1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_AST_SCOPES_H_
6#define V8_AST_SCOPES_H_
7
8#include "src/base/compiler-specific.h"
9#include "src/base/hashmap.h"
10#include "src/globals.h"
11#include "src/objects.h"
12#include "src/zone/zone.h"
13
14namespace v8 {
15namespace internal {
16
17class AstNodeFactory;
18class AstValueFactory;
19class AstRawString;
20class Declaration;
21class ParseInfo;
22class SloppyBlockFunctionStatement;
23class StringSet;
24class VariableProxy;
25
26// A hash map to support fast variable declaration and lookup.
27class VariableMap: public ZoneHashMap {
28 public:
29  explicit VariableMap(Zone* zone);
30
31  Variable* Declare(Zone* zone, Scope* scope, const AstRawString* name,
32                    VariableMode mode, VariableKind kind,
33                    InitializationFlag initialization_flag,
34                    MaybeAssignedFlag maybe_assigned_flag = kNotAssigned,
35                    bool* added = nullptr);
36
37  Variable* Lookup(const AstRawString* name);
38  void Remove(Variable* var);
39  void Add(Zone* zone, Variable* var);
40};
41
42
43// Sloppy block-scoped function declarations to var-bind
44class SloppyBlockFunctionMap : public ZoneHashMap {
45 public:
46  explicit SloppyBlockFunctionMap(Zone* zone);
47  void Declare(Zone* zone, const AstRawString* name,
48               SloppyBlockFunctionStatement* statement);
49};
50
51enum class AnalyzeMode { kRegular, kDebugger };
52
53// Global invariants after AST construction: Each reference (i.e. identifier)
54// to a JavaScript variable (including global properties) is represented by a
55// VariableProxy node. Immediately after AST construction and before variable
56// allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
57// corresponding variable (though some are bound during parse time). Variable
58// allocation binds each unresolved VariableProxy to one Variable and assigns
59// a location. Note that many VariableProxy nodes may refer to the same Java-
60// Script variable.
61
62// JS environments are represented in the parser using Scope, DeclarationScope
63// and ModuleScope. DeclarationScope is used for any scope that hosts 'var'
64// declarations. This includes script, module, eval, varblock, and function
65// scope. ModuleScope further specializes DeclarationScope.
66class V8_EXPORT_PRIVATE Scope : public NON_EXPORTED_BASE(ZoneObject) {
67 public:
68  // ---------------------------------------------------------------------------
69  // Construction
70
71  Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type);
72
73#ifdef DEBUG
74  // The scope name is only used for printing/debugging.
75  void SetScopeName(const AstRawString* scope_name) {
76    scope_name_ = scope_name;
77  }
78  void set_needs_migration() { needs_migration_ = true; }
79#endif
80
81  // TODO(verwaest): Is this needed on Scope?
82  int num_parameters() const;
83
84  DeclarationScope* AsDeclarationScope();
85  const DeclarationScope* AsDeclarationScope() const;
86  ModuleScope* AsModuleScope();
87  const ModuleScope* AsModuleScope() const;
88
89  class Snapshot final BASE_EMBEDDED {
90   public:
91    explicit Snapshot(Scope* scope);
92
93    void Reparent(DeclarationScope* new_parent) const;
94
95   private:
96    Scope* outer_scope_;
97    Scope* top_inner_scope_;
98    VariableProxy* top_unresolved_;
99    ThreadedList<Variable>::Iterator top_local_;
100    ThreadedList<Declaration>::Iterator top_decl_;
101  };
102
103  enum class DeserializationMode { kIncludingVariables, kScopesOnly };
104
105  static Scope* DeserializeScopeChain(Isolate* isolate, Zone* zone,
106                                      ScopeInfo* scope_info,
107                                      DeclarationScope* script_scope,
108                                      AstValueFactory* ast_value_factory,
109                                      DeserializationMode deserialization_mode);
110
111  // Checks if the block scope is redundant, i.e. it does not contain any
112  // block scoped declarations. In that case it is removed from the scope
113  // tree and its children are reparented.
114  Scope* FinalizeBlockScope();
115
116  bool HasBeenRemoved() const;
117
118  // Find the first scope that hasn't been removed.
119  Scope* GetUnremovedScope();
120
121  // Inserts outer_scope into this scope's scope chain (and removes this
122  // from the current outer_scope_'s inner scope list).
