1// Copyright 2012 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#include <stdarg.h> 6#include <stdlib.h> 7#include <cmath> 8 9#if V8_TARGET_ARCH_ARM 10 11#include "src/arm/constants-arm.h" 12#include "src/arm/simulator-arm.h" 13#include "src/assembler.h" 14#include "src/base/bits.h" 15#include "src/codegen.h" 16#include "src/disasm.h" 17#include "src/runtime/runtime-utils.h" 18 19#if defined(USE_SIMULATOR) 20 21// Only build the simulator if not compiling for real ARM hardware. 22namespace v8 { 23namespace internal { 24 25// This macro provides a platform independent use of sscanf. The reason for 26// SScanF not being implemented in a platform independent way through 27// ::v8::internal::OS in the same way as SNPrintF is that the 28// Windows C Run-Time Library does not provide vsscanf. 29#define SScanF sscanf // NOLINT 30 31// The ArmDebugger class is used by the simulator while debugging simulated ARM 32// code. 33class ArmDebugger { 34 public: 35 explicit ArmDebugger(Simulator* sim) : sim_(sim) { } 36 37 void Stop(Instruction* instr); 38 void Debug(); 39 40 private: 41 static const Instr kBreakpointInstr = 42 (al | (7*B25) | (1*B24) | kBreakpoint); 43 static const Instr kNopInstr = (al | (13*B21)); 44 45 Simulator* sim_; 46 47 int32_t GetRegisterValue(int regnum); 48 double GetRegisterPairDoubleValue(int regnum); 49 double GetVFPDoubleRegisterValue(int regnum); 50 bool GetValue(const char* desc, int32_t* value); 51 bool GetVFPSingleValue(const char* desc, float* value); 52 bool GetVFPDoubleValue(const char* desc, double* value); 53 54 // Set or delete a breakpoint. Returns true if successful. 55 bool SetBreakpoint(Instruction* breakpc); 56 bool DeleteBreakpoint(Instruction* breakpc); 57 58 // Undo and redo all breakpoints. This is needed to bracket disassembly and 59 // execution to skip past breakpoints when run from the debugger. 60 void UndoBreakpoints(); 61 void RedoBreakpoints(); 62}; 63 64void ArmDebugger::Stop(Instruction* instr) { 65 // Get the stop code. 66 uint32_t code = instr->SvcValue() & kStopCodeMask; 67 // Print the stop message and code if it is not the default code. 68 if (code != kMaxStopCode) { 69 PrintF("Simulator hit stop %u\n", code); 70 } else { 71 PrintF("Simulator hit\n"); 72 } 73 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 74 Debug(); 75} 76 77int32_t ArmDebugger::GetRegisterValue(int regnum) { 78 if (regnum == kPCRegister) { 79 return sim_->get_pc(); 80 } else { 81 return sim_->get_register(regnum); 82 } 83} 84 85double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { 86 return sim_->get_double_from_register_pair(regnum); 87} 88 89 90double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { 91 return sim_->get_double_from_d_register(regnum); 92} 93 94 95bool ArmDebugger::GetValue(const char* desc, int32_t* value) { 96 int regnum = Registers::Number(desc); 97 if (regnum != kNoRegister) { 98 *value = GetRegisterValue(regnum); 99 return true; 100 } else { 101 if (strncmp(desc, "0x", 2) == 0) { 102 return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; 103 } else { 104 return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; 105 } 106 } 107 return false; 108} 109 110 111bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { 112 bool is_double; 113 int regnum = VFPRegisters::Number(desc, &is_double); 114 if (regnum != kNoRegister && !is_double) { 115 *value = sim_->get_float_from_s_register(regnum); 116 return true; 117 } 118 return false; 119} 120 121 122bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { 123 bool is_double; 124 int regnum = VFPRegisters::Number(desc, &is_double); 125 if (regnum != kNoRegister && is_double) { 126 *value = sim_->get_double_from_d_register(regnum); 127 return true; 128 } 129 return false; 130} 131 132 133bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { 134 // Check if a breakpoint can be set. If not return without any side-effects. 135 if (sim_->break_pc_ != NULL) { 136 return false; 137 } 138 139 // Set the breakpoint. 140 sim_->break_pc_ = breakpc; 141 sim_->break_instr_ = breakpc->InstructionBits(); 142 // Not setting the breakpoint instruction in the code itself. It will be set 143 // when the debugger shell continues. 144 return true; 145} 146 147 148bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) { 149 if (sim_->break_pc_ != NULL) { 150 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 151 } 152 153 sim_->break_pc_ = NULL; 154 sim_->break_instr_ = 0; 155 return true; 156} 157 158 159void ArmDebugger::UndoBreakpoints() { 160 if (sim_->break_pc_ != NULL) { 161 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 162 } 163} 164 165 166void ArmDebugger::RedoBreakpoints() { 167 if (sim_->break_pc_ != NULL) { 168 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 169 } 170} 171 172 173void ArmDebugger::Debug() { 174 intptr_t last_pc = -1; 175 bool done = false; 176 177#define COMMAND_SIZE 63 178#define ARG_SIZE 255 179 180#define STR(a) #a 181#define XSTR(a) STR(a) 182 183 char cmd[COMMAND_SIZE + 1]; 184 char arg1[ARG_SIZE + 1]; 185 char arg2[ARG_SIZE + 1]; 186 char* argv[3] = { cmd, arg1, arg2 }; 187 188 // make sure to have a proper terminating character if reaching the limit 189 cmd[COMMAND_SIZE] = 0; 190 arg1[ARG_SIZE] = 0; 191 arg2[ARG_SIZE] = 0; 192 193 // Undo all set breakpoints while running in the debugger shell. This will 194 // make them invisible to all commands. 195 UndoBreakpoints(); 196 197 while (!done && !sim_->has_bad_pc()) { 198 if (last_pc != sim_->get_pc()) { 199 disasm::NameConverter converter; 200 disasm::Disassembler dasm(converter); 201 // use a reasonably large buffer 202 v8::internal::EmbeddedVector<char, 256> buffer; 203 dasm.InstructionDecode(buffer, 204 reinterpret_cast<byte*>(sim_->get_pc())); 205 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); 206 last_pc = sim_->get_pc(); 207 } 208 char* line = ReadLine("sim> "); 209 if (line == NULL) { 210 break; 211 } else { 212 char* last_input = sim_->last_debugger_input(); 213 if (strcmp(line, "\n") == 0 && last_input != NULL) { 214 line = last_input; 215 } else { 216 // Ownership is transferred to sim_; 217 sim_->set_last_debugger_input(line); 218 } 219 // Use sscanf to parse the individual parts of the command line. At the 220 // moment no command expects more than two parameters. 221 int argc = SScanF(line, 222 "%" XSTR(COMMAND_SIZE) "s " 223 "%" XSTR(ARG_SIZE) "s " 224 "%" XSTR(ARG_SIZE) "s", 225 cmd, arg1, arg2); 226 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 227 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 228 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 229 // Execute the one instruction we broke at with breakpoints disabled. 230 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 231 // Leave the debugger shell. 232 done = true; 233 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 234 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { 235 int32_t value; 236 float svalue; 237 double dvalue; 238 if (strcmp(arg1, "all") == 0) { 239 for (int i = 0; i < kNumRegisters; i++) { 240 value = GetRegisterValue(i); 241 PrintF( 242 "%3s: 0x%08x %10d", 243 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( 244 i), 245 value, value); 246 if ((argc == 3 && strcmp(arg2, "fp") == 0) && 247 i < 8 && 248 (i % 2) == 0) { 249 dvalue = GetRegisterPairDoubleValue(i); 250 PrintF(" (%f)\n", dvalue); 251 } else { 252 PrintF("\n"); 253 } 254 } 255 for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) { 256 dvalue = GetVFPDoubleRegisterValue(i); 257 uint64_t as_words = bit_cast<uint64_t>(dvalue); 258 PrintF("%3s: %f 0x%08x %08x\n", 259 VFPRegisters::Name(i, true), 260 dvalue, 261 static_cast<uint32_t>(as_words >> 32), 262 static_cast<uint32_t>(as_words & 0xffffffff)); 263 } 264 } else { 265 if (GetValue(arg1, &value)) { 266 PrintF("%s: 0x%08x %d \n", arg1, value, value); 267 } else if (GetVFPSingleValue(arg1, &svalue)) { 268 uint32_t as_word = bit_cast<uint32_t>(svalue); 269 PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); 270 } else if (GetVFPDoubleValue(arg1, &dvalue)) { 271 uint64_t as_words = bit_cast<uint64_t>(dvalue); 272 PrintF("%s: %f 0x%08x %08x\n", 273 arg1, 274 dvalue, 275 static_cast<uint32_t>(as_words >> 32), 276 static_cast<uint32_t>(as_words & 0xffffffff)); 277 } else { 278 PrintF("%s unrecognized\n", arg1); 279 } 280 } 281 } else { 282 PrintF("print <register>\n"); 283 } 284 } else if ((strcmp(cmd, "po") == 0) 285 || (strcmp(cmd, "printobject") == 0)) { 286 if (argc == 2) { 287 int32_t value; 288 OFStream os(stdout); 289 if (GetValue(arg1, &value)) { 290 Object* obj = reinterpret_cast<Object*>(value); 291 os << arg1 << ": \n"; 292#ifdef DEBUG 293 obj->Print(os); 294 os << "\n"; 295#else 296 os << Brief(obj) << "\n"; 297#endif 298 } else { 299 os << arg1 << " unrecognized\n"; 300 } 301 } else { 302 PrintF("printobject <value>\n"); 303 } 304 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 305 int32_t* cur = NULL; 306 int32_t* end = NULL; 307 int next_arg = 1; 308 309 if (strcmp(cmd, "stack") == 0) { 310 cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); 311 } else { // "mem" 312 int32_t value; 313 if (!GetValue(arg1, &value)) { 314 PrintF("%s unrecognized\n", arg1); 315 continue; 316 } 317 cur = reinterpret_cast<int32_t*>(value); 318 next_arg++; 319 } 320 321 int32_t words; 322 if (argc == next_arg) { 323 words = 10; 324 } else { 325 if (!GetValue(argv[next_arg], &words)) { 326 words = 10; 327 } 328 } 329 end = cur + words; 330 331 while (cur < end) { 332 PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d", 333 reinterpret_cast<intptr_t>(cur), *cur, *cur); 334 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 335 int value = *cur; 336 Heap* current_heap = sim_->isolate_->heap(); 337 if (((value & 1) == 0) || 338 current_heap->ContainsSlow(obj->address())) { 339 PrintF(" ("); 340 if ((value & 1) == 0) { 341 PrintF("smi %d", value / 2); 342 } else { 343 obj->ShortPrint(); 344 } 345 PrintF(")"); 346 } 347 PrintF("\n"); 348 cur++; 349 } 350 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { 351 disasm::NameConverter converter; 352 disasm::Disassembler dasm(converter); 353 // use a reasonably large buffer 354 v8::internal::EmbeddedVector<char, 256> buffer; 355 356 byte* prev = NULL; 357 byte* cur = NULL; 358 byte* end = NULL; 359 360 if (argc == 1) { 361 cur = reinterpret_cast<byte*>(sim_->get_pc()); 362 end = cur + (10 * Instruction::kInstrSize); 363 } else if (argc == 2) { 364 int regnum = Registers::Number(arg1); 365 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { 366 // The argument is an address or a register name. 367 int32_t value; 368 if (GetValue(arg1, &value)) { 369 cur = reinterpret_cast<byte*>(value); 370 // Disassemble 10 instructions at <arg1>. 371 end = cur + (10 * Instruction::kInstrSize); 372 } 373 } else { 374 // The argument is the number of instructions. 375 int32_t value; 376 if (GetValue(arg1, &value)) { 377 cur = reinterpret_cast<byte*>(sim_->get_pc()); 378 // Disassemble <arg1> instructions. 379 end = cur + (value * Instruction::kInstrSize); 380 } 381 } 382 } else { 383 int32_t value1; 384 int32_t value2; 385 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 386 cur = reinterpret_cast<byte*>(value1); 387 end = cur + (value2 * Instruction::kInstrSize); 388 } 389 } 390 391 while (cur < end) { 392 prev = cur; 393 cur += dasm.InstructionDecode(buffer, cur); 394 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), 395 buffer.start()); 396 } 397 } else if (strcmp(cmd, "gdb") == 0) { 398 PrintF("relinquishing control to gdb\n"); 399 v8::base::OS::DebugBreak(); 400 PrintF("regaining control from gdb\n"); 401 } else if (strcmp(cmd, "break") == 0) { 402 if (argc == 2) { 403 int32_t value; 404 if (GetValue(arg1, &value)) { 405 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 406 PrintF("setting breakpoint failed\n"); 407 } 408 } else { 409 PrintF("%s unrecognized\n", arg1); 410 } 411 } else { 412 PrintF("break <address>\n"); 413 } 414 } else if (strcmp(cmd, "del") == 0) { 415 if (!DeleteBreakpoint(NULL)) { 416 PrintF("deleting breakpoint failed\n"); 417 } 418 } else if (strcmp(cmd, "flags") == 0) { 419 PrintF("N flag: %d; ", sim_->n_flag_); 420 PrintF("Z flag: %d; ", sim_->z_flag_); 421 PrintF("C flag: %d; ", sim_->c_flag_); 422 PrintF("V flag: %d\n", sim_->v_flag_); 423 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); 424 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); 425 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); 426 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); 427 PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); 428 } else if (strcmp(cmd, "stop") == 0) { 429 int32_t value; 430 intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; 431 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 432 Instruction* msg_address = 433 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); 434 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 435 // Remove the current stop. 436 if (sim_->isStopInstruction(stop_instr)) { 437 stop_instr->SetInstructionBits(kNopInstr); 438 msg_address->SetInstructionBits(kNopInstr); 439 } else { 440 PrintF("Not at debugger stop.\n"); 441 } 442 } else if (argc == 3) { 443 // Print information about all/the specified breakpoint(s). 444 if (strcmp(arg1, "info") == 0) { 445 if (strcmp(arg2, "all") == 0) { 446 PrintF("Stop information:\n"); 447 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 448 sim_->PrintStopInfo(i); 449 } 450 } else if (GetValue(arg2, &value)) { 451 sim_->PrintStopInfo(value); 452 } else { 453 PrintF("Unrecognized argument.\n"); 454 } 455 } else if (strcmp(arg1, "enable") == 0) { 456 // Enable all/the specified breakpoint(s). 457 if (strcmp(arg2, "all") == 0) { 458 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 459 sim_->EnableStop(i); 460 } 461 } else if (GetValue(arg2, &value)) { 462 sim_->EnableStop(value); 463 } else { 464 PrintF("Unrecognized argument.\n"); 465 } 466 } else if (strcmp(arg1, "disable") == 0) { 467 // Disable all/the specified breakpoint(s). 468 if (strcmp(arg2, "all") == 0) { 469 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 470 sim_->DisableStop(i); 471 } 472 } else if (GetValue(arg2, &value)) { 473 sim_->DisableStop(value); 474 } else { 475 PrintF("Unrecognized argument.\n"); 476 } 477 } 478 } else { 479 PrintF("Wrong usage. Use help command for more information.\n"); 480 } 481 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { 482 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; 483 PrintF("Trace of executed instructions is %s\n", 484 ::v8::internal::FLAG_trace_sim ? "on" : "off"); 485 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 486 PrintF("cont\n"); 487 PrintF(" continue execution (alias 'c')\n"); 488 PrintF("stepi\n"); 489 PrintF(" step one instruction (alias 'si')\n"); 490 PrintF("print <register>\n"); 491 PrintF(" print register content (alias 'p')\n"); 492 PrintF(" use register name 'all' to print all registers\n"); 493 PrintF(" add argument 'fp' to print register pair double values\n"); 494 PrintF("printobject <register>\n"); 495 PrintF(" print an object from a register (alias 'po')\n"); 496 PrintF("flags\n"); 497 PrintF(" print flags\n"); 498 PrintF("stack [<words>]\n"); 499 PrintF(" dump stack content, default dump 10 words)\n"); 500 PrintF("mem <address> [<words>]\n"); 501 PrintF(" dump memory content, default dump 10 words)\n"); 502 PrintF("disasm [<instructions>]\n"); 503 PrintF("disasm [<address/register>]\n"); 504 PrintF("disasm [[<address/register>] <instructions>]\n"); 505 PrintF(" disassemble code, default is 10 instructions\n"); 506 PrintF(" from pc (alias 'di')\n"); 507 PrintF("gdb\n"); 508 PrintF(" enter gdb\n"); 509 PrintF("break <address>\n"); 510 PrintF(" set a break point on the address\n"); 511 PrintF("del\n"); 512 PrintF(" delete the breakpoint\n"); 513 PrintF("trace (alias 't')\n"); 514 PrintF(" toogle the tracing of all executed statements\n"); 515 PrintF("stop feature:\n"); 516 PrintF(" Description:\n"); 517 PrintF(" Stops are debug instructions inserted by\n"); 518 PrintF(" the Assembler::stop() function.\n"); 519 PrintF(" When hitting a stop, the Simulator will\n"); 520 PrintF(" stop and and give control to the ArmDebugger.\n"); 521 PrintF(" The first %d stop codes are watched:\n", 522 Simulator::kNumOfWatchedStops); 523 PrintF(" - They can be enabled / disabled: the Simulator\n"); 524 PrintF(" will / won't stop when hitting them.\n"); 525 PrintF(" - The Simulator keeps track of how many times they \n"); 526 PrintF(" are met. (See the info command.) Going over a\n"); 527 PrintF(" disabled stop still increases its counter. \n"); 528 PrintF(" Commands:\n"); 529 PrintF(" stop info all/<code> : print infos about number <code>\n"); 530 PrintF(" or all stop(s).