1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Declares a Simulator for ARM instructions if we are not generating a native
7// ARM binary. This Simulator allows us to run and debug ARM code generation on
8// regular desktop machines.
9// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10// which will start execution in the Simulator or forwards to the real entry
11// on a ARM HW platform.
12
13#ifndef V8_ARM_SIMULATOR_ARM_H_
14#define V8_ARM_SIMULATOR_ARM_H_
15
16#include "src/allocation.h"
17
18#if !defined(USE_SIMULATOR)
19// Running without a simulator on a native arm platform.
20
21namespace v8 {
22namespace internal {
23
24// When running without a simulator we call the entry directly.
25#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
26  (entry(p0, p1, p2, p3, p4))
27
28typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
29                                  void*, int*, int, Address, int, Isolate*);
30
31
32// Call the generated regexp code directly. The code at the entry address
33// should act as a function matching the type arm_regexp_matcher.
34// The fifth argument is a dummy that reserves the space used for
35// the return address added by the ExitFrame in native calls.
36#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
37                                   p7, p8)                                     \
38  (FUNCTION_CAST<arm_regexp_matcher>(entry)(p0, p1, p2, p3, NULL, p4, p5, p6,  \
39                                            p7, p8))
40
41// The stack limit beyond which we will throw stack overflow errors in
42// generated code. Because generated code on arm uses the C stack, we
43// just use the C stack limit.
44class SimulatorStack : public v8::internal::AllStatic {
45 public:
46  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
47                                            uintptr_t c_limit) {
48    USE(isolate);
49    return c_limit;
50  }
51
52  static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
53                                            uintptr_t try_catch_address) {
54    USE(isolate);
55    return try_catch_address;
56  }
57
58  static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
59    USE(isolate);
60  }
61};
62
63}  // namespace internal
64}  // namespace v8
65
66#else  // !defined(USE_SIMULATOR)
67// Running with a simulator.
68
69#include "src/arm/constants-arm.h"
70#include "src/assembler.h"
71#include "src/base/hashmap.h"
72
73namespace v8 {
74namespace internal {
75
76class CachePage {
77 public:
78  static const int LINE_VALID = 0;
79  static const int LINE_INVALID = 1;
80
81  static const int kPageShift = 12;
82  static const int kPageSize = 1 << kPageShift;
83  static const int kPageMask = kPageSize - 1;
84  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
85  static const int kLineLength = 1 << kLineShift;
86  static const int kLineMask = kLineLength - 1;
87
88  CachePage() {
89    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
90  }
91
92  char* ValidityByte(int offset) {
93    return &validity_map_[offset >> kLineShift];
94  }
95
96  char* CachedData(int offset) {
97    return &data_[offset];
98  }
99
100 private:
101  char data_[kPageSize];   // The cached data.
102  static const int kValidityMapSize = kPageSize >> kLineShift;
103  char validity_map_[kValidityMapSize];  // One byte per line.
104};
105
106
107class Simulator {
108 public:
109  friend class ArmDebugger;
110  enum Register {
111    no_reg = -1,
112    r0 = 0, r1, r2, r3, r4, r5, r6, r7,
113    r8, r9, r10, r11, r12, r13, r14, r15,
114    num_registers,
115    sp = 13,
116    lr = 14,
117    pc = 15,
118    s0 = 0, s1, s2, s3, s4, s5, s6, s7,
119    s8, s9, s10, s11, s12, s13, s14, s15,
120    s16, s17, s18, s19, s20, s21, s22, s23,
121    s24, s25, s26, s27, s28, s29, s30, s31,
122    num_s_registers = 32,
123    d0 = 0, d1, d2, d3, d4, d5, d6, d7,
124    d8, d9, d10, d11, d12, d13, d14, d15,
125    d16, d17, d18, d19, d20, d21, d22, d23,
126    d24, d25, d26, d27, d28, d29, d30, d31,
127    num_d_registers = 32,
128    q0 = 0, q1, q2, q3, q4, q5, q6, q7,
129    q8, q9, q10, q11, q12, q13, q14, q15,
130    num_q_registers = 16
131  };
132
133  explicit Simulator(Isolate* isolate);
134  ~Simulator();
135
136  // The currently executing Simulator instance. Potentially there can be one
137  // for each native thread.