123  // Assumes outer_scope_ is non-null.
124  void ReplaceOuterScope(Scope* outer_scope);
125
126  // Propagates any eagerly-gathered scope usage flags (such as calls_eval())
127  // to the passed-in scope.
128  void PropagateUsageFlagsToScope(Scope* other);
129
130  Zone* zone() const { return zone_; }
131
132  // ---------------------------------------------------------------------------
133  // Declarations
134
135  // Lookup a variable in this scope. Returns the variable or NULL if not found.
136  Variable* LookupLocal(const AstRawString* name) {
137    Variable* result = variables_.Lookup(name);
138    if (result != nullptr || scope_info_.is_null()) return result;
139    return LookupInScopeInfo(name);
140  }
141
142  Variable* LookupInScopeInfo(const AstRawString* name);
143
144  // Lookup a variable in this scope or outer scopes.
145  // Returns the variable or NULL if not found.
146  Variable* Lookup(const AstRawString* name);
147
148  // Declare a local variable in this scope. If the variable has been
149  // declared before, the previously declared variable is returned.
150  Variable* DeclareLocal(const AstRawString* name, VariableMode mode,
151                         InitializationFlag init_flag, VariableKind kind,
152                         MaybeAssignedFlag maybe_assigned_flag = kNotAssigned);
153
154  Variable* DeclareVariable(Declaration* declaration, VariableMode mode,
155                            InitializationFlag init,
156                            bool allow_harmony_restrictive_generators,
157                            bool* sloppy_mode_block_scope_function_redefinition,
158                            bool* ok);
159
160  // Declarations list.
161  ThreadedList<Declaration>* declarations() { return &decls_; }
162
163  ThreadedList<Variable>* locals() { return &locals_; }
164
165  // Create a new unresolved variable.
166  VariableProxy* NewUnresolved(AstNodeFactory* factory,
167                               const AstRawString* name,
168                               int start_position = kNoSourcePosition,
169                               VariableKind kind = NORMAL_VARIABLE);
170
171  void AddUnresolved(VariableProxy* proxy);
172
173  // Remove a unresolved variable. During parsing, an unresolved variable
174  // may have been added optimistically, but then only the variable name
175  // was used (typically for labels). If the variable was not declared, the
176  // addition introduced a new unresolved variable which may end up being
177  // allocated globally as a "ghost" variable. RemoveUnresolved removes
178  // such a variable again if it was added; otherwise this is a no-op.
179  bool RemoveUnresolved(VariableProxy* var);
180  bool RemoveUnresolved(const AstRawString* name);
181
182  // Creates a new temporary variable in this scope's TemporaryScope.  The
183  // name is only used for printing and cannot be used to find the variable.
184  // In particular, the only way to get hold of the temporary is by keeping the
185  // Variable* around.  The name should not clash with a legitimate variable
186  // names.
187  // TODO(verwaest): Move to DeclarationScope?
188  Variable* NewTemporary(const AstRawString* name);
189
190  // ---------------------------------------------------------------------------
191  // Illegal redeclaration support.
192
193  // Check if the scope has conflicting var
194  // declarations, i.e. a var declaration that has been hoisted from a nested
195  // scope over a let binding of the same name.
196  Declaration* CheckConflictingVarDeclarations();
197
198  // Check if the scope has a conflicting lexical declaration that has a name in
199  // the given list. This is used to catch patterns like
200  // `try{}catch(e){let e;}`,
201  // which is an error even though the two 'e's are declared in different
202  // scopes.
203  Declaration* CheckLexDeclarationsConflictingWith(
204      const ZoneList<const AstRawString*>& names);
205
206  // ---------------------------------------------------------------------------
207  // Scope-specific info.
208
209  // Inform the scope and outer scopes that the corresponding code contains an
210  // eval call. We don't record eval calls from innner scopes in the outer most
211  // script scope, as we only see those when parsing eagerly. If we recorded the
212  // calls then, the outer most script scope would look different depending on
213  // whether we parsed eagerly or not which is undesirable.
214  void RecordEvalCall() {
215    scope_calls_eval_ = true;
216    inner_scope_calls_eval_ = true;
217    for (Scope* scope = outer_scope(); scope && !scope->is_script_scope();
218         scope = scope->outer_scope()) {
219      scope->inner_scope_calls_eval_ = true;
220    }
221  }
222
223  // Set the language mode flag (unless disabled by a global flag).
