882 * available pwr levels since it's always the higher power curve). Extrapolate
1883 * below and above final table if needed.
1884 */
1885static void
1886ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
1887						s16 *table_max, u8 pdcurves)
1888{
1889	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1890	u8	*pcdac_low_pwr;
1891	u8	*pcdac_high_pwr;
1892	u8	*pcdac_tmp;
1893	u8	pwr;
1894	s16	max_pwr_idx;
1895	s16	min_pwr_idx;
1896	s16	mid_pwr_idx = 0;
1897	/* Edge flag turs on the 7nth bit on the PCDAC
1898	 * to delcare the higher power curve (force values
1899	 * to be greater than 64). If we only have one curve
1900	 * we don't need to set this, if we have 2 curves and
1901	 * fill the table backwards this can also be used to
1902	 * switch from higher power curve to lower power curve */
1903	u8	edge_flag;
1904	int	i;
1905
1906	/* When we have only one curve available
1907	 * that's the higher power curve. If we have
1908	 * two curves the first is the high power curve
1909	 * and the next is the low power curve. */
1910	if (pdcurves > 1) {
1911		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1912		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1913		mid_pwr_idx = table_max[1] - table_min[1] - 1;
1914		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1915
1916		/* If table size goes beyond 31.5dB, keep the
1917		 * upper 31.5dB range when setting tx power.
1918		 * Note: 126 = 31.5 dB in quarter dB steps */
1919		if (table_max[0] - table_min[1] > 126)
1920			min_pwr_idx = table_max[0] - 126;
1921		else
1922			min_pwr_idx = table_min[1];
1923
1924		/* Since we fill table backwards
1925		 * start from high power curve */
1926		pcdac_tmp = pcdac_high_pwr;
1927
1928		edge_flag = 0x40;
1929	} else {
1930		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1931		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1932		min_pwr_idx = table_min[0];
1933		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1934		pcdac_tmp = pcdac_high_pwr;
1935		edge_flag = 0;
1936	}
1937
1938	/* This is used when setting tx power*/
1939	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1940
1941	/* Fill Power to PCDAC table backwards */
1942	pwr = max_pwr_idx;
1943	for (i = 63; i >= 0; i--) {
1944		/* Entering lower power range, reset
1945		 * edge flag and set pcdac_tmp to lower
1946		 * power curve.*/
1947		if (edge_flag == 0x40 &&
1948		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1949			edge_flag = 0x00;
1950			pcdac_tmp = pcdac_low_pwr;
1951			pwr = mid_pwr_idx/2;
1952		}
1953
1954		/* Don't go below 1, extrapolate below if we have
1955		 * already swithced to the lower power curve -or
1956		 * we only have one curve and edge_flag is zero
1957		 * anyway */
1958		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1959			while (i >= 0) {
1960				pcdac_out[i] = pcdac_out[i + 1];
1961				i--;
1962			}
1963			break;
1964		}
1965
1966		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1967
1968		/* Extrapolate above if pcdac is greater than
1969		 * 126 -this can happen because we OR pcdac_out
1970		 * value with edge_flag on high power curve */
1971		if (pcdac_out[i] > 126)
1972			pcdac_out[i] = 126;
1973
1974		/* Decrease by a 0.5dB step */
1975		pwr--;
1976	}
1977}
1978
1979/* Write PCDAC values on hw */
1980static void
1981ath5k_setup_pcdac_table(struct ath5k_hw *ah)
1982{
1983	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1984	int	i;
1985
1986	/*
1987	 * Write TX power values
1988	 */
1989	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1990		ath5k_hw_reg_write(ah,
1991			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
1992			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
1993			AR5K_PHY_PCDAC_TXPOWER(i));
1994	}
1995}
1996
1997
1998/*
1999 * Power to PDADC table functions
2000 */
2001
2002/*
2003 * Set the gain boundaries and create final Power to PDADC table
2004 *
2005 * We can have up to 4 pd curves, we need to do a simmilar process
2006 * as we do for RF5112. This time we don't have an edge_flag but we
2007 * set the gain boundaries on a separate register.
2008 */
2009static void
2010ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2011			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2012{
2013	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2014	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2015	u8 *pdadc_tmp;
2016	s16 pdadc_0;
2017	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2018	u8 pd_gain_overlap;
2019
2020	/* Note: Register value is initialized on initvals
2021	 * there is no feedback from hw.