\n"); 531 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 532 PrintF(" all or number <code> stop(s)\n"); 533 PrintF(" stop unstop\n"); 534 PrintF(" ignore the stop instruction at the current location\n"); 535 PrintF(" from now on\n"); 536 } else { 537 PrintF("Unknown command: %s\n", cmd); 538 } 539 } 540 } 541 542 // Add all the breakpoints back to stop execution and enter the debugger 543 // shell when hit. 544 RedoBreakpoints(); 545 546#undef COMMAND_SIZE 547#undef ARG_SIZE 548 549#undef STR 550#undef XSTR 551} 552 553 554static bool ICacheMatch(void* one, void* two) { 555 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 556 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 557 return one == two; 558} 559 560 561static uint32_t ICacheHash(void* key) { 562 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 563} 564 565 566static bool AllOnOnePage(uintptr_t start, int size) { 567 intptr_t start_page = (start & ~CachePage::kPageMask); 568 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 569 return start_page == end_page; 570} 571 572 573void Simulator::set_last_debugger_input(char* input) { 574 DeleteArray(last_debugger_input_); 575 last_debugger_input_ = input; 576} 577 578void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, 579 void* start_addr, size_t size) { 580 intptr_t start = reinterpret_cast<intptr_t>(start_addr); 581 int intra_line = (start & CachePage::kLineMask); 582 start -= intra_line; 583 size += intra_line; 584 size = ((size - 1) | CachePage::kLineMask) + 1; 585 int offset = (start & CachePage::kPageMask); 586 while (!AllOnOnePage(start, size - 1)) { 587 int bytes_to_flush = CachePage::kPageSize - offset; 588 FlushOnePage(i_cache, start, bytes_to_flush); 589 start += bytes_to_flush; 590 size -= bytes_to_flush; 591 DCHECK_EQ(0, start & CachePage::kPageMask); 592 offset = 0; 593 } 594 if (size != 0) { 595 FlushOnePage(i_cache, start, size); 596 } 597} 598 599CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, 600 void* page) { 601 base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); 602 if (entry->value == NULL) { 603 CachePage* new_page = new CachePage(); 604 entry->value = new_page; 605 } 606 return reinterpret_cast<CachePage*>(entry->value); 607} 608 609 610// Flush from start up to and not including start + size. 611void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, 612 intptr_t start, int size) { 613 DCHECK(size <= CachePage::kPageSize); 614 DCHECK(AllOnOnePage(start, size - 1)); 615 DCHECK((start & CachePage::kLineMask) == 0); 616 DCHECK((size & CachePage::kLineMask) == 0); 617 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 618 int offset = (start & CachePage::kPageMask); 619 CachePage* cache_page = GetCachePage(i_cache, page); 620 char* valid_bytemap = cache_page->ValidityByte(offset); 621 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 622} 623 624void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, 625 Instruction* instr) { 626 intptr_t address = reinterpret_cast<intptr_t>(instr); 627 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 628 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 629 int offset = (address & CachePage::kPageMask); 630 CachePage* cache_page = GetCachePage(i_cache, page); 631 char* cache_valid_byte = cache_page->ValidityByte(offset); 632 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 633 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 634 if (cache_hit) { 635 // Check that the data in memory matches the contents of the I-cache. 636 CHECK_EQ(0, 637 memcmp(reinterpret_cast<void*>(instr), 638 cache_page->CachedData(offset), Instruction::kInstrSize)); 639 } else { 640 // Cache miss. Load memory into the cache. 641 memcpy(cached_line, line, CachePage::kLineLength); 642 *cache_valid_byte = CachePage::LINE_VALID; 643 } 644} 645 646 647void Simulator::Initialize(Isolate* isolate) { 648 if (isolate->simulator_initialized()) return; 649 isolate->set_simulator_initialized(true); 650 ::v8::internal::ExternalReference::set_redirector(isolate, 651 &RedirectExternalReference); 652} 653 654 655Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 656 i_cache_ = isolate_->simulator_i_cache(); 657 if (i_cache_ == NULL) { 658 i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); 659 isolate_->set_simulator_i_cache(i_cache_); 660 } 661 Initialize(isolate); 662 // Set up simulator support first. Some of this information is needed to 663 // setup the architecture state. 664 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack 665 stack_ = reinterpret_cast<char*>(malloc(stack_size)); 666 pc_modified_ = false; 667 icount_ = 0; 668 break_pc_ = NULL; 669 break_instr_ = 0; 670 671 // Set up architecture state. 672 // All registers are initialized to zero to start with. 673 for (int i = 0; i < num_registers; i++) { 674 registers_[i] = 0; 675 } 676 n_flag_ = false; 677 z_flag_ = false; 678 c_flag_ = false; 679 v_flag_ = false; 680 681 // Initializing VFP registers. 682 // All registers are initialized to zero to start with 683 // even though s_registers_ & d_registers_ share the same 684 // physical registers in the target. 685 for (int i = 0; i < num_d_registers * 2; i++) { 686 vfp_registers_[i] = 0; 687 } 688 n_flag_FPSCR_ = false; 689 z_flag_FPSCR_ = false; 690 c_flag_FPSCR_ = false; 691 v_flag_FPSCR_ = false; 692 FPSCR_rounding_mode_ = RN; 693 FPSCR_default_NaN_mode_ = false; 694 695 inv_op_vfp_flag_ = false; 696 div_zero_vfp_flag_ = false; 697 overflow_vfp_flag_ = false; 698 underflow_vfp_flag_ = false; 699 inexact_vfp_flag_ = false; 700 701 // The sp is initialized to point to the bottom (high address) of the 702 // allocated stack area. To be safe in potential stack underflows we leave 703 // some buffer below. 704 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; 705 // The lr and pc are initialized to a known bad value that will cause an 706 // access violation if the simulator ever tries to execute it. 707 registers_[pc] = bad_lr; 708 registers_[lr] = bad_lr; 709 710 last_debugger_input_ = NULL; 711} 712 713 714Simulator::~Simulator() { free(stack_); } 715 716 717// When the generated code calls an external reference we need to catch that in 718// the simulator. The external reference will be a function compiled for the 719// host architecture. We need to call that function instead of trying to 720// execute it with the simulator. We do that by redirecting the external 721// reference to a svc (Supervisor Call) instruction that is handled by 722// the simulator. We write the original destination of the jump just at a known 723// offset from the svc instruction so the simulator knows what to call. 724class Redirection { 725 public: 726 Redirection(Isolate* isolate, void* external_function, 727 ExternalReference::Type type) 728 : external_function_(external_function), 729 swi_instruction_(al | (0xf * B24) | kCallRtRedirected), 730 type_(type), 731 next_(NULL) { 732 next_ = isolate->simulator_redirection(); 733 Simulator::current(isolate)-> 734 FlushICache(isolate->simulator_i_cache(), 735 reinterpret_cast<void*>(&swi_instruction_), 736 Instruction::kInstrSize); 737 isolate->set_simulator_redirection(this); 738 } 739 740 void* address_of_swi_instruction() { 741 return reinterpret_cast<void*>(&swi_instruction_); 742 } 743 744 void* external_function() { return external_function_; } 745 ExternalReference::Type type() { return type_; } 746 747 static Redirection* Get(Isolate* isolate, void* external_function, 748 ExternalReference::Type type) { 749 Redirection* current = isolate->simulator_redirection(); 750 for (; current != NULL; current = current->next_) { 751 if (current->external_function_ == external_function) { 752 DCHECK_EQ(current->type(), type); 753 return current; 754 } 755 } 756 return new Redirection(isolate, external_function, type); 757 } 758 759 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 760 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 761 char* addr_of_redirection = 762 addr_of_swi - offsetof(Redirection, swi_instruction_); 763 return reinterpret_cast<Redirection*>(addr_of_redirection); 764 } 765 766 static void* ReverseRedirection(int32_t reg) { 767 Redirection* redirection = FromSwiInstruction( 768 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); 769 return redirection->external_function(); 770 } 771 772 static void DeleteChain(Redirection* redirection) { 773 while (redirection != nullptr) { 774 Redirection* next = redirection->next_; 775 delete redirection; 776 redirection = next; 777 } 778 } 779 780 private: 781 void* external_function_; 782 uint32_t swi_instruction_; 783 ExternalReference::Type type_; 784 Redirection* next_; 785}; 786 787 788// static 789void Simulator::TearDown(base::CustomMatcherHashMap* i_cache, 790 Redirection* first) { 791 Redirection::DeleteChain(first); 792 if (i_cache != nullptr) { 793 for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr; 794 entry = i_cache->Next(entry)) { 795 delete static_cast<CachePage*>(entry->value); 796 } 797 delete i_cache; 798 } 799} 800 801 802void* Simulator::RedirectExternalReference(Isolate* isolate, 803 void* external_function, 804 ExternalReference::Type type) { 805 Redirection* redirection = Redirection::Get(isolate, external_function, type); 806 return redirection->address_of_swi_instruction(); 807} 808 809 810// Get the active Simulator for the current thread. 811Simulator* Simulator::current(Isolate* isolate) { 812 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 813 isolate->FindOrAllocatePerThreadDataForThisThread(); 814 DCHECK(isolate_data != NULL); 815 816 Simulator* sim = isolate_data->simulator(); 817 if (sim == NULL) { 818 // TODO(146): delete the simulator object when a thread/isolate goes away. 819 sim = new Simulator(isolate); 820 isolate_data->set_simulator(sim); 821 } 822 return sim; 823} 824 825 826// Sets the register in the architecture state. It will also deal with updating 827// Simulator internal state for special registers such as PC. 828void Simulator::set_register(int reg, int32_t value) { 829 DCHECK((reg >= 0) && (reg < num_registers)); 830 if (reg == pc) { 831 pc_modified_ = true; 832 } 833 registers_[reg] = value; 834} 835 836 837// Get the register from the architecture state. This function does handle 838// the special case of accessing the PC register. 839int32_t Simulator::get_register(int reg) const { 840 DCHECK((reg >= 0) && (reg < num_registers)); 841 // Stupid code added to avoid bug in GCC. 842 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 843 if (reg >= num_registers) return 0; 844 // End stupid code. 845 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 846} 847 848 849double Simulator::get_double_from_register_pair(int reg) { 850 DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 851 852 double dm_val = 0.0; 853 // Read the bits from the unsigned integer register_[] array 854 // into the double precision floating point value and return it. 855 char buffer[2 * sizeof(vfp_registers_[0])]; 856 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); 857 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); 858 return(dm_val); 859} 860 861 862void Simulator::set_register_pair_from_double(int reg, double* value) { 863 DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 864 memcpy(registers_ + reg, value, sizeof(*value)); 865} 866 867 868void Simulator::set_dw_register(int dreg, const int* dbl) { 869 DCHECK((dreg >= 0) && (dreg < num_d_registers)); 870 registers_[dreg] = dbl[0]; 871 registers_[dreg + 1] = dbl[1]; 872} 873 874 875void Simulator::get_d_register(int dreg, uint64_t* value) { 876 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 877 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); 878} 879 880 881void Simulator::set_d_register(int dreg, const uint64_t* value) { 882 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 883 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); 884} 885 886 887void Simulator::get_d_register(int dreg, uint32_t* value) { 888 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 889 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); 890} 891 892 893void Simulator::set_d_register(int dreg, const uint32_t* value) { 894 DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 895 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); 896} 897 898 899void Simulator::get_q_register(int qreg, uint64_t* value) { 900 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 901 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); 902} 903 904 905void Simulator::set_q_register(int qreg, const uint64_t* value) { 906 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 907 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); 908} 909 910 911void Simulator::get_q_register(int qreg, uint32_t* value) { 912 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 913 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); 914} 915 916 917void Simulator::set_q_register(int qreg, const uint32_t* value) { 918 DCHECK((qreg >= 0) && (qreg < num_q_registers)); 919 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); 920} 921 922 923// Raw access to the PC register. 924void Simulator::set_pc(int32_t value) { 925 pc_modified_ = true; 926 registers_[pc] = value; 927} 928 929 930bool Simulator::has_bad_pc() const { 931 return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); 932} 933 934 935// Raw access to the PC register without the special adjustment when reading. 936int32_t Simulator::get_pc() const { 937 return registers_[pc]; 938} 939 940 941// Getting from and setting into VFP registers. 942void Simulator::set_s_register(int sreg, unsigned int value) { 943 DCHECK((sreg >= 0) && (sreg < num_s_registers)); 944 vfp_registers_[sreg] = value; 945} 946 947 948unsigned int Simulator::get_s_register(int sreg) const { 949 DCHECK((sreg >= 0) && (sreg < num_s_registers)); 950 return vfp_registers_[sreg]; 951} 952 953 954template<class InputType, int register_size> 955void Simulator::SetVFPRegister(int reg_index, const InputType& value) { 956 DCHECK(reg_index >= 0); 957 if (register_size == 1) DCHECK(reg_index < num_s_registers); 958 if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); 959 960 char buffer[register_size * sizeof(vfp_registers_[0])]; 961 memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); 962 memcpy(&vfp_registers_[reg_index * register_size], buffer, 963 register_size * sizeof(vfp_registers_[0])); 964} 965 966 967template<class ReturnType, int register_size> 968ReturnType Simulator::GetFromVFPRegister(int reg_index) { 969 DCHECK(reg_index >= 0); 970 if (register_size == 1) DCHECK(reg_index < num_s_registers); 971 if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); 972 973 ReturnType value = 0; 974 char buffer[register_size * sizeof(vfp_registers_[0])]; 975 memcpy(buffer, &vfp_registers_[register_size * reg_index], 976 register_size * sizeof(vfp_registers_[0])); 977 memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0])); 978 return value; 979} 980 981void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask, 982 uint32_t value) { 983 // Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented. 984 if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) { 985 n_flag_ = ((value & (1 << 31)) != 0); 986 z_flag_ = ((value & (1 << 30)) != 0); 987 c_flag_ = ((value & (1 << 29)) != 0); 988 v_flag_ = ((value & (1 << 28)) != 0); 989 } else { 990 UNIMPLEMENTED(); 991 } 992} 993 994uint32_t Simulator::GetFromSpecialRegister(SRegister reg) { 995 uint32_t result = 0; 996 // Only CPSR_f is implemented. 997 if (reg == CPSR) { 998 if (n_flag_) result |= (1 << 31); 999 if (z_flag_) result |= (1 << 30); 1000 if (c_flag_) result |= (1 << 29); 1001 if (v_flag_) result |= (1 << 28); 1002 } else { 1003 UNIMPLEMENTED(); 1004 } 1005 return result; 1006} 1007 1008// Runtime FP routines take: 1009// - two double arguments 1010// - one double argument and zero or one integer arguments. 1011// All are consructed here from r0-r3 or d0, d1 and r0. 1012void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { 1013 if (use_eabi_hardfloat()) { 1014 *x = get_double_from_d_register(0); 1015 *y = get_double_from_d_register(1); 1016 *z = get_register(0); 1017 } else { 1018 // Registers 0 and 1 -> x. 1019 *x = get_double_from_register_pair(0); 1020 // Register 2 and 3 -> y. 1021 *y = get_double_from_register_pair(2); 1022 // Register 2 -> z 1023 *z = get_register(2); 1024 } 1025} 1026 1027 1028// The return value is either in r0/r1 or d0. 