224  void SetLanguageMode(LanguageMode language_mode) {
225    DCHECK(!is_module_scope() || is_strict(language_mode));
226    set_language_mode(language_mode);
227  }
228
229  // Inform the scope that the scope may execute declarations nonlinearly.
230  // Currently, the only nonlinear scope is a switch statement. The name is
231  // more general in case something else comes up with similar control flow,
232  // for example the ability to break out of something which does not have
233  // its own lexical scope.
234  // The bit does not need to be stored on the ScopeInfo because none of
235  // the three compilers will perform hole check elimination on a variable
236  // located in VariableLocation::CONTEXT. So, direct eval and closures
237  // will not expose holes.
238  void SetNonlinear() { scope_nonlinear_ = true; }
239
240  // Position in the source where this scope begins and ends.
241  //
242  // * For the scope of a with statement
243  //     with (obj) stmt
244  //   start position: start position of first token of 'stmt'
245  //   end position: end position of last token of 'stmt'
246  // * For the scope of a block
247  //     { stmts }
248  //   start position: start position of '{'
249  //   end position: end position of '}'
250  // * For the scope of a function literal or decalaration
251  //     function fun(a,b) { stmts }
252  //   start position: start position of '('
253  //   end position: end position of '}'
254  // * For the scope of a catch block
255  //     try { stms } catch(e) { stmts }
256  //   start position: start position of '('
257  //   end position: end position of ')'
258  // * For the scope of a for-statement
259  //     for (let x ...) stmt
260  //   start position: start position of '('
261  //   end position: end position of last token of 'stmt'
262  // * For the scope of a switch statement
263  //     switch (tag) { cases }
264  //   start position: start position of '{'
265  //   end position: end position of '}'
266  int start_position() const { return start_position_; }
267  void set_start_position(int statement_pos) {
268    start_position_ = statement_pos;
269  }
270  int end_position() const { return end_position_; }
271  void set_end_position(int statement_pos) {
272    end_position_ = statement_pos;
273  }
274
275  // Scopes created for desugaring are hidden. I.e. not visible to the debugger.
276  bool is_hidden() const { return is_hidden_; }
277  void set_is_hidden() { is_hidden_ = true; }
278
279  // In some cases we want to force context allocation for a whole scope.
280  void ForceContextAllocation() {
281    DCHECK(!already_resolved_);
282    force_context_allocation_ = true;
283  }
284  bool has_forced_context_allocation() const {
285    return force_context_allocation_;
286  }
287
288  // ---------------------------------------------------------------------------
289  // Predicates.
290
291  // Specific scope types.
292  bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; }
293  bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; }
294  bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; }
295  bool is_script_scope() const { return scope_type_ == SCRIPT_SCOPE; }
296  bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; }
297  bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; }
298  bool is_with_scope() const { return scope_type_ == WITH_SCOPE; }
299  bool is_declaration_scope() const { return is_declaration_scope_; }
300
301  // Information about which scopes calls eval.
302  bool calls_eval() const { return scope_calls_eval_; }
303  bool calls_sloppy_eval() const {
304    return scope_calls_eval_ && is_sloppy(language_mode());
305  }
306  bool IsAsmModule() const;
307  bool IsAsmFunction() const;
308  // Does this scope have the potential to execute declarations non-linearly?
309  bool is_nonlinear() const { return scope_nonlinear_; }
310
311  // Whether this needs to be represented by a runtime context.
312  bool NeedsContext() const {
313    // Catch scopes always have heap slots.
314    DCHECK(!is_catch_scope() || num_heap_slots() > 0);
315    return num_heap_slots() > 0;
316  }
317
318  // ---------------------------------------------------------------------------
319  // Accessors.
320
321  // The type of this scope.
322  ScopeType scope_type() const { return scope_type_; }
323
324  // The language mode of this scope.
325  LanguageMode language_mode() const { return is_strict_ ? STRICT : SLOPPY; }
326
327  // inner_scope() and sibling() together implement the inner scope list of a
328  // scope. Inner scope points to the an inner scope of the function, and
329  // "sibling" points to a next inner scope of the outer scope of this scope.