2022	 * XXX: What about pd_gain_overlap from EEPROM ? */
2023	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2024		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2025
2026	/* Create final PDADC table */
2027	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2028		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2029
2030		if (pdg == pdcurves - 1)
2031			/* 2 dB boundary stretch for last
2032			 * (higher power) curve */
2033			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2034		else
2035			/* Set gain boundary in the middle
2036			 * between this curve and the next one */
2037			gain_boundaries[pdg] =
2038				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2039
2040		/* Sanity check in case our 2 db stretch got out of
2041		 * range. */
2042		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2043			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2044
2045		/* For the first curve (lower power)
2046		 * start from 0 dB */
2047		if (pdg == 0)
2048			pdadc_0 = 0;
2049		else
2050			/* For the other curves use the gain overlap */
2051			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2052							pd_gain_overlap;
2053
2054		/* Force each power step to be at least 0.5 dB */
2055		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2056			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2057		else
2058			pwr_step = 1;
2059
2060		/* If pdadc_0 is negative, we need to extrapolate
2061		 * below this pdgain by a number of pwr_steps */
2062		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2063			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2064			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2065			pdadc_0++;
2066		}
2067
2068		/* Set last pwr level, using gain boundaries */
2069		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2070		/* Limit it to be inside pwr range */
2071		table_size = pwr_max[pdg] - pwr_min[pdg];
2072		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2073
2074		/* Fill pdadc_out table */
2075		while (pdadc_0 < max_idx)
2076			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2077
2078		/* Need to extrapolate above this pdgain? */
2079		if (pdadc_n <= max_idx)
2080			continue;
2081
2082		/* Force each power step to be at least 0.5 dB */
2083		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2084			pwr_step = pdadc_tmp[table_size - 1] -
2085						pdadc_tmp[table_size - 2];
2086		else
2087			pwr_step = 1;
2088
2089		/* Extrapolate above */
2090		while ((pdadc_0 < (s16) pdadc_n) &&
2091		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2092			s16 tmp = pdadc_tmp[table_size - 1] +
2093					(pdadc_0 - max_idx) * pwr_step;
2094			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2095			pdadc_0++;
2096		}
2097	}
2098
2099	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2100		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2101		pdg++;
2102	}
2103
2104	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2105		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2106		pdadc_i++;
2107	}
2108
2109	/* Set gain boundaries */
2110	ath5k_hw_reg_write(ah,
2111		AR5K_REG_SM(pd_gain_overlap,
2112			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2113		AR5K_REG_SM(gain_boundaries[0],
2114			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2115		AR5K_REG_SM(gain_boundaries[1],
2116			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2117		AR5K_REG_SM(gain_boundaries[2],
2118			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2119		AR5K_REG_SM(gain_boundaries[3],
2120			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2121		AR5K_PHY_TPC_RG5);
2122
2123	/* Used for setting rate power table */
2124	ah->ah_txpower.txp_min_idx = pwr_min[0];
2125
2126}
2127
2128/* Write PDADC values on hw */
2129static void
2130ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2131			u8 pdcurves, u8 *pdg_to_idx)
2132{
2133	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2134	u32 reg;
2135	u8 i;
2136
2137	/* Select the right pdgain curves */
2138
2139	/* Clear current settings */
2140	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2141	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2142		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2143		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2144		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2145
2146	/*
2147	 * Use pd_gains curve from eeprom
2148	 *
2149	 * This overrides the default setting from initvals
2150	 * in case some vendors (e.g. Zcomax) don't use the default
2151	 * curves. If we don't honor their settings we 'll get a
2152	 * 5dB (1 * gain overlap ?) drop.
2153	 */
2154	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2155
2156	switch (pdcurves) {
2157	case 3:
2158		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2159		/* Fall through */
2160	case 2:
2161		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2162		/* Fall through */
2163	case 1:
2164		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2165		break;
2166	}
2167	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2168
2169	/*
2170	 * Write TX power values
2171	 */
2172	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2173		ath5k_hw_reg_write(ah,
2174			((pdadc_out[4*i + 0] & 0xff) << 0) |
2175			((pdadc_out[4*i + 1] & 0xff) << 8) |
2176			((pdadc_out[4*i + 2] & 0xff) << 16) |
2177			((pdadc_out[4*i + 3] & 0xff) << 24),
2178			AR5K_PHY_PDADC_TXPOWER(i));
2179	}
2180}
2181
2182
2183/*
2184 * Common code for PCDAC/PDADC tables
2185 */
2186
2187/*
2188 * This is the main function that uses all of the above
2189 * to set PCDAC/PDADC table on hw for the current channel.