1029void Simulator::SetFpResult(const double& result) { 1030 if (use_eabi_hardfloat()) { 1031 char buffer[2 * sizeof(vfp_registers_[0])]; 1032 memcpy(buffer, &result, sizeof(buffer)); 1033 // Copy result to d0. 1034 memcpy(vfp_registers_, buffer, sizeof(buffer)); 1035 } else { 1036 char buffer[2 * sizeof(registers_[0])]; 1037 memcpy(buffer, &result, sizeof(buffer)); 1038 // Copy result to r0 and r1. 1039 memcpy(registers_, buffer, sizeof(buffer)); 1040 } 1041} 1042 1043 1044void Simulator::TrashCallerSaveRegisters() { 1045 // We don't trash the registers with the return value. 1046 registers_[2] = 0x50Bad4U; 1047 registers_[3] = 0x50Bad4U; 1048 registers_[12] = 0x50Bad4U; 1049} 1050 1051 1052int Simulator::ReadW(int32_t addr, Instruction* instr) { 1053 // All supported ARM targets allow unaligned accesses, so we don't need to 1054 // check the alignment here. 1055 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1056 return *ptr; 1057} 1058 1059 1060void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { 1061 // All supported ARM targets allow unaligned accesses, so we don't need to 1062 // check the alignment here. 1063 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1064 *ptr = value; 1065} 1066 1067 1068uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { 1069 // All supported ARM targets allow unaligned accesses, so we don't need to 1070 // check the alignment here. 1071 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1072 return *ptr; 1073} 1074 1075 1076int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { 1077 // All supported ARM targets allow unaligned accesses, so we don't need to 1078 // check the alignment here. 1079 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1080 return *ptr; 1081} 1082 1083 1084void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { 1085 // All supported ARM targets allow unaligned accesses, so we don't need to 1086 // check the alignment here. 1087 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1088 *ptr = value; 1089} 1090 1091 1092void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { 1093 // All supported ARM targets allow unaligned accesses, so we don't need to 1094 // check the alignment here. 1095 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1096 *ptr = value; 1097} 1098 1099 1100uint8_t Simulator::ReadBU(int32_t addr) { 1101 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1102 return *ptr; 1103} 1104 1105 1106int8_t Simulator::ReadB(int32_t addr) { 1107 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1108 return *ptr; 1109} 1110 1111 1112void Simulator::WriteB(int32_t addr, uint8_t value) { 1113 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1114 *ptr = value; 1115} 1116 1117 1118void Simulator::WriteB(int32_t addr, int8_t value) { 1119 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1120 *ptr = value; 1121} 1122 1123 1124int32_t* Simulator::ReadDW(int32_t addr) { 1125 // All supported ARM targets allow unaligned accesses, so we don't need to 1126 // check the alignment here. 1127 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1128 return ptr; 1129} 1130 1131 1132void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { 1133 // All supported ARM targets allow unaligned accesses, so we don't need to 1134 // check the alignment here. 1135 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1136 *ptr++ = value1; 1137 *ptr = value2; 1138} 1139 1140 1141// Returns the limit of the stack area to enable checking for stack overflows. 1142uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { 1143 // The simulator uses a separate JS stack. If we have exhausted the C stack, 1144 // we also drop down the JS limit to reflect the exhaustion on the JS stack. 1145 if (GetCurrentStackPosition() < c_limit) { 1146 return reinterpret_cast<uintptr_t>(get_sp()); 1147 } 1148 1149 // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes 1150 // to prevent overrunning the stack when pushing values. 1151 return reinterpret_cast<uintptr_t>(stack_) + 1024; 1152} 1153 1154 1155// Unsupported instructions use Format to print an error and stop execution. 1156void Simulator::Format(Instruction* instr, const char* format) { 1157 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", 1158 reinterpret_cast<intptr_t>(instr), format); 1159 UNIMPLEMENTED(); 1160} 1161 1162 1163// Checks if the current instruction should be executed based on its 1164// condition bits. 1165bool Simulator::ConditionallyExecute(Instruction* instr) { 1166 switch (instr->ConditionField()) { 1167 case eq: return z_flag_; 1168 case ne: return !z_flag_; 1169 case cs: return c_flag_; 1170 case cc: return !c_flag_; 1171 case mi: return n_flag_; 1172 case pl: return !n_flag_; 1173 case vs: return v_flag_; 1174 case vc: return !v_flag_; 1175 case hi: return c_flag_ && !z_flag_; 1176 case ls: return !c_flag_ || z_flag_; 1177 case ge: return n_flag_ == v_flag_; 1178 case lt: return n_flag_ != v_flag_; 1179 case gt: return !z_flag_ && (n_flag_ == v_flag_); 1180 case le: return z_flag_ || (n_flag_ != v_flag_); 1181 case al: return true; 1182 default: UNREACHABLE(); 1183 } 1184 return false; 1185} 1186 1187 1188// Calculate and set the Negative and Zero flags. 1189void Simulator::SetNZFlags(int32_t val) { 1190 n_flag_ = (val < 0); 1191 z_flag_ = (val == 0); 1192} 1193 1194 1195// Set the Carry flag. 1196void Simulator::SetCFlag(bool val) { 1197 c_flag_ = val; 1198} 1199 1200 1201// Set the oVerflow flag. 1202void Simulator::SetVFlag(bool val) { 1203 v_flag_ = val; 1204} 1205 1206 1207// Calculate C flag value for additions. 1208bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { 1209 uint32_t uleft = static_cast<uint32_t>(left); 1210 uint32_t uright = static_cast<uint32_t>(right); 1211 uint32_t urest = 0xffffffffU - uleft; 1212 1213 return (uright > urest) || 1214 (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); 1215} 1216 1217 1218// Calculate C flag value for subtractions. 1219bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) { 1220 uint32_t uleft = static_cast<uint32_t>(left); 1221 uint32_t uright = static_cast<uint32_t>(right); 1222 1223 return (uright > uleft) || 1224 (!carry && (((uright + 1) > uleft) || (uright > (uleft - 1)))); 1225} 1226 1227 1228// Calculate V flag value for additions and subtractions. 1229bool Simulator::OverflowFrom(int32_t alu_out, 1230 int32_t left, int32_t right, bool addition) { 1231 bool overflow; 1232 if (addition) { 1233 // operands have the same sign 1234 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) 1235 // and operands and result have different sign 1236 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1237 } else { 1238 // operands have different signs 1239 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) 1240 // and first operand and result have different signs 1241 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1242 } 1243 return overflow; 1244} 1245 1246 1247// Support for VFP comparisons. 1248void Simulator::Compute_FPSCR_Flags(float val1, float val2) { 1249 if (std::isnan(val1) || std::isnan(val2)) { 1250 n_flag_FPSCR_ = false; 1251 z_flag_FPSCR_ = false; 1252 c_flag_FPSCR_ = true; 1253 v_flag_FPSCR_ = true; 1254 // All non-NaN cases. 1255 } else if (val1 == val2) { 1256 n_flag_FPSCR_ = false; 1257 z_flag_FPSCR_ = true; 1258 c_flag_FPSCR_ = true; 1259 v_flag_FPSCR_ = false; 1260 } else if (val1 < val2) { 1261 n_flag_FPSCR_ = true; 1262 z_flag_FPSCR_ = false; 1263 c_flag_FPSCR_ = false; 1264 v_flag_FPSCR_ = false; 1265 } else { 1266 // Case when (val1 > val2). 1267 n_flag_FPSCR_ = false; 1268 z_flag_FPSCR_ = false; 1269 c_flag_FPSCR_ = true; 1270 v_flag_FPSCR_ = false; 1271 } 1272} 1273 1274 1275void Simulator::Compute_FPSCR_Flags(double val1, double val2) { 1276 if (std::isnan(val1) || std::isnan(val2)) { 1277 n_flag_FPSCR_ = false; 1278 z_flag_FPSCR_ = false; 1279 c_flag_FPSCR_ = true; 1280 v_flag_FPSCR_ = true; 1281 // All non-NaN cases. 1282 } else if (val1 == val2) { 1283 n_flag_FPSCR_ = false; 1284 z_flag_FPSCR_ = true; 1285 c_flag_FPSCR_ = true; 1286 v_flag_FPSCR_ = false; 1287 } else if (val1 < val2) { 1288 n_flag_FPSCR_ = true; 1289 z_flag_FPSCR_ = false; 1290 c_flag_FPSCR_ = false; 1291 v_flag_FPSCR_ = false; 1292 } else { 1293 // Case when (val1 > val2). 1294 n_flag_FPSCR_ = false; 1295 z_flag_FPSCR_ = false; 1296 c_flag_FPSCR_ = true; 1297 v_flag_FPSCR_ = false; 1298 } 1299} 1300 1301 1302void Simulator::Copy_FPSCR_to_APSR() { 1303 n_flag_ = n_flag_FPSCR_; 1304 z_flag_ = z_flag_FPSCR_; 1305 c_flag_ = c_flag_FPSCR_; 1306 v_flag_ = v_flag_FPSCR_; 1307} 1308 1309 1310// Addressing Mode 1 - Data-processing operands: 1311// Get the value based on the shifter_operand with register. 1312int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { 1313 ShiftOp shift = instr->ShiftField(); 1314 int shift_amount = instr->ShiftAmountValue(); 1315 int32_t result = get_register(instr->RmValue()); 1316 if (instr->Bit(4) == 0) { 1317 // by immediate 1318 if ((shift == ROR) && (shift_amount == 0)) { 1319 UNIMPLEMENTED(); 1320 return result; 1321 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { 1322 shift_amount = 32; 1323 } 1324 switch (shift) { 1325 case ASR: { 1326 if (shift_amount == 0) { 1327 if (result < 0) { 1328 result = 0xffffffff; 1329 *carry_out = true; 1330 } else { 1331 result = 0; 1332 *carry_out = false; 1333 } 1334 } else { 1335 result >>= (shift_amount - 1); 1336 *carry_out = (result & 1) == 1; 1337 result >>= 1; 1338 } 1339 break; 1340 } 1341 1342 case LSL: { 1343 if (shift_amount == 0) { 1344 *carry_out = c_flag_; 1345 } else { 1346 result <<= (shift_amount - 1); 1347 *carry_out = (result < 0); 1348 result <<= 1; 1349 } 1350 break; 1351 } 1352 1353 case LSR: { 1354 if (shift_amount == 0) { 1355 result = 0; 1356 *carry_out = c_flag_; 1357 } else { 1358 uint32_t uresult = static_cast<uint32_t>(result); 1359 uresult >>= (shift_amount - 1); 1360 *carry_out = (uresult & 1) == 1; 1361 uresult >>= 1; 1362 result = static_cast<int32_t>(uresult); 1363 } 1364 break; 1365 } 1366 1367 case ROR: { 1368 if (shift_amount == 0) { 1369 *carry_out = c_flag_; 1370 } else { 1371 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1372 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1373 result = right | left; 1374 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1375 } 1376 break; 1377 } 1378 1379 default: { 1380 UNREACHABLE(); 1381 break; 1382 } 1383 } 1384 } else { 1385 // by register 1386 int rs = instr->RsValue(); 1387 shift_amount = get_register(rs) &0xff; 1388 switch (shift) { 1389 case ASR: { 1390 if (shift_amount == 0) { 1391 *carry_out = c_flag_; 1392 } else if (shift_amount < 32) { 1393 result >>= (shift_amount - 1); 1394 *carry_out = (result & 1) == 1; 1395 result >>= 1; 1396 } else { 1397 DCHECK(shift_amount >= 32); 1398 if (result < 0) { 1399 *carry_out = true; 1400 result = 0xffffffff; 1401 } else { 1402 *carry_out = false; 1403 result = 0; 1404 } 1405 } 1406 break; 1407 } 1408 1409 case LSL: { 1410 if (shift_amount == 0) { 1411 *carry_out = c_flag_; 1412 } else if (shift_amount < 32) { 1413 result <<= (shift_amount - 1); 1414 *carry_out = (result < 0); 1415 result <<= 1; 1416 } else if (shift_amount == 32) { 1417 *carry_out = (result & 1) == 1; 1418 result = 0; 1419 } else { 1420 DCHECK(shift_amount > 32); 1421 *carry_out = false; 1422 result = 0; 1423 } 1424 break; 1425 } 1426 1427 case LSR: { 1428 if (shift_amount == 0) { 1429 *carry_out = c_flag_; 1430 } else if (shift_amount < 32) { 1431 uint32_t uresult = static_cast<uint32_t>(result); 1432 uresult >>= (shift_amount - 1); 1433 *carry_out = (uresult & 1) == 1; 1434 uresult >>= 1; 1435 result = static_cast<int32_t>(uresult); 1436 } else if (shift_amount == 32) { 1437 *carry_out = (result < 0); 1438 result = 0; 1439 } else { 1440 *carry_out = false; 1441 result = 0; 1442 } 1443 break; 1444 } 1445 1446 case ROR: { 1447 if (shift_amount == 0) { 1448 *carry_out = c_flag_; 1449 } else { 1450 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1451 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1452 result = right | left; 1453 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1454 } 1455 break; 1456 } 1457 1458 default: { 1459 UNREACHABLE(); 1460 break; 1461 } 1462 } 1463 } 1464 return result; 1465} 1466 1467 1468// Addressing Mode 1 - Data-processing operands: 1469// Get the value based on the shifter_operand with immediate. 1470int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { 1471 int rotate = instr->RotateValue() * 2; 1472 int immed8 = instr->Immed8Value(); 1473 int imm = base::bits::RotateRight32(immed8, rotate); 1474 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); 1475 return imm; 1476} 1477 1478 1479static int count_bits(int bit_vector) { 1480 int count = 0; 1481 while (bit_vector != 0) { 1482 if ((bit_vector & 1) != 0) { 1483 count++; 1484 } 1485 bit_vector >>= 1; 1486 } 1487 return count; 1488} 1489 1490 1491int32_t Simulator::ProcessPU(Instruction* instr, 1492 int num_regs, 1493 int reg_size, 1494 intptr_t* start_address, 1495 intptr_t* end_address) { 1496 int rn = instr->RnValue(); 1497 int32_t rn_val = get_register(rn); 1498 switch (instr->PUField()) { 1499 case da_x: { 1500 UNIMPLEMENTED(); 1501 break; 1502 } 1503 case ia_x: { 1504 *start_address = rn_val; 1505 *end_address = rn_val + (num_regs * reg_size) - reg_size; 1506 rn_val = rn_val + (num_regs * reg_size); 1507 break; 1508 } 1509 case db_x: { 1510 *start_address = rn_val - (num_regs * reg_size); 1511 *end_address = rn_val - reg_size; 1512 rn_val = *start_address; 1513 break; 1514 } 1515 case ib_x: { 1516 *start_address = rn_val + reg_size; 1517 *end_address = rn_val + (num_regs * reg_size); 1518 rn_val = *end_address; 1519 break; 1520 } 1521 default: { 1522 UNREACHABLE(); 1523 break; 1524 } 1525 } 1526 return rn_val; 1527} 1528 1529 1530// Addressing Mode 4 - Load and Store Multiple 1531void Simulator::HandleRList(Instruction* instr, bool load) { 1532 int rlist = instr->RlistValue(); 1533 int num_regs = count_bits(rlist); 1534 1535 intptr_t start_address = 0; 1536 intptr_t end_address = 0; 1537 int32_t rn_val = 1538 ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); 1539 1540 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1541 // Catch null pointers a little earlier. 1542 DCHECK(start_address > 8191 || start_address < 0); 1543 int reg = 0; 1544 while (rlist != 0) { 1545 if ((rlist & 1) != 0) { 1546 if (load) { 1547 set_register(reg, *address); 1548 } else { 1549 *address = get_register(reg); 1550 } 1551 address += 1; 1552 } 1553 reg++; 1554 rlist >>= 1; 1555 } 1556 DCHECK(end_address == ((intptr_t)address) - 4); 1557 if (instr->HasW()) { 1558 set_register(instr->RnValue(), rn_val); 1559 } 1560} 1561 1562 1563// Addressing Mode 6 - Load and Store Multiple Coprocessor registers. 1564void Simulator::HandleVList(Instruction* instr) { 1565 VFPRegPrecision precision = 1566 (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; 1567 int operand_size = (precision == kSinglePrecision) ? 4 : 8; 1568 1569 bool load = (instr->VLValue() == 0x1); 1570 1571 int vd; 1572 int num_regs; 1573 vd = instr->VFPDRegValue(precision); 1574 if (precision == kSinglePrecision) { 1575 num_regs = instr->Immed8Value(); 1576 } else { 1577 num_regs = instr->Immed8Value() / 2; 1578 } 1579 1580 intptr_t start_address = 0; 1581 intptr_t end_address = 0; 1582 int32_t rn_val = 1583 ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); 1584 1585 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1586 for (int reg = vd; reg < vd + num_regs; reg++) { 1587 if (precision == kSinglePrecision) { 1588 if (load) { 1589 set_s_register_from_sinteger( 1590 reg, ReadW(reinterpret_cast<int32_t>(address), instr)); 1591 } else { 1592 WriteW(reinterpret_cast<int32_t>(address), 1593 get_sinteger_from_s_register(reg), instr); 1594 } 1595 address += 1; 1596 } else { 1597 if (load) { 1598 int32_t data[] = { 1599 ReadW(reinterpret_cast<int32_t>(address), instr), 1600 ReadW(reinterpret_cast<int32_t>(address + 1), instr) 1601 }; 1602 set_d_register(reg, reinterpret_cast<uint32_t*>(data)); 1603 } else { 1604 uint32_t data[2]; 1605 get_d_register(reg, data); 1606 WriteW(reinterpret_cast<int32_t>(address), data[0], instr); 1607 WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr); 1608 } 1609 address += 2; 1610 } 1611 } 1612 DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address); 1613 if (instr->HasW()) { 1614 set_register(instr->RnValue(), rn_val); 1615 } 1616} 1617 1618 1619// Calls into the V8 runtime are based on this very simple interface. 1620// Note: To be able to return two values from some calls the code in runtime.cc 1621// uses the ObjectPair which is essentially two 32-bit values stuffed into a 1622// 64-bit value. With the code below we assume that all runtime calls return 1623// 64 bits of result. If they don't, the r1 result register contains a bogus 1624// value, which is fine because it is caller-saved. 