330  Scope* inner_scope() const { return inner_scope_; }
331  Scope* sibling() const { return sibling_; }
332
333  // The scope immediately surrounding this scope, or NULL.
334  Scope* outer_scope() const { return outer_scope_; }
335
336  const AstRawString* catch_variable_name() const {
337    DCHECK(is_catch_scope());
338    DCHECK_EQ(1, num_var());
339    return static_cast<AstRawString*>(variables_.Start()->key);
340  }
341
342  // ---------------------------------------------------------------------------
343  // Variable allocation.
344
345  // Result of variable allocation.
346  int num_stack_slots() const { return num_stack_slots_; }
347  int num_heap_slots() const { return num_heap_slots_; }
348
349  int StackLocalCount() const;
350  int ContextLocalCount() const;
351
352  // Determine if we can parse a function literal in this scope lazily without
353  // caring about the unresolved variables within.
354  bool AllowsLazyParsingWithoutUnresolvedVariables(const Scope* outer) const;
355
356  // The number of contexts between this and scope; zero if this == scope.
357  int ContextChainLength(Scope* scope) const;
358
359  // The number of contexts between this and the outermost context that has a
360  // sloppy eval call. One if this->calls_sloppy_eval().
361  int ContextChainLengthUntilOutermostSloppyEval() const;
362
363  // The maximum number of nested contexts required for this scope and any inner
364  // scopes.
365  int MaxNestedContextChainLength();
366
367  // Find the first function, script, eval or (declaration) block scope. This is
368  // the scope where var declarations will be hoisted to in the implementation.
369  DeclarationScope* GetDeclarationScope();
370
371  // Find the first non-block declaration scope. This should be either a script,
372  // function, or eval scope. Same as DeclarationScope(), but skips declaration
373  // "block" scopes. Used for differentiating associated function objects (i.e.,
374  // the scope for which a function prologue allocates a context) or declaring
375  // temporaries.
376  DeclarationScope* GetClosureScope();
377  const DeclarationScope* GetClosureScope() const;
378
379  // Find the first (non-arrow) function or script scope.  This is where
380  // 'this' is bound, and what determines the function kind.
381  DeclarationScope* GetReceiverScope();
382
383  // Find the module scope, assuming there is one.
384  ModuleScope* GetModuleScope();
385
386  // Find the innermost outer scope that needs a context.
387  Scope* GetOuterScopeWithContext();
388
389  // Analyze() must have been called once to create the ScopeInfo.
390  Handle<ScopeInfo> scope_info() {
391    DCHECK(!scope_info_.is_null());
392    return scope_info_;
393  }
394
395  // ---------------------------------------------------------------------------
396  // Strict mode support.
397  bool IsDeclared(const AstRawString* name) {
398    // During formal parameter list parsing the scope only contains
399    // two variables inserted at initialization: "this" and "arguments".
400    // "this" is an invalid parameter name and "arguments" is invalid parameter
401    // name in strict mode. Therefore looking up with the map which includes
402    // "this" and "arguments" in addition to all formal parameters is safe.
403    return variables_.Lookup(name) != NULL;
404  }
405
406  int num_var() const { return variables_.occupancy(); }
407
408  // ---------------------------------------------------------------------------
409  // Debugging.
410
411#ifdef DEBUG
412  void Print(int n = 0);  // n = indentation; n < 0 => don't print recursively
413
414  // Check that the scope has positions assigned.
415  void CheckScopePositions();
416
417  // Check that all Scopes in the scope tree use the same Zone.
418  void CheckZones();
419#endif
420
421  // Retrieve `IsSimpleParameterList` of current or outer function.
422  bool HasSimpleParameters();
423  void set_is_debug_evaluate_scope() { is_debug_evaluate_scope_ = true; }
424  bool is_debug_evaluate_scope() const { return is_debug_evaluate_scope_; }
425
426 protected:
427  explicit Scope(Zone* zone);
428
429  void set_language_mode(LanguageMode language_mode) {
430    is_strict_ = is_strict(language_mode);
431  }
432
433 private:
434  Variable* Declare(Zone* zone, Scope* scope, const AstRawString* name,
435                    VariableMode mode, VariableKind kind,
436                    InitializationFlag initialization_flag,
437                    MaybeAssignedFlag maybe_assigned_flag = kNotAssigned);
438
439  // This method should only be invoked on scopes created during parsing (i.e.,
440  // not deserialized from a context). Also, since NeedsContext() is only
441  // returning a valid result after variables are resolved, NeedsScopeInfo()
442  // should also be invoked after resolution.