2190 * This table is used for tx power calibration on the basband,
2191 * without it we get weird tx power levels and in some cases
2192 * distorted spectral mask
2193 */
2194static int
2195ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2196			struct net80211_channel *channel,
2197			u8 ee_mode, u8 type)
2198{
2199	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2200	struct ath5k_chan_pcal_info *pcinfo_L;
2201	struct ath5k_chan_pcal_info *pcinfo_R;
2202	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2203	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2204	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2205	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2206	u8 *tmpL;
2207	u8 *tmpR;
2208	u32 target = channel->center_freq;
2209	int pdg, i;
2210
2211	/* Get surounding freq piers for this channel */
2212	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2213						&pcinfo_L,
2214						&pcinfo_R);
2215
2216	/* Loop over pd gain curves on
2217	 * surounding freq piers by index */
2218	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2219
2220		/* Fill curves in reverse order
2221		 * from lower power (max gain)
2222		 * to higher power. Use curve -> idx
2223		 * backmaping we did on eeprom init */
2224		u8 idx = pdg_curve_to_idx[pdg];
2225
2226		/* Grab the needed curves by index */
2227		pdg_L = &pcinfo_L->pd_curves[idx];
2228		pdg_R = &pcinfo_R->pd_curves[idx];
2229
2230		/* Initialize the temp tables */
2231		tmpL = ah->ah_txpower.tmpL[pdg];
2232		tmpR = ah->ah_txpower.tmpR[pdg];
2233
2234		/* Set curve's x boundaries and create
2235		 * curves so that they cover the same
2236		 * range (if we don't do that one table
2237		 * will have values on some range and the
2238		 * other one won't have any so interpolation
2239		 * will fail) */
2240		table_min[pdg] = min(pdg_L->pd_pwr[0],
2241					pdg_R->pd_pwr[0]) / 2;
2242
2243		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2244				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2245
2246		/* Now create the curves on surrounding channels
2247		 * and interpolate if needed to get the final
2248		 * curve for this gain on this channel */
2249		switch (type) {
2250		case AR5K_PWRTABLE_LINEAR_PCDAC:
2251			/* Override min/max so that we don't loose
2252			 * accuracy (don't divide by 2) */
2253			table_min[pdg] = min(pdg_L->pd_pwr[0],
2254						pdg_R->pd_pwr[0]);
2255
2256			table_max[pdg] =
2257				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2258					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2259
2260			/* Override minimum so that we don't get
2261			 * out of bounds while extrapolating
2262			 * below. Don't do this when we have 2
2263			 * curves and we are on the high power curve
2264			 * because table_min is ok in this case */
2265			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2266
2267				table_min[pdg] =
2268					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2269								pdg_R->pd_step,
2270								pdg_L->pd_pwr,
2271								pdg_R->pd_pwr);
2272
2273				/* Don't go too low because we will
2274				 * miss the upper part of the curve.
2275				 * Note: 126 = 31.5dB (max power supported)
2276				 * in 0.25dB units */
2277				if (table_max[pdg] - table_min[pdg] > 126)
2278					table_min[pdg] = table_max[pdg] - 126;
2279			}
2280
2281			/* Fall through */
2282		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2283		case AR5K_PWRTABLE_PWR_TO_PDADC:
2284
2285			ath5k_create_power_curve(table_min[pdg],
2286						table_max[pdg],
2287						pdg_L->pd_pwr,
2288						pdg_L->pd_step,
2289						pdg_L->pd_points, tmpL, type);
2290
2291			/* We are in a calibration
2292			 * pier, no need to interpolate
2293			 * between freq piers */
2294			if (pcinfo_L == pcinfo_R)
2295				continue;
2296
2297			ath5k_create_power_curve(table_min[pdg],
2298						table_max[pdg],
2299						pdg_R->pd_pwr,
2300						pdg_R->pd_step,
2301						pdg_R->pd_points, tmpR, type);
2302			break;
2303		default:
2304			return -EINVAL;
2305		}
2306
2307		/* Interpolate between curves
2308		 * of surounding freq piers to
2309		 * get the final curve for this
2310		 * pd gain. Re-use tmpL for interpolation
2311		 * output */
2312		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2313		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2314			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2315							(s16) pcinfo_L->freq,
2316							(s16) pcinfo_R->freq,
2317							(s16) tmpL[i],
2318							(s16) tmpR[i]);
2319		}
2320	}
2321
2322	/* Now we have a set of curves for this
2323	 * channel on tmpL (x range is table_max - table_min
2324	 * and y values are tmpL[pdg][]) sorted in the same
2325	 * order as EEPROM (because we've used the backmaping).