1625typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, 1626 int32_t arg1, 1627 int32_t arg2, 1628 int32_t arg3, 1629 int32_t arg4, 1630 int32_t arg5); 1631 1632typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int32_t arg0, int32_t arg1, 1633 int32_t arg2, int32_t arg3, 1634 int32_t arg4); 1635 1636// These prototypes handle the four types of FP calls. 1637typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1638typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1639typedef double (*SimulatorRuntimeFPCall)(double darg0); 1640typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); 1641 1642// This signature supports direct call in to API function native callback 1643// (refer to InvocationCallback in v8.h). 1644typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0); 1645typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1); 1646 1647// This signature supports direct call to accessor getter callback. 1648typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); 1649typedef void (*SimulatorRuntimeProfilingGetterCall)( 1650 int32_t arg0, int32_t arg1, void* arg2); 1651 1652// Software interrupt instructions are used by the simulator to call into the 1653// C-based V8 runtime. 1654void Simulator::SoftwareInterrupt(Instruction* instr) { 1655 int svc = instr->SvcValue(); 1656 switch (svc) { 1657 case kCallRtRedirected: { 1658 // Check if stack is aligned. Error if not aligned is reported below to 1659 // include information on the function called. 1660 bool stack_aligned = 1661 (get_register(sp) 1662 & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; 1663 Redirection* redirection = Redirection::FromSwiInstruction(instr); 1664 int32_t arg0 = get_register(r0); 1665 int32_t arg1 = get_register(r1); 1666 int32_t arg2 = get_register(r2); 1667 int32_t arg3 = get_register(r3); 1668 int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); 1669 int32_t arg4 = stack_pointer[0]; 1670 int32_t arg5 = stack_pointer[1]; 1671 bool fp_call = 1672 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 1673 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 1674 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 1675 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 1676 // This is dodgy but it works because the C entry stubs are never moved. 1677 // See comment in codegen-arm.cc and bug 1242173. 1678 int32_t saved_lr = get_register(lr); 1679 intptr_t external = 1680 reinterpret_cast<intptr_t>(redirection->external_function()); 1681 if (fp_call) { 1682 double dval0, dval1; // one or two double parameters 1683 int32_t ival; // zero or one integer parameters 1684 int64_t iresult = 0; // integer return value 1685 double dresult = 0; // double return value 1686 GetFpArgs(&dval0, &dval1, &ival); 1687 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1688 SimulatorRuntimeCall generic_target = 1689 reinterpret_cast<SimulatorRuntimeCall>(external); 1690 switch (redirection->type()) { 1691 case ExternalReference::BUILTIN_FP_FP_CALL: 1692 case ExternalReference::BUILTIN_COMPARE_CALL: 1693 PrintF("Call to host function at %p with args %f, %f", 1694 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, 1695 dval1); 1696 break; 1697 case ExternalReference::BUILTIN_FP_CALL: 1698 PrintF("Call to host function at %p with arg %f", 1699 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0); 1700 break; 1701 case ExternalReference::BUILTIN_FP_INT_CALL: 1702 PrintF("Call to host function at %p with args %f, %d", 1703 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, 1704 ival); 1705 break; 1706 default: 1707 UNREACHABLE(); 1708 break; 1709 } 1710 if (!stack_aligned) { 1711 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1712 } 1713 PrintF("\n"); 1714 } 1715 CHECK(stack_aligned); 1716 switch (redirection->type()) { 1717 case ExternalReference::BUILTIN_COMPARE_CALL: { 1718 SimulatorRuntimeCompareCall target = 1719 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 1720 iresult = target(dval0, dval1); 1721 set_register(r0, static_cast<int32_t>(iresult)); 1722 set_register(r1, static_cast<int32_t>(iresult >> 32)); 1723 break; 1724 } 1725 case ExternalReference::BUILTIN_FP_FP_CALL: { 1726 SimulatorRuntimeFPFPCall target = 1727 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 1728 dresult = target(dval0, dval1); 1729 SetFpResult(dresult); 1730 break; 1731 } 1732 case ExternalReference::BUILTIN_FP_CALL: { 1733 SimulatorRuntimeFPCall target = 1734 reinterpret_cast<SimulatorRuntimeFPCall>(external); 1735 dresult = target(dval0); 1736 SetFpResult(dresult); 1737 break; 1738 } 1739 case ExternalReference::BUILTIN_FP_INT_CALL: { 1740 SimulatorRuntimeFPIntCall target = 1741 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 1742 dresult = target(dval0, ival); 1743 SetFpResult(dresult); 1744 break; 1745 } 1746 default: 1747 UNREACHABLE(); 1748 break; 1749 } 1750 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1751 switch (redirection->type()) { 1752 case ExternalReference::BUILTIN_COMPARE_CALL: 1753 PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); 1754 break; 1755 case ExternalReference::BUILTIN_FP_FP_CALL: 1756 case ExternalReference::BUILTIN_FP_CALL: 1757 case ExternalReference::BUILTIN_FP_INT_CALL: 1758 PrintF("Returned %f\n", dresult); 1759 break; 1760 default: 1761 UNREACHABLE(); 1762 break; 1763 } 1764 } 1765 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 1766 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1767 PrintF("Call to host function at %p args %08x", 1768 reinterpret_cast<void*>(external), arg0); 1769 if (!stack_aligned) { 1770 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1771 } 1772 PrintF("\n"); 1773 } 1774 CHECK(stack_aligned); 1775 SimulatorRuntimeDirectApiCall target = 1776 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 1777 target(arg0); 1778 } else if ( 1779 redirection->type() == ExternalReference::PROFILING_API_CALL) { 1780 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1781 PrintF("Call to host function at %p args %08x %08x", 1782 reinterpret_cast<void*>(external), arg0, arg1); 1783 if (!stack_aligned) { 1784 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1785 } 1786 PrintF("\n"); 1787 } 1788 CHECK(stack_aligned); 1789 SimulatorRuntimeProfilingApiCall target = 1790 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 1791 target(arg0, Redirection::ReverseRedirection(arg1)); 1792 } else if ( 1793 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 1794 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1795 PrintF("Call to host function at %p args %08x %08x", 1796 reinterpret_cast<void*>(external), arg0, arg1); 1797 if (!stack_aligned) { 1798 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1799 } 1800 PrintF("\n"); 1801 } 1802 CHECK(stack_aligned); 1803 SimulatorRuntimeDirectGetterCall target = 1804 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 1805 target(arg0, arg1); 1806 } else if ( 1807 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { 1808 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1809 PrintF("Call to host function at %p args %08x %08x %08x", 1810 reinterpret_cast<void*>(external), arg0, arg1, arg2); 1811 if (!stack_aligned) { 1812 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1813 } 1814 PrintF("\n"); 1815 } 1816 CHECK(stack_aligned); 1817 SimulatorRuntimeProfilingGetterCall target = 1818 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( 1819 external); 1820 target(arg0, arg1, Redirection::ReverseRedirection(arg2)); 1821 } else if (redirection->type() == 1822 ExternalReference::BUILTIN_CALL_TRIPLE) { 1823 // builtin call returning ObjectTriple. 1824 SimulatorRuntimeTripleCall target = 1825 reinterpret_cast<SimulatorRuntimeTripleCall>(external); 1826 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1827 PrintF( 1828 "Call to host triple returning runtime function %p " 1829 "args %08x, %08x, %08x, %08x, %08x", 1830 static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4, 1831 arg5); 1832 if (!stack_aligned) { 1833 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1834 } 1835 PrintF("\n"); 1836 } 1837 CHECK(stack_aligned); 1838 // arg0 is a hidden argument pointing to the return location, so don't 1839 // pass it to the target function. 1840 ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5); 1841 if (::v8::internal::FLAG_trace_sim) { 1842 PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x), 1843 static_cast<void*>(result.y), static_cast<void*>(result.z)); 1844 } 1845 // Return is passed back in address pointed to by hidden first argument. 1846 ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0); 1847 *sim_result = result; 1848 set_register(r0, arg0); 1849 } else { 1850 // builtin call. 1851 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || 1852 redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); 1853 SimulatorRuntimeCall target = 1854 reinterpret_cast<SimulatorRuntimeCall>(external); 1855 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1856 PrintF( 1857 "Call to host function at %p " 1858 "args %08x, %08x, %08x, %08x, %08x, %08x", 1859 static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3, 1860 arg4, arg5); 1861 if (!stack_aligned) { 1862 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1863 } 1864 PrintF("\n"); 1865 } 1866 CHECK(stack_aligned); 1867 int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); 1868 int32_t lo_res = static_cast<int32_t>(result); 1869 int32_t hi_res = static_cast<int32_t>(result >> 32); 1870 if (::v8::internal::FLAG_trace_sim) { 1871 PrintF("Returned %08x\n", lo_res); 1872 } 1873 set_register(r0, lo_res); 1874 set_register(r1, hi_res); 1875 } 1876 set_register(lr, saved_lr); 1877 set_pc(get_register(lr)); 1878 break; 1879 } 1880 case kBreakpoint: { 1881 ArmDebugger dbg(this); 1882 dbg.Debug(); 1883 break; 1884 } 1885 // stop uses all codes greater than 1 << 23. 1886 default: { 1887 if (svc >= (1 << 23)) { 1888 uint32_t code = svc & kStopCodeMask; 1889 if (isWatchedStop(code)) { 1890 IncreaseStopCounter(code); 1891 } 1892 // Stop if it is enabled, otherwise go on jumping over the stop 1893 // and the message address. 1894 if (isEnabledStop(code)) { 1895 ArmDebugger dbg(this); 1896 dbg.Stop(instr); 1897 } else { 1898 set_pc(get_pc() + 2 * Instruction::kInstrSize); 1899 } 1900 } else { 1901 // This is not a valid svc code. 1902 UNREACHABLE(); 1903 break; 1904 } 1905 } 1906 } 1907} 1908 1909 1910float Simulator::canonicalizeNaN(float value) { 1911 // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation 1912 // choices" of the ARM Reference Manual. 1913 const uint32_t kDefaultNaN = 0x7FC00000u; 1914 if (FPSCR_default_NaN_mode_ && std::isnan(value)) { 1915 value = bit_cast<float>(kDefaultNaN); 1916 } 1917 return value; 1918} 1919 1920 1921double Simulator::canonicalizeNaN(double value) { 1922 // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation 1923 // choices" of the ARM Reference Manual. 1924 const uint64_t kDefaultNaN = V8_UINT64_C(0x7FF8000000000000); 1925 if (FPSCR_default_NaN_mode_ && std::isnan(value)) { 1926 value = bit_cast<double>(kDefaultNaN); 1927 } 1928 return value; 1929} 1930 1931 1932// Stop helper functions. 1933bool Simulator::isStopInstruction(Instruction* instr) { 1934 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); 1935} 1936 1937 1938bool Simulator::isWatchedStop(uint32_t code) { 1939 DCHECK(code <= kMaxStopCode); 1940 return code < kNumOfWatchedStops; 1941} 1942 1943 1944bool Simulator::isEnabledStop(uint32_t code) { 1945 DCHECK(code <= kMaxStopCode); 1946 // Unwatched stops are always enabled. 1947 return !isWatchedStop(code) || 1948 !(watched_stops_[code].count & kStopDisabledBit); 1949} 1950 1951 1952void Simulator::EnableStop(uint32_t code) { 1953 DCHECK(isWatchedStop(code)); 1954 if (!isEnabledStop(code)) { 1955 watched_stops_[code].count &= ~kStopDisabledBit; 1956 } 1957} 1958 1959 1960void Simulator::DisableStop(uint32_t code) { 1961 DCHECK(isWatchedStop(code)); 1962 if (isEnabledStop(code)) { 1963 watched_stops_[code].count |= kStopDisabledBit; 1964 } 1965} 1966 1967 1968void Simulator::IncreaseStopCounter(uint32_t code) { 1969 DCHECK(code <= kMaxStopCode); 1970 DCHECK(isWatchedStop(code)); 1971 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 1972 PrintF("Stop counter for code %i has overflowed.\n" 1973 "Enabling this code and reseting the counter to 0.\n", code); 1974 watched_stops_[code].count = 0; 1975 EnableStop(code); 1976 } else { 1977 watched_stops_[code].count++; 1978 } 1979} 1980 1981 1982// Print a stop status. 1983void Simulator::PrintStopInfo(uint32_t code) { 1984 DCHECK(code <= kMaxStopCode); 1985 if (!isWatchedStop(code)) { 1986 PrintF("Stop not watched."); 1987 } else { 1988 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; 1989 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 1990 // Don't print the state of unused breakpoints. 1991 if (count != 0) { 1992 if (watched_stops_[code].desc) { 1993 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", 1994 code, code, state, count, watched_stops_[code].desc); 1995 } else { 1996 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", 1997 code, code, state, count); 1998 } 1999 } 2000 } 2001} 2002 2003 2004// Handle execution based on instruction types. 2005 2006// Instruction types 0 and 1 are both rolled into one function because they 2007// only differ in the handling of the shifter_operand. 2008void Simulator::DecodeType01(Instruction* instr) { 2009 int type = instr->TypeValue(); 2010 if ((type == 0) && instr->IsSpecialType0()) { 2011 // multiply instruction or extra loads and stores 2012 if (instr->Bits(7, 4) == 9) { 2013 if (instr->Bit(24) == 0) { 2014 // Raw field decoding here. Multiply instructions have their Rd in 2015 // funny places. 2016 int rn = instr->RnValue(); 2017 int rm = instr->RmValue(); 2018 int rs = instr->RsValue(); 2019 int32_t rs_val = get_register(rs); 2020 int32_t rm_val = get_register(rm); 2021 if (instr->Bit(23) == 0) { 2022 if (instr->Bit(21) == 0) { 2023 // The MUL instruction description (A 4.1.33) refers to Rd as being 2024 // the destination for the operation, but it confusingly uses the 2025 // Rn field to encode it. 2026 // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); 2027 int rd = rn; // Remap the rn field to the Rd register. 2028 int32_t alu_out = rm_val * rs_val; 2029 set_register(rd, alu_out); 2030 if (instr->HasS()) { 2031 SetNZFlags(alu_out); 2032 } 2033 } else { 2034 int rd = instr->RdValue(); 2035 int32_t acc_value = get_register(rd); 2036 if (instr->Bit(22) == 0) { 2037 // The MLA instruction description (A 4.1.28) refers to the order 2038 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the 2039 // Rn field to encode the Rd register and the Rd field to encode 2040 // the Rn register. 2041 // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); 2042 int32_t mul_out = rm_val * rs_val; 2043 int32_t result = acc_value + mul_out; 2044 set_register(rn, result); 2045 } else { 2046 // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); 2047 int32_t mul_out = rm_val * rs_val; 2048 int32_t result = acc_value - mul_out; 2049 set_register(rn, result); 2050 } 2051 } 2052 } else { 2053 // The signed/long multiply instructions use the terms RdHi and RdLo 2054 // when referring to the target registers. They are mapped to the Rn 2055 // and Rd fields as follows: 2056 // RdLo == Rd 2057 // RdHi == Rn (This is confusingly stored in variable rd here 2058 // because the mul instruction from above uses the 2059 // Rn field to encode the Rd register. Good luck figuring 2060 // this out without reading the ARM instruction manual 2061 // at a very detailed level.) 2062 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); 2063 int rd_hi = rn; // Remap the rn field to the RdHi register. 2064 int rd_lo = instr->RdValue(); 2065 int32_t hi_res = 0; 2066 int32_t lo_res = 0; 2067 if (instr->Bit(22) == 1) { 2068 int64_t left_op = static_cast<int32_t>(rm_val); 2069 int64_t right_op = static_cast<int32_t>(rs_val); 2070 uint64_t result = left_op * right_op; 2071 hi_res = static_cast<int32_t>(result >> 32); 2072 lo_res = static_cast<int32_t>(result & 0xffffffff); 2073 } else { 2074 // unsigned multiply 2075 uint64_t left_op = static_cast<uint32_t>(rm_val); 2076 uint64_t right_op = static_cast<uint32_t>(rs_val); 2077 uint64_t result = left_op * right_op; 2078 hi_res = static_cast<int32_t>(result >> 32); 2079 lo_res = static_cast<int32_t>(result & 0xffffffff); 2080 } 2081 set_register(rd_lo, lo_res); 2082 set_register(rd_hi, hi_res); 2083 if (instr->HasS()) { 2084 UNIMPLEMENTED(); 2085 } 2086 } 2087 } else { 2088 UNIMPLEMENTED(); // Not used by V8. 