443  bool NeedsScopeInfo() const;
444
445  Zone* zone_;
446
447  // Scope tree.
448  Scope* outer_scope_;  // the immediately enclosing outer scope, or NULL
449  Scope* inner_scope_;  // an inner scope of this scope
450  Scope* sibling_;  // a sibling inner scope of the outer scope of this scope.
451
452  // The variables declared in this scope:
453  //
454  // All user-declared variables (incl. parameters).  For script scopes
455  // variables may be implicitly 'declared' by being used (possibly in
456  // an inner scope) with no intervening with statements or eval calls.
457  VariableMap variables_;
458  // In case of non-scopeinfo-backed scopes, this contains the variables of the
459  // map above in order of addition.
460  ThreadedList<Variable> locals_;
461  // Unresolved variables referred to from this scope. The proxies themselves
462  // form a linked list of all unresolved proxies.
463  VariableProxy* unresolved_;
464  // Declarations.
465  ThreadedList<Declaration> decls_;
466
467  // Serialized scope info support.
468  Handle<ScopeInfo> scope_info_;
469// Debugging support.
470#ifdef DEBUG
471  const AstRawString* scope_name_;
472
473  // True if it doesn't need scope resolution (e.g., if the scope was
474  // constructed based on a serialized scope info or a catch context).
475  bool already_resolved_;
476  // True if this scope may contain objects from a temp zone that needs to be
477  // fixed up.
478  bool needs_migration_;
479#endif
480
481  // Source positions.
482  int start_position_;
483  int end_position_;
484
485  // Computed via AllocateVariables.
486  int num_stack_slots_;
487  int num_heap_slots_;
488
489  // The scope type.
490  const ScopeType scope_type_;
491
492  // Scope-specific information computed during parsing.
493  //
494  // The language mode of this scope.
495  STATIC_ASSERT(LANGUAGE_END == 2);
496  bool is_strict_ : 1;
497  // This scope or a nested catch scope or with scope contain an 'eval' call. At
498  // the 'eval' call site this scope is the declaration scope.
499  bool scope_calls_eval_ : 1;
500  // This scope's declarations might not be executed in order (e.g., switch).
501  bool scope_nonlinear_ : 1;
502  bool is_hidden_ : 1;
503  // Temporary workaround that allows masking of 'this' in debug-evalute scopes.
504  bool is_debug_evaluate_scope_ : 1;
505
506  bool inner_scope_calls_eval_ : 1;
507  bool force_context_allocation_ : 1;
508
509  // True if it holds 'var' declarations.
510  bool is_declaration_scope_ : 1;
511
512  // Create a non-local variable with a given name.
513  // These variables are looked up dynamically at runtime.
514  Variable* NonLocal(const AstRawString* name, VariableMode mode);
515
516  // Variable resolution.
517  // Lookup a variable reference given by name recursively starting with this
518  // scope, and stopping when reaching the outer_scope_end scope. If the code is
519  // executed because of a call to 'eval', the context parameter should be set
520  // to the calling context of 'eval'.
521  Variable* LookupRecursive(VariableProxy* proxy, Scope* outer_scope_end);
522  void ResolveTo(ParseInfo* info, VariableProxy* proxy, Variable* var);
523  void ResolveVariable(ParseInfo* info, VariableProxy* proxy);
524  void ResolveVariablesRecursively(ParseInfo* info);
525
526  // Finds free variables of this scope. This mutates the unresolved variables
527  // list along the way, so full resolution cannot be done afterwards.
528  // If a ParseInfo* is passed, non-free variables will be resolved.
529  VariableProxy* FetchFreeVariables(DeclarationScope* max_outer_scope,
530                                    bool try_to_resolve = true,
531                                    ParseInfo* info = nullptr,
532                                    VariableProxy* stack = nullptr);
533
534  // Predicates.
535  bool MustAllocate(Variable* var);
536  bool MustAllocateInContext(Variable* var);
537
538  // Variable allocation.