138  static Simulator* current(v8::internal::Isolate* isolate);
139
140  // Accessors for register state. Reading the pc value adheres to the ARM
141  // architecture specification and is off by a 8 from the currently executing
142  // instruction.
143  void set_register(int reg, int32_t value);
144  int32_t get_register(int reg) const;
145  double get_double_from_register_pair(int reg);
146  void set_register_pair_from_double(int reg, double* value);
147  void set_dw_register(int dreg, const int* dbl);
148
149  // Support for VFP.
150  void get_d_register(int dreg, uint64_t* value);
151  void set_d_register(int dreg, const uint64_t* value);
152  void get_d_register(int dreg, uint32_t* value);
153  void set_d_register(int dreg, const uint32_t* value);
154  void get_q_register(int qreg, uint64_t* value);
155  void set_q_register(int qreg, const uint64_t* value);
156  void get_q_register(int qreg, uint32_t* value);
157  void set_q_register(int qreg, const uint32_t* value);
158
159  void set_s_register(int reg, unsigned int value);
160  unsigned int get_s_register(int reg) const;
161
162  void set_d_register_from_double(int dreg, const double& dbl) {
163    SetVFPRegister<double, 2>(dreg, dbl);
164  }
165
166  double get_double_from_d_register(int dreg) {
167    return GetFromVFPRegister<double, 2>(dreg);
168  }
169
170  void set_s_register_from_float(int sreg, const float flt) {
171    SetVFPRegister<float, 1>(sreg, flt);
172  }
173
174  float get_float_from_s_register(int sreg) {
175    return GetFromVFPRegister<float, 1>(sreg);
176  }
177
178  void set_s_register_from_sinteger(int sreg, const int sint) {
179    SetVFPRegister<int, 1>(sreg, sint);
180  }
181
182  int get_sinteger_from_s_register(int sreg) {
183    return GetFromVFPRegister<int, 1>(sreg);
184  }
185
186  // Special case of set_register and get_register to access the raw PC value.
187  void set_pc(int32_t value);
188  int32_t get_pc() const;
189
190  Address get_sp() const {
191    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
192  }
193
194  // Accessor to the internal simulator stack area.
195  uintptr_t StackLimit(uintptr_t c_limit) const;
196
197  // Executes ARM instructions until the PC reaches end_sim_pc.
198  void Execute();
199
200  // Call on program start.
201  static void Initialize(Isolate* isolate);
202
203  static void TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first);
204
205  // V8 generally calls into generated JS code with 5 parameters and into
206  // generated RegExp code with 7 parameters. This is a convenience function,
207  // which sets up the simulator state and grabs the result on return.
208  int32_t Call(byte* entry, int argument_count, ...);
209  // Alternative: call a 2-argument double function.
210  void CallFP(byte* entry, double d0, double d1);
211  int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
212  double CallFPReturnsDouble(byte* entry, double d0, double d1);
213
214  // Push an address onto the JS stack.
215  uintptr_t PushAddress(uintptr_t address);
216
217  // Pop an address from the JS stack.
218  uintptr_t PopAddress();
219
220  // Debugger input.
221  void set_last_debugger_input(char* input);
222  char* last_debugger_input() { return last_debugger_input_; }
223
224  // ICache checking.
225  static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
226                          size_t size);
227
228  // Returns true if pc register contains one of the 'special_values' defined
229  // below (bad_lr, end_sim_pc).
230  bool has_bad_pc() const;
231
232  // EABI variant for double arguments in use.
233  bool use_eabi_hardfloat() {
234#if USE_EABI_HARDFLOAT
235    return true;
236#else
237    return false;
238#endif
239  }
240
241 private:
242  enum special_values {
243    // Known bad pc value to ensure that the simulator does not execute
244    // without being properly setup.
245    bad_lr = -1,
246    // A pc value used to signal the simulator to stop execution.  Generally
247    // the lr is set to this value on transition from native C code to
248    // simulated execution, so that the simulator can "return" to the native
249    // C code.
250    end_sim_pc = -2
251  };
252
253  // Unsupported instructions use Format to print an error and stop execution.