2326	 * So for RF5112 it's from higher power to lower power
2327	 * and for RF2413 it's from lower power to higher power.
2328	 * For RF5111 we only have one curve. */
2329
2330	/* Fill min and max power levels for this
2331	 * channel by interpolating the values on
2332	 * surounding channels to complete the dataset */
2333	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2334					(s16) pcinfo_L->freq,
2335					(s16) pcinfo_R->freq,
2336					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2337
2338	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2339					(s16) pcinfo_L->freq,
2340					(s16) pcinfo_R->freq,
2341					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2342
2343	/* We are ready to go, fill PCDAC/PDADC
2344	 * table and write settings on hardware */
2345	switch (type) {
2346	case AR5K_PWRTABLE_LINEAR_PCDAC:
2347		/* For RF5112 we can have one or two curves
2348		 * and each curve covers a certain power lvl
2349		 * range so we need to do some more processing */
2350		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2351						ee->ee_pd_gains[ee_mode]);
2352
2353		/* Set txp.offset so that we can
2354		 * match max power value with max
2355		 * table index */
2356		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2357
2358		/* Write settings on hw */
2359		ath5k_setup_pcdac_table(ah);
2360		break;
2361	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2362		/* We are done for RF5111 since it has only
2363		 * one curve, just fit the curve on the table */
2364		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2365
2366		/* No rate powertable adjustment for RF5111 */
2367		ah->ah_txpower.txp_min_idx = 0;
2368		ah->ah_txpower.txp_offset = 0;
2369
2370		/* Write settings on hw */
2371		ath5k_setup_pcdac_table(ah);
2372		break;
2373	case AR5K_PWRTABLE_PWR_TO_PDADC:
2374		/* Set PDADC boundaries and fill
2375		 * final PDADC table */
2376		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2377						ee->ee_pd_gains[ee_mode]);
2378
2379		/* Write settings on hw */
2380		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2381
2382		/* Set txp.offset, note that table_min
2383		 * can be negative */
2384		ah->ah_txpower.txp_offset = table_min[0];
2385		break;
2386	default:
2387		return -EINVAL;
2388	}
2389
2390	return 0;
2391}
2392
2393
2394/*
2395 * Per-rate tx power setting
2396 *
2397 * This is the code that sets the desired tx power (below
2398 * maximum) on hw for each rate (we also have TPC that sets
2399 * power per packet). We do that by providing an index on the
2400 * PCDAC/PDADC table we set up.
2401 */
2402
2403/*
2404 * Set rate power table
2405 *
2406 * For now we only limit txpower based on maximum tx power
2407 * supported by hw (what's inside rate_info). We need to limit
2408 * this even more, based on regulatory domain etc.