539  void AllocateStackSlot(Variable* var);
540  void AllocateHeapSlot(Variable* var);
541  void AllocateNonParameterLocal(Variable* var);
542  void AllocateDeclaredGlobal(Variable* var);
543  void AllocateNonParameterLocalsAndDeclaredGlobals();
544  void AllocateVariablesRecursively();
545
546  void AllocateScopeInfosRecursively(Isolate* isolate,
547                                     MaybeHandle<ScopeInfo> outer_scope);
548  void AllocateDebuggerScopeInfos(Isolate* isolate,
549                                  MaybeHandle<ScopeInfo> outer_scope);
550
551  // Construct a scope based on the scope info.
552  Scope(Zone* zone, ScopeType type, Handle<ScopeInfo> scope_info);
553
554  // Construct a catch scope with a binding for the name.
555  Scope(Zone* zone, const AstRawString* catch_variable_name,
556        Handle<ScopeInfo> scope_info);
557
558  void AddInnerScope(Scope* inner_scope) {
559    DCHECK_EQ(!needs_migration_, inner_scope->zone() == zone());
560    inner_scope->sibling_ = inner_scope_;
561    inner_scope_ = inner_scope;
562    inner_scope->outer_scope_ = this;
563  }
564
565  void RemoveInnerScope(Scope* inner_scope) {
566    DCHECK_NOT_NULL(inner_scope);
567    if (inner_scope == inner_scope_) {
568      inner_scope_ = inner_scope_->sibling_;
569      return;
570    }
571    for (Scope* scope = inner_scope_; scope != nullptr;
572         scope = scope->sibling_) {
573      if (scope->sibling_ == inner_scope) {
574        scope->sibling_ = scope->sibling_->sibling_;
575        return;
576      }
577    }
578  }
579
580  void SetDefaults();
581
582  friend class DeclarationScope;
583};
584
585class DeclarationScope : public Scope {
586 public:
587  DeclarationScope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
588                   FunctionKind function_kind = kNormalFunction);
589  DeclarationScope(Zone* zone, ScopeType scope_type,
590                   Handle<ScopeInfo> scope_info);
591  // Creates a script scope.
592  DeclarationScope(Zone* zone, AstValueFactory* ast_value_factory);
593
594  bool IsDeclaredParameter(const AstRawString* name) {
595    // If IsSimpleParameterList is false, duplicate parameters are not allowed,
596    // however `arguments` may be allowed if function is not strict code. Thus,
597    // the assumptions explained above do not hold.
598    return params_.Contains(variables_.Lookup(name));
599  }
600
601  FunctionKind function_kind() const { return function_kind_; }
602
603  bool is_arrow_scope() const {
604    return is_function_scope() && IsArrowFunction(function_kind_);
605  }
606
607  // Inform the scope that the corresponding code uses "super".
608  void RecordSuperPropertyUsage() { scope_uses_super_property_ = true; }
609  // Does this scope access "super" property (super.foo).
610  bool uses_super_property() const { return scope_uses_super_property_; }
611
612  bool NeedsHomeObject() const {
613    return scope_uses_super_property_ ||
614           (inner_scope_calls_eval_ && (IsConciseMethod(function_kind()) ||
615                                        IsAccessorFunction(function_kind()) ||
616                                        IsClassConstructor(function_kind())));
617  }
618
619  bool is_lazily_parsed() const { return is_lazily_parsed_; }
620  bool ShouldEagerCompile() const;
621  void set_should_eager_compile();
622
623  void SetScriptScopeInfo(Handle<ScopeInfo> scope_info) {
624    DCHECK(is_script_scope());
625    DCHECK(scope_info_.is_null());
626    scope_info_ = scope_info;
627  }
628
629  bool asm_module() const { return asm_module_; }
630  void set_asm_module();
631  bool asm_function() const { return asm_function_; }
632  void set_asm_function() { asm_module_ = true; }
633
634  void DeclareThis(AstValueFactory* ast_value_factory);
635  void DeclareArguments(AstValueFactory* ast_value_factory);
636  void DeclareDefaultFunctionVariables(AstValueFactory* ast_value_factory);
637
638  // Declare the function variable for a function literal. This variable
639  // is in an intermediate scope between this function scope and the the
640  // outer scope. Only possible for function scopes; at most one variable.
641  //
642  // This function needs to be called after all other variables have been
643  // declared in the scope. It will add a variable for {name} to {variables_};
644  // either the function variable itself, or a non-local in case the function
645  // calls sloppy eval.