254  void Format(Instruction* instr, const char* format);
255
256  // Checks if the current instruction should be executed based on its
257  // condition bits.
258  inline bool ConditionallyExecute(Instruction* instr);
259
260  // Helper functions to set the conditional flags in the architecture state.
261  void SetNZFlags(int32_t val);
262  void SetCFlag(bool val);
263  void SetVFlag(bool val);
264  bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
265  bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1);
266  bool OverflowFrom(int32_t alu_out,
267                    int32_t left,
268                    int32_t right,
269                    bool addition);
270
271  inline int GetCarry() {
272    return c_flag_ ? 1 : 0;
273  }
274
275  // Support for VFP.
276  void Compute_FPSCR_Flags(float val1, float val2);
277  void Compute_FPSCR_Flags(double val1, double val2);
278  void Copy_FPSCR_to_APSR();
279  inline float canonicalizeNaN(float value);
280  inline double canonicalizeNaN(double value);
281
282  // Helper functions to decode common "addressing" modes
283  int32_t GetShiftRm(Instruction* instr, bool* carry_out);
284  int32_t GetImm(Instruction* instr, bool* carry_out);
285  int32_t ProcessPU(Instruction* instr,
286                    int num_regs,
287                    int operand_size,
288                    intptr_t* start_address,
289                    intptr_t* end_address);
290  void HandleRList(Instruction* instr, bool load);
291  void HandleVList(Instruction* inst);
292  void SoftwareInterrupt(Instruction* instr);
293
294  // Stop helper functions.
295  inline bool isStopInstruction(Instruction* instr);
296  inline bool isWatchedStop(uint32_t bkpt_code);
297  inline bool isEnabledStop(uint32_t bkpt_code);
298  inline void EnableStop(uint32_t bkpt_code);
299  inline void DisableStop(uint32_t bkpt_code);
300  inline void IncreaseStopCounter(uint32_t bkpt_code);
301  void PrintStopInfo(uint32_t code);
302
303  // Read and write memory.
304  inline uint8_t ReadBU(int32_t addr);
305  inline int8_t ReadB(int32_t addr);
306  inline void WriteB(int32_t addr, uint8_t value);
307  inline void WriteB(int32_t addr, int8_t value);
308
309  inline uint16_t ReadHU(int32_t addr, Instruction* instr);
310  inline int16_t ReadH(int32_t addr, Instruction* instr);
311  // Note: Overloaded on the sign of the value.
312  inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
313  inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
314
315  inline int ReadW(int32_t addr, Instruction* instr);
316  inline void WriteW(int32_t addr, int value, Instruction* instr);
317
318  int32_t* ReadDW(int32_t addr);
319  void WriteDW(int32_t addr, int32_t value1, int32_t value2);
320
321  // Executing is handled based on the instruction type.
322  // Both type 0 and type 1 rolled into one.
323  void DecodeType01(Instruction* instr);
324  void DecodeType2(Instruction* instr);
325  void DecodeType3(Instruction* instr);
326  void DecodeType4(Instruction* instr);
327  void DecodeType5(Instruction* instr);
328  void DecodeType6(Instruction* instr);
329  void DecodeType7(Instruction* instr);
330
331  // CP15 coprocessor instructions.
332  void DecodeTypeCP15(Instruction* instr);
333
334  // Support for VFP.
335  void DecodeTypeVFP(Instruction* instr);
336  void DecodeType6CoprocessorIns(Instruction* instr);
337  void DecodeSpecialCondition(Instruction* instr);
338
339  void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
340  void DecodeVCMP(Instruction* instr);
341  void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
342  void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
343
344  // Executes one instruction.
345  void InstructionDecode(Instruction* instr);
346
347  // ICache.
348  static void CheckICache(base::CustomMatcherHashMap* i_cache,
349                          Instruction* instr);
350  static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
351                           int size);
352  static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
353                                 void* page);
354
355  // Runtime call support.
356  static void* RedirectExternalReference(
357      Isolate* isolate, void* external_function,
358      v8::internal::ExternalReference::Type type);
359
360  // Handle arguments and return value for runtime FP functions.