2089 } 2090 } else { 2091 // extra load/store instructions 2092 int rd = instr->RdValue(); 2093 int rn = instr->RnValue(); 2094 int32_t rn_val = get_register(rn); 2095 int32_t addr = 0; 2096 if (instr->Bit(22) == 0) { 2097 int rm = instr->RmValue(); 2098 int32_t rm_val = get_register(rm); 2099 switch (instr->PUField()) { 2100 case da_x: { 2101 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); 2102 DCHECK(!instr->HasW()); 2103 addr = rn_val; 2104 rn_val -= rm_val; 2105 set_register(rn, rn_val); 2106 break; 2107 } 2108 case ia_x: { 2109 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); 2110 DCHECK(!instr->HasW()); 2111 addr = rn_val; 2112 rn_val += rm_val; 2113 set_register(rn, rn_val); 2114 break; 2115 } 2116 case db_x: { 2117 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); 2118 rn_val -= rm_val; 2119 addr = rn_val; 2120 if (instr->HasW()) { 2121 set_register(rn, rn_val); 2122 } 2123 break; 2124 } 2125 case ib_x: { 2126 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); 2127 rn_val += rm_val; 2128 addr = rn_val; 2129 if (instr->HasW()) { 2130 set_register(rn, rn_val); 2131 } 2132 break; 2133 } 2134 default: { 2135 // The PU field is a 2-bit field. 2136 UNREACHABLE(); 2137 break; 2138 } 2139 } 2140 } else { 2141 int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); 2142 switch (instr->PUField()) { 2143 case da_x: { 2144 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); 2145 DCHECK(!instr->HasW()); 2146 addr = rn_val; 2147 rn_val -= imm_val; 2148 set_register(rn, rn_val); 2149 break; 2150 } 2151 case ia_x: { 2152 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); 2153 DCHECK(!instr->HasW()); 2154 addr = rn_val; 2155 rn_val += imm_val; 2156 set_register(rn, rn_val); 2157 break; 2158 } 2159 case db_x: { 2160 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); 2161 rn_val -= imm_val; 2162 addr = rn_val; 2163 if (instr->HasW()) { 2164 set_register(rn, rn_val); 2165 } 2166 break; 2167 } 2168 case ib_x: { 2169 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); 2170 rn_val += imm_val; 2171 addr = rn_val; 2172 if (instr->HasW()) { 2173 set_register(rn, rn_val); 2174 } 2175 break; 2176 } 2177 default: { 2178 // The PU field is a 2-bit field. 2179 UNREACHABLE(); 2180 break; 2181 } 2182 } 2183 } 2184 if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) { 2185 DCHECK((rd % 2) == 0); 2186 if (instr->HasH()) { 2187 // The strd instruction. 2188 int32_t value1 = get_register(rd); 2189 int32_t value2 = get_register(rd+1); 2190 WriteDW(addr, value1, value2); 2191 } else { 2192 // The ldrd instruction. 2193 int* rn_data = ReadDW(addr); 2194 set_dw_register(rd, rn_data); 2195 } 2196 } else if (instr->HasH()) { 2197 if (instr->HasSign()) { 2198 if (instr->HasL()) { 2199 int16_t val = ReadH(addr, instr); 2200 set_register(rd, val); 2201 } else { 2202 int16_t val = get_register(rd); 2203 WriteH(addr, val, instr); 2204 } 2205 } else { 2206 if (instr->HasL()) { 2207 uint16_t val = ReadHU(addr, instr); 2208 set_register(rd, val); 2209 } else { 2210 uint16_t val = get_register(rd); 2211 WriteH(addr, val, instr); 2212 } 2213 } 2214 } else { 2215 // signed byte loads 2216 DCHECK(instr->HasSign()); 2217 DCHECK(instr->HasL()); 2218 int8_t val = ReadB(addr); 2219 set_register(rd, val); 2220 } 2221 return; 2222 } 2223 } else if ((type == 0) && instr->IsMiscType0()) { 2224 if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) && 2225 (instr->Bits(15, 4) == 0xf00)) { 2226 // MSR 2227 int rm = instr->RmValue(); 2228 DCHECK_NE(pc, rm); // UNPREDICTABLE 2229 SRegisterFieldMask sreg_and_mask = 2230 instr->BitField(22, 22) | instr->BitField(19, 16); 2231 SetSpecialRegister(sreg_and_mask, get_register(rm)); 2232 } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) && 2233 (instr->Bits(11, 0) == 0)) { 2234 // MRS 2235 int rd = instr->RdValue(); 2236 DCHECK_NE(pc, rd); // UNPREDICTABLE 2237 SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22)); 2238 set_register(rd, GetFromSpecialRegister(sreg)); 2239 } else if (instr->Bits(22, 21) == 1) { 2240 int rm = instr->RmValue(); 2241 switch (instr->BitField(7, 4)) { 2242 case BX: 2243 set_pc(get_register(rm)); 2244 break; 2245 case BLX: { 2246 uint32_t old_pc = get_pc(); 2247 set_pc(get_register(rm)); 2248 set_register(lr, old_pc + Instruction::kInstrSize); 2249 break; 2250 } 2251 case BKPT: { 2252 ArmDebugger dbg(this); 2253 PrintF("Simulator hit BKPT.\n"); 2254 dbg.Debug(); 2255 break; 2256 } 2257 default: 2258 UNIMPLEMENTED(); 2259 } 2260 } else if (instr->Bits(22, 21) == 3) { 2261 int rm = instr->RmValue(); 2262 int rd = instr->RdValue(); 2263 switch (instr->BitField(7, 4)) { 2264 case CLZ: { 2265 uint32_t bits = get_register(rm); 2266 int leading_zeros = 0; 2267 if (bits == 0) { 2268 leading_zeros = 32; 2269 } else { 2270 while ((bits & 0x80000000u) == 0) { 2271 bits <<= 1; 2272 leading_zeros++; 2273 } 2274 } 2275 set_register(rd, leading_zeros); 2276 break; 2277 } 2278 default: 2279 UNIMPLEMENTED(); 2280 } 2281 } else { 2282 PrintF("%08x\n", instr->InstructionBits()); 2283 UNIMPLEMENTED(); 2284 } 2285 } else if ((type == 1) && instr->IsNopType1()) { 2286 // NOP. 2287 } else { 2288 int rd = instr->RdValue(); 2289 int rn = instr->RnValue(); 2290 int32_t rn_val = get_register(rn); 2291 int32_t shifter_operand = 0; 2292 bool shifter_carry_out = 0; 2293 if (type == 0) { 2294 shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2295 } else { 2296 DCHECK(instr->TypeValue() == 1); 2297 shifter_operand = GetImm(instr, &shifter_carry_out); 2298 } 2299 int32_t alu_out; 2300 2301 switch (instr->OpcodeField()) { 2302 case AND: { 2303 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); 2304 // Format(instr, "and'cond's 'rd, 'rn, 'imm"); 2305 alu_out = rn_val & shifter_operand; 2306 set_register(rd, alu_out); 2307 if (instr->HasS()) { 2308 SetNZFlags(alu_out); 2309 SetCFlag(shifter_carry_out); 2310 } 2311 break; 2312 } 2313 2314 case EOR: { 2315 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); 2316 // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); 2317 alu_out = rn_val ^ shifter_operand; 2318 set_register(rd, alu_out); 2319 if (instr->HasS()) { 2320 SetNZFlags(alu_out); 2321 SetCFlag(shifter_carry_out); 2322 } 2323 break; 2324 } 2325 2326 case SUB: { 2327 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); 2328 // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); 2329 alu_out = rn_val - shifter_operand; 2330 set_register(rd, alu_out); 2331 if (instr->HasS()) { 2332 SetNZFlags(alu_out); 2333 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2334 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2335 } 2336 break; 2337 } 2338 2339 case RSB: { 2340 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); 2341 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); 2342 alu_out = shifter_operand - rn_val; 2343 set_register(rd, alu_out); 2344 if (instr->HasS()) { 2345 SetNZFlags(alu_out); 2346 SetCFlag(!BorrowFrom(shifter_operand, rn_val)); 2347 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); 2348 } 2349 break; 2350 } 2351 2352 case ADD: { 2353 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); 2354 // Format(instr, "add'cond's 'rd, 'rn, 'imm"); 2355 alu_out = rn_val + shifter_operand; 2356 set_register(rd, alu_out); 2357 if (instr->HasS()) { 2358 SetNZFlags(alu_out); 2359 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2360 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2361 } 2362 break; 2363 } 2364 2365 case ADC: { 2366 // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); 2367 // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); 2368 alu_out = rn_val + shifter_operand + GetCarry(); 2369 set_register(rd, alu_out); 2370 if (instr->HasS()) { 2371 SetNZFlags(alu_out); 2372 SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); 2373 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2374 } 2375 break; 2376 } 2377 2378 case SBC: { 2379 // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); 2380 // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); 2381 alu_out = (rn_val - shifter_operand) - (GetCarry() ? 0 : 1); 2382 set_register(rd, alu_out); 2383 if (instr->HasS()) { 2384 SetNZFlags(alu_out); 2385 SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry())); 2386 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2387 } 2388 break; 2389 } 2390 2391 case RSC: { 2392 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); 2393 Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); 2394 break; 2395 } 2396 2397 case TST: { 2398 if (instr->HasS()) { 2399 // Format(instr, "tst'cond 'rn, 'shift_rm"); 2400 // Format(instr, "tst'cond 'rn, 'imm"); 2401 alu_out = rn_val & shifter_operand; 2402 SetNZFlags(alu_out); 2403 SetCFlag(shifter_carry_out); 2404 } else { 2405 // Format(instr, "movw'cond 'rd, 'imm"). 2406 alu_out = instr->ImmedMovwMovtValue(); 2407 set_register(rd, alu_out); 2408 } 2409 break; 2410 } 2411 2412 case TEQ: { 2413 if (instr->HasS()) { 2414 // Format(instr, "teq'cond 'rn, 'shift_rm"); 2415 // Format(instr, "teq'cond 'rn, 'imm"); 2416 alu_out = rn_val ^ shifter_operand; 2417 SetNZFlags(alu_out); 2418 SetCFlag(shifter_carry_out); 2419 } else { 2420 // Other instructions matching this pattern are handled in the 2421 // miscellaneous instructions part above. 2422 UNREACHABLE(); 2423 } 2424 break; 2425 } 2426 2427 case CMP: { 2428 if (instr->HasS()) { 2429 // Format(instr, "cmp'cond 'rn, 'shift_rm"); 2430 // Format(instr, "cmp'cond 'rn, 'imm"); 2431 alu_out = rn_val - shifter_operand; 2432 SetNZFlags(alu_out); 2433 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2434 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2435 } else { 2436 // Format(instr, "movt'cond 'rd, 'imm"). 2437 alu_out = (get_register(rd) & 0xffff) | 2438 (instr->ImmedMovwMovtValue() << 16); 2439 set_register(rd, alu_out); 2440 } 2441 break; 2442 } 2443 2444 case CMN: { 2445 if (instr->HasS()) { 2446 // Format(instr, "cmn'cond 'rn, 'shift_rm"); 2447 // Format(instr, "cmn'cond 'rn, 'imm"); 2448 alu_out = rn_val + shifter_operand; 2449 SetNZFlags(alu_out); 2450 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2451 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2452 } else { 2453 // Other instructions matching this pattern are handled in the 2454 // miscellaneous instructions part above. 2455 UNREACHABLE(); 2456 } 2457 break; 2458 } 2459 2460 case ORR: { 2461 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); 2462 // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); 2463 alu_out = rn_val | shifter_operand; 2464 set_register(rd, alu_out); 2465 if (instr->HasS()) { 2466 SetNZFlags(alu_out); 2467 SetCFlag(shifter_carry_out); 2468 } 2469 break; 2470 } 2471 2472 case MOV: { 2473 // Format(instr, "mov'cond's 'rd, 'shift_rm"); 2474 // Format(instr, "mov'cond's 'rd, 'imm"); 2475 alu_out = shifter_operand; 2476 set_register(rd, alu_out); 2477 if (instr->HasS()) { 2478 SetNZFlags(alu_out); 2479 SetCFlag(shifter_carry_out); 2480 } 2481 break; 2482 } 2483 2484 case BIC: { 2485 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); 2486 // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); 2487 alu_out = rn_val & ~shifter_operand; 2488 set_register(rd, alu_out); 2489 if (instr->HasS()) { 2490 SetNZFlags(alu_out); 2491 SetCFlag(shifter_carry_out); 2492 } 2493 break; 2494 } 2495 2496 case MVN: { 2497 // Format(instr, "mvn'cond's 'rd, 'shift_rm"); 2498 // Format(instr, "mvn'cond's 'rd, 'imm"); 2499 alu_out = ~shifter_operand; 2500 set_register(rd, alu_out); 2501 if (instr->HasS()) { 2502 SetNZFlags(alu_out); 2503 SetCFlag(shifter_carry_out); 2504 } 2505 break; 2506 } 2507 2508 default: { 2509 UNREACHABLE(); 2510 break; 2511 } 2512 } 2513 } 2514} 2515 2516 2517void Simulator::DecodeType2(Instruction* instr) { 2518 int rd = instr->RdValue(); 2519 int rn = instr->RnValue(); 2520 int32_t rn_val = get_register(rn); 2521 int32_t im_val = instr->Offset12Value(); 2522 int32_t addr = 0; 2523 switch (instr->PUField()) { 2524 case da_x: { 2525 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); 2526 DCHECK(!instr->HasW()); 2527 addr = rn_val; 2528 rn_val -= im_val; 2529 set_register(rn, rn_val); 2530 break; 2531 } 2532 case ia_x: { 2533 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); 2534 DCHECK(!instr->HasW()); 2535 addr = rn_val; 2536 rn_val += im_val; 2537 set_register(rn, rn_val); 2538 break; 2539 } 2540 case db_x: { 2541 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); 2542 rn_val -= im_val; 2543 addr = rn_val; 2544 if (instr->HasW()) { 2545 set_register(rn, rn_val); 2546 } 2547 break; 2548 } 2549 case ib_x: { 2550 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); 2551 rn_val += im_val; 2552 addr = rn_val; 2553 if (instr->HasW()) { 2554 set_register(rn, rn_val); 2555 } 2556 break; 2557 } 2558 default: { 2559 UNREACHABLE(); 2560 break; 2561 } 2562 } 2563 if (instr->HasB()) { 2564 if (instr->HasL()) { 2565 byte val = ReadBU(addr); 2566 set_register(rd, val); 2567 } else { 2568 byte val = get_register(rd); 2569 WriteB(addr, val); 2570 } 2571 } else { 2572 if (instr->HasL()) { 2573 set_register(rd, ReadW(addr, instr)); 2574 } else { 2575 WriteW(addr, get_register(rd), instr); 2576 } 2577 } 2578} 2579 2580 2581void Simulator::DecodeType3(Instruction* instr) { 2582 int rd = instr->RdValue(); 2583 int rn = instr->RnValue(); 2584 int32_t rn_val = get_register(rn); 2585 bool shifter_carry_out = 0; 2586 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2587 int32_t addr = 0; 2588 switch (instr->PUField()) { 2589 case da_x: { 2590 DCHECK(!instr->HasW()); 2591 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); 2592 UNIMPLEMENTED(); 2593 break; 2594 } 2595 case ia_x: { 2596 if (instr->Bit(4) == 0) { 2597 // Memop. 2598 } else { 2599 if (instr->Bit(5) == 0) { 2600 switch (instr->Bits(22, 21)) { 2601 case 0: 2602 if (instr->Bit(20) == 0) { 2603 if (instr->Bit(6) == 0) { 2604 // Pkhbt. 2605 uint32_t rn_val = get_register(rn); 2606 uint32_t rm_val = get_register(instr->RmValue()); 2607 int32_t shift = instr->Bits(11, 7); 2608 rm_val <<= shift; 2609 set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); 2610 } else { 2611 // Pkhtb. 2612 uint32_t rn_val = get_register(rn); 2613 int32_t rm_val = get_register(instr->RmValue()); 2614 int32_t shift = instr->Bits(11, 7); 2615 if (shift == 0) { 2616 shift = 32; 2617 } 2618 rm_val >>= shift; 2619 set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); 2620 } 2621 } else { 2622 UNIMPLEMENTED(); 2623 } 2624 break; 2625 case 1: 2626 UNIMPLEMENTED(); 2627 break; 2628 case 2: 2629 UNIMPLEMENTED(); 2630 break; 2631 case 3: { 2632 // Usat. 2633 int32_t sat_pos = instr->Bits(20, 16); 2634 int32_t sat_val = (1 << sat_pos) - 1; 2635 int32_t shift = instr->Bits(11, 7); 2636 int32_t shift_type = instr->Bit(6); 2637 int32_t rm_val = get_register(instr->RmValue()); 2638 if (shift_type == 0) { // LSL 2639 rm_val <<= shift; 2640 } else { // ASR 2641 rm_val >>= shift; 2642 } 2643 // If saturation occurs, the Q flag should be set in the CPSR. 2644 // There is no Q flag yet, and no instruction (MRS) to read the 2645 // CPSR directly. 2646 if (rm_val > sat_val) { 2647 rm_val = sat_val; 2648 } else if (rm_val < 0) { 2649 rm_val = 0; 2650 } 2651 set_register(rd, rm_val); 2652 break; 2653 } 2654 } 2655 } else { 2656 switch (instr->Bits(22, 21)) { 2657 case 0: 2658 UNIMPLEMENTED(); 2659 break; 2660 case 1: 2661 if (instr->Bits(9, 6) == 1) { 2662 if (instr->Bit(20) == 0) { 2663 if (instr->Bits(19, 16) == 0xF) { 2664 // Sxtb. 2665 int32_t rm_val = get_register(instr->RmValue()); 2666 int32_t rotate = instr->Bits(11, 10); 2667 switch (rotate) { 2668 case 0: 2669 break; 2670 case 1: 2671 rm_val = (rm_val >> 8) | (rm_val << 24); 2672 break; 2673 case 2: 2674 rm_val = (rm_val >> 16) | (rm_val << 16); 2675 break; 2676 case 3: 2677 rm_val = (rm_val >> 24) | (rm_val << 8); 2678 break; 2679 } 2680 set_register(rd, static_cast<int8_t>(rm_val)); 2681 } else { 2682 // Sxtab. 2683 int32_t rn_val = get_register(rn); 2684 int32_t rm_val = get_register(instr->RmValue()); 2685 int32_t rotate = instr->Bits(11, 10); 2686 switch (rotate) { 2687 case 0: 2688 break; 2689 case 1: 2690 rm_val = (rm_val >> 8) | (rm_val << 24); 2691 break; 2692 case 2: 2693 rm_val = (rm_val >> 16) | (rm_val << 16); 2694 break; 2695 case 3: 2696 rm_val = (rm_val >> 24) | (rm_val << 8); 2697 break; 2698 } 2699 set_register(rd, rn_val + static_cast<int8_t>(rm_val)); 2700 } 2701 } else { 2702 if (instr->Bits(19, 16) == 0xF) { 2703 // Sxth. 2704 int32_t rm_val = get_register(instr->RmValue()); 2705 int32_t rotate = instr->Bits(11, 10); 2706 switch (rotate) { 2707 case 0: 2708 break; 2709 case 1: 2710 rm_val = (rm_val >> 8) | (rm_val << 24); 2711 break; 2712 case 2: 2713 rm_val = (rm_val >> 16) | (rm_val << 16); 2714 break; 2715 case 3: 2716 rm_val = (rm_val >> 24) | (rm_val << 8); 2717 break; 2718 } 2719 set_register(rd, static_cast<int16_t>(rm_val)); 2720 } else { 2721 // Sxtah. 