646  Variable* DeclareFunctionVar(const AstRawString* name);
647
648  // Declare a parameter in this scope.  When there are duplicated
649  // parameters the rightmost one 'wins'.  However, the implementation
650  // expects all parameters to be declared and from left to right.
651  Variable* DeclareParameter(const AstRawString* name, VariableMode mode,
652                             bool is_optional, bool is_rest, bool* is_duplicate,
653                             AstValueFactory* ast_value_factory);
654
655  // Declare an implicit global variable in this scope which must be a
656  // script scope.  The variable was introduced (possibly from an inner
657  // scope) by a reference to an unresolved variable with no intervening
658  // with statements or eval calls.
659  Variable* DeclareDynamicGlobal(const AstRawString* name,
660                                 VariableKind variable_kind);
661
662  // The variable corresponding to the 'this' value.
663  Variable* receiver() {
664    DCHECK(has_this_declaration());
665    DCHECK_NOT_NULL(receiver_);
666    return receiver_;
667  }
668
669  // TODO(wingo): Add a GLOBAL_SCOPE scope type which will lexically allocate
670  // "this" (and no other variable) on the native context.  Script scopes then
671  // will not have a "this" declaration.
672  bool has_this_declaration() const {
673    return (is_function_scope() && !is_arrow_scope()) || is_module_scope();
674  }
675
676  // The variable corresponding to the 'new.target' value.
677  Variable* new_target_var() { return new_target_; }
678
679  // The variable holding the function literal for named function
680  // literals, or NULL.  Only valid for function scopes.
681  Variable* function_var() const {
682    DCHECK(is_function_scope());
683    return function_;
684  }
685
686  // Parameters. The left-most parameter has index 0.
687  // Only valid for function and module scopes.
688  Variable* parameter(int index) const {
689    DCHECK(is_function_scope() || is_module_scope());
690    return params_[index];
691  }
692
693  // Returns the number of formal parameters, excluding a possible rest
694  // parameter.  Examples:
695  //   function foo(a, b) {}         ==> 2
696  //   function foo(a, b, ...c) {}   ==> 2
697  //   function foo(a, b, c = 1) {}  ==> 3
698  int num_parameters() const {
699    return has_rest_ ? params_.length() - 1 : params_.length();
700  }
701
702  // The function's rest parameter (nullptr if there is none).
703  Variable* rest_parameter() const {
704    return has_rest_ ? params_[params_.length() - 1] : nullptr;
705  }
706
707  bool has_simple_parameters() const { return has_simple_parameters_; }
708
709  // TODO(caitp): manage this state in a better way. PreParser must be able to
710  // communicate that the scope is non-simple, without allocating any parameters
711  // as the Parser does. This is necessary to ensure that TC39's proposed early
712  // error can be reported consistently regardless of whether lazily parsed or
713  // not.
714  void SetHasNonSimpleParameters() {
715    DCHECK(is_function_scope());
716    has_simple_parameters_ = false;
717  }
718
719  // The local variable 'arguments' if we need to allocate it; NULL otherwise.
720  Variable* arguments() const {
721    DCHECK(!is_arrow_scope() || arguments_ == nullptr);
722    return arguments_;
723  }
724
725  Variable* this_function_var() const {
726    // This is only used in derived constructors atm.
727    DCHECK(this_function_ == nullptr ||
728           (is_function_scope() && (IsClassConstructor(function_kind()) ||
729                                    IsConciseMethod(function_kind()) ||
730                                    IsAccessorFunction(function_kind()))));
731    return this_function_;
732  }
733
734  // Adds a local variable in this scope's locals list. This is for adjusting
735  // the scope of temporaries and do-expression vars when desugaring parameter
736  // initializers.
737  void AddLocal(Variable* var);
738
739  void DeclareSloppyBlockFunction(const AstRawString* name,
740                                  SloppyBlockFunctionStatement* statement) {
741    sloppy_block_function_map_.Declare(zone(), name, statement);
742  }
743
744  // Go through sloppy_block_function_map_ and hoist those (into this scope)
745  // which should be hoisted.
746  void HoistSloppyBlockFunctions(AstNodeFactory* factory);
747
748  SloppyBlockFunctionMap* sloppy_block_function_map() {
749    return &sloppy_block_function_map_;
750  }
751
752  // Compute top scope and allocate variables. For lazy compilation the top
753  // scope only contains the single lazily compiled function, so this
754  // doesn't re-allocate variables repeatedly.