361  void GetFpArgs(double* x, double* y, int32_t* z);
362  void SetFpResult(const double& result);
363  void TrashCallerSaveRegisters();
364
365  template<class ReturnType, int register_size>
366      ReturnType GetFromVFPRegister(int reg_index);
367
368  template<class InputType, int register_size>
369      void SetVFPRegister(int reg_index, const InputType& value);
370
371  void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value);
372  uint32_t GetFromSpecialRegister(SRegister reg);
373
374  void CallInternal(byte* entry);
375
376  // Architecture state.
377  // Saturating instructions require a Q flag to indicate saturation.
378  // There is currently no way to read the CPSR directly, and thus read the Q
379  // flag, so this is left unimplemented.
380  int32_t registers_[16];
381  bool n_flag_;
382  bool z_flag_;
383  bool c_flag_;
384  bool v_flag_;
385
386  // VFP architecture state.
387  unsigned int vfp_registers_[num_d_registers * 2];
388  bool n_flag_FPSCR_;
389  bool z_flag_FPSCR_;
390  bool c_flag_FPSCR_;
391  bool v_flag_FPSCR_;
392
393  // VFP rounding mode. See ARM DDI 0406B Page A2-29.
394  VFPRoundingMode FPSCR_rounding_mode_;
395  bool FPSCR_default_NaN_mode_;
396
397  // VFP FP exception flags architecture state.
398  bool inv_op_vfp_flag_;
399  bool div_zero_vfp_flag_;
400  bool overflow_vfp_flag_;
401  bool underflow_vfp_flag_;
402  bool inexact_vfp_flag_;
403
404  // Simulator support.
405  char* stack_;
406  bool pc_modified_;
407  int icount_;
408
409  // Debugger input.
410  char* last_debugger_input_;
411
412  // Icache simulation
413  base::CustomMatcherHashMap* i_cache_;
414
415  // Registered breakpoints.
416  Instruction* break_pc_;
417  Instr break_instr_;
418
419  v8::internal::Isolate* isolate_;
420
421  // A stop is watched if its code is less than kNumOfWatchedStops.
422  // Only watched stops support enabling/disabling and the counter feature.
423  static const uint32_t kNumOfWatchedStops = 256;
424
425  // Breakpoint is disabled if bit 31 is set.
426  static const uint32_t kStopDisabledBit = 1 << 31;
427
428  // A stop is enabled, meaning the simulator will stop when meeting the
429  // instruction, if bit 31 of watched_stops_[code].count is unset.
430  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
431  // the breakpoint was hit or gone through.
432  struct StopCountAndDesc {
433    uint32_t count;
434    char* desc;
435  };
436  StopCountAndDesc watched_stops_[kNumOfWatchedStops];
437};
438
439
440// When running with the simulator transition into simulated execution at this
441// point.
442#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
443  reinterpret_cast<Object*>(Simulator::current(isolate)->Call(  \
444      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
445
446#define CALL_GENERATED_FP_INT(isolate, entry, p0, p1) \
447  Simulator::current(isolate)->CallFPReturnsInt(FUNCTION_ADDR(entry), p0, p1)
448
449#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
450                                   p7, p8)                                     \
451  Simulator::current(isolate)                                                  \
452      ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
453
454
455// The simulator has its own stack. Thus it has a different stack limit from
456// the C-based native code.  The JS-based limit normally points near the end of
457// the simulator stack.  When the C-based limit is exhausted we reflect that by
458// lowering the JS-based limit as well, to make stack checks trigger.
459class SimulatorStack : public v8::internal::AllStatic {
460 public:
461  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
462                                            uintptr_t c_limit) {
463    return Simulator::current(isolate)->StackLimit(c_limit);
464  }
465
466  static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
467                                            uintptr_t try_catch_address) {
468    Simulator* sim = Simulator::current(isolate);
469    return sim->PushAddress(try_catch_address);
470  }
471
472  static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
473    Simulator::current(isolate)->PopAddress();
474  }
475};
476
477}  // namespace internal
478}  // namespace v8
479
480#endif  // !defined(USE_SIMULATOR)
481#endif  // V8_ARM_SIMULATOR_ARM_H_
482