2722 int32_t rn_val = get_register(rn); 2723 int32_t rm_val = get_register(instr->RmValue()); 2724 int32_t rotate = instr->Bits(11, 10); 2725 switch (rotate) { 2726 case 0: 2727 break; 2728 case 1: 2729 rm_val = (rm_val >> 8) | (rm_val << 24); 2730 break; 2731 case 2: 2732 rm_val = (rm_val >> 16) | (rm_val << 16); 2733 break; 2734 case 3: 2735 rm_val = (rm_val >> 24) | (rm_val << 8); 2736 break; 2737 } 2738 set_register(rd, rn_val + static_cast<int16_t>(rm_val)); 2739 } 2740 } 2741 } else { 2742 UNREACHABLE(); 2743 } 2744 break; 2745 case 2: 2746 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { 2747 if (instr->Bits(19, 16) == 0xF) { 2748 // Uxtb16. 2749 uint32_t rm_val = get_register(instr->RmValue()); 2750 int32_t rotate = instr->Bits(11, 10); 2751 switch (rotate) { 2752 case 0: 2753 break; 2754 case 1: 2755 rm_val = (rm_val >> 8) | (rm_val << 24); 2756 break; 2757 case 2: 2758 rm_val = (rm_val >> 16) | (rm_val << 16); 2759 break; 2760 case 3: 2761 rm_val = (rm_val >> 24) | (rm_val << 8); 2762 break; 2763 } 2764 set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000)); 2765 } else { 2766 UNIMPLEMENTED(); 2767 } 2768 } else { 2769 UNIMPLEMENTED(); 2770 } 2771 break; 2772 case 3: 2773 if ((instr->Bits(9, 6) == 1)) { 2774 if (instr->Bit(20) == 0) { 2775 if (instr->Bits(19, 16) == 0xF) { 2776 // Uxtb. 2777 uint32_t rm_val = get_register(instr->RmValue()); 2778 int32_t rotate = instr->Bits(11, 10); 2779 switch (rotate) { 2780 case 0: 2781 break; 2782 case 1: 2783 rm_val = (rm_val >> 8) | (rm_val << 24); 2784 break; 2785 case 2: 2786 rm_val = (rm_val >> 16) | (rm_val << 16); 2787 break; 2788 case 3: 2789 rm_val = (rm_val >> 24) | (rm_val << 8); 2790 break; 2791 } 2792 set_register(rd, (rm_val & 0xFF)); 2793 } else { 2794 // Uxtab. 2795 uint32_t rn_val = get_register(rn); 2796 uint32_t rm_val = get_register(instr->RmValue()); 2797 int32_t rotate = instr->Bits(11, 10); 2798 switch (rotate) { 2799 case 0: 2800 break; 2801 case 1: 2802 rm_val = (rm_val >> 8) | (rm_val << 24); 2803 break; 2804 case 2: 2805 rm_val = (rm_val >> 16) | (rm_val << 16); 2806 break; 2807 case 3: 2808 rm_val = (rm_val >> 24) | (rm_val << 8); 2809 break; 2810 } 2811 set_register(rd, rn_val + (rm_val & 0xFF)); 2812 } 2813 } else { 2814 if (instr->Bits(19, 16) == 0xF) { 2815 // Uxth. 2816 uint32_t rm_val = get_register(instr->RmValue()); 2817 int32_t rotate = instr->Bits(11, 10); 2818 switch (rotate) { 2819 case 0: 2820 break; 2821 case 1: 2822 rm_val = (rm_val >> 8) | (rm_val << 24); 2823 break; 2824 case 2: 2825 rm_val = (rm_val >> 16) | (rm_val << 16); 2826 break; 2827 case 3: 2828 rm_val = (rm_val >> 24) | (rm_val << 8); 2829 break; 2830 } 2831 set_register(rd, (rm_val & 0xFFFF)); 2832 } else { 2833 // Uxtah. 2834 uint32_t rn_val = get_register(rn); 2835 uint32_t rm_val = get_register(instr->RmValue()); 2836 int32_t rotate = instr->Bits(11, 10); 2837 switch (rotate) { 2838 case 0: 2839 break; 2840 case 1: 2841 rm_val = (rm_val >> 8) | (rm_val << 24); 2842 break; 2843 case 2: 2844 rm_val = (rm_val >> 16) | (rm_val << 16); 2845 break; 2846 case 3: 2847 rm_val = (rm_val >> 24) | (rm_val << 8); 2848 break; 2849 } 2850 set_register(rd, rn_val + (rm_val & 0xFFFF)); 2851 } 2852 } 2853 } else { 2854 // PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001 2855 if ((instr->Bits(20, 16) == 0x1f) && 2856 (instr->Bits(11, 4) == 0xf3)) { 2857 // Rbit. 2858 uint32_t rm_val = get_register(instr->RmValue()); 2859 set_register(rd, base::bits::ReverseBits(rm_val)); 2860 } else { 2861 UNIMPLEMENTED(); 2862 } 2863 } 2864 break; 2865 } 2866 } 2867 return; 2868 } 2869 break; 2870 } 2871 case db_x: { 2872 if (instr->Bits(22, 20) == 0x5) { 2873 if (instr->Bits(7, 4) == 0x1) { 2874 int rm = instr->RmValue(); 2875 int32_t rm_val = get_register(rm); 2876 int rs = instr->RsValue(); 2877 int32_t rs_val = get_register(rs); 2878 if (instr->Bits(15, 12) == 0xF) { 2879 // SMMUL (in V8 notation matching ARM ISA format) 2880 // Format(instr, "smmul'cond 'rn, 'rm, 'rs"); 2881 rn_val = base::bits::SignedMulHigh32(rm_val, rs_val); 2882 } else { 2883 // SMMLA (in V8 notation matching ARM ISA format) 2884 // Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); 2885 int rd = instr->RdValue(); 2886 int32_t rd_val = get_register(rd); 2887 rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val); 2888 } 2889 set_register(rn, rn_val); 2890 return; 2891 } 2892 } 2893 if (instr->Bits(5, 4) == 0x1) { 2894 if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { 2895 // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs 2896 // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs); 2897 int rm = instr->RmValue(); 2898 int32_t rm_val = get_register(rm); 2899 int rs = instr->RsValue(); 2900 int32_t rs_val = get_register(rs); 2901 int32_t ret_val = 0; 2902 // udiv 2903 if (instr->Bit(21) == 0x1) { 2904 ret_val = bit_cast<int32_t>(base::bits::UnsignedDiv32( 2905 bit_cast<uint32_t>(rm_val), bit_cast<uint32_t>(rs_val))); 2906 } else { 2907 ret_val = base::bits::SignedDiv32(rm_val, rs_val); 2908 } 2909 set_register(rn, ret_val); 2910 return; 2911 } 2912 } 2913 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); 2914 addr = rn_val - shifter_operand; 2915 if (instr->HasW()) { 2916 set_register(rn, addr); 2917 } 2918 break; 2919 } 2920 case ib_x: { 2921 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { 2922 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); 2923 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 2924 uint32_t msbit = widthminus1 + lsbit; 2925 if (msbit <= 31) { 2926 if (instr->Bit(22)) { 2927 // ubfx - unsigned bitfield extract. 2928 uint32_t rm_val = 2929 static_cast<uint32_t>(get_register(instr->RmValue())); 2930 uint32_t extr_val = rm_val << (31 - msbit); 2931 extr_val = extr_val >> (31 - widthminus1); 2932 set_register(instr->RdValue(), extr_val); 2933 } else { 2934 // sbfx - signed bitfield extract. 2935 int32_t rm_val = get_register(instr->RmValue()); 2936 int32_t extr_val = rm_val << (31 - msbit); 2937 extr_val = extr_val >> (31 - widthminus1); 2938 set_register(instr->RdValue(), extr_val); 2939 } 2940 } else { 2941 UNREACHABLE(); 2942 } 2943 return; 2944 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { 2945 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 2946 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); 2947 if (msbit >= lsbit) { 2948 // bfc or bfi - bitfield clear/insert. 2949 uint32_t rd_val = 2950 static_cast<uint32_t>(get_register(instr->RdValue())); 2951 uint32_t bitcount = msbit - lsbit + 1; 2952 uint32_t mask = 0xffffffffu >> (32 - bitcount); 2953 rd_val &= ~(mask << lsbit); 2954 if (instr->RmValue() != 15) { 2955 // bfi - bitfield insert. 2956 uint32_t rm_val = 2957 static_cast<uint32_t>(get_register(instr->RmValue())); 2958 rm_val &= mask; 2959 rd_val |= rm_val << lsbit; 2960 } 2961 set_register(instr->RdValue(), rd_val); 2962 } else { 2963 UNREACHABLE(); 2964 } 2965 return; 2966 } else { 2967 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); 2968 addr = rn_val + shifter_operand; 2969 if (instr->HasW()) { 2970 set_register(rn, addr); 2971 } 2972 } 2973 break; 2974 } 2975 default: { 2976 UNREACHABLE(); 2977 break; 2978 } 2979 } 2980 if (instr->HasB()) { 2981 if (instr->HasL()) { 2982 uint8_t byte = ReadB(addr); 2983 set_register(rd, byte); 2984 } else { 2985 uint8_t byte = get_register(rd); 2986 WriteB(addr, byte); 2987 } 2988 } else { 2989 if (instr->HasL()) { 2990 set_register(rd, ReadW(addr, instr)); 2991 } else { 2992 WriteW(addr, get_register(rd), instr); 2993 } 2994 } 2995} 2996 2997 2998void Simulator::DecodeType4(Instruction* instr) { 2999 DCHECK(instr->Bit(22) == 0); // only allowed to be set in privileged mode 3000 if (instr->HasL()) { 3001 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); 3002 HandleRList(instr, true); 3003 } else { 3004 // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); 3005 HandleRList(instr, false); 3006 } 3007} 3008 3009 3010void Simulator::DecodeType5(Instruction* instr) { 3011 // Format(instr, "b'l'cond 'target"); 3012 int off = (instr->SImmed24Value() << 2); 3013 intptr_t pc_address = get_pc(); 3014 if (instr->HasLink()) { 3015 set_register(lr, pc_address + Instruction::kInstrSize); 3016 } 3017 int pc_reg = get_register(pc); 3018 set_pc(pc_reg + off); 3019} 3020 3021 3022void Simulator::DecodeType6(Instruction* instr) { 3023 DecodeType6CoprocessorIns(instr); 3024} 3025 3026 3027void Simulator::DecodeType7(Instruction* instr) { 3028 if (instr->Bit(24) == 1) { 3029 SoftwareInterrupt(instr); 3030 } else { 3031 switch (instr->CoprocessorValue()) { 3032 case 10: // Fall through. 3033 case 11: 3034 DecodeTypeVFP(instr); 3035 break; 3036 case 15: 3037 DecodeTypeCP15(instr); 3038 break; 3039 default: 3040 UNIMPLEMENTED(); 3041 } 3042 } 3043} 3044 3045 3046// void Simulator::DecodeTypeVFP(Instruction* instr) 3047// The Following ARMv7 VFPv instructions are currently supported. 3048// vmov :Sn = Rt 3049// vmov :Rt = Sn 3050// vcvt: Dd = Sm 3051// vcvt: Sd = Dm 3052// vcvt.f64.s32 Dd, Dd, #<fbits> 3053// Dd = vabs(Dm) 3054// Sd = vabs(Sm) 3055// Dd = vneg(Dm) 3056// Sd = vneg(Sm) 3057// Dd = vadd(Dn, Dm) 3058// Sd = vadd(Sn, Sm) 3059// Dd = vsub(Dn, Dm) 3060// Sd = vsub(Sn, Sm) 3061// Dd = vmul(Dn, Dm) 3062// Sd = vmul(Sn, Sm) 3063// Dd = vdiv(Dn, Dm) 3064// Sd = vdiv(Sn, Sm) 3065// vcmp(Dd, Dm) 3066// vcmp(Sd, Sm) 3067// Dd = vsqrt(Dm) 3068// Sd = vsqrt(Sm) 3069// vmrs 3070void Simulator::DecodeTypeVFP(Instruction* instr) { 3071 DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); 3072 DCHECK(instr->Bits(11, 9) == 0x5); 3073 3074 // Obtain single precision register codes. 3075 int m = instr->VFPMRegValue(kSinglePrecision); 3076 int d = instr->VFPDRegValue(kSinglePrecision); 3077 int n = instr->VFPNRegValue(kSinglePrecision); 3078 // Obtain double precision register codes. 3079 int vm = instr->VFPMRegValue(kDoublePrecision); 3080 int vd = instr->VFPDRegValue(kDoublePrecision); 3081 int vn = instr->VFPNRegValue(kDoublePrecision); 3082 3083 if (instr->Bit(4) == 0) { 3084 if (instr->Opc1Value() == 0x7) { 3085 // Other data processing instructions 3086 if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { 3087 // vmov register to register. 3088 if (instr->SzValue() == 0x1) { 3089 uint32_t data[2]; 3090 get_d_register(vm, data); 3091 set_d_register(vd, data); 3092 } else { 3093 set_s_register(d, get_s_register(m)); 3094 } 3095 } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { 3096 // vabs 3097 if (instr->SzValue() == 0x1) { 3098 double dm_value = get_double_from_d_register(vm); 3099 double dd_value = std::fabs(dm_value); 3100 dd_value = canonicalizeNaN(dd_value); 3101 set_d_register_from_double(vd, dd_value); 3102 } else { 3103 float sm_value = get_float_from_s_register(m); 3104 float sd_value = std::fabs(sm_value); 3105 sd_value = canonicalizeNaN(sd_value); 3106 set_s_register_from_float(d, sd_value); 3107 } 3108 } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { 3109 // vneg 3110 if (instr->SzValue() == 0x1) { 3111 double dm_value = get_double_from_d_register(vm); 3112 double dd_value = -dm_value; 3113 dd_value = canonicalizeNaN(dd_value); 3114 set_d_register_from_double(vd, dd_value); 3115 } else { 3116 float sm_value = get_float_from_s_register(m); 3117 float sd_value = -sm_value; 3118 sd_value = canonicalizeNaN(sd_value); 3119 set_s_register_from_float(d, sd_value); 3120 } 3121 } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { 3122 DecodeVCVTBetweenDoubleAndSingle(instr); 3123 } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { 3124 DecodeVCVTBetweenFloatingPointAndInteger(instr); 3125 } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && 3126 (instr->Bit(8) == 1)) { 3127 // vcvt.f64.s32 Dd, Dd, #<fbits> 3128 int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); 3129 int fixed_value = get_sinteger_from_s_register(vd * 2); 3130 double divide = 1 << fraction_bits; 3131 set_d_register_from_double(vd, fixed_value / divide); 3132 } else if (((instr->Opc2Value() >> 1) == 0x6) && 3133 (instr->Opc3Value() & 0x1)) { 3134 DecodeVCVTBetweenFloatingPointAndInteger(instr); 3135 } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 3136 (instr->Opc3Value() & 0x1)) { 3137 DecodeVCMP(instr); 3138 } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { 3139 // vsqrt 3140 lazily_initialize_fast_sqrt(isolate_); 3141 if (instr->SzValue() == 0x1) { 3142 double dm_value = get_double_from_d_register(vm); 3143 double dd_value = fast_sqrt(dm_value, isolate_); 3144 dd_value = canonicalizeNaN(dd_value); 3145 set_d_register_from_double(vd, dd_value); 3146 } else { 3147 float sm_value = get_float_from_s_register(m); 3148 float sd_value = fast_sqrt(sm_value, isolate_); 3149 sd_value = canonicalizeNaN(sd_value); 3150 set_s_register_from_float(d, sd_value); 3151 } 3152 } else if (instr->Opc3Value() == 0x0) { 3153 // vmov immediate. 3154 if (instr->SzValue() == 0x1) { 3155 set_d_register_from_double(vd, instr->DoubleImmedVmov()); 3156 } else { 3157 set_s_register_from_float(d, instr->DoubleImmedVmov()); 3158 } 3159 } else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) { 3160 // vrintz - truncate 3161 if (instr->SzValue() == 0x1) { 3162 double dm_value = get_double_from_d_register(vm); 3163 double dd_value = trunc(dm_value); 3164 dd_value = canonicalizeNaN(dd_value); 3165 set_d_register_from_double(vd, dd_value); 3166 } else { 3167 float sm_value = get_float_from_s_register(m); 3168 float sd_value = truncf(sm_value); 3169 sd_value = canonicalizeNaN(sd_value); 3170 set_s_register_from_float(d, sd_value); 3171 } 3172 } else { 3173 UNREACHABLE(); // Not used by V8. 3174 } 3175 } else if (instr->Opc1Value() == 0x3) { 3176 if (instr->Opc3Value() & 0x1) { 3177 // vsub 3178 if (instr->SzValue() == 0x1) { 3179 double dn_value = get_double_from_d_register(vn); 3180 double dm_value = get_double_from_d_register(vm); 3181 double dd_value = dn_value - dm_value; 3182 dd_value = canonicalizeNaN(dd_value); 3183 set_d_register_from_double(vd, dd_value); 3184 } else { 3185 float sn_value = get_float_from_s_register(n); 3186 float sm_value = get_float_from_s_register(m); 3187 float sd_value = sn_value - sm_value; 3188 sd_value = canonicalizeNaN(sd_value); 3189 set_s_register_from_float(d, sd_value); 3190 } 3191 } else { 3192 // vadd 3193 if (instr->SzValue() == 0x1) { 3194 double dn_value = get_double_from_d_register(vn); 3195 double dm_value = get_double_from_d_register(vm); 3196 double dd_value = dn_value + dm_value; 3197 dd_value = canonicalizeNaN(dd_value); 3198 set_d_register_from_double(vd, dd_value); 3199 } else { 3200 float sn_value = get_float_from_s_register(n); 3201 float sm_value = get_float_from_s_register(m); 3202 float sd_value = sn_value + sm_value; 3203 sd_value = canonicalizeNaN(sd_value); 3204 set_s_register_from_float(d, sd_value); 3205 } 3206 } 3207 } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { 3208 // vmul 3209 if (instr->SzValue() == 0x1) { 3210 double dn_value = get_double_from_d_register(vn); 3211 double dm_value = get_double_from_d_register(vm); 3212 double dd_value = dn_value * dm_value; 3213 dd_value = canonicalizeNaN(dd_value); 3214 set_d_register_from_double(vd, dd_value); 3215 } else { 3216 float sn_value = get_float_from_s_register(n); 3217 float sm_value = get_float_from_s_register(m); 3218 float sd_value = sn_value * sm_value; 3219 sd_value = canonicalizeNaN(sd_value); 3220 set_s_register_from_float(d, sd_value); 3221 } 3222 } else if ((instr->Opc1Value() == 0x0)) { 3223 // vmla, vmls 3224 const bool is_vmls = (instr->Opc3Value() & 0x1); 3225 if (instr->SzValue() == 0x1) { 3226 const double dd_val = get_double_from_d_register(vd); 3227 const double dn_val = get_double_from_d_register(vn); 3228 const double dm_val = get_double_from_d_register(vm); 3229 3230 // Note: we do the mul and add/sub in separate steps to avoid getting a 3231 // result with too high precision. 3232 set_d_register_from_double(vd, dn_val * dm_val); 3233 if (is_vmls) { 3234 set_d_register_from_double( 3235 vd, canonicalizeNaN(dd_val - get_double_from_d_register(vd))); 3236 } else { 3237 set_d_register_from_double( 3238 vd, canonicalizeNaN(dd_val + get_double_from_d_register(vd))); 3239 } 3240 } else { 3241 const float sd_val = get_float_from_s_register(d); 3242 const float sn_val = get_float_from_s_register(n); 3243 const float sm_val = get_float_from_s_register(m); 3244 3245 // Note: we do the mul and add/sub in separate steps to avoid getting a 3246 // result with too high precision. 