755  static void Analyze(ParseInfo* info, AnalyzeMode mode);
756
757  // To be called during parsing. Do just enough scope analysis that we can
758  // discard the Scope for lazily compiled functions. In particular, this
759  // records variables which cannot be resolved inside the Scope (we don't yet
760  // know what they will resolve to since the outer Scopes are incomplete) and
761  // migrates them into migrate_to.
762  void AnalyzePartially(AstNodeFactory* ast_node_factory);
763
764  Handle<StringSet> CollectNonLocals(ParseInfo* info,
765                                     Handle<StringSet> non_locals);
766
767  // Determine if we can use lazy compilation for this scope.
768  bool AllowsLazyCompilation() const;
769
770  // Make sure this closure and all outer closures are eagerly compiled.
771  void ForceEagerCompilation() {
772    DCHECK_EQ(this, GetClosureScope());
773    DeclarationScope* s;
774    for (s = this; !s->is_script_scope();
775         s = s->outer_scope()->GetClosureScope()) {
776      s->force_eager_compilation_ = true;
777    }
778    s->force_eager_compilation_ = true;
779  }
780
781#ifdef DEBUG
782  void PrintParameters();
783#endif
784
785  void AllocateLocals();
786  void AllocateParameterLocals();
787  void AllocateReceiver();
788
789  void ResetAfterPreparsing(AstValueFactory* ast_value_factory, bool aborted);
790
791 private:
792  void AllocateParameter(Variable* var, int index);
793
794  // Resolve and fill in the allocation information for all variables
795  // in this scopes. Must be called *after* all scopes have been
796  // processed (parsed) to ensure that unresolved variables can be
797  // resolved properly.
798  //
799  // In the case of code compiled and run using 'eval', the context
800  // parameter is the context in which eval was called.  In all other
801  // cases the context parameter is an empty handle.
802  void AllocateVariables(ParseInfo* info, AnalyzeMode mode);
803
804  void SetDefaults();
805
806  // If the scope is a function scope, this is the function kind.
807  const FunctionKind function_kind_;
808
809  bool has_simple_parameters_ : 1;
810  // This scope contains an "use asm" annotation.
811  bool asm_module_ : 1;
812  // This scope's outer context is an asm module.
813  bool asm_function_ : 1;
814  bool force_eager_compilation_ : 1;
815  // This function scope has a rest parameter.
816  bool has_rest_ : 1;
817  // This scope has a parameter called "arguments".
818  bool has_arguments_parameter_ : 1;
819  // This scope uses "super" property ('super.foo').
820  bool scope_uses_super_property_ : 1;
821  bool should_eager_compile_ : 1;
822  bool is_lazily_parsed_ : 1;
823
824  // Parameter list in source order.
825  ZoneList<Variable*> params_;
826  // Map of function names to lists of functions defined in sloppy blocks
827  SloppyBlockFunctionMap sloppy_block_function_map_;
828  // Convenience variable.
829  Variable* receiver_;
830  // Function variable, if any; function scopes only.
831  Variable* function_;
832  // new.target variable, function scopes only.
833  Variable* new_target_;
834  // Convenience variable; function scopes only.
835  Variable* arguments_;
836  // Convenience variable; Subclass constructor only
837  Variable* this_function_;
838};
839
840class ModuleScope final : public DeclarationScope {
841 public:
842  ModuleScope(DeclarationScope* script_scope,
843              AstValueFactory* ast_value_factory);
844
845  // Deserialization.
846  // The generated ModuleDescriptor does not preserve all information.  In
847  // particular, its module_requests map will be empty because we no longer need
848  // the map after parsing.
849  ModuleScope(Isolate* isolate, Handle<ScopeInfo> scope_info,
850              AstValueFactory* ast_value_factory);
851
852  ModuleDescriptor* module() const {
853    DCHECK_NOT_NULL(module_descriptor_);
854    return module_descriptor_;
855  }
856
857  // Set MODULE as VariableLocation for all variables that will live in a
858  // module's export table.
859  void AllocateModuleVariables();
860
861 private:
862  ModuleDescriptor* module_descriptor_;
863};
864
865}  // namespace internal
866}  // namespace v8
867
868#endif  // V8_AST_SCOPES_H_
869