2409 *
2410 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2411 * and is indexed as follows:
2412 * rates[0] - rates[7] -> OFDM rates
2413 * rates[8] - rates[14] -> CCK rates
2414 * rates[15] -> XR rates (they all have the same power)
2415 */
2416static void
2417ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2418			struct ath5k_rate_pcal_info *rate_info,
2419			u8 ee_mode)
2420{
2421	unsigned int i;
2422	u16 *rates;
2423
2424	/* max_pwr is power level we got from driver/user in 0.5dB
2425	 * units, switch to 0.25dB units so we can compare */
2426	max_pwr *= 2;
2427	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2428
2429	/* apply rate limits */
2430	rates = ah->ah_txpower.txp_rates_power_table;
2431
2432	/* OFDM rates 6 to 24Mb/s */
2433	for (i = 0; i < 5; i++)
2434		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2435
2436	/* Rest OFDM rates */
2437	rates[5] = min(rates[0], rate_info->target_power_36);
2438	rates[6] = min(rates[0], rate_info->target_power_48);
2439	rates[7] = min(rates[0], rate_info->target_power_54);
2440
2441	/* CCK rates */
2442	/* 1L */
2443	rates[8] = min(rates[0], rate_info->target_power_6to24);
2444	/* 2L */
2445	rates[9] = min(rates[0], rate_info->target_power_36);
2446	/* 2S */
2447	rates[10] = min(rates[0], rate_info->target_power_36);
2448	/* 5L */
2449	rates[11] = min(rates[0], rate_info->target_power_48);
2450	/* 5S */
2451	rates[12] = min(rates[0], rate_info->target_power_48);
2452	/* 11L */
2453	rates[13] = min(rates[0], rate_info->target_power_54);
2454	/* 11S */
2455	rates[14] = min(rates[0], rate_info->target_power_54);
2456
2457	/* XR rates */
2458	rates[15] = min(rates[0], rate_info->target_power_6to24);
2459
2460	/* CCK rates have different peak to average ratio
2461	 * so we have to tweak their power so that gainf
2462	 * correction works ok. For this we use OFDM to
2463	 * CCK delta from eeprom */
2464	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2465	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2466		for (i = 8; i <= 15; i++)
2467			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2468
2469	ah->ah_txpower.txp_min_pwr = rates[7];
2470	ah->ah_txpower.txp_max_pwr = rates[0];
2471	ah->ah_txpower.txp_ofdm = rates[7];
2472}
2473
2474
2475/*
2476 * Set transmition power
2477 */
2478int
2479ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel,
2480		u8 ee_mode, u8 txpower)
2481{
2482	struct ath5k_rate_pcal_info rate_info;
2483	u8 type;
2484	int ret;
2485
2486	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2487		DBG("ath5k: invalid tx power %d\n", txpower);
2488		return -EINVAL;
2489	}
2490	if (txpower == 0)
2491		txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2492
2493	/* Reset TX power values */
2494	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2495	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2496	ah->ah_txpower.txp_min_pwr = 0;
2497	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2498
2499	/* Initialize TX power table */
2500	switch (ah->ah_radio) {
2501	case AR5K_RF5111:
2502		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2503		break;
2504	case AR5K_RF5112:
2505		type = AR5K_PWRTABLE_LINEAR_PCDAC;
2506		break;
2507	case AR5K_RF2413:
2508	case AR5K_RF5413:
2509	case AR5K_RF2316:
2510	case AR5K_RF2317:
2511	case AR5K_RF2425:
2512		type = AR5K_PWRTABLE_PWR_TO_PDADC;
2513		break;
2514	default:
2515		return -EINVAL;
2516	}
2517
2518	/* FIXME: Only on channel/mode change */
2519	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2520	if (ret)
2521		return ret;
2522
2523	/* Limit max power if we have a CTL available */
2524	ath5k_get_max_ctl_power(ah, channel);
2525
2526	/* FIXME: Tx power limit for this regdomain
2527	 * XXX: Mac80211/CRDA will do that anyway ? */
2528
2529	/* FIXME: Antenna reduction stuff */
2530
2531	/* FIXME: Limit power on turbo modes */
2532
2533	/* FIXME: TPC scale reduction */
2534
2535	/* Get surounding channels for per-rate power table
2536	 * calibration */
2537	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2538
2539	/* Setup rate power table */
2540	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2541
2542	/* Write rate power table on hw */
2543	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2544		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2545		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2546
2547	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2548		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2549		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2550
2551	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2552		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2553		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2554
2555	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2556		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2557		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2558
2559	/* FIXME: TPC support */
2560	if (ah->ah_txpower.txp_tpc) {
2561		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2562			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2563
2564		ath5k_hw_reg_write(ah,
2565			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2566			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2567			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2568			AR5K_TPC);
2569	} else {
2570		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
2571			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2572	}
2573
2574	return 0;
2575}
2576
2577int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
2578{
2579	struct net80211_channel *channel = ah->ah_current_channel;
2580
2581	DBG2("ath5k: changing txpower to %d\n", txpower);
2582
2583	return ath5k_hw_txpower(ah, channel, mode, txpower);
2584}
2585
2586#undef _ATH5K_PHY
2587