3247 set_s_register_from_float(d, sn_val * sm_val); 3248 if (is_vmls) { 3249 set_s_register_from_float( 3250 d, canonicalizeNaN(sd_val - get_float_from_s_register(d))); 3251 } else { 3252 set_s_register_from_float( 3253 d, canonicalizeNaN(sd_val + get_float_from_s_register(d))); 3254 } 3255 } 3256 } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { 3257 // vdiv 3258 if (instr->SzValue() == 0x1) { 3259 double dn_value = get_double_from_d_register(vn); 3260 double dm_value = get_double_from_d_register(vm); 3261 double dd_value = dn_value / dm_value; 3262 div_zero_vfp_flag_ = (dm_value == 0); 3263 dd_value = canonicalizeNaN(dd_value); 3264 set_d_register_from_double(vd, dd_value); 3265 } else { 3266 float sn_value = get_float_from_s_register(n); 3267 float sm_value = get_float_from_s_register(m); 3268 float sd_value = sn_value / sm_value; 3269 div_zero_vfp_flag_ = (sm_value == 0); 3270 sd_value = canonicalizeNaN(sd_value); 3271 set_s_register_from_float(d, sd_value); 3272 } 3273 } else { 3274 UNIMPLEMENTED(); // Not used by V8. 3275 } 3276 } else { 3277 if ((instr->VCValue() == 0x0) && 3278 (instr->VAValue() == 0x0)) { 3279 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); 3280 } else if ((instr->VLValue() == 0x0) && 3281 (instr->VCValue() == 0x1) && 3282 (instr->Bit(23) == 0x0)) { 3283 // vmov (ARM core register to scalar) 3284 int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3285 uint32_t data[2]; 3286 get_d_register(vd, data); 3287 data[instr->Bit(21)] = get_register(instr->RtValue()); 3288 set_d_register(vd, data); 3289 } else if ((instr->VLValue() == 0x1) && 3290 (instr->VCValue() == 0x1) && 3291 (instr->Bit(23) == 0x0)) { 3292 // vmov (scalar to ARM core register) 3293 int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3294 double dn_value = get_double_from_d_register(vn); 3295 int32_t data[2]; 3296 memcpy(data, &dn_value, 8); 3297 set_register(instr->RtValue(), data[instr->Bit(21)]); 3298 } else if ((instr->VLValue() == 0x1) && 3299 (instr->VCValue() == 0x0) && 3300 (instr->VAValue() == 0x7) && 3301 (instr->Bits(19, 16) == 0x1)) { 3302 // vmrs 3303 uint32_t rt = instr->RtValue(); 3304 if (rt == 0xF) { 3305 Copy_FPSCR_to_APSR(); 3306 } else { 3307 // Emulate FPSCR from the Simulator flags. 3308 uint32_t fpscr = (n_flag_FPSCR_ << 31) | 3309 (z_flag_FPSCR_ << 30) | 3310 (c_flag_FPSCR_ << 29) | 3311 (v_flag_FPSCR_ << 28) | 3312 (FPSCR_default_NaN_mode_ << 25) | 3313 (inexact_vfp_flag_ << 4) | 3314 (underflow_vfp_flag_ << 3) | 3315 (overflow_vfp_flag_ << 2) | 3316 (div_zero_vfp_flag_ << 1) | 3317 (inv_op_vfp_flag_ << 0) | 3318 (FPSCR_rounding_mode_); 3319 set_register(rt, fpscr); 3320 } 3321 } else if ((instr->VLValue() == 0x0) && 3322 (instr->VCValue() == 0x0) && 3323 (instr->VAValue() == 0x7) && 3324 (instr->Bits(19, 16) == 0x1)) { 3325 // vmsr 3326 uint32_t rt = instr->RtValue(); 3327 if (rt == pc) { 3328 UNREACHABLE(); 3329 } else { 3330 uint32_t rt_value = get_register(rt); 3331 n_flag_FPSCR_ = (rt_value >> 31) & 1; 3332 z_flag_FPSCR_ = (rt_value >> 30) & 1; 3333 c_flag_FPSCR_ = (rt_value >> 29) & 1; 3334 v_flag_FPSCR_ = (rt_value >> 28) & 1; 3335 FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; 3336 inexact_vfp_flag_ = (rt_value >> 4) & 1; 3337 underflow_vfp_flag_ = (rt_value >> 3) & 1; 3338 overflow_vfp_flag_ = (rt_value >> 2) & 1; 3339 div_zero_vfp_flag_ = (rt_value >> 1) & 1; 3340 inv_op_vfp_flag_ = (rt_value >> 0) & 1; 3341 FPSCR_rounding_mode_ = 3342 static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask); 3343 } 3344 } else { 3345 UNIMPLEMENTED(); // Not used by V8. 3346 } 3347 } 3348} 3349 3350void Simulator::DecodeTypeCP15(Instruction* instr) { 3351 DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); 3352 DCHECK(instr->CoprocessorValue() == 15); 3353 3354 if (instr->Bit(4) == 1) { 3355 // mcr 3356 int crn = instr->Bits(19, 16); 3357 int crm = instr->Bits(3, 0); 3358 int opc1 = instr->Bits(23, 21); 3359 int opc2 = instr->Bits(7, 5); 3360 if ((opc1 == 0) && (crn == 7)) { 3361 // ARMv6 memory barrier operations. 3362 // Details available in ARM DDI 0406C.b, B3-1750. 3363 if (((crm == 10) && (opc2 == 5)) || // CP15DMB 3364 ((crm == 10) && (opc2 == 4)) || // CP15DSB 3365 ((crm == 5) && (opc2 == 4))) { // CP15ISB 3366 // These are ignored by the simulator for now. 3367 } else { 3368 UNIMPLEMENTED(); 3369 } 3370 } 3371 } else { 3372 UNIMPLEMENTED(); 3373 } 3374} 3375 3376void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( 3377 Instruction* instr) { 3378 DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && 3379 (instr->VAValue() == 0x0)); 3380 3381 int t = instr->RtValue(); 3382 int n = instr->VFPNRegValue(kSinglePrecision); 3383 bool to_arm_register = (instr->VLValue() == 0x1); 3384 3385 if (to_arm_register) { 3386 int32_t int_value = get_sinteger_from_s_register(n); 3387 set_register(t, int_value); 3388 } else { 3389 int32_t rs_val = get_register(t); 3390 set_s_register_from_sinteger(n, rs_val); 3391 } 3392} 3393 3394 3395void Simulator::DecodeVCMP(Instruction* instr) { 3396 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3397 DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 3398 (instr->Opc3Value() & 0x1)); 3399 // Comparison. 3400 3401 VFPRegPrecision precision = kSinglePrecision; 3402 if (instr->SzValue() == 0x1) { 3403 precision = kDoublePrecision; 3404 } 3405 3406 int d = instr->VFPDRegValue(precision); 3407 int m = 0; 3408 if (instr->Opc2Value() == 0x4) { 3409 m = instr->VFPMRegValue(precision); 3410 } 3411 3412 if (precision == kDoublePrecision) { 3413 double dd_value = get_double_from_d_register(d); 3414 double dm_value = 0.0; 3415 if (instr->Opc2Value() == 0x4) { 3416 dm_value = get_double_from_d_register(m); 3417 } 3418 3419 // Raise exceptions for quiet NaNs if necessary. 3420 if (instr->Bit(7) == 1) { 3421 if (std::isnan(dd_value)) { 3422 inv_op_vfp_flag_ = true; 3423 } 3424 } 3425 3426 Compute_FPSCR_Flags(dd_value, dm_value); 3427 } else { 3428 float sd_value = get_float_from_s_register(d); 3429 float sm_value = 0.0; 3430 if (instr->Opc2Value() == 0x4) { 3431 sm_value = get_float_from_s_register(m); 3432 } 3433 3434 // Raise exceptions for quiet NaNs if necessary. 3435 if (instr->Bit(7) == 1) { 3436 if (std::isnan(sd_value)) { 3437 inv_op_vfp_flag_ = true; 3438 } 3439 } 3440 3441 Compute_FPSCR_Flags(sd_value, sm_value); 3442 } 3443} 3444 3445 3446void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { 3447 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3448 DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); 3449 3450 VFPRegPrecision dst_precision = kDoublePrecision; 3451 VFPRegPrecision src_precision = kSinglePrecision; 3452 if (instr->SzValue() == 1) { 3453 dst_precision = kSinglePrecision; 3454 src_precision = kDoublePrecision; 3455 } 3456 3457 int dst = instr->VFPDRegValue(dst_precision); 3458 int src = instr->VFPMRegValue(src_precision); 3459 3460 if (dst_precision == kSinglePrecision) { 3461 double val = get_double_from_d_register(src); 3462 set_s_register_from_float(dst, static_cast<float>(val)); 3463 } else { 3464 float val = get_float_from_s_register(src); 3465 set_d_register_from_double(dst, static_cast<double>(val)); 3466 } 3467} 3468 3469bool get_inv_op_vfp_flag(VFPRoundingMode mode, 3470 double val, 3471 bool unsigned_) { 3472 DCHECK((mode == RN) || (mode == RM) || (mode == RZ)); 3473 double max_uint = static_cast<double>(0xffffffffu); 3474 double max_int = static_cast<double>(kMaxInt); 3475 double min_int = static_cast<double>(kMinInt); 3476 3477 // Check for NaN. 3478 if (val != val) { 3479 return true; 3480 } 3481 3482 // Check for overflow. This code works because 32bit integers can be 3483 // exactly represented by ieee-754 64bit floating-point values. 3484 switch (mode) { 3485 case RN: 3486 return unsigned_ ? (val >= (max_uint + 0.5)) || 3487 (val < -0.5) 3488 : (val >= (max_int + 0.5)) || 3489 (val < (min_int - 0.5)); 3490 3491 case RM: 3492 return unsigned_ ? (val >= (max_uint + 1.0)) || 3493 (val < 0) 3494 : (val >= (max_int + 1.0)) || 3495 (val < min_int); 3496 3497 case RZ: 3498 return unsigned_ ? (val >= (max_uint + 1.0)) || 3499 (val <= -1) 3500 : (val >= (max_int + 1.0)) || 3501 (val <= (min_int - 1.0)); 3502 default: 3503 UNREACHABLE(); 3504 return true; 3505 } 3506} 3507 3508 3509// We call this function only if we had a vfp invalid exception. 3510// It returns the correct saturated value. 3511int VFPConversionSaturate(double val, bool unsigned_res) { 3512 if (val != val) { 3513 return 0; 3514 } else { 3515 if (unsigned_res) { 3516 return (val < 0) ? 0 : 0xffffffffu; 3517 } else { 3518 return (val < 0) ? kMinInt : kMaxInt; 3519 } 3520 } 3521} 3522 3523 3524void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { 3525 DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) && 3526 (instr->Bits(27, 23) == 0x1D)); 3527 DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || 3528 (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); 3529 3530 // Conversion between floating-point and integer. 3531 bool to_integer = (instr->Bit(18) == 1); 3532 3533 VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision 3534 : kSinglePrecision; 3535 3536 if (to_integer) { 3537 // We are playing with code close to the C++ standard's limits below, 3538 // hence the very simple code and heavy checks. 3539 // 3540 // Note: 3541 // C++ defines default type casting from floating point to integer as 3542 // (close to) rounding toward zero ("fractional part discarded"). 3543 3544 int dst = instr->VFPDRegValue(kSinglePrecision); 3545 int src = instr->VFPMRegValue(src_precision); 3546 3547 // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding 3548 // mode or the default Round to Zero mode. 3549 VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ 3550 : RZ; 3551 DCHECK((mode == RM) || (mode == RZ) || (mode == RN)); 3552 3553 bool unsigned_integer = (instr->Bit(16) == 0); 3554 bool double_precision = (src_precision == kDoublePrecision); 3555 3556 double val = double_precision ? get_double_from_d_register(src) 3557 : get_float_from_s_register(src); 3558 3559 int temp = unsigned_integer ? static_cast<uint32_t>(val) 3560 : static_cast<int32_t>(val); 3561 3562 inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); 3563 3564 double abs_diff = 3565 unsigned_integer ? std::fabs(val - static_cast<uint32_t>(temp)) 3566 : std::fabs(val - temp); 3567 3568 inexact_vfp_flag_ = (abs_diff != 0); 3569 3570 if (inv_op_vfp_flag_) { 3571 temp = VFPConversionSaturate(val, unsigned_integer); 3572 } else { 3573 switch (mode) { 3574 case RN: { 3575 int val_sign = (val > 0) ? 1 : -1; 3576 if (abs_diff > 0.5) { 3577 temp += val_sign; 3578 } else if (abs_diff == 0.5) { 3579 // Round to even if exactly halfway. 3580 temp = ((temp % 2) == 0) ? temp : temp + val_sign; 3581 } 3582 break; 3583 } 3584 3585 case RM: 3586 temp = temp > val ? temp - 1 : temp; 3587 break; 3588 3589 case RZ: 3590 // Nothing to do. 3591 break; 3592 3593 default: 3594 UNREACHABLE(); 3595 } 3596 } 3597 3598 // Update the destination register. 3599 set_s_register_from_sinteger(dst, temp); 3600 3601 } else { 3602 bool unsigned_integer = (instr->Bit(7) == 0); 3603 3604 int dst = instr->VFPDRegValue(src_precision); 3605 int src = instr->VFPMRegValue(kSinglePrecision); 3606 3607 int val = get_sinteger_from_s_register(src); 3608 3609 if (src_precision == kDoublePrecision) { 3610 if (unsigned_integer) { 3611 set_d_register_from_double( 3612 dst, static_cast<double>(static_cast<uint32_t>(val))); 3613 } else { 3614 set_d_register_from_double(dst, static_cast<double>(val)); 3615 } 3616 } else { 3617 if (unsigned_integer) { 3618 set_s_register_from_float( 3619 dst, static_cast<float>(static_cast<uint32_t>(val))); 3620 } else { 3621 set_s_register_from_float(dst, static_cast<float>(val)); 3622 } 3623 } 3624 } 3625} 3626 3627 3628// void Simulator::DecodeType6CoprocessorIns(Instruction* instr) 3629// Decode Type 6 coprocessor instructions. 3630// Dm = vmov(Rt, Rt2) 3631// <Rt, Rt2> = vmov(Dm) 3632// Ddst = MEM(Rbase + 4*offset). 3633// MEM(Rbase + 4*offset) = Dsrc. 3634void Simulator::DecodeType6CoprocessorIns(Instruction* instr) { 3635 DCHECK((instr->TypeValue() == 6)); 3636 3637 if (instr->CoprocessorValue() == 0xA) { 3638 switch (instr->OpcodeValue()) { 3639 case 0x8: 3640 case 0xA: 3641 case 0xC: 3642 case 0xE: { // Load and store single precision float to memory. 3643 int rn = instr->RnValue(); 3644 int vd = instr->VFPDRegValue(kSinglePrecision); 3645 int offset = instr->Immed8Value(); 3646 if (!instr->HasU()) { 3647 offset = -offset; 3648 } 3649 3650 int32_t address = get_register(rn) + 4 * offset; 3651 // Load and store address for singles must be at least four-byte 3652 // aligned. 3653 DCHECK((address % 4) == 0); 3654 if (instr->HasL()) { 3655 // Load single from memory: vldr. 3656 set_s_register_from_sinteger(vd, ReadW(address, instr)); 3657 } else { 3658 // Store single to memory: vstr. 3659 WriteW(address, get_sinteger_from_s_register(vd), instr); 3660 } 3661 break; 3662 } 3663 case 0x4: 3664 case 0x5: 3665 case 0x6: 3666 case 0x7: 3667 case 0x9: 3668 case 0xB: 3669 // Load/store multiple single from memory: vldm/vstm. 3670 HandleVList(instr); 3671 break; 3672 default: 3673 UNIMPLEMENTED(); // Not used by V8. 3674 } 3675 } else if (instr->CoprocessorValue() == 0xB) { 3676 switch (instr->OpcodeValue()) { 3677 case 0x2: 3678 // Load and store double to two GP registers 3679 if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { 3680 UNIMPLEMENTED(); // Not used by V8. 3681 } else { 3682 int rt = instr->RtValue(); 3683 int rn = instr->RnValue(); 3684 int vm = instr->VFPMRegValue(kDoublePrecision); 3685 if (instr->HasL()) { 3686 uint32_t data[2]; 3687 get_d_register(vm, data); 3688 set_register(rt, data[0]); 3689 set_register(rn, data[1]); 3690 } else { 3691 int32_t data[] = { get_register(rt), get_register(rn) }; 3692 set_d_register(vm, reinterpret_cast<uint32_t*>(data)); 3693 } 3694 } 3695 break; 3696 case 0x8: 3697 case 0xA: 3698 case 0xC: 3699 case 0xE: { // Load and store double to memory. 3700 int rn = instr->RnValue(); 3701 int vd = instr->VFPDRegValue(kDoublePrecision); 3702 int offset = instr->Immed8Value(); 3703 if (!instr->HasU()) { 3704 offset = -offset; 3705 } 3706 int32_t address = get_register(rn) + 4 * offset; 3707 // Load and store address for doubles must be at least four-byte 3708 // aligned. 3709 DCHECK((address % 4) == 0); 3710 if (instr->HasL()) { 3711 // Load double from memory: vldr. 3712 int32_t data[] = { 3713 ReadW(address, instr), 3714 ReadW(address + 4, instr) 3715 }; 3716 set_d_register(vd, reinterpret_cast<uint32_t*>(data)); 3717 } else { 3718 // Store double to memory: vstr. 3719 uint32_t data[2]; 3720 get_d_register(vd, data); 3721 WriteW(address, data[0], instr); 3722 WriteW(address + 4, data[1], instr); 3723 } 3724 break; 3725 } 3726 case 0x4: 3727 case 0x5: 3728 case 0x6: 3729 case 0x7: 3730 case 0x9: 3731 case 0xB: 3732 // Load/store multiple double from memory: vldm/vstm. 3733 HandleVList(instr); 3734 break; 3735 default: 3736 UNIMPLEMENTED(); // Not used by V8. 3737 } 3738 } else { 3739 UNIMPLEMENTED(); // Not used by V8. 3740 } 3741} 3742 3743 3744void Simulator::DecodeSpecialCondition(Instruction* instr) { 3745 switch (instr->SpecialValue()) { 3746 case 5: 3747 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3748 (instr->Bit(4) == 1)) { 3749 // vmovl signed 3750 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); 3751 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); 3752 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3753 int imm3 = instr->Bits(21, 19); 3754 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3755 int esize = 8 * imm3; 3756 int elements = 64 / esize; 3757 int8_t from[8]; 3758 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3759 int16_t to[8]; 3760 int e = 0; 3761 while (e < elements) { 3762 to[e] = from[e]; 3763 e++; 3764 } 3765 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3766 } else { 3767 UNIMPLEMENTED(); 3768 } 3769 break; 3770 case 7: 3771 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3772 (instr->Bit(4) == 1)) { 3773 // vmovl unsigned 3774 if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED(); 3775 int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); 3776 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3777 int imm3 = instr->Bits(21, 19); 3778 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3779 int esize = 8 * imm3; 3780 int elements = 64 / esize; 3781 uint8_t from[8]; 3782 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3783 uint16_t to[8]; 3784 int e = 0; 3785 while (e < elements) { 3786 to[e] = from[e]; 3787 e++; 3788 } 3789 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3790 } else if ((instr->Bits(21, 16) == 0x32) && (instr->Bits(11, 7) == 0) && 3791 (instr->Bit(4) == 0)) { 3792 int vd = instr->VFPDRegValue(kDoublePrecision); 3793 int vm = instr->VFPMRegValue(kDoublePrecision); 3794 if (instr->Bit(6) == 0) { 3795 // vswp Dd, Dm. 3796 uint64_t dval, mval; 3797 get_d_register(vd, &dval); 3798 get_d_register(vm, &mval); 3799 set_d_register(vm, &dval); 3800 set_d_register(vd, &mval); 3801 } else { 3802 // Q register vswp unimplemented. 3803 UNIMPLEMENTED(); 3804 } 3805 } else { 3806 UNIMPLEMENTED(); 3807 } 3808 break; 3809 case 8: 3810 if (instr->Bits(21, 20) == 0) { 3811 // vst1 3812 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3813 int Rn = instr->VnValue(); 3814 int type = instr->Bits(11, 8); 3815 int Rm = instr->VmValue(); 3816 int32_t address = get_register(Rn); 3817 int regs = 0; 3818 switch (type) { 3819 case nlt_1: 3820 regs = 1; 3821 break; 3822 case nlt_2: 3823 regs = 2; 3824 break; 3825 case nlt_3: 3826 regs = 3; 3827 break; 3828 case nlt_4: 3829 regs = 4; 3830 break; 3831 default: 3832 UNIMPLEMENTED(); 3833 break; 3834 } 3835 int r = 0; 3836 while (r < regs) { 3837 uint32_t data[2]; 3838 get_d_register(Vd + r, data); 3839 WriteW(address, data[0], instr); 3840 WriteW(address + 4, data[1], instr); 3841 address += 8; 3842 r++; 3843 } 3844 if (Rm != 15) { 3845 if (Rm == 13) { 3846 set_register(Rn, address); 3847 } else { 3848 set_register(Rn, get_register(Rn) + get_register(Rm)); 3849 } 3850 } 3851 } else if (instr->Bits(21, 20) == 2) { 3852 // vld1 3853 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3854 int Rn = instr->VnValue(); 3855 int type = instr->Bits(11, 8); 3856 int Rm = instr->VmValue(); 3857 int32_t address = get_register(Rn); 3858 int regs = 0; 3859 switch (type) { 3860 case nlt_1: 3861 regs = 1; 3862 break; 3863 case nlt_2: 3864 regs = 2; 3865 break; 3866 case nlt_3: 3867 regs = 3; 3868 break; 3869 case nlt_4: 3870 regs = 4; 3871 break; 3872 default: 3873 UNIMPLEMENTED(); 3874 break; 3875 } 3876 int r = 0; 3877 while (r < regs) { 3878 uint32_t data[2]; 3879 data[0] = ReadW(address, instr); 3880 data[1] = ReadW(address + 4, instr); 3881 set_d_register(Vd + r, data); 3882 address += 8; 3883 r++; 3884 } 3885 if (Rm != 15) { 3886 if (Rm == 13) { 3887 set_register(Rn, address); 3888 } else { 3889 set_register(Rn, get_register(Rn) + get_register(Rm)); 3890 } 3891 } 3892 } else { 3893 UNIMPLEMENTED(); 3894 } 3895 break; 3896 case 0xA: 3897 case 0xB: 3898 if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { 3899 // pld: ignore instruction. 3900 } else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) { 3901 // dsb, dmb, isb: ignore instruction for now. 3902 // TODO(binji): implement 3903 // Also refer to the ARMv6 CP15 equivalents in DecodeTypeCP15. 3904 } else { 3905 UNIMPLEMENTED(); 3906 } 3907 break; 3908 case 0x1D: 3909 if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 && 3910 instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) { 3911 if (instr->SzValue() == 0x1) { 3912 int vm = instr->VFPMRegValue(kDoublePrecision); 3913 int vd = instr->VFPDRegValue(kDoublePrecision); 3914 double dm_value = get_double_from_d_register(vm); 3915 double dd_value = 0.0; 3916 int rounding_mode = instr->Bits(17, 16); 3917 switch (rounding_mode) { 3918 case 0x0: // vrinta - round with ties to away from zero 3919 dd_value = round(dm_value); 3920 break; 3921 case 0x1: { // vrintn - round with ties to even 3922 dd_value = nearbyint(dm_value); 3923 break; 3924 } 3925 case 0x2: // vrintp - ceil 3926 dd_value = ceil(dm_value); 3927 break; 3928 case 0x3: // vrintm - floor 3929 dd_value = floor(dm_value); 3930 break; 3931 default: 3932 UNREACHABLE(); // Case analysis is exhaustive. 3933 break; 3934 } 3935 dd_value = canonicalizeNaN(dd_value); 3936 set_d_register_from_double(vd, dd_value); 3937 } else { 3938 int m = instr->VFPMRegValue(kSinglePrecision); 3939 int d = instr->VFPDRegValue(kSinglePrecision); 3940 float sm_value = get_float_from_s_register(m); 3941 float sd_value = 0.0; 3942 int rounding_mode = instr->Bits(17, 16); 3943 switch (rounding_mode) { 3944 case 0x0: // vrinta - round with ties to away from zero 3945 sd_value = roundf(sm_value); 3946 break; 3947 case 0x1: { // vrintn - round with ties to even 3948 sd_value = nearbyintf(sm_value); 3949 break; 3950 } 3951 case 0x2: // vrintp - ceil 3952 sd_value = ceilf(sm_value); 3953 break; 3954 case 0x3: // vrintm - floor 3955 sd_value = floorf(sm_value); 3956 break; 3957 default: 3958 UNREACHABLE(); // Case analysis is exhaustive. 3959 break; 3960 } 3961 sd_value = canonicalizeNaN(sd_value); 3962 set_s_register_from_float(d, sd_value); 3963 } 3964 } else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) && 3965 (instr->Bit(4) == 0x0)) { 3966 if (instr->SzValue() == 0x1) { 3967 int m = instr->VFPMRegValue(kDoublePrecision); 3968 int n = instr->VFPNRegValue(kDoublePrecision); 3969 int d = instr->VFPDRegValue(kDoublePrecision); 3970 double dn_value = get_double_from_d_register(n); 3971 double dm_value = get_double_from_d_register(m); 3972 double dd_value; 3973 if (instr->Bit(6) == 0x1) { // vminnm 3974 if ((dn_value < dm_value) || std::isnan(dm_value)) { 3975 dd_value = dn_value; 3976 } else if ((dm_value < dn_value) || std::isnan(dn_value)) { 3977 dd_value = dm_value; 3978 } else { 3979 DCHECK_EQ(dn_value, dm_value); 3980 // Make sure that we pick the most negative sign for +/-0. 3981 dd_value = std::signbit(dn_value) ? dn_value : dm_value; 3982 } 3983 } else { // vmaxnm 3984 if ((dn_value > dm_value) || std::isnan(dm_value)) { 3985 dd_value = dn_value; 3986 } else if ((dm_value > dn_value) || std::isnan(dn_value)) { 3987 dd_value = dm_value; 3988 } else { 3989 DCHECK_EQ(dn_value, dm_value); 3990 // Make sure that we pick the most positive sign for +/-0. 3991 dd_value = std::signbit(dn_value) ? dm_value : dn_value; 3992 } 3993 } 3994 dd_value = canonicalizeNaN(dd_value); 3995 set_d_register_from_double(d, dd_value); 3996 } else { 3997 int m = instr->VFPMRegValue(kSinglePrecision); 3998 int n = instr->VFPNRegValue(kSinglePrecision); 3999 int d = instr->VFPDRegValue(kSinglePrecision); 4000 float sn_value = get_float_from_s_register(n); 4001 float sm_value = get_float_from_s_register(m); 4002 float sd_value; 4003 if (instr->Bit(6) == 0x1) { // vminnm 4004 if ((sn_value < sm_value) || std::isnan(sm_value)) { 4005 sd_value = sn_value; 4006 } else if ((sm_value < sn_value) || std::isnan(sn_value)) { 4007 sd_value = sm_value; 4008 } else { 4009 DCHECK_EQ(sn_value, sm_value); 4010 // Make sure that we pick the most negative sign for +/-0. 4011 sd_value = std::signbit(sn_value) ? sn_value : sm_value; 4012 } 4013 } else { // vmaxnm 4014 if ((sn_value > sm_value) || std::isnan(sm_value)) { 4015 sd_value = sn_value; 4016 } else if ((sm_value > sn_value) || std::isnan(sn_value)) { 4017 sd_value = sm_value; 4018 } else { 4019 DCHECK_EQ(sn_value, sm_value); 4020 // Make sure that we pick the most positive sign for +/-0. 4021 sd_value = std::signbit(sn_value) ? sm_value : sn_value; 4022 } 4023 } 4024 sd_value = canonicalizeNaN(sd_value); 4025 set_s_register_from_float(d, sd_value); 4026 } 4027 } else { 4028 UNIMPLEMENTED(); 4029 } 4030 break; 4031 case 0x1C: 4032 if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) && 4033 (instr->Bit(4) == 0)) { 4034 // VSEL* (floating-point) 4035 bool condition_holds; 4036 switch (instr->Bits(21, 20)) { 4037 case 0x0: // VSELEQ 4038 condition_holds = (z_flag_ == 1); 4039 break; 4040 case 0x1: // VSELVS 4041 condition_holds = (v_flag_ == 1); 4042 break; 4043 case 0x2: // VSELGE 4044 condition_holds = (n_flag_ == v_flag_); 4045 break; 4046 case 0x3: // VSELGT 4047 condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_)); 4048 break; 4049 default: 4050 UNREACHABLE(); // Case analysis is exhaustive. 4051 break; 4052 } 4053 if (instr->SzValue() == 0x1) { 4054 int n = instr->VFPNRegValue(kDoublePrecision); 4055 int m = instr->VFPMRegValue(kDoublePrecision); 4056 int d = instr->VFPDRegValue(kDoublePrecision); 4057 double result = get_double_from_d_register(condition_holds ? n : m); 4058 set_d_register_from_double(d, result); 4059 } else { 4060 int n = instr->VFPNRegValue(kSinglePrecision); 4061 int m = instr->VFPMRegValue(kSinglePrecision); 4062 int d = instr->VFPDRegValue(kSinglePrecision); 4063 float result = get_float_from_s_register(condition_holds ? n : m); 4064 set_s_register_from_float(d, result); 4065 } 4066 } else { 4067 UNIMPLEMENTED(); 4068 } 4069 break; 4070 default: 4071 UNIMPLEMENTED(); 4072 break; 4073 } 4074} 4075 4076 4077// Executes the current instruction. 4078void Simulator::InstructionDecode(Instruction* instr) { 4079 if (v8::internal::FLAG_check_icache) { 4080 CheckICache(isolate_->simulator_i_cache(), instr); 4081 } 4082 pc_modified_ = false; 4083 if (::v8::internal::FLAG_trace_sim) { 4084 disasm::NameConverter converter; 4085 disasm::Disassembler dasm(converter); 4086 // use a reasonably large buffer 4087 v8::internal::EmbeddedVector<char, 256> buffer; 4088 dasm.InstructionDecode(buffer, 4089 reinterpret_cast<byte*>(instr)); 4090 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(instr), 4091 buffer.start()); 4092 } 4093 if (instr->ConditionField() == kSpecialCondition) { 4094 DecodeSpecialCondition(instr); 4095 } else if (ConditionallyExecute(instr)) { 4096 switch (instr->TypeValue()) { 4097 case 0: 4098 case 1: { 4099 DecodeType01(instr); 4100 break; 4101 } 4102 case 2: { 4103 DecodeType2(instr); 4104 break; 4105 } 4106 case 3: { 4107 DecodeType3(instr); 4108 break; 4109 } 4110 case 4: { 4111 DecodeType4(instr); 4112 break; 4113 } 4114 case 5: { 4115 DecodeType5(instr); 4116 break; 4117 } 4118 case 6: { 4119 DecodeType6(instr); 4120 break; 4121 } 4122 case 7: { 4123 DecodeType7(instr); 4124 break; 4125 } 4126 default: { 4127 UNIMPLEMENTED(); 4128 break; 4129 } 4130 } 4131 // If the instruction is a non taken conditional stop, we need to skip the 4132 // inlined message address. 4133 } else if (instr->IsStop()) { 4134 set_pc(get_pc() + 2 * Instruction::kInstrSize); 4135 } 4136 if (!pc_modified_) { 4137 set_register(pc, reinterpret_cast<int32_t>(instr) 4138 + Instruction::kInstrSize); 4139 } 4140} 4141 4142 4143void Simulator::Execute() { 4144 // Get the PC to simulate. Cannot use the accessor here as we need the 4145 // raw PC value and not the one used as input to arithmetic instructions. 4146 int program_counter = get_pc(); 4147 4148 if (::v8::internal::FLAG_stop_sim_at == 0) { 4149 // Fast version of the dispatch loop without checking whether the simulator 4150 // should be stopping at a particular executed instruction. 4151 while (program_counter != end_sim_pc) { 4152 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4153 icount_++; 4154 InstructionDecode(instr); 4155 program_counter = get_pc(); 4156 } 4157 } else { 4158 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 4159 // we reach the particular instuction count. 4160 while (program_counter != end_sim_pc) { 4161 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 4162 icount_++; 4163 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { 4164 ArmDebugger dbg(this); 4165 dbg.Debug(); 4166 } else { 4167 InstructionDecode(instr); 4168 } 4169 program_counter = get_pc(); 4170 } 4171 } 4172} 4173 4174 4175void Simulator::CallInternal(byte* entry) { 4176 // Adjust JS-based stack limit to C-based stack limit. 4177 isolate_->stack_guard()->AdjustStackLimitForSimulator(); 4178 4179 // Prepare to execute the code at entry 4180 set_register(pc, reinterpret_cast<int32_t>(entry)); 4181 // Put down marker for end of simulation. The simulator will stop simulation 4182 // when the PC reaches this value. By saving the "end simulation" value into 4183 // the LR the simulation stops when returning to this call point. 4184 set_register(lr, end_sim_pc); 4185 4186 // Remember the values of callee-saved registers. 4187 // The code below assumes that r9 is not used as sb (static base) in 4188 // simulator code and therefore is regarded as a callee-saved register. 4189 int32_t r4_val = get_register(r4); 4190 int32_t r5_val = get_register(r5); 4191 int32_t r6_val = get_register(r6); 4192 int32_t r7_val = get_register(r7); 4193 int32_t r8_val = get_register(r8); 4194 int32_t r9_val = get_register(r9); 4195 int32_t r10_val = get_register(r10); 4196 int32_t r11_val = get_register(r11); 4197 4198 // Set up the callee-saved registers with a known value. To be able to check 4199 // that they are preserved properly across JS execution. 4200 int32_t callee_saved_value = icount_; 4201 set_register(r4, callee_saved_value); 4202 set_register(r5, callee_saved_value); 4203 set_register(r6, callee_saved_value); 4204 set_register(r7, callee_saved_value); 4205 set_register(r8, callee_saved_value); 4206 set_register(r9, callee_saved_value); 4207 set_register(r10, callee_saved_value); 4208 set_register(r11, callee_saved_value); 4209 4210 // Start the simulation 4211 Execute(); 4212 4213 // Check that the callee-saved registers have been preserved. 4214 CHECK_EQ(callee_saved_value, get_register(r4)); 4215 CHECK_EQ(callee_saved_value, get_register(r5)); 4216 CHECK_EQ(callee_saved_value, get_register(r6)); 4217 CHECK_EQ(callee_saved_value, get_register(r7)); 4218 CHECK_EQ(callee_saved_value, get_register(r8)); 4219 CHECK_EQ(callee_saved_value, get_register(r9)); 4220 CHECK_EQ(callee_saved_value, get_register(r10)); 4221 CHECK_EQ(callee_saved_value, get_register(r11)); 4222 4223 // Restore callee-saved registers with the original value. 4224 set_register(r4, r4_val); 4225 set_register(r5, r5_val); 4226 set_register(r6, r6_val); 4227 set_register(r7, r7_val); 4228 set_register(r8, r8_val); 4229 set_register(r9, r9_val); 4230 set_register(r10, r10_val); 4231 set_register(r11, r11_val); 4232} 4233 4234 4235int32_t Simulator::Call(byte* entry, int argument_count, ...) { 4236 va_list parameters; 4237 va_start(parameters, argument_count); 4238 // Set up arguments 4239 4240 // First four arguments passed in registers. 4241 DCHECK(argument_count >= 4); 4242 set_register(r0, va_arg(parameters, int32_t)); 4243 set_register(r1, va_arg(parameters, int32_t)); 4244 set_register(r2, va_arg(parameters, int32_t)); 4245 set_register(r3, va_arg(parameters, int32_t)); 4246 4247 // Remaining arguments passed on stack. 4248 int original_stack = get_register(sp); 4249 // Compute position of stack on entry to generated code. 4250 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); 4251 if (base::OS::ActivationFrameAlignment() != 0) { 4252 entry_stack &= -base::OS::ActivationFrameAlignment(); 4253 } 4254 // Store remaining arguments on stack, from low to high memory. 4255 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 4256 for (int i = 4; i < argument_count; i++) { 4257 stack_argument[i - 4] = va_arg(parameters, int32_t); 4258 } 4259 va_end(parameters); 4260 set_register(sp, entry_stack); 4261 4262 CallInternal(entry); 4263 4264 // Pop stack passed arguments. 4265 CHECK_EQ(entry_stack, get_register(sp)); 4266 set_register(sp, original_stack); 4267 4268 int32_t result = get_register(r0); 4269 return result; 4270} 4271 4272 4273void Simulator::CallFP(byte* entry, double d0, double d1) { 4274 if (use_eabi_hardfloat()) { 4275 set_d_register_from_double(0, d0); 4276 set_d_register_from_double(1, d1); 4277 } else { 4278 set_register_pair_from_double(0, &d0); 4279 set_register_pair_from_double(2, &d1); 4280 } 4281 CallInternal(entry); 4282} 4283 4284 4285int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { 4286 CallFP(entry, d0, d1); 4287 int32_t result = get_register(r0); 4288 return result; 4289} 4290 4291 4292double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { 4293 CallFP(entry, d0, d1); 4294 if (use_eabi_hardfloat()) { 4295 return get_double_from_d_register(0); 4296 } else { 4297 return get_double_from_register_pair(0); 4298 } 4299} 4300 4301 4302uintptr_t Simulator::PushAddress(uintptr_t address) { 4303 int new_sp = get_register(sp) - sizeof(uintptr_t); 4304 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 4305 *stack_slot = address; 4306 set_register(sp, new_sp); 4307 return new_sp; 4308} 4309 4310 4311uintptr_t Simulator::PopAddress() { 4312 int current_sp = get_register(sp); 4313 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 4314 uintptr_t address = *stack_slot; 4315 set_register(sp, current_sp + sizeof(uintptr_t)); 4316 return address; 4317} 4318 4319} // namespace internal 4320} // namespace v8 4321 4322#endif // USE_SIMULATOR 4323 4324#endif // V8_TARGET_ARCH_ARM 4325